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Abstract

Ten years ago a single metric, BLEU, gov-001
erned progress in machine translation research.002
For better or worse, there is no such consen-003
sus today, and consequently it is difficult for004
researchers to develop and retain the kinds005
of heuristic intuitions about metric deltas that006
drove earlier research and deployment deci-007
sions. This paper investigates the “dynamic008
range” of a number of modern metrics in an ef-009
fort to provide a collective understanding of the010
meaning of differences in scores both within011
and among metrics; in other words, we ask012
what point difference x in metric y is required013
between two systems for humans to notice? We014
conduct our evaluation on a new large dataset,015
ToShip23, using it to discover deltas at which016
metrics achieve system-level differences that017
are meaningful to humans, which we measure018
by pairwise system accuracy. We additionally019
show that this method of establishing delta-020
accuracy is more stable than the standard use021
of statistical p-values in regards to testset size.022
Where data size permits, we also explore the023
effect of metric deltas and accuracy across finer-024
grained features such as translation direction,025
domain, and system closeness.026

1 Introduction027

A decade ago, the BLEU metric served as the de-028

fault metric for machine translation evaluation. It029

was not without its criticisms (Hovy and Ravichan-030

dran, 2003; Callison-Burch et al., 2006; Belz and031

Reiter, 2006) or compelling alternatives (Baner-032

jee and Lavie, 2005; Popović, 2015), but a com-033

bination of adequate performance, robustness to034

new languages, simplicity and understandability,035

and inertia helped it retain this position. This is036

no longer the case. BLEU’s deficiencies quickly037

became apparent as deep learning approaches to038

machine translation replaced the earlier symbolic039
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Figure 1: Distribution of pairwise system deltas for each
metric over all systems from WMT22. Gray rectangles
show min-max range which is vastly different between
metrics. Standard deviations (black lines) also differ.

paradigms (Mathur et al., 2020a). Today, a num- 040

ber of metrics—themselves deep-learning based— 041

compete in an ecosystem where there is no longer 042

any dominant, default metric. 043

This situation creates a problem for researchers 044

working to keep abreast of developments in the 045

field. Different metrics, including different mod- 046

els within the same metric family, have different 047

“dynamic ranges”, i.e., the range of scores one can 048

expect to see. Furthermore, the “metric delta”, i.e., 049

the score difference signifying a meaningful change 050

in performance between two systems, also varies 051

across metrics. It is perhaps understandable that 052

some practitioners therefore continue to use BLEU, 053

as well, if only to ground their understanding. 054

This paper attempts to introduce some order and 055

clarity into this situation. We make use of a large, 056

new human evaluation dataset, ToShip23, to com- 057

pare the score ranges of metrics on a large number 058

of systems against pairwise system-level accuracy. 059

Importantly, we break down these accuracy scores 060

into bins based on metric deltas, which allows us 061

to determine accuracies for each metric as a func- 062

1



tion of the score differences between two systems.063

This provides a measure of confidence in the output064

that is stable across testset size, in contrast to stan-065

dard statistical significant testing, which becomes066

more stable as testset size grows. We release a tool067

that allows a user to easily compare accuracies at068

different threshold across metrics.0069

2 Experimental Setup070

Data. We perform experiments related to evalua-071

tion of MT outputs based on a proprietary dataset072

ToShip23 which is of a magnitude larger than073

any publicly available data and enables more fine074

grained glimpse into the metrics behaviour. The075

dataset is an extended version of ToShip21 dataset076

(Kocmi et al., 2021) with details described in Ap-077

pendix B. We also use data from the annual WMT078

evaluation campaigns to validate our results, specif-079

ically the metrics shared task (Freitag et al., 2022b,080

2023), to make results replicable. We only use081

MQM (Freitag et al., 2021a) and DA+SQM (Kocmi082

et al., 2022) subset of human evaluated systems be-083

cause reference-based DA (Bojar et al., 2016) is084

suboptimal for the evaluation of modern MT sys-085

tems (Freitag et al., 2022b). See Table 1 for an086

overview of dataset sizes.087

Dataset Segments Systems Sys. pairs Langs. Domains

WMT22 221k 108 543 8 4
WMT23 223k 129 871 7 4
ToShip21 2300k 4380 3344 101 2
ToShip23 3016k 6752 6530 94 >10

Table 1: Sizes and coverage for the human annotated
datasets used in this work.

