
Waste-Bench: A Comprehensive Benchmark for Evaluating VLLMs in
Cluttered Environments

Anonymous ACL submission

Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have paved the way for Vision003
Large Language Models (VLLMs) capable of004
performing a wide range of visual understand-005
ing tasks. While LLMs have demonstrated006
impressive performance on standard natural007
images, their capabilities have not been thor-008
oughly explored in cluttered datasets where009
there is complex environment having deformed010
shaped objects. In this work, we introduce a011
novel dataset specifically designed for waste012
classification in real-world scenarios, character-013
ized by complex environments and deformed014
shaped objects. Along with this dataset, we015
present an in-depth evaluation approach to rig-016
orously assess the robustness and accuracy of017
VLLMs. The introduced dataset and compre-018
hensive analysis provide valuable insights into019
the performance of VLLMs under challenging020
conditions. Our findings highlight the critical021
need for further advancements in VLLM’s ro-022
bustness to perform better in complex environ-023
ments. The dataset and code for our experi-024
ments will be made publicly available.025

1 Introduction026

In recent years, Large Language Models (LLMs)027

(Chung et al., 2024; Achiam et al., 2023; Touvron028

et al., 2023) have demonstrated remarkable capa-029

bilities in understanding, reasoning, and generating030

text for a diverse range of open-ended tasks. Mod-031

els such as PaLM 2 (Anil et al., 2023) and Falcon032

(Penedo et al., 2023) have showcased exceptional033

performance in commonsense reasoning, multilin-034

gual applications, and various Natural Language035

Processing (NLP) tasks. Building on their success,036

Vision-Language Large Models (VLLMs) (Fang037

et al., 2023; Touvron et al., 2023; Zheng et al.,038

2023) have emerged, extending these capabilities039

to multimodal domains by integrating visual and040

textual data. Notable examples, including multi-041

modal GPT-4 and open-source models like LLaVA042

(Achiam et al., 2023; Liu et al., 2023, 2024), ex- 043

cel in a variety of multimodal tasks, demonstrating 044

their versatility in real-world applications (Hu et al., 045

2023; Vinyals et al., 2015; Chou et al., 2020). 046

Despite advancements in Vision-Language Mod- 047

els (VLLMs), their application in complex, clut- 048

tered environments remains underexplored. Tradi- 049

tional object detectors, such as Faster R-CNN (Ren, 050

2015) and YOLO (Redmon, 2016), are effective for 051

visual localization and classification tasks. How- 052

ever, these models are inherently limited to prede- 053

fined categories and lack the multimodal reasoning 054

capabilities needed to address open-ended queries 055

or context-aware tasks. In contrast, VLLMs lever- 056

age the ability to align visual and textual modali- 057

ties, enabling them to process complex queries like, 058

"Which items in the scene are recyclable under 059

current lighting conditions?" or "How many soft 060

plastic items are overlapping with metal objects?" 061

These reasoning tasks are critical in domains such 062

as waste classification, where cluttered scenes and 063

diverse object categories introduce significant chal- 064

lenges. 065

To address these challenges, we propose Waste- 066

Bench, a benchmark designed to evaluate the ro- 067

bustness and reasoning capabilities of VLLMs in 068

the context of waste classification. Unlike exist- 069

ing benchmarks, such as SEED-Bench (Li et al., 070

2023) and MV-Bench (Li et al., 2024), which fo- 071

cus primarily on general visual comprehension, 072

Waste-Bench targets the unique complexities of 073

real-world waste management scenarios, includ- 074

ing cluttered scenes, deformed objects, and am- 075

biguous visual cues. By systematically evaluat- 076

ing pre-trained VLLMs, Waste-Bench highlights 077

their baseline capabilities and limitations, offering 078

actionable insights to guide the improvement of 079

future VLLMs. 080

Furthermore, Waste-Bench is intended to com- 081

plement existing datasets, enriching them with 082

challenging scenarios that encourage greater ro- 083
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bustness and adaptability in models. By incor-084

