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Abstract

Large Language Models (LLMs) are often described as being instances of foun-
dation models - that is, models that possess strong generalization and therefore
transfer robustly across various tasks and conditions in few-shot or zero-shot
manner, while exhibiting scaling laws that predict generalization improvement
when increasing the pre-training scale. These claims of strong generalization and
advanced function enabling it like reasoning rely on measurements by various
standardized benchmarks where state-of-the-art (SOTA) models score high. We
demonstrate here a dramatic breakdown of generalization and basic reasoning of
all SOTA models which claim strong function, including advanced models like
GPT-4 or Claude 3 Opus trained at the largest scales, using a simple, short, con-
ventional common sense problem formulated in concise natural language, easily
solvable by humans (AIW problem). The breakdown is dramatic as it manifests
in strong performance fluctuations across mild problem variations that should not
affect problem solving at all, while also often expressing strong overconfidence
in the wrong solutions, backed up by plausible sounding explanation-like confab-
ulations. Various standard interventions in an attempt to get the right solution,
like chain-of-thought prompting, or urging the models to reconsider the wrong
solutions again by multi step re-evaluation, fail. We take these initial observations
to the scientific and technological community to stimulate urgent re-assessment
of the claimed capabilities of current generation of LLMs. Such re-assessment
also requires common action to create standardized benchmarks that would allow
proper detection of such deficits in generalization and reasoning that obviously
manage to remain undiscovered by current state-of-the-art evaluation procedures.1

1 Introduction

In the recent breakthroughs in transferable learning that were achieved in various classical domains
of machine learning like visual recognition [1] or language understanding [2, 3, 4], large language
models (LLMs) have played a very prominent role. The generic form and scalability of autoregressive
language modelling [4] allowed to push towards training scales not achievable before with conven-
tional supervised label-based learning. Scaling laws derived from experiments on smaller scales
hinted on strong function and generalization capability appearing at larger scales [5, 6], which was
then confirmed by training models at the large scales, measuring their performance on set of standard-
ized benchmarks (MMLU, HellaSwag, ARC, MATH, GSM8k, etc) where they scored high on few-
and zero-shot transfer across various tasks [7], following accurately the predictions [4, 5, 8, 9, 10, 11].

1Code for reproducing experiments in the paper and raw experiments data can be found at AIW repo

Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.

https://github.com/LAION-AI/AIW


There were however observations made by various works that questioned the claimed strong gen-
eralization, transfer and reasoning capabilities attributed to LLMs [12]. These works pointed out
various function failures that were seemingly incompatible with postulated strong capabilities as
measured by standardized benchmarks [13, 14, 15, 16]. However, it has also been noted that observed
failures can frequently be addressed through simple adjustments to the prompts or by repeated execu-
tion and evaluation using majority voting, or by requesting the model to perform self-verification.
[17, 18, 19, 20, 21]. It remained thus unclear where those observations of failures were pointing
to some fundamental deficits in core model capabilities affecting generalization and reasoning, or
whether those were just symptoms of minor issues easily resolvable by simple interventions, leaving
claim of strong core function as put forward by standardized benchmarks unaffected.

To shed light on current situation, we study whether the claim of the strong SOTA LLMs functions
made across various complex tasks can be put to test by using very simple tasks, in contrast to those
employed by standardized benchmarks. We introduce a short conventional common sense problem
that is formulated without any ambiguities in concise natural language and can be easily solved by
humans. The problem (in following Alice in Wonderland, AIW problem) has following template:
"Alice has N brothers and she also has M sisters. How many sisters does Alice’s brother have?".
Crucially, replacing N,M with natural numbers ≤ 7 allows us to introduce systematic variations
that do not change problem structure and thus should not affect difficulty to solve it. We use then
this technique of creating problem structure irrelevant variations to measure models’ sensitivity to
problem irrelevant perturbations, testing models’ generalization ability.

Surprisingly, when confronted with AIW problem and its mild variations, all SOTA models including
most advanced large-scale ones (eg GPT-4 [22], Claude 3 Opus [23]) suffer severe function breakdown.
This breakdown manifests (i) in average correct response rates that are unexpectedly low for such a
simple problem and in (ii) strong fluctuations in correct response rates across AIW problem variations
despite those being entirely irrelevant for coping with the problem. Strong fluctuations remain despite
using various standard interventions to improve model function like chain-of-thought prompting.
By creating further control versions of AIW problem and observing that models are successfully
coping with those, we are able to rule out that observed failures might be rooted in minor low level
issues of tokenization, handling the specific relational family structure frame, or executing arithmetic
operations necessary to solve the problem. Despite a specific form of simple AIW problem, we can
thus conclude that observed failure has generic character. The lack of robustness revealed in all
SOTA models by problem irrelevant variations of a simple problem points to severe generic deficits
in generalization and reasoning.

The observed breakdown of function and generalization is in strong contrast to scores on standardized
benchmarks, which contain problems of higher difficulty. Many tested models that score high on such
benchmarks show correct response rates close to zero across simple AIW problem variations. Claims
put forward by standardized benchmarks to properly reflect model capabilities such as generalization
and reasoning cannot be upheld in face of the evident failure to detect such severe function deficits as
revealed by the simple AIW problem. Our study highlights necessity to re-assess current capabilities
of SOTA LLMs by creating novel benchmarks that properly reflect their true abilities to generalize
and reason. Such benchmarks will be able to correctly spot deficits overlooked so far and thus show
the path for improvement of current still unsatisfactory state.

2 Methods & Experiment Setup

AIW Problem. To measure model’s sensitivity to problem irrelevant variations and thus probe the
zero-shot generalization, we use following problem template: "Alice has N brothers and she also
has M sisters. How many sisters does Alice’s brother have?". The problem has a simple common
sense solution which assumes all sisters and brothers in the problem setting share the same parents.
The correct response C - number of sisters - is easily obtained by calculating M + 1 (Alice and her
sisters), which gives the number of sisters Alice’s brother has. To create problem variations, we use
the problem template and vary natural numbers N,M ≤ 7, obtaining AIW variations 1-4 (see Suppl.
Tab. 2), generating in this way instances of the same problem with variations irrelevant for problem
difficulty level. We further use 3 prompt types, RESTRICTED, STANDARD and THINKING, to
ensure that observed behavior is consistent across various prompt formulations. STANDARD and
THINKING prompt types allow models to freely output any text before arriving to a final solution,
where THINKING contains in addition usual chain-of-thought (CoT) instruction. RESTRICTED
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                                                    AIW Variations 1-4

Variation 1: Alice has 3 brothers and she also has 6 sisters. [Correct answer: 7 ]
Variation 2: Alice has 2 sisters and she also has 4 brothers. [Correct answer: 3 ]
Variation 3: Alice has 4 sisters and she also has 1 brother.   [Correct answer: 5 ]
Variation 4: Alice has 4 brothers and she also has 1 sister.   [Correct answer: 2 ]

How many sisters does Alice's brother have?

Figure 1: Collapse of most SOTA LLMs on AIW problem. (main) Models with non-zero AIW
average correct response rate (across AIW variations 1-4 using THINKING and STANDARD prompt
types). Given AIW simplicity, achieved correct response rates are surprisingly low. Many models
claiming strong skills via standardized benchmarks score close to 0 or 0. Omitted models score 0.
(inlay) In addition to low average correct response rates, strong correct response rate fluctuations
across problem irrelevant variations (STANDARD prompt type, see Fig. 2 for THINKING type)
reveal severe lack of robustness. Each colored bar shows correct response rate for one of AIW
variations 1-4, estimated from > 30 trials per variation (see Suppl. Sec. C.1 for estimation procedure).

prompt type is used as control, containing instruction to output only the final answer as a number and
no other text. Models receive for each single trial an input that has a form <instantiated-template>
<prompt-type>, where <instantiated-template> is template with substituted numbers instantiating one
of AIW Variations 1-4 and <prompt-type> contains question and output instructions corresponding to
one of prompt types as described above. This allows us to test any combination of AIW Variations
1-4 with any of prompt types. See Suppl. Sec. B for more details and for examples of full versions of
the problem related inputs to the models (Suppl. Tab. 2).

Experiment setup and model response evaluation. We select current SOTA LLMs models to test,
including most advanced models at largest scales (see Suppl. Tab. 1) and expose each model to all
AIW problem variations 1-4 (Suppl. Tab. 2), using different prompt types as described above. For
each combination of model, variation and prompt type, at least 30 trials are collected to compute
correct response rates (see Suppl. Sec. C.1 for estimation procedure). We employ further control AIW
problem versions (Suppl. Sec. C.2.1) to test model abilities to handle various operations required
for the problem solution. We re-use same experiment setup, again constructing problem variations
on the problem template that stays close to AIW original, also ensuring natural numbers for correct
responses match on AIW control and original problems across variations.