Investigated Metrics. We evaluate the most fre-088

quently used metrics in machine translation: BLEU089

(Papineni et al., 2002), ChrF (Popović, 2015), sp-090

BLEU (Goyal et al., 2022), BLEURT (Sellam et al.,091

2020), COMET (Rei et al., 2020).092

BLEU and ChrF are n-gram matching heuristics093

while the rest uses a parametric model to produce094

a segment-level score of a translation. CometQE
21095

and CometKiwiQE
22 are special cases which do not096

require a reference. We do not include any LLM-097

based metrics (Fernandes et al., 2023; Kocmi and098

Federmann, 2023) which are not replicable because099

of non-publicly available models. Find the specific100

models, implementation details, and selection ra-101

tionale in Appendix A.102

Metric Delta. We focus solely on the pairwise103

system ranking – deciding which system is better104

based on a system-level score1 difference between 105

two systems. We refer to this as metric delta (∆). 106

Because the order of two systems is arbitrary 107

and do not affect any of our evaluations, only some 108

visualizations, we always specify the first system 109

to be the superior with respect to the human judge- 110

ment. Therefore human score delta is always pos- 111

itive, while metric delta may be negative, which 112

represents that metric incorrectly ranked the system 113

pair in reverse order to humans. 114

Pairwise Accuracy. To test the correlations be- 115

tween automatic metrics and human judgement, we 116

use pairwise accuracy (Kocmi et al., 2021): how 117

many system pairs does the metric rank the same 118

way as humans over the total number of system 119

pairs in the dataset. Formally: 120

Acc =
|sign(metric∆) = sign(human∆)|

|all system pairs|
. 121

3 Unifying Metric Ranges 122

We first look at the “dynamic ranges” exhibited by 123

different metrics across our datasets. We ground 124

these deltas in human scores by comparing pair- 125

wise system-level accuracy at different thresholds 126

of delta. With this, we are able to establish a table 127

of average metric deltas for different accuracy lev- 128

els, and build a simple model that maps any metric 129

into the unified space of estimated accuracies. 130

3.1 Various Ranges for Metric Deltas 131

Figure 1 depicts the distribution of system-level 132

score deltas for various metrics. Some metrics 133

have similar ranges, such as ChrF and BLEU, while 134

others use much larger score range (Comet20 has 135

∼ 5× higher deltas to BLEU) or lower score range 136

(CometQE
21 has ∼1/5 range of BLEU). 137

It may be tempting to attempt to bring together 138

these score ranges onto a single scale, e.g. by linear 139

interpolation, perhaps towards BLEU scale. We be- 140

gin by noting the infeasibility of arriving at a single 141

unified scale. We use the mostly unwritten (and 142

long-debunked (Mathur et al., 2020a)) operating 143

assumption that +1–2 BLEU points denotes a sig- 144

nificant finding as an anchor point to illustrate the 145

range of metric deltas on a subset of systems in 146

Figure 2. This figure reports metric deltas for six 147

randomly-selected system pairs from WMT23 data, 148

whose delta was roughly 1 BLEU. 149

1Usually the average of all segment level scores.
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Figure 2: Subset of system pairs from WMT23 that have
∼1 BLEU delta. Each column is one system-pair. Dark
background represent metric disagreeing with humans
on system ranking. This highlights that normalizing
metrics towards BLEU range is not feasible.

In addition to the wide ranges of scores, we also150

observe that metrics do not always have the same151

direction or agreement with human judgment. Rec-152

onciling these by projection is not possible, due153

to an obvious point: metrics differ not just in the154

range of their scores, but in their accuracies. To bet-155

ter understand the problem, we look next into what156

are the implications of different thresholds. Specifi-157

cally, we investigate how different delta correspond158

to humans being able to differentiate systems.159

3.2 Accuracy of Metric Deltas160

Many factors affect metric behavior:161

• Each metric and also humans weights various162

phenomena differently, especially fluency versus163

adequacy (Amrhein et al., 2022).164

• The reliability of Metrics differs when compared165

to humans (Mathur et al., 2020b; Freitag et al.,166

2021b, 2022b, 2023; Kocmi et al., 2021).167

• Reference-based metrics are affected by quality168

of human references (Freitag et al., 2023; Zouhar169

and Bojar, 2024).170

The pairwise accuracy as usually reported171

(Kocmi et al., 2021; Freitag et al., 2023) represent172

a value over the full dataset for all system pairs173

metric deltas. It does not take into consideration174

the size of the delta between systems, which heav-175

ily affects the accuracy; that is, whether the metric176

gap between two systems was large or small. How-177

ever, this information is important in establishing178

equivalency of deltas across metrics.179

To investigate this, we use a binning approach180

on the ToShip23 testset. Pairwise system deltas181
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Figure 3: What pairwise accuracy (left-y-axis) to expect
when seeing given certain acceptance threshold (x-axis).
The bin width (right-y-axis) shows the width of the bin
for metric delta that contains 300 system pairs.