porating diverse data distributions into training085

pipelines, models can achieve better trade-offs086

between task-specific robustness and generaliza-087

tion. This approach aligns with robust learning088

paradigms, which suggest that exposure to diverse,089

challenging data distributions can enhance model090

generalization while minimizing the risks of perfor-091

mance degradation on simpler tasks (Havrilla et al.,092

2024). To improve VLLMs in such environments,093

techniques like domain adaptation and adversarial094

training can be employed to expose the models to095

more realistic, noisy, and cluttered data. Addition-096

ally, incorporating multi-modal learning, including097

multispectral data, and using data augmentation098

strategies during training can help VLLMs better099

adapt to complex, cluttered environments. Fine-100

tuning models on Waste-Bench’s diverse and com-101

plex scenarios ensures that they become more ro-102

bust to variations in visual cues, allowing them to103

handle the unique challenges of waste classification104

tasks effectively.105

Models trained on simpler datasets often ex-106

perience a performance drop when evaluated in107

cluttered environments, primarily due to insuffi-108

cient exposure to noise, occlusions, and ambigu-109

ities during training. To address this challenge,110

Waste-Bench exposes models to more complex111

and realistic waste classification scenarios. By112

training models on these challenging conditions,113

Waste-Bench helps to reduce the performance gap114

between regular and cluttered environments, im-115

proving model generalization without sacrificing116

accuracy. Although the performance discrepancy117

between regular and cluttered environments has118

not been extensively studied in VLLMs, this issue119

is well-known in traditional vision tasks. In liter-120

ature, various waste classification methods have121

been proposed (Xia et al., 2024; Mao et al., 2021;122

Feng et al., 2022; Meng et al., 2022), they pose123

limitations in the presence of complex scenarios124

where there exists an unclear boundary informa-125

tion. Waste-Bench aims to mitigate this gap by126

training models on more challenging, real-world127

data, making them more adaptable and robust. Our128

contributions are as follows:129

• A Waste-Bench designed to evaluate the ro-130

bustness and reasoning capabilities of VLLMs131

in waste classification, addressing the com-132

plexities of real-world applications.133

• We evaluate VLLMs, uncovering significant134

challenges, especially in reasoning within clut- 135

tered scenes with deformed objects. 136

• We identify that VLLMs struggle with various 137

tasks on Waste-Bench, guiding future waste 138

management improvements. 139

2 Related Work 140

Vision Large Language Models (VLLMs) (Zhu 141

et al., 2024; Shao et al., 2023) have demonstrated 142

remarkable capabilities in engaging with visual 143

content, offering a wide range of potential applica- 144

tions. Notable models in this domain include Qwen 145

(Bai et al., 2023), which has consistently demon- 146

strated superior performance across various down- 147

stream tasks. Gemini-Pro and GPT-4o (Reid et al., 148

2024; OpenAI, 2024) exemplifies state-of-the-art 149

performance with its advanced reasoning and inter- 150

action capabilities, paving the way for the devel- 151

opment of versatile multimodal conversational as- 152

sistants. All these models perform extremely well 153

on wide range of image understanding tasks like 154

caption generation, visual question answering and 155

so on. These models accept both visual and textual 156

inputs and generate textual responses. From an ar- 157

chitectural perspective, VLLMs typically combine 158

pre-trained vision backbones (Fang et al., 2023) 159

with large language models (Touvron et al., 2023; 160

Zheng et al., 2023) using connector modules such 161

as MLP adapters, Q-former (Dai et al., 2024), and 162

gated attention (Alayrac et al., 2022). 163

Benchmarking VLLMs With the growing num- 164

ber of VLLMs emerging in the research commu- 165

nity, several benchmarks have been proposed to 166

evaluate and quantify these models for benchmark- 167

ing and analysis purposes. Notable benchmarks in 168

this domain include SEED-Bench (Li et al., 2023), 169

which evaluates the visual capabilities of both im- 170

age and video LMMs across multiple dimensions, 171

and MV-Bench (Li et al., 2024), which curates 172

challenging tasks to evaluate the spatial and tempo- 173

ral understanding of VLLMs. While these bench- 174

marks provide effective insights into model per- 175

formance, they primarily focus on general visual 176

comprehension metrics. However, none of them 177

specifically target complex cluttered environments 178

and deformed shaped objects. In contrast, Waste- 179

Bench is a comprehensive benchmark designed to 180

assess the robustness and reasoning capabilities of 181

VLLMs in waste classification. 182
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Figure 1: Waste-Bench comprises of 11 diverse complex question categories encompassing a variety of waste
images context.

3 Waste-Bench183

In this work, our objective is to develop a com-184

prehensive benchmark to evaluate the robustness185

and reasoning capabilities of VLLMs in various186

complex and cluttered visual environments, span-187

ning diverse scenarios. To achieve this, we intro-188

duce Waste-Bench. Initially, we offer a holistic189

overview of Waste-Bench and outline the diversity190

of questions it contains. Following this, we detail191

the creation process of Waste-Bench in Section 3.2.192

Performance evaluation including experiments and193

results are given in Section 4 and 5 respectively.194

3.1 Waste-Bench Dataset195

Waste-Bench encompasses 11 different question196

categories and 9,520 high-quality open-ended197

question-answer (QA) pairs, spanning 952 high-198

quality images with an average of 10 questions per199

image. These questions cover diverse categories200

related to real-world waste classification scenarios,201

including individual classification of waste classes,202

multi-class classification, shapes of objects, and203

colors. This comprehensive dataset is designed to204

rigorously test the capabilities of VLLMs in han-205

dling complex and cluttered visual environments.206

The question types and word cloud of frequent key-207

words is given in Appendix A.2.208

3.1.1 Waste-Bench Different Question Types209

To assess the robustness and reasoning capabili-210

ties of VLLMs in the Waste-Bench benchmark,211

we ensure it contains various question types to 212

encompass a wide range of real-world complex 213

and cluttered visual environments within each im- 214

age. Below, we provide a detailed definition of the 215

Waste-Bench as given in Figure 1. 216

• Single Class Classification (Cardboard, Metal, 217

Soft Plastic, Rigid Plastic): This category in- 218

cludes questions that require the model to 219

classify individual waste items into one of 220

the specified single classes. The questions 221

aim to determine whether the model can ac- 222

curately identify and distinguish between dif- 223

ferent types of materials commonly found in 224

waste. 225

• Multiclass Categorization: In this category, 226

the models are challenged with images con- 227

taining multiple deformed waste items that 228

need to be classified into more than one cat- 229

egory. The goal is to assess the model’s abil- 230

ity to handle complex scenes where multiple 231

waste types are present and need to be accu- 232

rately categorized. 233

• Counting: This category involves tasks where 234

the model must count the number of specific 235

items or categories within an image. For 236

example, counting the number of cardboard 237

pieces or the number of recyclable items in 238

a cluttered environment. The questions are 239

designed to evaluate the model’s precision in 240
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quantifying objects in a scene.241