3 Results

AIW reveals severe generalization and reasoning deficits in SOTA LLMs. Following the proce-
dures described in Sec 2, we expose the selected models that claim strong function and reasoning
capabilities (Suppl. Tab. 1) and measure their correct response rate performance across and for each
AIW variations 1-4 using various prompt types, executing > 30 trials for each combination (see also
Suppl. Tab. 2 and Suppl. Fig. 16). The results suggest that confronted with the AIW problem, models
suffer a severe function breakdown. This breakdown has two main manifestations:
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                                                   AIW Variations 1-4

Variation 1: Alice has 3 brothers and she also has 6 sisters. [Correct answer: 7 ]
Variation 2: Alice has 2 sisters and she also has 4 brothers. [Correct answer: 3 ]
Variation 3: Alice has 4 sisters and she also has 1 brother.   [Correct answer: 5 ]
Variation 4: Alice has 4 brothers and she also has 1 sister.   [Correct answer: 2 ]

How many sisters does Alice's brother have?

Figure 2: Strong fluctuations across AIW problem variations, THINKING prompt. Also for better
performers, eg GPT-4o, GPT-4 and Claude Opus 3, correct response rates vary strongly from close to 1
to close to 0, despite AIW variations being irrelevant for problem structure (a color per each variation
1-4). This shows clear lack of model robustness, revealing generalization and basic reasoning deficits.

1. Low correct response rates. Despite evident problem’s simplicity, many models are not able to
deliver a single correct response, and the majority stays well below correct response rate of p = 0.2.
We summarize the main results in the Fig. 1. The only major exceptions from the observation of very
low correct response rates are the largest scale closed models GPT-4 and Claude 3 Opus. These two
model types at largest scales obtain correct response rates well above p = 0.3, leaving the remaining
large and smaller scales open-weights (e.g., Mistral-7B, Mixtral, Qwen, Command R+, and Dbrx
Instruct) and closed-weights models (e.g., Gemini Pro, Mistral Large) far behind. Noteworthy, we
do see also rare responses with full correct reasoning leading to a correct final answer, which are
dominated by vast majority of wrong responses making up the average low correct response rates.

2. Strong performance fluctuations across mild AIW problem variations. Importantly, we also
observe strong fluctuation of correct response rates across AIW variations 1-4 as introduced in Sec. 2.
Such fluctuations also strongly affect better performers with higher average correct response rates
like GPT-4o and Claude 3 Opus. As shown in the Fig. 2 for the THINKING prompt type, the correct
response rates can fluctuate between being close to 1 to being close to 0, depending on AIW variation.
Remarkable is that such fluctuations appear despite AIW variations being all instances of the very
same simple problem, as changes in numbers used across AIW variations do not change the core
problem structure at all. This lack of robustness on such a simple problem hints on severe deficits in
generalization. The fluctuations persist across all prompt types, while overall average correct response
rate can change. For instance, expectedly, we see higher average correct response rates across models
for THINKING chain-of-thought prompt type, while strong fluctuations across variations remain.

AIW Light control experiments To rule out that observed failures might be low-level issues specific
to the chosen AIW problem frame, like deficits of the tested models to handle basic family relations
or to select and execute arithmetic operations, we conduct experiments on control AIW Light problem
versions, AIW Light Family and AIW Light Arithmetic (Suppl. Sec. C.2.1). AIW Light problems
have templates similar to AIW original and are formulated such that these low-level operations are
necessary for the correct solution. In Fig. 3 are results for models successfully coping with AIW
Light Arithmetic Total Girls version, which has following problem template: "Alice has N brothers
and she also has M sisters. How many girls are there in total?". Compared to AIW original, only
question part is modified. To solve the problem, it is necessary to bind female attribute to Alice
via the pronoun "she", to assign correct female attributes to the sisters and to execute the correct
arithmetic sum operation adding all the obtained girls - the correct answer is C = M + 1. We
obtain evidence that majority of models that fail on AIW original are solving AIW Light problems
with correct response rates close to 1, importantly, without showing strong fluctuations across AIW
variations. This rules out low-level issues like tokenization and natural language or natural numbers
parsing, family relations or elementary arithmetic operations handling as failure sources. Success
on AIW Light problems provides thus further evidence that failures observed on AIW problem are
rooted in more generic, problem unspecific deficits in generalization and basic reasoning.
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Figure 3: Correct response rates across AIW Light Arithmetic Total Girls problem variations 1-
4 (THINKING prompt type). Tested models show stable correct response rates without strong
fluctuations across problem variations (a color per each variation 1-4). This shows ability of models
to handle binding of female attributes to Alice and sisters entities within the basic family relations
structure of AIW problem and to select and execute arithmetic operations necessary to count total
females. This provides evidence that neither properly identifying entities with certain sex attributes
nor counting those poses an issue. Models that entirely collapse on AIW, like Command R Plus and
Dbrx Instruct (Suppl. Fig. 4), are clearly able to solve this version, with correct response rates going
up to 1 or close to 1 across all problem variations. For each AIW variation, 60 trials were executed to
estimate correct response rate and its variance.

Further relevant observations. 1. Dominance of wrong responses Models show failure to properly
detect mistakes and to revise wrong solutions when encouraged to do so in experiments with multi-
turn AIW problem interaction and self-verification. Distribution of natural numbers responses
on output shows moreover that for AIW variations with low correct response rate, peaks are on
wrong answers, excluding majority voting methods as a fix. (Suppl. Sec. C.3) 2. Confabulations,
overconfident tone and inability to revise wrong responses We observe that wrong responses are often
accompanied by persuasive explanation-like confabulations and overconfident tone about correctness
of the wrong solutions provided by the models, which can further mislead model users (Suppl. Sec.
E) 3. Standardized benchmarks failure Standardized benchmarks (MMLU, ARC, etc) are not able to
reveal model weaknesses as many models with correct response rate on AIW close to 0 score high on
those benchmarks. Also model ranking fails, as standardized benchmarks score is not predictive for
whether a model will be better or worse handling AIW (Suppl. Sec. C.4)

4 Discussion & Conclusion

In our work, using a very simple AIW problem (Sec. 2) that requires only elementary set and
arithmetic operations and can be easily solved by adults and arguably even children, we observe a
striking breakdown of SOTA LLMs performance when confronted with the AIW problem variations
(Suppl. Tab. 2). The breakdown is manifested in (i) overall low correct response rates (Fig. 1) and
(ii) strong performance fluctuation across only mild, irrelevant variations of the same problem, which
reveals strong lack of robustness and hints at fundamental issues with the generalization capability of
the models (Fig. 2). The observed breakdown is in dramatic contrast with claims about strong core
functions of SOTA LLMs as backed up by standardized benchmarks, revealing benchmarks failure to
properly measure core functions. Specifically, the claim of strong reasoning can be refuted, as any
system claiming even basic reasoning should be able to obtain close to 100% correct response rates on
problems as simple as AIW problem. The claim of strong zero-shot generalization is refuted by our
evidence as well - strong fluctuations of correct response rates across problem irrelevant variations
observed in all tested SOTA LLMs reveal deficits to generalize even in a such simple scenario.

Our study should serve as a vivid warning that current SOTA LLMs are not yet capable of strong
generalization and robust reasoning, and enabling those is still subject of basic research. AIW
problem and its variations offer a starting point and a measurement technique that can reveal lack of
robustness and model weaknesses in generalization and core functions that remain undiscovered by
current benchmarks (Suppl. Tab. 6). Variations built into problem templates can serve as technique to
create new benchmarks that are, in contrast to current common benchmarks, no longer static and can
form a basis for new adversarial benchmarks that follow Karl Popper’s principle of falsifiability [24],
attempting everything to break model’s function, highlighting its deficits, and thus showing possible
directions for model improvement, which is the way of scientific method.
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5 Debunking Challenge Submission

5.1 What commonly-held position or belief are you challenging?

SOTA LLMs constitute an important instance of foundation models - models that sustain claim
of strong generalization and transferability across novel scenarios and tasks, backed up by scaling
laws that accurately predict generalization and function improvement with increasing pre-training
scales [4, 5, 6]. These strong claims rely mostly on evaluations performed on standardized benchmarks
that argue to properly measure core capabilities like generalization and reasoning, eg. MMLU, ARC,
PIQA, HellaSwag, HumanEval, WinoGrande. GSM8k or MATH [25, 26, 27, 28, 29, 30], to name
few important examples. Relying on those benchmarks, it is commonly-held position to attribute to
SOTA LLMs advanced functions like zero-shot reasoning [7], and in general to put high expectations
of strong core functionality on released SOTA LLMs [8, 9, 10, 11]. Such claims extend beyond basic
research artifacts and become pervasive in applied industry, where SOTA LLMs are advertised as
robust problem solvers for various real world settings, explicitly emphasizing their value as robust
reasoners, coders and math solvers, attesting "key business-critical capabilities" or suitability for
"real-world enterprise use cases" (see announcements by Cohere on Command R-Plus [31, 32], or by
Mosaic on DBRX [33], as only few selected representative examples out of many)