are sorted, and for each delta level, we group the 182

closest 300 pairs into a same bin. For each bin, we 183

plot the mean delta for that bin against the system- 184

level pairwise accuracy.2 185

Figure 3 depicts this information for both BLEU 186

and CometKiwiQE
22 . The red line shows that we 187

need around 1.3 BLEU delta to reach 70% pairwise 188

accuracy and 3.5 BLEU to reach 80% accuracy 189

against the human judgments. Because BLEU is 190

not a reliable metric, it never reaches 90% accuracy 191

with humans, even for deltas as high as 6 BLEU 192

points. In contrast, CometKiwiQE
22 reaches 90% 193

accuracy already at around 0.9 points and gets close 194

to 100% accuracy past 2 CometKiwiQE
22 points. 195

Our use of fixed-size bins introduces a caveat 196

into the evaluation. Because our data points do 197

not have a uniform delta distribution, the “width” 198

of each bin (defined as the difference between the 199

smallest and largest delta) grows as we move to- 200

wards larger deltas, where data points are sparser. 201

This width is depicted by the blue line in Figure 3. 202

As we increase the delta, there are fewer and fewer 203

systems with as large delta and thus we need to take 204

system pairs that are farther from the investigated 205

delta. For example, for calculating the pairwise 206

accuracy of 1 BLEU point, we take system pairs 207

with a delta of 1 ±0.1 (half of 0.2), while for 3 208

BLEU the width of a bin is 3 ±0.25 points. The 209

2Appendix C investigates other sizes of bins than selected
300 system pairs.
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Estimated
Accuracy

Coin toss
50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

BLEU 0.27 0.52 0.78 1.06 1.39 1.79 2.34 3.35 - -
ChrF 0.14 0.33 0.54 0.76 1.00 1.28 1.63 2.12 3.05 -
spBLEU200 0.25 0.52 0.82 1.13 1.49 1.91 2.46 3.28 5.57 -
Bleurtdefault 0.23 0.66 1.11 1.59 2.11 2.71 3.43 4.39 5.98 -
Bleurt20 0.02 0.17 0.33 0.49 0.66 0.85 1.07 1.35 1.73 2.44
Comet20 0.08 0.36 0.65 0.96 1.29 1.67 2.10 2.66 3.45 5.10
Comet22 0.03 0.10 0.18 0.26 0.35 0.45 0.56 0.71 0.94 1.53
CometQE

21 0.003 0.008 0.013 0.019 0.025 0.032 0.041 0.052 0.073 -
CometKiwiQE

22 0.01 0.08 0.16 0.24 0.33 0.42 0.53 0.67 0.85 1.18
xCOMETXXL 0.02 0.19 0.37 0.56 0.76 0.98 1.24 1.55 1.99 2.74

Table 2: Thresholds and estimated accuracies for each metric on ToShip23 dataset averaged across all language
pairs. For example, when requiring 90% of decisions be the same as humans, improvement needs to be ≥3.05 ChrF,
≥0.85 CometKiwiQE

22 , and BLEU never reaches this accuracy threshold.