• Color Diversity: This question type tests the242

model’s ability to distinguish and identify243

items based on color. Tasks in this category244

include identifying objects of a specific color245

or categorizing items by color diversity. It as-246

sesses the model’s capability to utilize color247

as a key feature in classification.248

• Geometric Shape Analysis: This category of249

questions focuses on the model’s ability to rec-250

ognize and categorize objects based on their251

geometric shapes. Questions involve identify-252

ing items with specific shapes, such as cylin-253

drical, circular or rectangular objects, which254

are common in waste sorting processes.255

• Complex and Cluttered Environment: This256

category includes questions to evaluate the257

model’s performance in recognizing and rea-258

soning about the environment in which waste259

is found. Model evaluates whether waste is260

in an indoor or outdoor setting. It includes261

questions that require comprehensive image262

analysis.263

• Condition Evaluation: In this category, the264

model must evaluate the condition of waste265

items. This includes assessing whether items266

are intact, twisted, clean or dirty. The ques-267

tions are designed to test the model’s ability268

to make nuanced judgments about the state of269

objects.270

• Similarity Metric: These questions require the271

model to compare and determine the similarity272

between different waste items. For example,273

identifying items that belong to the same cate-274

gory or have similar features. It assesses the275

model’s ability to draw comparisons and make276

associations based on visual features, robust-277

ness in recognizing objects in challenging set-278

tings, and adaptability to varying conditions.279

• Combined Classification and Counting: This280

category merges classification and counting281

tasks, requiring the model to not only clas-282

sify multiple items in a scene but also provide283

accurate counts for each category. This com-284

bined approach tests the model’s capability to285

perform multiple reasoning tasks simultane-286

ously.287

These question types present in our dataset help 288

to rigorously test the capabilities of VLLMs in 289

handling the intricacies of waste classification in 290

complex and cluttered environments. 291

3.2 Building Waste Bench Benchmark 292

The Waste-Bench benchmark is carefully con- 293

structed through a four-step process using a dataset 294

of 952 images. Initially, 11,424 Question/Answer 295

(Q/A) pairs are generated, capturing information 296

from the images. With filtering process given in 297

Stage 1, this number is reduced to 9,520, ensuring 298

relevance and quality. A focused refinement filtered 299

out 1,920 Q/A pairs, representing approximately 300

20% of the original set. Each step is presented in 301

detail below, and can be visually explored in Figure 302

2. 303

Stage 1: Data Collection and Annotation We 304

thoroughly reviewed various datasets and used Ze- 305

roWaste (Bashkirova et al., 2022) with waste im- 306

ages in cluttered environment. We pre-processed 307

the metadata provided with the images to ensure 308

accurate representation of the categories assigned 309

to each image. Following the image collection 310

process, the Gemini-Pro v1.5 was employed for 311

generating descriptive captions, optimized specifi- 312

cally for this task, while Gemini-Pro v1.0 (49.45% 313

accuracy) was used for classification tasks. Caption 314

generation focused solely on producing accurate, 315

context-rich descriptions, distinct from classifica- 316

tion challenges. A rigorous human-in-the-loop pro- 317

cess ensured caption quality and refined captions 318

for relevance, clarity, and accuracy. Inter-annotator 319

agreement confirmed consistency, and benchmark- 320

ing demonstrated Gemini-Pro v1.5’s captions were 321

competitive with state-of-the-art models. Two hu- 322

man assistants reviewed, filtered and corrected the 323

generated captions as well as generated question 324

answers based on following verification criteria. 325

• Ensured the content’s relevance to the images 326

and accuracy. Both of the human assistants 327

verified the content relevant to the image and 328

if the content is more than 80% related we 329

will keep it otherwise, discard it. 330

• Clear and coherent language. 331

• Accurate and relevant answer 332

The prompt used for generating captions is pro- 333

vided in Figure 2. These prompts included ground 334

truth information (e.g., class names, categories, and 335
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An image of  crumpled 
waste with plastic , papers 

and cardboard.

Prompts for Question Generation

You are a helpful and intelligent AI assistant which can curate
high-quality and challenging questions and corresponding 
answers. Given an image depicting waste materials in a 

cluttered environment, with the following detailed 
caption explaining the scene: The caption is: {caption content}. 

Formulate 10 diverse questions …

An Image of Cluttered dataset

GPT-4 Evaluation Waste-Bench

I

II

Caption

 You are a smart image-understanding agent for image captioning. The 
given image depicts various waste materials.
{my-string}. Describe their physical appearance and overall scene 
environment. Make sure to provide information only for the items given in 
the context. Now proceed with providing the detailed caption using the 
given context.'''

Caption Generation Prompt

Human Verification

“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image

 “Q”  What is the overall environment in the image?
“A” The overall environment depicted in the image is one of 
waste”
…..