5.2 How are your results in tension with this commonly-held position?

In our work, using a very simple AIW problem (Sec. 2) that can be easily solved by adults and arguably
even children, we observe a striking breakdown of SOTA LLMs performance when confronted with
the AIW problem and its variations (Suppl. Tab. 2). The breakdown is manifested in 1. Overall
low correct response rates (Fig. 1) and 2. Strong performance fluctuation across mild, irrelevant
variations of the same problem, which hints at fundamental issues with the generalization capability
of the models (Fig. 2). The observed breakdown is in dramatic contrast with claims about strong
core functions of SOTA LLMs. Specifically, the claim of strong reasoning can be refuted, as any
system claiming even basic reasoning should be able to obtain 100% correct response rates on
problems as simple as AIW problem. The claim of strong zero-shot generalization is refuted by our
evidence as well - strong fluctuations of correct response rates across problem irrelevant variations
observed in all tested SOTA LLMs reveal deficits to generalize even in such a simple scenario. By
executing control experiments (Suppl. Sec. C.2), we provide evidence (Fig. 3, Suppl. Fig. 5,6)
that the observed failures are not specific to the problem type we study and thus hint on generic
deficits in generalization and basic reasoning. Breakdown in such a simple setting makes clear that
current SOTA LLMs are not to be trusted with handling any real world problem scenario, where
same phenomena, for instance severe lack of robustness when facing mild variations as observed here
(Fig. 2), are expected to appear. Our study also clearly refutes capability of standardized benchmarks
to properly measure core model functionality such as generalization or reasoning (Suppl. Sec. C.4,
Fig. 11, Tab. 6). Standardized benchmarks assigning high scores to SOTA LLMs fail to reveal
severe model weaknesses made evident by AIW problem testing, also failing to provide proper model
ranking, as standardized benchmarks scores turn out to be not predictive for whether a model will be
better or worse handling simple AIW problem in comparison to other models.

5.3 How do you expect your submission to affect future work?

We would like to take these initial observations to the scientific and technological community to
stimulate urgent re-assessment of the claimed capabilities of current generation of LLMs. Our study
should serve as a vivid reminder that current SOTA LLMs are not capable of strong generalization
and robust reasoning, and enabling those is still subject of basic research. Such re-assessment also
requires common action to create standardized benchmarks that would allow proper detection of
such generalization and basic reasoning deficits as observed in our study that obviously manage to
remain undiscovered by current state-of-the-art evaluation procedures and benchmarks. Variations
built into problem templates can serve as technique to create new benchmarks that are, in contrast to
current common benchmarks, no longer static and can serve as better measurement tool for properly
testing model generalization and reasoning. New benchmarks should follow Karl Popper’s principle
of falsifiability [24], attempting everything to break model’s function, highlighting its deficits, and
thus showing possible directions for model improvement, which is the way of scientific method, also
offering protection from overblown claims about models’ core functions.
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Supplementary.

A Additional overview for performed experiments

Here we gather additional helpful information on the procedures around the executed experiments.
To provide overview over origin of core tested models used for the AIW experiments, we list those in
Suppl. Tab. 1

Table 1: Names, origin and versioning of core test models used in the experiments.

Name Origin Released Open Weights Sources

GPT-4o-2024-05-13 OpenAI 13.05.2024 No [8, 34, 35]
GPT-4-turbo-2024-04-09 OpenAI 09.04.2024 No [8, 22]
GPT-4-0125-preview OpenAI 25.01.2024 No [8, 22]
GPT-4-0613 OpenAI 13.06.2023 No [8, 22]
GPT-3.5-turbo-0125 OpenAI 24.01.2024 No [36, 37, 38]
Claude-3-5-sonnet-20240620 Anthropic 21.06.2024 No [39]
Claude-3-opus-20240229 Anthropic 04.03.2024 No [40, 23]
Claude-3-sonnet-20240229 Anthropic 04.03.2024 No [40, 23]
Claude-3-haiku-20240307 Anthropic 04.03.2024 No [40, 23]
Gemini 1.0 Pro Google 06.12.2023 No [41, 42]
Gemini 1.5 Pro Google 16.02.2024 No [43, 44]
gemma-7b-it Google 05.04.2024 (v1.1) Yes [45, 46]
gemma-2b-it Google 05.04.2024 (v1.1) Yes [45, 46]
Mistral-large-2402 Mistral AI 26.02.2024 No [47, 48]
Mistral-medium-2312 Mistral AI 23.12.2023 No [47, 48]
Mistral-small-2402 Mistral AI 26.02.2024 No [47, 48]
open-mixtral-8x22b-instruct-v0.1 Mistral AI 17.04.2024 Yes [47, 49]
open-mixtral-8x7b-instruct-v0.1 Mistral AI 11.12.2023 Yes [47, 50]
open-mistral-7b-instruct-v0.2 Mistral AI 11.12.2023 Yes [11, 47, 51]
Command R+ Cohere 04.04.2024 Yes [32, 52]
Dbrx Instruct Mosaic 27.03.2024 Yes [33]
Llama 2 70B Chat Meta 18.07.2023 Yes [53, 10]
Llama 2 13B Chat Meta 18.07.2023 Yes [53, 10]
Llama 2 7B Chat Meta 18.07.2023 Yes [53, 10]
Llama 3 70B Chat Meta 18.04.2024 Yes [54, 55]
Llama 3 8B Chat Meta 18.04.2024 Yes [54, 55]
Qwen 1.5 1.8B - 72B Chat Alibaba 04.02.2024 Yes [56, 57]
Qwen 2 72B Instruct Alibaba 07.06.2024 Yes [58]

B Prompt types and variations

For testing the model dependence on input prompt type as well as robustness against problem varia-
tions when solving AIW and AIW Light problems, we used three main prompt types - STANDARD
(original prompt with answer formatting instructions), THINKING (prompt that encourages thinking
with answer formatting instructions) and RESTRICTED (prompt that instructs model to output only
formatted answer and nothing else). THINKING v2 prompt type is a minor variation of THINKING
type that just adds "step by step" after already existing "think carefully" phrasing (control experiments
show that THINKING and THINKING v2 are equivalent in terms of observed performance, so
we use both interchangeably). For testing the models’ robustness to problem perturbations, we try
different variations of main AIW problem (AIW Variations 1-4, see Sec. 2, Suppl. Tab. 2), where we
keep the same problem structure while varying numbers of brothers and sisters and their mentioning
order within the sentence. Those variations are made intentionally in such a way that they do not
affect problem structure or its difficulty and thus should not affect how models cope with the problem.

We employ further AIW versions - AIW Light - as control to test whether models are able to deal
with various aspects of original AIW problem, eg handling the specific relational family structure
frame, or executing elementary arithmetic operations necessary to solve AIW problem. See Suppl.
Sec. C.2.1 for more detail on the AIW Light design.
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Figure 4: Collapse of most SOTA LLMs on AIW problem. AIW correct response rate, averaged
across AIW variations 1-4 with prompt types THINKING and STANDARD. Only 5 models manage
to show rates above p = 0.2: GPT-4o, Claude 3 Opus, GPT-4-0613, Llama 2 70B Chat and GPT-4-
0125-preview (GPT4-Turbo). Llama 2 70B Chat is the only open-weights model in this set. The rest
either shows poor performance below p = 0.15, or even collapses entirely to 0. Among those models
collapsing to 0 are many which are claimed to be strong, eg larger scale GPT-3.5, Mixtral 8x7B and
8x22B, Command R Plus, Qwen 1.5 72B Chat and smaller scale Gemma-7b-it, Mistral Small and
Mistral Medium. By inspecting the correct answer responses of the better performers, we indeed see
mostly correct reasoning executed to arrive at the final correct answers. For the models that do not
perform well and are able to deliver correct answers only rarely, we still see in some of those very rare
responses with correct final answer correct proper reasoning, for instance in case of Mistral/Mixtral,
Dbrx Instruct, CodeLlama. We see however also responses with a correct final answer, which after
careful inspection, turns out to be an accident of executing entirely wrong reasoning, where many
accumulating mistakes accidentally lead to the final number corresponding to the right answer. Those
wrong-reasoning-right-answer responses are encountered in models that perform poorly (p < 0.3)
(see Suppl. Sec. D for response examples).

See Suppl. Tab. 2 (for AIW problem) and Suppl. Tab. 3, 4, 5 (for AIW Light problems) for examples
with full prompt versions for each presented problem and its variations.