bin width mainly affects the tail of the evaluation.210

As our evaluation is empirical, it is heavily af-211

fected by the underlying systems and the lines fluc-212

tuate. In the next section, we try to fit a smooth213

line to abstract the results, followed by discussion214

which phenomena affect the pairwise accuracy.215

3.3 Aligning Metrics on Accuracy216

Practitioners might be interested in getting an intu-217

ition behind a particular metric delta, e.g. +0.10 of218

Comet22 and how such delta relates to other met-219

rics that they are familiar with. Clearly, the higher220

the delta, the more likely that human raters would221

also notice the quality difference between systems.222

It remains unclear what delta is enough to warrant223

acceptance. To this end, we use the estimated accu-224

racy results introduced in previous subsection. As225

the estimated accuracy line is noisy, we fit a curve226

through the data and use it to derive thresholds for227

comparing various metric deltas.228

We use a parametrized sigmoid to fit a curve229

through the data. The choice of the sigmoid func-230

tion is arbitrary and based on visual similarity and231

the feature that it converges towards fixed point232

and thus is bounded. This is a desired feature rep-233

resenting that each metric has a different overall234

reliability. We parameterize it using two variables235

φ and fit it with damped least square algorithm236

(Levenberg, 1944). The function is defined as:237

f(x) =
φ1

1 + exp(−φ2 · x)
.238

The resulting fit is visualized in Figure 4. Al-239

though not perfect, it offers insight into the metric240

delta behaviour, specifically comparing different241

different deltas’ estimated accuracy. We use the242

sigmoid functions to calculate estimated accuracy243
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Figure 4: Empirical pairwise accuracies for various
metrics with a fitted sigmoid curves on ToShip23 dataset.
All metrics are in Figure 11.

for various levels of delta in Table 2. This is the 244

core result of our work and helps in understanding 245

how different metrics compare to each other. 246

For example, an improvement of 1.06 BLEU 247

has the same estimated accuracy (65%) as the 0.24 248

CometKiwiQE
22 , while 3.35 BLEU has the same es- 249

timated accuracy as 0.67 CometKiwiQE
22 . And +1 250

improvement on CometKiwiQE
22 signalize that in 251

>90% scenarios, human annotators would agree 252

with the ranking of CometKiwiQE
22 , while BLEU 253

never reaches this level of agreement. Note that 254

estimated accuracies are empirical from a given 255

ToShip23 dataset. Therefore, we do not claim that 256

+0.56 Comet22 yields 80% accuracy for all scenar- 257

ios but rather that it is as accurate as +2.34 BLEU. 258

As these thresholds are combined for all scenar- 259
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ios, we dive in the next section into validating out260

results on public WMT dataset, followed with in-261

vestigation of what affects the metric delta and how262

reliable the comparison is in different settings.263

4 Factors Affecting Metric Deltas264

We have empirically derived the estimated accuracy265

for various metrics. In this section, we investigate266

factors that affect metric delta and show how re-267

liable the thresholds remain under these factors.268

These include the testset size, dataset and domain269

selection, and translation direction.270

Additional factors could influence the metric271

delta, but we lack the data to evaluate these aspects.272

A key consideration is whether the metric delta is273

contingent on the underlying absolute values. In274

other words, we need to determine if a +1 BLEU275

delta varies in reliability based on these absolute276

values. For instance, does the impact of moving277

from 20 to 21 BLEU differ significantly from a shift278

from 60 to 61 BLEU in different system pairs?279

4.1 Different Domains and Datasets280

We derived the thresholds from ToShip23. Now,281

we validate them on WMT data to show how well282

they transfer. To address the relatively small size of283

WMT, we first combine the WMT 2022 and 2023284

datasets yielding 1414 system pairs. This dataset285

contains different set of segment sources and do-286

mains, and was evaluated with mix of MQM and287

DA+SQM human evaluation protocols. In order288

to test the thresholds, we take scores for all WMT289

system pairs and convert them into estimated accu-290

0.0 0.5 1.0 1.5 2.0

∆ in CometKiwiQE
22

50

60

70

80

90

100

A
cc

ur
ac

y

All (6530)
Into English (3178)
From English (3217)
Zh, Ja, Ko (992)

0 1 2 3 4 5

∆ in ChrF

50

60

70

80

90

100

A
cc

ur
ac

y

All (6530)
Into English (3178)
From English (3217)
Zh, Ja, Ko (992)

Figure 6: The comparison of pairwise accuracy on To-
Ship23 dataset when comparing into English, out-of-
English, and Chinese, Japanese, Korean language pairs
separately. The count shows total number of system-
pairs in the evaluation. See other metrics in Figure 12.