La
rg

e 
La

ng
ua

ge
 

M
od
el

(L
LM

)

Gemini-Pro

Question Answers

Human-Verification 
“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image
….

Question Answers

Figure 2: Step I: Gemini-Pro generates detailed waste image captions, verified by human annotators. Step II: Nearly
10k diverse questions are generated from these captions, evaluated by GPT-4, and verified by humans.

masks) from the dataset’s JSON annotations to336

guide LLMs in producing contextually accurate337

outputs.338

Stage 2: Question-Answer Generation Inspired

messages=[  role:  system,

           "content": (  "You are a helpful and intelligent AI assistant which can curate " high-quality and challenging questions

 and corresponding answers "used to test the image understanding capabilities of an AI image system.”),

 

             {  role: user,  

                      “content": ( Given an image depicting waste materials in a cluttered environment, with the following detailed caption explaining 

the scene:  The caption is: {caption_content}. Formulate 10 diverse questions to test whether the model can correctly identify the objects and 

context based on the waste image provided.  Additionally, these inquiries should assess the model's ability to accurately recognize and 

differentiate between different types of waste materials and the cluttered environment depicted in the image.  Generate questions comprising 

interrogative and declarative sentences, utilizing different language styles, and explain each.  Your response should be presented as a list of 

dictionary strings with keys 'Q' for questions and 'A' for the answer. 

          “ Follow these rules while generating questions and answers: "

            1. Do not provide answers to the question itself. 

            2. Ensure the questions are concrete and can be addressed using the provided caption. 

            3. Do not ask questions whose answers cannot be obtained in the caption. 

            4. Do not formulate questions whose answer is not specified in the image and caption. 

             For example, format your response as follows: “

            [{\"Q\": 'Your first question here...', \"A\": 'Your first answer here...'}, 

             {\"Q\": 'Your second question here...', \"A\": 'Your second answer here...'}, 

              {\"Q\": 'Your third question here...', \"A\": 'Your third answer here...'}].”   }]

         

Figure 3: Prompts Used for Generating Question-
Answer Pairs.

339
by human interaction in day-to-day life, we aim to340

simulate a similar style of interaction with VLLMs341

by curating open-ended QA pairs to evaluate these342

models for robustness and reasoning. We feed343

detailed ground-truth image captions to GPT-3.5,344

which are utilized to generate open-ended questions345

covering both reasoning and robustness aspects.346

The questions designed go beyond basic image347

comprehension, requiring complex logical infer-348

ence and contextual understanding. These ques-349

tions test the model’s ability to classify objects by350

recognition, color, shape, and other relevant as-351

pects in complex settings, ensuring accurate and 352

appropriate responses. Prompt used for curating 353

QA pairs is mentioned in Figure 3. 354

Stage 3: QA Pairs Filtration 355

After generating QA pairs, a human-in-the-loop 356

review involving two human assistants identified 357

approximately 20% of the pairs as noisy. These 358

noisy pairs included irrelevant, unanswerable, or 359

repetitive questions, such as those with answers 360

embedded within the questions. To address these is- 361

sues, an exhaustive filtering process was conducted, 362

ensuring that the QA pairs met the relevance and 363

alignment criteria based on the image evaluation. 364

For the review process, we applied similar rules 365

as those used for caption generation. Two human 366

assistants reviewed the question-answer pairs based 367

on the following criteria: 368

• The QA pairs needed to be related to the ver- 369

ified captions, with both assistants agreeing 370

that the content was over 80% relevant to the 371

image. 372

• The language was checked for clarity. 373

• Answers were verified for accuracy and rele- 374

vance. 375

This process ensured that only relevant, accurate, 376

and clear question-answer pairs were retained, re- 377

sulting in a curated set of 9,552 high-quality QA 378
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"You are an intelligent chatbot designed for evaluating the correctness of AI assistant predictions for question-answer pairs. Your 

task is to compare the predicted answer with the ground-truth answer and determine if the predicted answer is correct or not. 

Here’s  how you can accomplish the task:  "------”,

    

INSTRUCTIONS: 

- Focus on the correctness and accuracy of the predicted answer with the ground truth.

- Consider predictions with less specific details as correct evaluation, unless such details are explicitly asked in the questi on.

Please evaluate the following question-answer pair:

Question: {question}, Ground truth correct Answer: {ground truth}, Predicted Answer: {predicted}

Provide your evaluation as a correct/incorrect prediction along with the score where the score is an integer value between 0 (fully 

wrong) and 5 (fully correct). The middle score provides the percentage of correctness.

Please generate the response in the form of a Python dictionary string with keys 'predicted', 'score', and 'reason', where th e value 

of 'predicted' is a string of 'correct' or 'incorrect', the value of 'score' is in INTEGER, not STRING, and value of 'reason'  should 

provide the reason behind the decision.

Only provide the Python dictionary string. For example, your response should look like this: {'predicted': 'correct', 'score' : 4.8, 

'reason': reason}."