C Model performance and behavior on AIW and AIW Light problem

Here we report further details on model evaluation, performance and behavior as observed on AIW
and AIW Light problems. For the full overview of average correct response rate including models
that score zero, see Suppl. Fig. 4. For the statistics on number of trials conducted for each model and
each prompt type, see Suppl. Fig. 16. For the statistics on the average output length across models
and prompt types, see Suppl. Fig. 17.
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Table 2: AIW main variations, prompt types and correct answers overview.

Var. Prompt Type/Answer ID

1 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD /
7

55

1 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING /
7

57

1 Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED
/ 7

53

2 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD /
3

56

2 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING /
3

58

2 Alice has 2 sisters and she also has 4 brothers. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED
/ 3

54

3 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD /
5

63

3 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING /
5

64

3 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED
/ 5

65

4 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Solve this problem and provide the final answer in following
form: "### Answer: ".

STANDARD /
2

69

4 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Before providing answer to this problem, think carefully and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING /
2

70

4 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-
CEPT following format that contains final answer: "### Answer: ".

RESTRICTED
/ 2

71

4 Alice has 4 brothers and she also has 1 sister. How many sisters does Alice’s
brother have? Solve the problem by taking care not to make any mistakes. Ex-
press your level of confidence in the provided solution as precisely as possible.

CONFIDENCE
/ 2

11

3 Alice has 4 sisters and she also has 1 brother. How many sisters does Alice’s
brother have? To solve the problem, approach it as a very intelligent, accurate
and precise scientist capable of strong and sound reasoning. Provide the solution
to the problem by thinking step by step, double checking your reasoning for
any mistakes, and based on gathered evidence, provide the final answer to the
problem in following form: "### Answer: ".

SCIENTIST /
5

40
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C.1 Evaluating model responses

To perform evaluations of model performance, we were confronted with the question of how to parse
and extract the final answer from the responses provided by the models when confronted with the
input containing the AIW problem formulation. On the one hand, it should be possible to deal with
any response provided by the model as a solution, while on the other hand allowing to extract a clear
final answer as a number to be compared with the correct answer, such that for each model response
a decision can be made on whether the provided response was right or wrong. To be able to keep
the parsing procedure simple (without involving for instance another suitable LLM prompting it
to extract the relevant part of response), we have chosen to add to the problem prompt following
passage: "provide the final answer in following form: "### Answer: "" (see also Suppl. Tab. 2).
We observed that all models we have chosen to test (Suppl. Tab. 1) were able to follow such an
instruction, providing a response that could be easily parsed. We also ran control experiments without
such formatting instruction in the problem formulation, ensuring that behavior does not depend on it.

The presented prompt extension makes it possible to extract for each prompting trial whether a model
has provided a correct answer to the AIW problem posed in the input. We can interpret then any
number n of collected responses as executing n trials given a particular prompt for a given model
(n - number of Bernoulli trials), observing in each i−th trial a Bernoulli variable Xi = {0, 1}. We
interpret the number of correct responses X =

∑
i Xi as random variable following a Beta-Binomial

distribution with unknown probability p of correct response that we also treat as random variable
that comes from a Beta distribution, i.e. p ∼ Beta(α, β), where α and β are parameters of the
Beta distribution. To obtain plots showing correct response ratios, we would like to estimate Beta
distribution underlying p, and for that, we first estimate the mean of p and its variance from the
collected observations. To estimate p̂, we use the formula for estimating the mean of p for a binomial
distribution: p̂ = X/n (i.e. as a proportion of successes). We can report the estimate p̂ as the estimate
of the correct response rate of a given model and also, compare the correct response rates of various
tested models. Moreover, we can estimate the variance of the probability of a correct response by
using the following formula:

var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var(Xi) =
nvar(Xi)

n2
=

var(Xi)

n
=

p(1− p)

n
(1)

The estimates of the variance and the standard deviation of p can be thus obtained by using p̂ as
p̂(1−p̂)

n and
√

p̂(1−p̂)
n respectively. Using the estimated variance and mean of p, we can use the

following relations for the variance:
(
σ2 = nαβ(α+β+n)

(α+β)2(α+β+1)

)
and the mean

(
µ = α

α+β

)
in order

to obtain α and β parameters for the Beta distribution. To simulate data for the plots, we draw N
random samples corresponding to correct and incorrect responses using the estimated distribution
of p and obtain the plots showing performance on the task for various models of interest as a full
distribution of the respective p.

C.2 Control experiments with AIW Light problems

C.2.1 AIW Light problems

To confirm that models do not struggle either with basic family relations structure handling nor with
executing arithmetic operations in frame of posed AIW problem, we make various control versions
of AIW problem - AIW Light Family, AIW Light Arithmetic Siblings and AIW Light Arithmetic
Total Girls. The AIW Light problems keep problem template close to the original, changing only the
final question part which poses a modified question to test particular operations. The variations 1-4
are created in the same way like in AIW original by varying natural numbers of brothers and sisters,
while ensuring that the natural numbers for final correct answers in AIW original and AIW Light are
matched across variations 1-4.

AIW Light Arithmetic Siblings. AIW Light Arithmetic Siblings has following problem template:
"Alice has N brothers and she also has M sisters. How many siblings does Alice have?". Compared
to AIW original, only question part is modified. To solve the problem, summing up already given
numbers of brothers and sisters is sufficient - the correct answer is C = N +M . This requires basic
grasping of relational family structure (realizing Alice’s siblings are her sisters and brothers) and
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Table 3: AIW Light Arithmetic Siblings variations

Var. Prompt Type/Answer ID

1 Alice has 3 brothers and she also has 4 sisters. How many siblings does Alice
have? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 7

277

2 Alice has 2 sisters and she also has 1 brother. How many siblings does Alice
have? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 3

278

3 Alice has 4 sisters and she also has 1 brother. How many siblings does Alice
have? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer: ".

THINKING
v2 / 5

279

4 Alice has 1 brother and she also has 1 sister. How many siblings does Alice
have? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 2

280

Table 4: AIW Light Family variations

Var. Prompt Type/Answer ID

1 Alice has 7 brothers and she also has 3 sisters. How many brothers does Alice’s
sister have? Before providing answer to this problem, think carefully step by
step and double check the path to the correct solution for any mistakes. Provide
then the final answer in following form: "### Answer:".

THINKING
v2 / 7

271

2 Alice has 4 sisters and she also has 3 brothers. How many brothers does Alice’s
sister have? Before providing answer to this problem, think carefully step by
step and double check the path to the correct solution for any mistakes. Provide
then the final answer in following form: "### Answer:".

THINKING
v2 / 3

272

3 Alice has 2 sisters and she also has 5 brothers. How many brothers does Alice’s
sister have? Before providing answer to this problem, think carefully step by
step and double check the path to the correct solution for any mistakes. Provide
then the final answer in following form: "### Answer: ".

THINKING
v2 / 5

273

4 Alice has 2 brothers and she also has 3 sisters. How many brothers does Alice’s
sister have? Before providing answer to this problem, think carefully step by
step and double check the path to the correct solution for any mistakes. Provide
then the final answer in following form: "### Answer:".

THINKING
v2 / 2

274

selection and execution of elementary arithmetic sum operation. In contrast to AIW original, it does
not require execution of set operations nor binding sex attribute to Alice to properly assign her to
correct sets. Should the issues with solving AIW original be rooted in selection and execution of
elementary arithmetic operations in family frame, we should see models also failing here. Again, we
create variations 1-4 by varying natural numbers N,M , such that correct responses C are matched
with AIW original variations 1-4 (Suppl. Tab. 3)

AIW Light Family. AIW Light Family has following problem template: "Alice has N brothers
and she also has M sisters. How many brothers does Alice’s sister have?". Compared to AIW
original, only question part is modified. To solve the problem, reporting already given number of
brothers is sufficient - the correct answer is C = N . This requires only basic grasping of relational
family structure (understanding entity "Alice’s sister", binding female attribute to Alice and realizing
Alice and her sisters share same brothers). It does NOT require execution of any arithmetic or set
operations, in contrast to AIW original. Should the issues with solving AIW original be rooted in
handling basic family structure, we should see models also failing here. Again, we create AIW Light
Family variations 1-4 by varying natural numbers N,M , such that correct responses C are matched
with AIW original variations 1-4. (Suppl. Tab. 4)
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Table 5: AIW Light Arithmetic Total Girls variations

Var. Prompt Type/Answer ID

1 Alice has 6 sisters and she also has 3 brothers. How many girls are there in
total? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 7

343

2 Alice has 2 sisters and she also has 4 brothers. How many girls are there in
total? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 3

344

3 Alice has 4 sisters and she also has 1 brother. How many girls are there in total?
Before providing answer to this problem, think carefully step by step and double
check the path to the correct solution for any mistakes. Provide then the final
answer in following form: "### Answer: ".