racies via devised thresholds. For each estimated 291

accuracy level, we take the closest 300 system pairs 292

and calculate the real accuracy on WMT data. If 293

the mapping would be perfect and we had enough 294

samples, the estimated accuracy would match the 295

real accuracy for each investigated level. 296

We show the results in Figure 5. In the ideal 297

case, we would expect the real accuracies and esti- 298

mated accuracies to match, however, the noise from 299

empirical data affects the results. Some metrics 300

are consistently underestimated, such as Comet22 301

which has higher real accuracies on WMT dataset 302

that the estimated accuracies. On the other hand, 303

CometQE
21 has much lower accuracies on WMT data 304

and our thresholds overestimate it. 305

Overall, the trend is clear and the thresholds 306

normalize all metrics into a shared space of esti- 307

mated accuracies. Therefore, we advise reporting 308

accuracy when presenting results, together with 309

significance testing and metric delta. 310

4.2 Language Pair 311

Notoriously, a large gap in absolute BLEU scores 312

exists between languages (Denoual and Lepage, 313

2005; Post, 2018). This reflects properties like data 314
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sizes, attention progress in different languages, and315

target-side morphological complexity.316

Unfortunately, there is not enough data to exam-317

ine each language pair individually. Instead, we bin318

languages into two groups, into-English (XE) and319

out-of-English (EX) language pairs, which does320

leave us with enough data in the ToShip23 dataset.321

In addition, we separate system pairs containing322

Chinese, Japanese, or Korean (CJK) together.323

Figure 6 show the accuracy with a subset of sys-324

tem pairs depending on a languages. There is some325

fluctuation between XE and EX, but the behaviour326

is comparable. This is interesting, since most of327

the underlying testsets have authentic source (e.g.,328

not using testset in reverse direction, Toral et al.,329

2018). The CJK group does also perform similarly330

for CometKiwiQE
22 , but not for ChrF. This shows the331

thresholds are invalid for all metrics and scenarios332

and are affected by whether metrics evaluate all333

language similarly or not.334

4.3 Iterated versus Unrelated Systems335

Another main difference that affects the evaluation336

is if the systems are closely related. One point337

of distinction is between iterated systems (a base-338

line against specific improvements, produced by339

the same group) or unrelated system (for exam-340

ple, WMT yearly evaluation which comes from341

different teams). It has long been known that sur-342

face metrics like BLEU work best when evaluat-343

ing closely related systems (Callison-Burch et al.,344

2006). It may be easier for both metrics and hu-345

mans to distinguish improved system over baseline,346

while comparing unrelated systems adds a difficulty347

of weighting different styles and errors.348

To investigate this, we use the labels of ToShip23349

dataset, where some system pairs are improvements350

over the previous model, while other system pairs 351

are completely unrelated and developed by differ- 352

ent teams, similarly to WMT evaluation. Figure 7 353

confirms the assumption, that unrelated systems 354

are harder to evaluate and that the metric behaves 355

differently. Therefore, automatic metrics are better 356

to rank improved systems which is mostly their use 357

case than unrelated systems. Importantly, some 358

metrics such as BLEU have much harder time to 359

distinguish unrelated systems, see Figure 13 in Ap- 360

pendix. This effect should be investigated to larger 361

detail in the future works. 362

4.4 Testset Size 363

Another phenomena that may affect the system 364

delta is the number of sentences in the parallel 365

testset used to evaluate pair of systems. Common 366

wisdom says that the testset should be as large as 367

possible. We ask if increasing testset size affects 368

the system delta and its statistical significance. 369

To examine how testset size affects the metric 370

delta, we take a system pair and sample testsets 371

with increasing number of sentences. For each 372

sample, we calculate CometKiwiQE
22 delta and p- 373

value using paired Student’s t-test (Mathur et al., 374

2020a). We sample with repetition various testset 375

sizes. For each testset size, we plot the average 376

metric delta (or p-value respectively) over 50 runs 377

together with the confidence interval. 378

From Figure 8, the metric delta fluctuates but 379

keeps being mostly constant. The variance of the 380

metric delta is higher for small testset sizes (under 381

500 segments). On the other hand, the p-value 382

associated to the comparison hypothesis goes down 383

simply by having a larger testset. The p-value goes 384

down faster for larger effect sizes. 385

This is a natural phenomenon of statistical sig- 386

nificance testing (Greenland et al., 2016). P-values 387

decrease with an increasing sample size, assuming 388

the null hypothesis does not hold. This is due to the 389

increase in statistical power—the probability that 390

the test correctly rejects the null hypothesis when it 391

is false. Should the null hypothesis hold perfectly, 392

which is rarely the case, increasing the sample size 393

would not systematically affect the p-values. There- 394

fore, it is possible to claim a statistically significant 395

improvement over a baseline model even with a 396

small metric delta, which might not be noticeable 397

by humans, just by using a large-enough testset. 398

This conclusion is not an argument against the use 399

of statistical significance testing, which is impor- 400

tant especially when observing smaller deltas. 401
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Figure 8: Three system pairs on different languages from WMT23 scored by CometKiwiQE
22 . The blue line is the

average system delta for given testset size and green line is the associated p-value. Values to the right of the dashed
line are supersampled and shaded areas are 99.9% confidence intervals from t-distribution. The metric delta does
not change much while the p-value goes down with higher subset size.