Figure 4: Evaluation prompt used.

pairs. These pairs provide a robust foundation for379

the Waste-Bench benchmark. Appendix A.1 pro-380

vides a quantitative overview of the results.381

Stage 4: Evaluation Procedure Previous meth-382

ods like MM-VET(Yu et al., 2023) and SEED-383

BENCH (Li et al., 2023) have used LLMs as judges384

for open-ended QA benchmarks. We follow a simi-385

lar approach, employing GPT-4 to evaluate the cor-386

rectness of VLLM predictions against ground-truth387

answers. VLLMs generate predictions based on388

image-question pairs, which are then assessed by389

GPT-4 through binary judgments, with reasoning390

provided for each decision. The evaluation prompt391

as given in Figure 4, used in our study was designed392

to guide the LLMs in assessing the accuracy and393

quality of the responses generated by VLLMs on394

the Waste-Bench dataset. This prompt provided395

the LLMs with specific instructions to compare396

the model-generated answers with ground-truth an-397

swers, make binary correctness judgments. The398

prompt also emphasized the importance of provid-399

ing reasoning for each evaluation, ensuring that400

the judgments were not only accurate but also inter-401

pretable and consistent. To ensure accuracy, two as-402

sistants reviewed the evaluation results. To validate403

the performance across all models, we observed a404

high consistency between GPT-4 and human evalu-405

ations, as given in Table 1 below.406

GPT Human

Model CogVLM InstructBLIP InstructBLIP CogVLM
Performance 45% 59% 63% 46%

Table 1: Comparison of model performance between
GPT and Human evaluations across different models.

4 Performance Evaluation on407

Waste-Bench408

Both open-source and closed-source models were409

explored and selected for evaluation. In total, seven410

models were evaluated. Among the open-source411

models, five recent VLLMs were included: In-412

structBLIP, LLaVA-1.6, CogVLM, Qwen-VL, and413

MiniGPT-4. For closed-source models, GPT-4o 414

and Gemini-Pro were used. Our work focuses on 415

evaluating existing VLLMs to highlight their limi- 416

tations in cluttered environments. While VLLMs 417

are costly to train, our evaluation reveals key chal- 418

lenges, and future work will address issues like hal- 419

lucination and robustness for better performance in 420

complex tasks. 421

4.1 Main Experiments on Waste-Bench 422

All models were used in their pre-trained state to 423

ensure a fair comparison across different architec- 424

tures, detail given in in Appendix Table 6. Given 425

the diversity of the models employed, specific hy- 426

perparameter tuning was not performed for individ- 427

ual models; instead, the focus was on evaluating 428

their inherent capabilities. Each model was as- 429

sessed under consistent conditions, using a single 430

NVIDIA 24GB GPU to run the experiments, ensur- 431

ing uniformity in computational resources across 432

the tasks. 433

In Table 2, we present the evaluation results of 434

diverse range of models including five open source, 435

two closed source and human upper bound to pro- 436

vide comprehensive benchmark . All evaluations 437

were conducted according to the settings specified 438

officially as discussed in Appendix A.3 and Table 439

6. VLLMs find it challenging to perform well and 440

thus show inferior performance when evaluated on 441

the Waste-Bench dataset, particularly in cluttered 442

scenes with deformed shaped objects. Interestingly, 443

the performance of models like LLaVA-1.6, and In- 444

structBLIP is relatively higher compared to models 445

such as Qwen-VL and MiniGPT-4. For instance, 446

Gemini achieves an accuracy of 49.45% , how- 447

ever MiniGPT-4 suffers severely with these partic- 448

ularly challenging conditions and thus under per- 449

form. The Gpt-4o model surpasses the performance 450

of all models and achieves high gains compared to 451

other models. However, it still remains at the lower 452

end of performance for this type of dataset, with 453

an accuracy around 57%. GPT-4o handles clut- 454

tered scenes with deformed shaped objects, better 455

than others, indicating a more sophisticated under- 456

standing of complex visual contents. The Table 457

3 compares the performance of various VLLMs 458

across different waste classification tasks. GPT- 459

4 performs well in most categories, especially in 460

Counting (60.00) and Condition Evaluation (60.00), 461

while MiniGPT-4 shows weaker results, particu- 462

larly in Single Class Classification (22.00). Models 463

like Gemini and LLAVA exhibit moderate perfor- 464
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Model Version LLM Accuracy (%)

GPT-4 GPT-4o Proprietary LLM 57.52
Gemini Gemini-1.0 Pro Proprietary LLM 49.45
InstructBLIP BLIP-2_Vicuna_Instruct Vicuna-7B 48.58
LLaVA LLaVA-1.6 Vicuna-7B 47.45
Qwen-VL Qwen-VL-Chat Qwen-7B 41.30
CogVLM CogVLM-chat-v1.1 Vicuna-7B 41.58
MiniGPT-4 MiniGPT-4 Vicuna-7B 36.40

Human Upper Bound N/A N/A 81.20

Table 2: Evaluation results VLLMs highlighting open-source and closed-source models.