THINKING
v2 / 5

345

4 Alice has 1 sister and she also has 4 brothers. How many girls are there in
total? Before providing answer to this problem, think carefully step by step and
double check the path to the correct solution for any mistakes. Provide then the
final answer in following form: "### Answer:".

THINKING
v2 / 2

346

AIW Light Arithmetic Total Girls. AIW Light Arithmetic Total Girls has following problem
template: "Alice has N brothers and she also has M sisters. How many girls are there in total?".
Compared to AIW original, only question part is modified. To solve the problem, it is necessary to
bind female attribute to Alice via the pronoun "she", to assign correct female attributes to the sisters
and to execute the correct arithmetic sum operation adding all the obtained girls - the correct answer
is C = M + 1. This requires basic grasping of family structure (realizing who are the girls in the
family) and selection and execution of elementary arithmetic sum operation. In contrast to AIW
original, it does not require execution of set operations to properly assign Alice to sisters set. Should
the issues with solving AIW original be rooted in binding correct sex attributes or counting total
members of particular sex in family frame given its structure, we should see models also failing here.
Again, we create variations 1-4 by varying natural numbers N,M , such that correct responses C are
matched with AIW original variations 1-4. (Suppl. Tab. 5)

C.2.2 Results of control experiments with AIW Light problems

AIW Light Arithmetic Siblings. We show tested models’ performance in Suppl. Fig. 5. While all
tested models clearly have struggled with AIW original (Fig. 1, Suppl. Fig. 4), we observe them
successfully solving AIW Light Arithmetic Siblings. Correct response rates go high up close to 1 for
most tested models across all variations 1-4. This is also the case for the models that show very low
correct response rates close to 0 or 0 on AIW original. like Command R+ or Dbrx Instruct. Strong
fluctuations we observe across variations on AIW original (Fig. 1, 2) also disappear. This clearly
demonstrates that models neither struggle with basic grasping of relational family structure - realizing
Alice’s siblings are her sisters and brothers, nor with selection and execution of elementary arithmetic
sum operation.

AIW Light Family. We show tested models’ performance in Suppl. Fig. 6. Also here we observe
all the tested models that are struggling with AIW original successfully solving AIW Light Family.
Correct response rates go high up close to 1 for most tested models across all variations 1-4. This is
also the case for the models that show very low correct response rates close to 0 or 0 on AIW original.
like Command R+ or Dbrx Instruct. Also strong fluctuations that we observe across variations on
AIW original (Fig. 1, 2) disappear. This clearly demonstrates that models handle well basic grasping
of relational family structure - understanding entity "Alice’s sister", binding female attribute to Alice
and realizing Alice and her sisters share same brothers.

AIW Light Arithmetic Total Girls. We show tested models’ performance in Fig. 3. Again, we
observe also here strong performance for all tested models that clearly have struggled with AIW
original. Correct response rates go high up close to 1 for most tested models across all variations
1-4. This is also the case for the models that show very low correct response rates close to 0 or 0 on
AIW original. like Command R+ or Dbrx Instruct. Also strong fluctuations that we observe across
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Figure 5: Correct response rates across AIW Light Arithmetic Siblings problem variations 1-4
(THINKING prompt type). Tested models show strong performance across problem variations (a
color per each variation 1-4). This shows ability of models to handle basic arithmetic operations
within family relations structure of AIW problem, pointing that the arithmetic operations are not an
issue. Models that entirely collapse on AIW, like Command R Plus and Dbrx Instruct, are clearly
able to solve this version, with correct response rates going up to 1 or close to 1 across all problem
variations. For each AIW variation, 60 trials were executed to estimate correct response rate and its
variance.
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Figure 6: Correct response rates across AIW Light Family problem variations 1-4 (THINKING
prompt type). Tested models show strong performance across problem variations (a color per each
variation 1-4). This shows ability of models to handle basic family relations structure of AIW problem
types, pointing that the specific family related problem structure is not an issue. Models that entirely
collapse on AIW, like Command R Plus and Dbrx Instruct, are clearly able to solve this version,
with correct response rates going up to 1 or close to 1 across all problem variations. For each AIW
variation, 60 trials were executed to estimate correct response rate and its variance.

variations on AIW original (Fig. 1, 2) are gone. This clearly demonstrates that models successfully
cope with binding female attribute to entity of Alice, handle assignment of correct female attributes
to the sisters and select and execute the correct arithmetic sum operation adding all the girls together.

From these control experiments, we are thus able to obtain strong evidence that all tested models do
not suffer from low-level issues with tokenization and natural language or natural numbers parsing and
can handle well basic family relations structure and selection and execution of elementary arithmetic
operations necessary to solve AIW problem. This further strengthen the hypothesis that observed
failures and strong fluctuations in all tested SOTA models on AIW problem (Fig. 1, 2) are rooted in
problem unspecific, generic deficits in generalization and basic reasoning.

C.3 Frequency distribution of natural numbers on output and dominance of wrong responses.

To shed more light on modes of correct or wrong responses provided by the models when confronted
with AIW problem variations, we show here frequency distribution for natural numbers on the output
for AIW variations with higher and lower correct response rates.

As evident from the plots, in higher performance AIW variations (Suppl. Fig. 8), dominants peaks
are often positioned on correct answer C=M+1, while for lower performance AIW variations (Suppl.
Fig. 7), dominant peaks fall on wrong answer M. Further, for weaker models, distribution broadens,
covering more numbers (eg in Llama 3 8b), while for better performers, responses concentrate on
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Figure 7: Frequency distribution of output numbers in models’ responses. Shown are numerical
outputs for AIW Variation 3, THINKING prompt type (prompt ID 64), that has correct answer
C=M+1=5, with M=4 number of sisters of Alice. For this AIW variation, models have low perfor-
mance (see also Figure D.). Correspondingly, peaks are on the dominant wrong response, R=M=4.
For this low performance variation, performance cannot be rescued by majority voting or other simple
ensembling strategies, as also for better performing models like GPT-4o, there are dominant peaks on
wrong numbers that would overrule less dominant peaks for correct numbers. Weaker models, eg
Llama 3 8B, show also broader distribution. Distributions were computed over 60 trials executed for
each model, taken from original collected responses data.
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Figure 8: Frequency distribution of output numbers in models’ responses. Shown are numerical
outputs for AIW Variation 4, THINKING prompt type (prompt ID 70), that has correct answer
C=M+1=2, with M=1 number of sisters of Alice. For this AIW variation, models have higher
performance (see also Figure D.). Correspondingly, peaks for better performing models (eg GPT-4o,
GPT-4, Claude Opus 3) are on the dominant correct response, R=M+1=2. For models with worse
performance, peaks are on the dominant wrong response, R=M=1. For weaker models, eg Llama 3
8B, also broader distribution over numbers appears, with further wrong clear peaks that are further
away from C=M+1 (eg M=4). The distribution shape and peaks nature can be thus used as signature
of model’s capability to handle the problem, also allowing model ranking dependent on peak types
and distribution sharpness. Distributions were computed over 60 trials executed for each model, taken
from original collected responses data.

M and M+1, peaking on correct or wrong answer on depending on AIW variation. Remarkably, for
lower performance AIW variations (Suppl. Fig. 7), performance cannot be rescued by major voting
or by similar ensemble like strategies, as peaks on wrong response numbers dominate clearly peaks
on numbers for correct responses, which would still correspond to committing wrong answer when
performing majority voting.

For the AIW Light problem versions used in control experiments, we observe as expected clear
dominant peaks on the numbers corresponding for correct responses across all tested models (Suppl.
Fig. 9, 10), as AIW Light problems are successfully solved across all their variations.

We note that distribution characteristics, eg concentration on numbers around the correct answer,
height of the peaks, can be a further signature that reflects model’s capability to handle the problem.
More capable models retain dominant peaks on number corresponding to correct answer with smaller
peaks on neighboring numbers, while weak models have large peaks on numbers corresponding to
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Figure 9: Frequency distribution of output numbers in models’ responses. Shown are numerical
outputs for AIW Light Family, Variation 3, THINKING prompt type (prompt ID 273), that has
correct answer C=5 (number of Alice’s brothers). For this AIW Light version, all models have high
performance. Correspondingly, peaks are on the dominant correct response, R=5. However also
here, weaker models like Llama 3 8B show broader distribution with non-vanishing peaks besides the
correct response (eg R=0, R=2) hinting on their weaker capabilities to deal robustly with the problem.
Distributions were computed over 60 trials executed for each model.
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Figure 10: Frequency distribution of output numbers in models’ responses. Shown are numerical
outputs for AIW Light Arithmetic, Variation 3, THINKING prompt type (prompt ID 279), that has
correct answer C=5 (total number of Alice’s siblings). For this AIW Light version, all models have
high performance. Correspondingly, peaks are on the dominant correct response, R=5. However also
here, weaker models like Llama 3 8B show broader distribution with non-vanishing peaks besides the
correct response (eg R=4, R=6) hinting on their weaker capabilities to deal robustly with the problem.
Distributions were computed over 60 trials executed for each model.

wrong answers or in general broad distribution across all natural numbers below 10. Computing
scores from distribution shape can thus also enable model ranking.