An interesting research question is if we could402

fix the testset size to stabilize p-value.403

Overall, this shows that metric delta is stable404

under different testset sizes, while statistical sig-405

nificance testing is affected by it. We assumed to406

be adding sentences from the same distribution.407

The metric delta can be manipulated by adding408

segments that are more difficult than the rest.409

5 Discussion410

5.1 Best-performing Metrics411

With the ToShip23 dataset, we can also calculate412

total pairwise accuracy over all system pairs to413

devise which metric perform the best on up to414

date the largest dataset of MT human evaluation.415

We follow the same evaluation as in Table 2 from416

Kocmi et al. (2021). With twice as large dataset417

than ToShip21, extended by state-of-the-art sys-418

tems from 2022 and 2023, we can see how metric419

perform on system-level ranking. Table 3 shows420

that the best performing metric over the ToShip23421

dataset is CometKiwiQE
22 by a small margin over422

xCOMETXXL. CometKiwiQE
22 is a quality estima-423

tion metric, which has an additional bonus of not424

being affected by reference bias.425

Additionally, we can notice the overall accuracy426

dropped for all metrics in the last two years. This427

may have several possible explanations and likely428

does not mean drop in metrics performance:429

ToShip23 22-23 19-21 WMT23

system pairs (N) 6530 1843 4687 249
CometKiwiQE

22 81.5 74.5 84.3 90.0
xCOMETXXL 81.4 75.3 83.9 92.8
Comet20 80.1 73.2 82.9 86.3
Bleurt20 78.6 69.8 82.1 89.2
Comet22 78.6 71.1 81.5 84.7
CometQE

21 76.8 71.2 79.0 69.5
ChrF 71.9 61.4 76.0 79.5
spBLEU200 71.6 61.0 75.7 81.9
BLEU 70.3 61.3 73.9 81.5
Bleurtdefault 69.9 61.0 73.4 85.1

Table 3: A pairwise accuracy over all system pairs from
ToShip23 and two subsets depending on the year of
evaluation. The results of MQM subset of WMT23
(Freitag et al., 2023).

• Different systems: Newer architectures or sys- 430

tems that are closer to each other in performance, 431

thus harder to evaluate by humans 432

• New testsets: While the 2019-2021 contains only 433

two domains, the newer data have been evaluated 434

on a much larger set of domains, where some 435

domains may be challenging for metrics 436

• Human bias: The protocol changed over years 437

which may shifted annotator’s scoring patterns. 438

However, the absolute pairwise accuracy is less im- 439

portant than the ranking of metrics, as it is heavily 440

affected by the system pairs. We compare to MQM 441

subset of Freitag et al. (2023), which ranks metrics 442
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in similar order supporting our findings. There are443