Question Category GPT-4 Gemini InstructBLIP LLAVA Qwen-VL CogVLM MiniGPT-4
Single Class Classification 49.00 38.00 46.00 35.00 28.50 36.50 22.00
Multiclass Categorization 54.00 44.00 36.50 37.00 34.00 30.50 32.00
Counting 60.00 52.00 50.00 45.50 43.00 40.50 31.00
Color Diversity 42.00 35.00 39.00 48.00 38.00 27.50 30.00
Geometric Shape Analysis 55.00 49.00 44.00 41.50 45.50 39.00 36.50
Complex and Cluttered Environment 38.00 42.00 52.00 58.00 51.00 47.00 39.00
Condition Evaluation 60.00 57.00 48.50 49.50 38.00 33.00 35.00
Similarity Metric 53.50 47.00 38.50 56.00 44.50 50.50 29.00
Combined Classification and Counting 44.00 48.00 53.00 44.50 39.00 41.00 36.00

Table 3: Comparison of different models across question categories, highlighting the performance of open-source
and closed-source models.

mance, with LLAVA excelling in Condition Eval-465

uation (58.00). The values are rounded to whole466

numbers for simplicity and clarity.467

5 Key Highlights and Qualitative Results468

The evaluation of VLLMs on the Waste-Bench469

benchmark reveals critical insights valuable for fu-470

ture model development, focusing on model perfor-471

mance under various conditions and highlighting472

strengths and areas for improvement.473

Real-World Waste Classification Challenges:474

Models that perform well on simplified environ-475

ments often struggle with the complexities of476

Waste-Bench, particularly when it comes to count-477

ing irregularly shaped objects or accurately iden-478

tifying colors in cluttered scenes. For instance,479

as illustrated in Figure 9, Q2, a model incorrectly480

predicted the color of a plastic bag due to a col-481

ored paper beneath it, highlighting challenges of482

real-world waste classification, where objects are483

frequently stacked or partially obscured to make it484

difficult to predict. Models often struggle with cor-485

rectly identifying colors in cluttered scenes due to486

the lack of real-world complexity in their training487

data. Enhancing training with diverse and realistic488

samples could help improve their accuracy and ro-489

bustness in complex environment.490

Challenges in Rare Class Recognition: Models 491

often struggle to accurately recognize and classify 492

less frequent categories in cluttered scenes, partic- 493

ularly when objects are deformed. As seen in Q3, 494

models mislocate or miss the metal, highlighting 495

the need for improved training on diverse variety 496

of deformed object shapes in cluttered environment 497

which are often encountered in real world streams. 498

Weak Classification in Cluttered Environments: 499

The responses in Question 1 highlight key chal- 500

lenges in accurate material identification, particu- 501

larly in scenes where objects are partially obscured. 502

For example, while some models like GPT-4o cor- 503

rectly identify a range of materials, others like 504

LLaVA and Qwen-VL struggled, with differenti- 505

ating between visually similar objects, leading to 506

incomplete or incorrect classifications. This incon- 507

sistency underscores the need for further refine- 508

ment of VLLMs to improve their robustness in 509

real-world applications, such as automated waste 510

management, where precise identification is criti- 511

cal. Further insights are given in Appendix A.4. 512

Potential Data Leakage: This is dataset which is 513

maintained by independent research group and can- 514

not be obtained by using web crawling techniques 515

which VLLMS use to curate their datasets. 516
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Can you identify the types of waste
materials present in the image?

The types of waste materials present in the

image are paper, plastic,metal, glass, and 

organic waste.

The waste items in the image appear to be made

of various types of paper, possibly including

newspapers, magazines, receipts, or other
printed materials.

There are various types of waste materials 

present, including plastic bags, newspapers, and

other debris.

CogVLM

LLaVA The waste items are made of paper 

and cardboard. Instruct-BLIP

The waste items in the image are made

from newspaper and cardboard.

Qwen-VL

Yes,  I can identify the type of waste materials, 

which appear to be paper waste, plastic waste, 
and crumpled newspaper.

The materials used to make the waste items 

in the image are newspapers, paper scraps,

and some tape.

GPT-4o

What is the color of the plastic bag located
in the middle of the image?

The plastic bag in the middle of the image

is pink.

The middle plastic bag exists. The bag is

pink.

The plastic bag located in the middle of the

image is pink.

Gemini CogVLM

The color of the plastic bag located in

the middle of the image is white.
LLa VA The color of the plastic bag is green.Instruct-BLIP

The plastic bag located in the middle of

the image is pink.
Qwen-VL

MiniGPT-4The plastic bag located in the center of

the image is transparent.GPT-4o

Where is the metal can located in the
image?

In the upper left-hand corner.Gemini

  LLaVA

The can is on the floor.CogVLM

The metal can is located on the ground

in the image. The metal can is located on top of trash.

Qwen-VL

   GPT-4o

There is no existence of metal can in the

image.

There is no metal can in the image.The metal can is located near the top right

corner

of the image.

MiniGPT-4

Instruct-BLIP

Gemini

MiniGPT-4

Figure 5: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

Model MM-VET MV-Bench SEED-Bench Waste-Bench

GPT-4 - - - 57.5
Gemini - - - 49.4
InstructBLIP 69.9 51.0 61.7 48.6
LLaVA 46.6 53.0 66.7 47.4
Qwen-VL - 73.0 54.8 41.3
CogVLM - - - 41.6
MiniGPT-4 47.9 29.5 49.2 36.4
Human Upper Bound - - - 81.2

Table 4: Comparison of VLLM recognition performance across different benchmarks in terms of accuracy.
Note: In this table, – values indicate results not provided.