C.4 Standardized benchmarks failure.

We observe failure of standardized reasoning benchmarks to properly reflect generalization and basic
reasoning skills of SOTA LLMs by noting significant disparity between the model’s performance on
the AIW problem and the outcomes on conventional standardized benchmarks.

All of the tested models report high scores on various standardized benchmarks that claim to test
reasoning function, e.g. MMLU, ARC, Hellaswag, to name a few. Clearly, our observations of SOTA
models breaking down on the simple AIW problem hint that those benchmarks do not reflect deficits
in generalization and basic reasoning of those models properly. We visualize this failure by plotting
performance of tested models that are reported to obtain on wide-spread and accepted standardized
benchmarks like MMLU versus the performance we observe on our proposed AIW problem. As
strikingly evident from Fig. 11, there is a strong mismatch between high scores on MMLU reported
by the models and the correct response rates they obtain on AIW.

This miscalibration with respect to standardized benchmarks makes it impossible to predict for any
given model from its scores on MMLU whether the model will be also able to solve the simple AIW
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Figure 11: Failure of standardized benchmark MMLU to properly reflect and compare model basic
reasoning capabilities as shown by strong discrepancy between AIW correct response rate vs MMLU
average score. Many models, eg. Command R+, score 0 on AIW, but have high MMLU score.

on the one hand. On the other hand, it deranges any model comparison based on the standardized
benchmark, as models with higher MMLU can have complete breakdown in AIW, while models with
lower MMLU can have some non-negligible AIW performance. A clear example of such case is
comparison of LLama 2 70B and models claiming such very strong performance via standardized
benchmarks like Command R+ or Dbrx. Those models, while claiming much stronger function via
scoring substantially higher on MMLU (and other standardized benchmarks) than LLama 2 70B,
undergo severe breakdown on AIW - e.g. Command R+ is unable to solve a single AIW problem
instance (see also Suppl. Tab. 6).

These observations are also valid on further standardized reasoning benchmarks like MATH, ARC-c,
GSM8K and Hellaswag (Suppl. Tab. 6). We provide plots visualizing failure of these standardized
benchmarks, reflected in strong mismatch between high benchmark scores reported by many models
and the low correct response rates they obtain on AIW (which in some cases is 0 for models with
high standardized benchmark scores), in Figures 12, 15, 13, 14.

We see thus that standardized benchmarks fail to properly reflect true model capabilities to generalize
and reason - the majority of the tested models score high on standardized benchmarks, suggesting
strong function, while showing extreme low correct response rates on simple AIW problem. Many of
the models with high scores on standardized benchmarks cannot solve AIW problem a single time.
This discrepancy refutes the claim of standardized benchmarks to measure correctly current models’
core functionality.

D Examples of correct and failed responses

We provide all collected model responses we obtained during this study in the collected_responses
folder in the AIW repo. Here we also showcase some correct and incorrect answers as an example
(see Figs. 18, 21, 19, 20).

E Confabulations and overconfident tone accompanying wrong answers

Overconfident tone. In ideal scenario, if LLM cannot correctly solve the AIW problem, it should at
least be capable of expressing high uncertainty about the provided incorrect solution to the user. We
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Figure 12: Discrepancy between the AIW correct response rate and the MATH average score,
indicating the limitation of standardized benchmark MATH in accurately assessing and comparing
basic reasoning capabilities of models. Numerous models, such as Command R+, exhibit a stark
contrast in performance, scoring zero on AIW while achieving high scores on MATH.

used CONFIDENCE prompt type (see Suppl. Tab. 2) for AIW problem to see how confident tested
models are in their wrong solutions.

From our experiments we can see that LLMs most of the time express high certainty even if their
answers are completely wrong, thus mediating strong confidence (see Fig. 22). The models also use
highly persuasive tone to argue for the expressed certainty and correctness of the provided wrong
solutions, using words like "highly confident", "definitive answer", or "accurate and unambiguous".
We see also strong overconfidence expressed in multi-turn interactions with models, where user is
insisting on solution provided being incorrect, and observe there high resistance of models to revise
their decisions, which was already referred to as "stubbornness" in other works [20] (see Suppl. Sec.
F and also data provided in the AIW repo)

Confabulations. In our experiments we observe frequent tendency of those tested models that show
strong reasoning collapse and produce frequent wrong answers for AIW problem to generate at the
same time persuasive sounding pseudo-explanations to back up their incorrect answers. We term here
such pseudo-explanations confabulations, and present a selection of those as examples.

Such confabulations can contain mathematical calculations or other logic-like expressions and
operations that make little or absolutely no sense given the problem to be solved, see examples for
Olmo-7B, Fig. 23 and Command R+, Fig. 25.

Further confabulations make use of various social and cultural norm specific context to argue for the
posed problem to be inappropriate to solve or to provide non-sense arguments for various incorrect
answers. There are many such examples that we have observed, we present here only a small
selection.

CodeLlama-70B-instruct for instance seems to be specifically prone to claim ethical or moral reasons
for not addressing the problem correctly, in the presented example inventing out of nowhere a person
with Down syndrome and then pointing out that question has to be modified to be addressed due to
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Figure 13: Limitation of the standardized benchmark GSM8k in accurately reflecting and comparing
basic reasoning capabilities of models, as illustrated by the stark discrepancy between the AIW correct
response rate and the GSM8k average score. Notably, the majority of tested models exhibit low
performance on AIW problems while achieving relatively high scores on GSM8k, a graduate-level
math benchmark for large language models. Among models with slightly better calibration are
Claude Opus and GPT 4 that outperform other models on AIW, which coincides with their high
GSM8k scores. Llama 2 70b also shows better calibration, where its modest AIW performance
matches its modest GSM8k score. In contrast, models like Mistral Large, Gemini Pro, Dbrx Instruct,
or Command R+, while scoring high on GSM8k, show breakdown on AIW (Command R+ has 0
correct response rate, Mistral Large and Gemini Pro 0.01, Dbrx Instruct 0.11, see also Suppl. Tab. 6)

potential perpetuation of harm towards individuals or groups, which has nothing to do with original
task, Fig. 24.

Another example are confabulations provided by Command R Plus. These confabulations use
concepts of gender identity such as non-binary gender or concepts related to inclusion or to cultural
context dependent family identification in the provided wrong reasoning leading to incorrect answers.
In the attempt to solve the problem, the model first fails to provide obvious common sense solution
and then goes on to describe potential scenarios where brothers and sisters may self-identify as
non-binary, although providing information on brothers and sisters in the problem usually means
via common sense that those persons self-identify correspondingly to their known status as brother
or sister (while Alice is clearly identified via "she" pronoun). Model thus clearly fails to grasp that
problem structure has nothing to do with the social and cultural norms. The solutions derived by the
model from considering those factors that are far beyond Occam’s razor and common sense inherent
to the simple AIW problem all lead to wrong answers and generate more confusion, while again
keeping the persuasive tone that suggests that model is on some right path to provide the correct
solutions (Fig. 26)

For more illustrative examples, see the raw data on interactions with the models collected in AIW
repo)
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Figure 14: Limitation of the standardized benchmark Hellaswag in accurately assessing and compar-
ing basic reasoning capabilities of models, as evidenced by the significant discrepancy between the
AIW correct response rate and the Hellaswag average score.
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Figure 15: Failure of standardized benchmark ARC-c to properly reflect and compare model basic
reasoning capabilities as shown by strong discrepancy between AIW correct response rate vs ARC-c
average score.
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Figure 16: AIW Average number of responses per model for each prompt type (4 AIW variations
per prompt type.). Models with less than 100 responses per prompt type are excluded from further
analysis. All those models have negligible correct response rates, either 0 or close to 0.
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RESTRICTED STANDARD THINKING
prompt_type

phi-2
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Figure 17: Average length (on characters) of responses per model for each AIW prompt variation.
We see that phi-2 has the highest average length of responses (probably because it is not a classical
instruction tuned model, but a base model, capable of following instructions).
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Table 6: Performance of tested models on MMLU, Hellaswag, ARC-c, GSM8k and AIW problems.