some notable differences, such as CometQE
21 ranking444

as the worst metric in WMT, while BLEURTdefault445

is the worst in ToShip23. Since many aspects446

of the evaluation are different, we do not dive447

into comparison, but rather highlight the overall448

picture. ToShip23 corroborates that QE metrics449

have reached the quality of reference-based met-450

rics, as well as the (already well-established) fact451

that lexical-based metrics are not useful for evalu-452

ating high-resource MT models these days.453

5.2 Recommendations for MT Evaluation454

We conclude with a list of recommendations for455

automatic MT evaluation:456

• Use CometKiwiQE
22 as the main metric. In addi-457

tion to its better performance, as a quality estima-458

tion metric, it is not affected by references.459

• Use at least one additional metric of a different460

type; e. g. BLEURT20, which is reference-based461

and uses a different architecture from Comet.462

• For each metric delta, report estimated accuracy463

to help align reliability of used metrics.464

In addition, caution is warranted when employ-465

ing the same metric for evaluation that was utilized466

during training, as this practice may lead to artifi-467

cially inflated results. For instance, it is advisable468

not to evaluate with the same metric used for Mini-469

mum Bayes Risk Decoding (Freitag et al., 2022a),470

QE metric used for corpus filtering (?), or avoid471

using metrics built on the same model as the trans-472

lation system because LLMs tend to favor outputs473

generated by themselves (Liu et al., 2023).474

6 Related Work475

The closest work to ours is Lo et al. (2023), who476

investigate the relationship between metric deltas477

and the p-value of human ranking, concluding that478

not even 2 BLEU points reliably correspondent to479

human judgement. This aligns with our work that480

two BLEU points reaches an estimated accuracy481

of only 77.2%. Their work also does not consider482

the directionality of the delta, and consequently483

they do not penalize situations where humans and484

metric disagree on which system is better.485

Mathur et al. (2020a) found that even statisti-486

cal significant deltas of up to three BLEU points487

do not reliably correspond to human judgement.488

In a broad survey, Marie et al. (2021) notes that489

various community “rules of thumb” about suffi-490

cient BLEU deltas might be the result of an evolved491

consensus that has no basis in scientific evidence. 492

Similarly, Kocmi et al. (2021) demonstrated that 493

among system pairs deemed statistically significant 494

by humans and where BLEU disagree with humans, 495

the median delta is 1.3 BLEU. Marie (2022) rein- 496

vestigated the WMT 2020 and 2021 results and 497

showed that deltas lower than 2 BLEU needs to be 498

tested for statistical significance. 499

Automated metrics in NLP and MT have been 500

under scrutiny for long time. Hovy and Ravichan- 501

dran (2003) raised early doubts about BLEU. 502

Callison-Burch et al. (2006) pointed to failure 503

modes of BLEU and suggested it be used in more 504

narrow situations. Post (2018) identified a prob- 505

lem with conflicting implementations of BLEU and 506

offered a unified solution. The broader field of com- 507

puter science has been concerned with what is a 508

meaningful acceptance threshold of a metric (Mori 509

et al., 2018). The acceptance thresholds are usu- 510

ally established to trade off risks in types of errors 511

(Shatnawi et al., 2010). Kelley and Preacher (2012), 512

studying effect sizes in psychology, summarize that 513

effect sizes should be scaled appropriately. Alike, 514

Plonsky and Oswald (2014) ask what effect size 515

suffices and note its dependence on the variance 516

and that all acceptance thresholds are arbitrary. 517

7 Conclusion 518

In this work, we investigated the interpretation of 519

deltas from automatic machine translation metrics. 520

Although metrics have different ranges of scores, 521

what ultimately matters to the practitioner is how 522

score deltas are grounded in human ability to per- 523

ceive those differences, which we judge by pair- 524

wise system-level accuracy on a large collection 525

of human judgments. We empirically determined 526

thresholds for popular metrics to align them on 527

accuracy and provide a tool3 that relates metrics 528

to each other. Finally, we showed the importance 529

of using metric-delta accuracy over p-values: the 530

former is stable across testset sizes. 531

We undertook some investigations into sub- 532

factors of the data, showing that the results were ro- 533

bust to, for example, translation direction, and also 534

that they generalized to different testsets. These 535

investigations were limited by the data size. For 536

future work, it would be useful to explore delta- 537

accuracy for different subsets and combinations of 538

features, presuming that enough data were avail- 539

able for the task. 540

3Link retracted for anonymity.
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Limitations541

While this work provides more informed guidelines542

on interpreting metric delta, they remain crude and543

do not fix the inadequacy of automated metrics. In544

order to guarantee improvements, human evalua-545

tions need to be carried out.546

We use humans as a gold standard, however, they547

are noisy and also unreliable especially for systems548

that are close in performance.549

Our estimated accuracy should not be used as550

the reason to reject a result, similarly as low signif-551

icance p-value.552

Ethics Statement553

The human annotators have been compensated con-554

siderably higher than the minimum wage standards555

in their respective countries. This commitment re-556

flects our dedication to fair labor practices and the557

well-being of those contributing to our work.558
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Dvorkovich, Christian Federmann, Mark Fishel,687
Thamme Gowda, Yvette Graham, Roman Grund-688
kiewicz, Barry Haddow, Rebecca Knowles, Philipp689
Koehn, Christof Monz, Makoto Morishita, Masaaki690
Nagata, Toshiaki Nakazawa, Michal Novák, Martin691
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A Metric Implementation Details801