6 Validation and Comparison Across517

Other BenchMarks518

The Table 4 compares the accuracy of various519

VLLMs across various benchmarks. Notably, the520

table illustrates the diverse challenges posed by521

each benchmark, with Waste-Bench offering a522

unique set of difficulties due to its focus on clut-523

tered scenes with deformed objects. The perfor-524

mance of models such as LLaVA, InstructBLIP,525

and Qwen-VL shows a noticeable drop in accuracy526

on Waste-Bench compared to SEED-Bench and527

MV-Bench. This highlights the increased complex-528

ity and difficulty in real-world waste classification529

scenarios and need to optimize current models for530

the unique challenges of waste classification.531

7 Conclusion 532

In this paper, we evaluated various VLLMs in com- 533

plex environments with deformed objects, reveal- 534

ing significant weaknesses in the identification of 535

shapes, colors, and locations. We introduced the 536

Waste-Bench benchmark, which features multiple 537

categories to enable a comprehensive validation of 538

these models. The Waste-Bench benchmark pro- 539

vides a robust framework for assessing VLLMs 540

in challenging conditions, aiding in the develop- 541

ment of more resilient and accurate models for 542

real-world applications like waste segregation and 543

autonomous waste management. 544

Limitations Our study, though comprehensive, has 545

some limitations. The scope of our evaluation 546
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was limited to a specific set of cluttered environ-547

ments, which may not fully represent the variety548

of real-world scenarios. In addition, the models549

were tested under controlled conditions and their550

performance in more dynamic and unpredictable551

settings remains to be explored. We tested models552

on a variety of questions to ensure robust testing553

for our evaluation purposes, accuracy and score554

were calculated and seemed sufficient, showcasing555

the robustness of our approach. Incorporating ad-556

ditional evaluation methods in future work could557

provide a more complete understanding. Despite558

these limitations, our findings offer valuable insight559

and a strong foundation to advance research in this560

area.561

Ethics Statement We constructed this dataset562

based on images given in the zwaste-f dataset563

(Bashkirova et al., 2022). We constructed this data564

set based on images provided in the Zerowaste-F565

dataset (Bashkirova et al., 2022). This data set566

includes various images of waste in cluttered envi-567

ronments to simulate real-world conditions. Some568

images contain identifiable objects, but we ensured569

that no personal identification details are included.570

When used properly, our image and annotation571

dataset provides significant value for evaluating572

waste classification models.573
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A Appendix 730

A.1 Data Filtration 731

Table 5 presents an overview of the dataset statis- 732

tics, including the total number of images and 733

question-answer (Q/A) pairs. The dataset initially 734

contains 952 images and 11,424 Q/A pairs. How- 735

ever, approximately 20% of the Q/A pairs (1,904 736

pairs) were filtered out, leaving a total of 9,520 up- 737

dated Q/A pairs for further analysis. This filtration 738

process ensures that the data used for evaluation is 739

of higher quality and relevance to the task at hand

Images Q/A Filtered Updated

952 11424 ~20% [1904] 9520

Table 5: Dataset Statistics: Overview of Total and Fil-
tered Question-Answer Pairs

740

A.2 WasteBench Insights 741

Figure A.1 provides two visualizations related to 742

the answers in the study. On the left, a word cloud 743

is displayed, representing the most common key- 744

words found in the responses. This visualization 745

highlights the frequency and prominence of key 746

terms, offering insights into the main themes and 747

concepts discussed in the answers. On the right, a 748

bar chart shows the distribution of question types, 749

providing an overview of the variety and balance of 750

questions posed during the study. Together, these 751
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Figure 6: Waste-Bench Overview. Left: Most frequent keywords in the answer set, Right: Frequency distribution of
question types.