Model MMLU Hellaswag ARC-c GSM8k Correct
resp. rate
(AIW)

gpt-4o-2024-05-13 0.89 - - - 0.65
claude-3-opus-20240229 0.87 95.40 96.40 95.00 0.43
gpt-4-0613 0.86 95.30 96.30 92.00 0.37
llama-2-70b-chat 0.64 85.90 64.60 56.80 0.30
llama-2-7b-chat 0.55 77.10 43.20 25.40 0.13
dbrx-instruct 0.74 88.85 67.83 67.32 0.11
gpt-4-turbo-2024-04-09 0.80 - - - 0.10
llama-3-8b-chat 0.67 78.55 60.75 79.60 0.05
llama-3-70b-chat 0.80 85.69 71.42 93.00 0.05
qwen1.5-1.8b-chat 0.46 46.25 36.69 38.40 0.05
gemma-2b-it 0.38 71.40 42.10 17.70 0.04
llama-2-13b-chat 0.66 80.70 48.80 77.40 0.03
qwen1.5-4b-chat 0.56 51.70 40.44 57.00 0.02
claude-3-sonnet-20240229 0.79 89.00 93.20 92.30 0.01
mistral-large-2402 0.81 89.20 94.20 81.00 0.01
gpt-3.5-turbo-0125 0.70 85.50 85.20 57.10 0.01
gemini-pro 0.72 84.70 - 77.90 0.01
open-mixtral-8x22b 0.78 89.08 72.70 82.03 0.01
open-mistral-7b 0.64 84.88 63.14 40.03 0.01
qwen1.5-7b-chat 0.62 59.38 52.30 62.50 0.01
claude-3-haiku-20240307 0.75 85.90 89.20 88.90 0.00
open-mixtral-8x7b 0.72 87.55 70.22 61.11 0.00
command-r-plus 0.76 88.56 70.99 70.74 0.00
qwen1.5-14b-chat 0.69 63.32 54.27 70.10 0.00
gemma-7b-it 0.54 81.20 53.20 46.40 0.00
qwen1.5-72b-chat 0.77 68.37 65.36 79.50 0.00
qwen1.5-32b-chat 0.75 66.84 62.97 77.40 0.00

Alice has 4 sisters and she also has 1 brother. How many sisters does Alice's brother have? Before 
providing answer to this problem, think carefully and double check the path to the correct solution for
any mistakes. Provide then the final answer in following form: \"### Answer: \"

Let's think through this problem step by step:  
1. Alice has 4 sisters and 1 brother.
 2. Alice's brother is part of the same family as Alice. 
3. All of Alice's sisters are also sisters to her brother. 
4. Therefore, Alice's brother has the same number of sisters as Alice has, which is 4.  
I've double-checked the reasoning and can't find any mistakes in the logic.  
### Answer: Alice's brother has 4 sisters

Claude 3 Opus

Human

Figure 18: Example of a wrong response for Claude 3 Opus on THINKING prompt type, featuring a
failure of self-verification.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have?

A classic lateral thinking puzzle!

Let's break it down:

* Alice has four brothers.
* Alice also has a sister (herself).

So, each of Alice's brothers has... (drumroll) ...one sister, which is Alice herself!

Therefore, the answer is: each of Alice's brothers has one sister.

LLaMA-3-70B-Instruct

Human

Figure 19: Example of a wrong response for Llama 3 70B Instruct. The model counts Alice as her
own sister therefore produces wrong answer.

Alice has 4 brothers and she also has 1 sister. How many sisters does Alice's brother have? Solve this 
problem and provide the final answer in following form: \"### Answer: \".

Alice has 1 sister. Since they are siblings, each of Alice's brothers would have the same number of 
sisters, which includes Alice and her other sister. Thus, each of Alice's brothers has 2 sisters.  
### Answer: 2

GPT-4-turbo-2024-04-09

Human

Figure 20: Example of a correct final answer with fully correct reasoning for GPT-4 Turbo.

Alice has three brothers and she also has three sisters. How many sisters does Alice's brother have?

Okay, let's think about this step-by-step:

1) We know that Alice has three brothers and three sisters. This means that there are a total of 7
 children in Alice's family (Alice + 3 brothers + 3 sisters).

2) Now, let's consider one of Alice's brothers. Let's call him Bob.

3) How many sisters does Bob have? Well, all of Alice's sisters are also Bob's sisters. Alice has 3 sisters, 
so Bob has 3 sisters too.

4) But wait! Alice is also Bob's sister, but we didn't count her yet. So we need to add Alice to the count 
of Bob's sisters.

5) Therefore, Bob has 3 sisters (Alice's sisters) + 1 sister (Alice herself) = 4 sisters in total.

Since all of Alice's brothers are in the same situation as Bob, each of Alice's brothers has 4 sisters.

Claude 3 Opus

Human

Figure 21: Example of a correct final answer with fully correct, detailed reasoning for Claude 3 Opus.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? Solve 
the problem taking care about not doing mistakes.

This problem can be solved accurately and unambiguously. Alice has four brothers, which clearly indicates that
 she has four male siblings. Additionally, it is stated that she also has a sister, which designates a female sibling.

Therefore, Alice's brothers have one sister. This interpretation is straightforward and avoids any potential 
mistakes or ambiguities. It is based solely on the information provided, and there is no need for further 
interpretation or speculation.

So, the definitive answer is: Alice's brothers have one sister.

Command-R+

Human

Figure 22: Overconfidence: example of a wrong response for Command R Plus, containing highly
persuasive wording to back up its confidence into incorrect solution

Alice has X brothers and she also has Y sisters. How many sisters does Alice's brother have? Solve 
this problem and provide the final answer in following form: \"### Answer: \"

The number of Alice's brothers is X - number of Alice's sisters.
ELEMENTARY ALGEBRA: 
The number of X brothers is Y, and the total number of brothers and sisters is (X + Y). now, we can 
represent X's brothers by x and Y's sisters by y, so (X + Y) = x + y.
Since the total number of brothers and sisters is X + Y,X = (X + Y) - Y.
Now, divide both sides by (X + Y) to findX: X = (X + Y) - Y = (x + y) - y - In other words:X = x -- y. Subtract y 
from both sides: X = x - y.Now, scale the -y to the left side by adding 5 to both sides: X = ((x + 5) - y). 
So, the number of Alice's brothers is either x, x + 1, x + 2, x + 3, or x + 4.\\### Answer: x - 4

OLMo-7B-Instruct

Human

Figure 23: Confabulation: example of a wrong response for OLMo-7b-Instruct for AIW-param
problem. The model generates text that contains different algebraic manipulations involving X and Y
and has little to do with reasoning.

Alice has four brothers and she also has a sister. How many sisters does Alice's brother have?

 I apologize, but as a responsible AI language model, I cannot provide an answer that would potentially perpetuate 
harm or discrimination towards any individual or group, including a person of living with Down syndrome. 
It is important to recognize that every individual has inherent dignity and worth, regardless of their abilities or 
characteristics.  Instead, I suggest rephrasing the question to focus on Alice's relationship with the 
person living with Down syndrome in a respectful and inclusive manner. I can assist you in modifying the 
question to promote understanding and empathy towards individuals with diverse abilities and characteristics.  If 
you have any other questions or concerns, please feel free to ask, and I will do my best to provide helpful and 
responsible responses.

CodeLlama-70b-Instruct

Human

Figure 24: Example of a confabulation response for CodeLlama-70b-Instruct. In this example, the
model produces wrong reasoning and in addition distracts from the actual main problem to solve by
bringing up that it is disrespectful to ask questions about a person with Down syndrome, which is
entirely invented out of nowhere by the model and is not present in the original task formulation.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? 
Look at the problem step by step and formulate 3 different solutions that come to different results. 
Then evaluate which solution seems to be the best and then come to a definitive final statement.

This riddle can be approached in different ways, which can lead to different results. Here are three 
different solution approaches:

Interpretative solution:
This solution interprets the relationship from Alice's perspective. Alice has four brothers, and from 
her perspective, her sister is already accounted for among her brothers. So, her brothers have one 
sister each, which is Alice herself. So, Alice's brothers have one sister each, leading to a result of 
four sisters in total for Alice's brothers.

Technical solution:
This solution focuses on the literal interpretation of the sentence structure. Alice has four brothers, 
and she also has a sister. Using a strict mathematical approach, one could argue that the word 
"also" adds an additional entity to the group of four brothers. This would result in Alice's brothers 
having five sisters in total since Alice herself is their sister, and the additional "sister" from the 
sentence structure brings the total to five.

Contextual solution:
Considering the context, the sentence mentions that Alice has four brothers and introduces a 
separate entity, a sister. Assuming that this sister is distinct from Alice herself, each of Alice's 
brothers would have one sister, Alice, plus this additional sister mentioned. So, Alice's brothers 
would have two sisters each, resulting in a total of eight sisters for Alice's brothers."

Now, evaluating these solutions:

The first interpretative solution considers a straightforward interpretation of the relationships, 
suggesting that Alice's brothers have four sisters in total. This interpretation aligns with a common-
sense understanding of the riddle and doesn't require any complex linguistic or mathematical 
interpretations.