There are many automatic metrics that has been802

developed. In our study, we focus only on the803

most used or the best performing ones. Here is the804

description, reason for their selection and details of805

implementations used. For metric quality, please,806

refer to Section 5.1 or Kocmi et al. (2021); Freitag807

et al. (2023).808

Out of the lexical-based metrics, we select three809

of them, which are the most used. However, we810

emphasize that these metrics should no longer be811

used for MT evaluation (Freitag et al., 2022b). We812

use SacreBLEU (Post, 2018) in version 2.3.1 with813

default setting:814

• BLEU (Papineni et al., 2002): the most popular 815

and currently one of the worst performing MT 816

metrics (we used a specific tokenizer for Japanese 817

and Chinese as recommended) 818

• ChrF (Popović, 2015): second most popular 819

lexical-based metric with better performance 820

• spBLEU200 (Goyal et al., 2022): metric popular 821

when evaluating on Flores testset 822

Two BLEURT models (commit cebe7e6): 823

• BLEURTdefault (Sellam et al., 2020): the default 824

model when using BLEURT framework called 825

BLEURT-Tiny. It is important to note, that its 826

performance is worse than BLEU (Section 5.1) 827

and should not be used as authors suggest. 828

• BLEURT20 (Pu et al., 2021): the best performing 829

Bleurt model 830

We evaluate five Comet models (v2.1.0), the most 831

popular metric framework aside BLEU: 832

• Comet20: most frequently used model and the 833

default reference based model until the end of 834

year 2023. The model name wmt20-comet-da. 835

• Comet22: currently the default reference- 836

based model (wmt22-comet-da), outperforming 837

Comet20. 838

• CometQE
21 : we picked wmt21-comet-qe-mqm for 839

its unusual behaviour of using very small delta 840

while reaching high pairwise accuracy. 841

• CometKiwiQE
22 : wmt22-cometkiwi-da is the best 842

quality estimation model. 843

• xCOMETXXL: the best performing publicly avail- 844

able metric as evaluated by Freitag et al. (2023). 845

B ToShip23 Dataset Details 846

For this work, we introduce and utilize an extended 847

version of a non-public ToShip23 dataset. The 848

main changes of a dataset are almost twice as many 849

system pairs as in ToShip21 (Kocmi et al., 2021); 850

more than ten new domains and new parallel test- 851

sets; improved human evaluation protocol; and 852

evaluating the latest state-of-the-art MT models. 853

The parallel testsets for evaluating MT models 854

that we use in the extended part are mostly a collec- 855

tion of non-published human translated sentences. 856

We focus on using testsets in authentic direction, 857

from original source into human translated refer- 858

ence (avoiding reverse testsets whenever possible, 859

Toral et al., 2018). In contrast to ToShip21, which 860

uses mainly two domains (news and speech), we 861

extended the domains by more than ten. 862

We reduced the total number of languages in the 863

ToShip23 from 101 to 94. The removed languages 864
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are those which are not supported by either BERT865

(Devlin et al., 2019) or XLM-RoBERTa (Conneau866

et al., 2020) – language models used in the most867

popular metrics – therefore, we could not include868

those languages in our analysis.869

The MT systems being part of the dataset are870

coming from the same distribution as in ToShip21,871

but evaluating the most recent state-of-the-art mod-872

els including a limited number of LLM based trans-873

lations. Lastly, we improved the human evaluation874

protocol, moved from source-based DA towards875

DA+SQM (Kocmi et al., 2022).876

C Number of System Pairs in a Bin877

In our work, we fixed the number of systems in a878

bin for given metric delta to 300 system pairs. We879

now show how this decision affected our evaluation.880

To this end, we show various bin sizes in Figure 9.881

The bin width works as a smoothing parameter.882

With bin size of 100 system pairs, the curve fluctu-883

ates, especially as one system pair transfer into 1%884

change on the accuracy scale.885

We set the parameter to 300 system pairs because886

that is already a smoother curve, while not too wide887

so that the epsilon around the investigated delta is888

also not too high. However, this parameter should889

be re-investigated in the future works.890
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Figure 9: The comparison of pairwise accuracy for
BLEU on ToShip23 dataset when we change how many
system pairs are in evaluation for each individual delta.

D Extending Plots to All Metrics 891
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Figure 11: Empirical pairwise accuracies for all metrics with a fitted sigmoid curves on ToShip23 dataset. This
figure extends Figure 4.
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Figure 12: The comparison of pairwise accuracy on ToShip23 dataset when comparing into English, out-of-English,
and Chinese, Japanese, Korean language pairs separately. The count shows total number of system-pairs in the
evaluation. This figure extends Figure 6.
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Figure 13: The comparison between iterated and unrelated systems on ToShip23. This figure extends Figure 7.
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