Figure 7: Q/A generation from Caption

figures help to further understand the characteris-752

tics of the responses and the types of questions that753

were most prevalent in the dataset754

A.3 Experimental Settings755

As given in Table 6, all models were used in their756

pre-trained state to ensure a fair comparison across757

different architectures. Given the diversity of the758

models employed, specific hyperparameter tuning759

was not performed for individual models; instead,760

the focus was on evaluating their inherent capabil-761

ities. Each model was assessed under consistent762

conditions, using a single NVIDIA 24GB GPU to763

run the experiments, ensuring uniformity in com-764

putational resources across the tasks.765

A.4 Insights 766

Recognition and Counting Challenge: Models 767

generally struggle with recognizing and classifying 768

objects across all classes in cluttered environments. 769

As illustrated in Figure 8 , the models face signif- 770

icant challenges when dealing with complex and 771

cluttered environments, as shown by the incorrect 772

answers highlighted in red. However, we included 773

a case where the models performed better, such 774

as accurately identifying the dominant color in the 775

image, with few models providing the correct an- 776

swer. This contrast highlights that while models 777

can handle simpler tasks, like recognizing a dom- 778

inant color in scenarios with clear and singular 779

visual cues, they continue to struggle with more 780

complex tasks that require understanding spatial 781

relationships and object classification in cluttered 782

environments. Including this case emphasizes that 783

while there are areas where models show reason- 784

able performance, significant gaps remain in more 785

challenging real-world scenarios 786

However, the models struggle significantly when 787

dealing with more complex tasks, like identifying 788

the shape and size of objects or differentiating be- 789

tween similar materials in cluttered environments. 790

Despite clear instructions regarding the presence 791

of only one rigid plastic item, the responses 792

varied widely, highlighting ongoing challenges in 793
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Model Architecture Context Length Evaluation Mode
GPT-4o closed-source 2,048 tokens zeroshot, pre-trained wts
GeminiPro1.5 closed-source 2,048 tokens Caption, QA tasks
GeminiPro1.0 Proprietary closed-source 2,048 tokens zeroshot, pre-trained wts
InstructBLIP BLIP-2_Vicuna_Instruct (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
LLaVA LLaVA-1.6 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
Qwen-VL Qwen-VL-Chat (Qwen-7B) 2,048 tokens zeroshot, pre-trained wts
CogVLM CogVLM-chat-v1.1 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts
MiniGPT-4 MiniGPT-4 (Vicuna-7B) 2,048 tokens zeroshot, pre-trained wts

Evaluation Process Details
Evaluation Method Models were evaluated on Waste-Bench tasks, including classification, counting,

color recognition, and other categories. GPT-4 evaluated model predictions.
Human Verification Two human evaluators verified model predictions, showing high consistency

with GPT-4 evaluations.
Error Handling Default safety mechanisms were employed to prevent out-of-memory errors

and ensure stable performance.

Table 6: Experimental Setup and Model Specifications.

spatial reasoning and object recognition. These794

inconsistencies emphasize that while models can795

handle basic visual tasks, they falter when faced796

with more intricate aspects of real-world scenes,797

such as understanding object relationships or798

accurately assessing size and material properties799

800

A.5 Challenges with Noise, Enhanced801

Lighting and Shaded Degradations802

:803

While not the main focus of our paper, we further804

extended our evaluation to assess the models’ per-805

formance across various degradations. Our experi-806

ments revealed that introducing noise, shading, and807

enhanced lighting conditions in the images exacer-808

bates performance issues in the models, as shown809

in Table 7. For instance, some models experience810

a significant drop in accuracy when noise is intro-811

duced, highlighting their vulnerability, while others812

exhibit better noise-handling capabilities. These813

findings underscore the importance of incorporat-814

ing environmental factors into future model evalu-815

ations. To ensure consistency in our experiments,816

we applied fixed levels of degradation. Specifi-817

cally, we used a gradient mask for shading with818

an initial intensity of 0.7, a Gaussian noise with a819

sigma value of 7, and a brightness factor of 1.2 for820

enhanced lighting in the HSV color space. Evalu-821

ating these natural degradations is crucial for un-822

derstanding the robustness of models in real-world823

scenarios, where ideal conditions are seldom guar- 824

anteed. By testing models under these challenging 825

conditions, we are able to identify vulnerabilities 826

and areas for improvement, ensuring that models 827

are better equipped to handle diverse and unpre- 828

dictable environments. This is also important in 829

considering the performance measure of VLLMs in 830

applications other than waste such as surveillance, 831

autonomous driving, and environmental monitor- 832

ing, where models need to be resilient to a wide 833

range of environmental factors and disruptions.

Model Normal Noisy Enhanced Shaded

Gpt-4o 57.52 57.04 57.40 56.90

GEMINI 49.45 48.48 48.65 48.20

I.BLIP 48.58 46.29 47.20 46.25

LLaVA 47.45 47.03 46.90 46.16

CogVLM 41.58 40.15 40.50 39.73

Qwen-VL 41.30 39.40 40.58 37.09

MiniGPT4 36.40 36.21 36.90 35.20

Table 7: Evaluation results of various Vision Large Lan-
guage Models (VLLMs) across different degradation
scenarios and accuracy metrics.

834
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The dominant color of the cardboard is 
white.

What is the dominant color of the 
cardboard in the image?

The dominant color of the cardboard is white.

Brown

The dominant color of cardbaord is 
Brown .

The dominant color of the cardboard is white.

The dominant color of the cardboard in the 
image is white.

MiniGPT-4

MiniGPT-4

The rigid plastic item is a black rectangle,

The rigid plastic item is small and 
rectangular.

The rigid plastic  item is square.

It is difficult to determine the exact shape and 
size.

The rigid plastic item is described as small 
and thin.

The rigid plastic item in the image is rectangular 
in shape and appears to be relatively small in size.

What is the shape  and size of the rigid  
plastic item present in the image?

GPT-4o The dominant color of the cardboard in the image is 
brown.

GPT-4o
The rigid plastic item in the image is the black, 
elongated object that resembles footwear. It is 
approximately 10 inches in length.

LLaVA

Gemini

QWEN

InstructBLIP

CogVLMGemini

LLaVA

QWEN

CogVLM

InstructBLIP

Figure 8: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

Figure 9: Performance comparison of various Vision Large Language Models (VLLMs) under different degradation
scenarios. The chart illustrates how models like GPT-4, GEMINI, InstructBLIP, and others struggle with tasks
involving shape recognition, color identification, and classification of rare classes within cluttered scenes, particularly
under conditions of noise, enhanced lighting, and shading. This highlights the challenges VLLMs face in maintaining
accuracy and robustness when subjected to real-world visual distortions.
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