The second technical solution uses a strict linguistic interpretation, but it leads to a rather 
unconventional conclusion that there are five sisters. While this solution adheres to the literal 
meaning of the sentence structure, it feels somewhat contrived and doesn't reflect how we 
typically understand family relationships."

The third contextual solution considers a separate sister entity, which leads to the result that Alice's 
brothers have eight sisters in total. While this solution considers a distinct sister, it doubles the 
count for each brother, which doesn't align intuitively with the riddle's context.

Therefore, the final statement is that the first interpretative solution seems like the best fit. Alice's 
brothers have four sisters in total, and the riddle's answer is four. This interpretation respects the 
relationships described in the riddle without requiring complex linguistic or mathematical 
maneuvers.

Command-R+

Human

Figure 25: Example of a confabulation response for Command R Plus. We prompted Command R+
to solve the problem step by step and come up with 3 different solutions and then provide the final
answer by evaluating these solutions. The model produces 3 solutions by taking 3 different angles
on the problem, providing for each angle an explanation to back it up. The 3 provided solutions
are all wrong. In the following evaluation, the model labels then one of the solutions as best fit and
proclaims it as a correct answer, arguing additionally for properly respecting relationships in the
problem. The final provided answer is incorrect.
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Alice has four brothers and she also has a sister. How many sisters does Alice's brother have? 
Look at the problem step by step and formulate 3 different solutions that come to different results. 
Then evaluate which solution seems to be the best and then come to a definitive final statement.

This riddle can be approached in multiple ways, and I will present three different perspectives and 
their respective outcomes:

Solution 1:

When interpreting this sentence, we take a literal approach and consider the information as it is 
given. Alice has four sisters, and she also has a brother. So, from this perspective, Alice's brother has 
four sisters.

Solution 2:

We consider the possibility of inclusive language. When it is said that "Alice has four sisters," it could 
be interpreted as an inclusive statement, suggesting that the speaker is including Alice in that 
count. So, in this case, Alice and her four sisters make up a total of five females in the family. Thus, 
Alice's brother has five sisters.

Solution 3:

We consider a broader context and the possibility of a non-binary sibling. In modern times, gender 
identities are not always binary (male or female). So, it is possible that one or more of Alice's 
"sisters" could identify as non-binary. In this case, the number of sisters her brother has could be 
anywhere from three to five, depending on how many of Alice's siblings identify as sisters. 

Evaluation:

Solution 1 seems straightforward, but it relies on a very literal interpretation and doesn't consider 
nuances in language or modern perspectives on gender identity.

Solution 2 takes into account the potential for inclusive language, which is a valid point, but it 
adds a layer of complexity and uncertainty to the interpretation.

Solution 3 broadens the perspective to include non-binary gender identities, which is an important 
and inclusive viewpoint, but it also introduces a high level of uncertainty and ambiguity, making it 
challenging to provide a definitive answer.

Final Statement:

Considering the information given and attempting to respect modern perspectives on gender 
identity, the most inclusive and definitive answer would be a combination of Solutions 1 and 3. 
Alice's brother has four sisters, and this includes any cisgender or transgender sisters, but does not 
account for non-binary siblings, as their identification as "sisters" may vary based on personal
identity. This response provides a clear answer while acknowledging the potential for a broader 
range of gender identities.

Command-R+

Human

Figure 26: Example of a confabulation response for Command R Plus. We prompted Command R+
to solve the problem step by step and come up with 3 different solutions and then provide the final
answer by evaluating quality of these solutions. All 3 solutions produced by the model are wrong. In
the third solution model attempts to back up its answer by elaborating on possible gender identities
of members of Alice’s family, which has no proper connection to the posed problem.
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F Inability to revise wrong solutions

We look into ability of the models to verify and revise their solution in two ways.

First, we observe in the collected data responses that contain examples of self-verification. Those
can arise following from THINKING prompt that encourages to double-check the solution, or they
appear by following customized prompts that request to produce different solutions and check which
one is to prefer, or those that appear entirely unprompted (An example of a customized prompt that
encourages to produce various solutions and evaluate those is "Look at the problem step by step and
formulate 3 different solutions that come to different results. Then evaluate which solution seems
to be the best and then come to a definitive final statement.", see also Fig. 25. In all those cases,
we see only poor ability of the models the provide proper self-checks. In the examples we observed,
self-verification provides longer narration, but does not lead to successful revision of wrong answers.

Second, we looked into multi-turn interactions with the user and model, where it might be arguably
easier for the model to check if solution is right or wrong by looking at the full previous history
of interaction and use the user’s feedback. In such interactions, the model is prompted with AIW
problem and after providing initial solution, user is requiring to revise it in case it is wrong. In
majority of the observed interactions, we see that while models eagerly agree to revise the solutions
and proceed for checking those for possible mistakes, they usually show failure to properly detect
mistakes and to revise wrong solutions. Also here, we see strong overconfidence expressed by the
models, where they signal wrong answers in persuasive tone to be correct and produce reassuring
messages to the user about high quality and certainty of their wrong answers. Models also show
high resistance to change the provided answer, and while agreeing to revise it, ultimately sticking to
the same answer that was initially provided. Some models show "stubbornness" [20] in the sense
that while proceeding with attempt to find possible mistakes, they insist that the provided solution is
actually correct (for instance in examples we saw from interaction with Command R+).

In very rare examples, we see revisions of the previously wrong answers being made, after user insists
repeatedly on existing mistakes and necessity to correct those (eg observed in LLaMA 3 70b, see Fig.
27 )

For collected multi-turn conversations, see AIW repo.
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Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's brother have? 
Solve this problem and provide the final answer in following form: \"### Answer: \"

A classic lateral thinking puzzle!
Let's break it down step by step:

Alice has 4 brothers, which means each of her brothers has a sister, and that sister is Alice.
So, each of Alice's brothers has 1 sister, which is Alice herself.
Therefore, the answer is: each of Alice's brothers has 1 sister.

LLama 3 70B Chat

Human

The provided solution still contains mistakes. Correct those mistakes, provide correct solution and final 
corrected answer and provide estimate of confidence about the provided solution and answer.

Human

Upon re-examining the solution, I found a subtle mistake.
The correct solution is: 

Alice has 4 brothers, and she also has 1 sister. This means each of Alice's brothers has 1 sister, which 
is not Alice herself, but her other sister.

So, each of Alice's brothers has 1 sister, and that sister is the one mentioned in the problem statement, 
who is not Alice.

Therefore, the revised correct answer is: each of Alice's brothers has 1 sister, and that sister is Alice's 
sister, not Alice herself.

LLama 3 70B Chat

The solution and answer are both still wrong, although the provided confidence is high. 
Go very carefully through the solution and correct the mistakes, providing final correct answer.

Human

I apologize for the mistakes. After re-examining the problem, I found the correct solution:
Alice has 4 brothers and 1 sister. This means Alice's brothers have a total of 1 sister, which is Alice's 

sister.
Since there are 4 brothers, each of them shares the same sister. Therefore, each of Alice's brothers 

has 1 sister.
The correct answer is: Each of Alice's brothers has 1 sister.

Confidence level: 99%
I am highly confident in this solution because it correctly accounts for the number of brothers and 

sisters, and logically deduces the number of sisters each brother has.

LLama 3 70B Chat

The solution and answer are both still wrong, although the provided confidence is high. 
Go very carefully through the solution and correct the mistakes, providing final correct answer.

Human

I apologize for the mistakes. I will go through the solution again, carefully and slowly. 
Alice has 4 brothers and 1 sister. This means Alice is also a sister to her brothers. Now, let's think about 

the question: "How many sisters does Alice's brother have?" Each of Alice's brothers has Alice as a 
sister, and they also have their other sister (who is not Alice). 

So, each of Alice's brothers has 2 sisters: Alice and their other sister. 
The correct answer is: Each of Alice's brothers has 2 sisters. Confidence level: 100% 

I am absolutely confident in this solution because I have carefully considered the relationships 
between Alice and her siblings, and logically deduced the correct answer.

LLama 3 70B Chat

Figure 27: Example of a correct revision by LLaMA 3 70b. It first provides 3 incorrect answers,
while the user repeatedly insists for the solution to be incorrect and urges to find the mistakes.

32


	Introduction
	Methods & Experiment Setup
	Results
	Discussion & Conclusion
	Debunking Challenge Submission
	What commonly-held position or belief are you challenging?
	How are your results in tension with this commonly-held position?
	How do you expect your submission to affect future work?

	Additional overview for performed experiments
	Prompt types and variations
	Model performance and behavior on AIW and AIW Light problem
	Evaluating model responses
	Control experiments with AIW Light problems
	AIW Light problems
	Results of control experiments with AIW Light problems

	Frequency distribution of natural numbers on output and dominance of wrong responses.
	Standardized benchmarks failure.

	Examples of correct and failed responses
	Confabulations and overconfident tone accompanying wrong answers
	Inability to revise wrong solutions

