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ABSTRACT

While brain-aligned large language models (LLMs) have garnered attention for
their potential as cognitive models and for potential for enhanced safety and trust-
worthiness in AI, the role of this brain alignment for linguistic competence re-
mains uncertain. In this work, we investigate the functional implications of brain
alignment by introducing brain-misaligned models–LLMs intentionally trained to
predict brain activity poorly while maintaining high language modeling perfor-
mance. We evaluate these models on over 200 downstream tasks encompassing
diverse linguistic domains, including semantics, syntax, discourse, reasoning, and
morphology. By comparing brain-misaligned models with well-matched brain-
aligned counterparts, we isolate the specific impact of brain alignment on language
understanding. Our experiments reveal that brain misalignment substantially im-
pairs downstream performance, highlighting the critical role of brain alignment in
achieving robust linguistic competence. These findings underscore the importance
of brain alignment in LLMs and offer novel insights into the relationship between
neural representations and linguistic processing.

1 INTRODUCTION

A growing body of work studies the intriguing parallels between pretrained large language models
(LLMs) and the human brain, demonstrating a substantial degree of alignment between brain activ-
ity patterns and LLM activations when humans and LLMs are presented with the same linguistic
input (Toneva & Wehbe, 2019; Caucheteux & King, 2020; Schrimpf et al., 2021; Goldstein et al.,
2022; Aw & Toneva, 2023; Merlin & Toneva, 2024). This existing brain-LLM alignment has ex-
cited both cognitive scientists and AI researchers. From a cognitive perspective, brain-aligned LLMs
can serve as model organisms for studying natural language processing in the human brain, offer-
ing insights into mechanisms that may underlie human-like linguistic behavior and representation
(Toneva, 2021). From an AI perspective, researchers posit that brain-aligned LLMs may be safer and
more trustworthy (Mineault et al., 2024). Relatedly, a recent study demonstrated the first substan-
tial downstream benefits of improving brain alignment of a speech language model, by showing that
brain-tuning a model significantly improves its performance on downstream semantic tasks (Moussa
et al., 2025).

Despite this promise of brain-LLM alignment, its necessity for model performance remains an open
question. It is unclear whether alignment with the human brain is inherently required for LLMs to
perform well on linguistic tasks, or whether the relationship between brain alignment and model
behavior is more nuanced. To address this gap, it is essential to understand not only the presence of
alignment but also its functional implications.

In this work, we take a direct approach to investigate the effect of brain alignment on LLM perfor-
mance. We introduce brain-misaligned models–language models specifically trained to predict brain
activity poorly while maintaining robust language modeling performance on the same linguistic in-
puts. We evaluate these models across more than 200 downstream tasks spanning a broad spectrum
of linguistic capabilities, including semantics, syntax, discourse, reasoning, and morphology. By
comparing brain-misaligned models with well-matched models that differ primarily in their ability
to predict brain activity rather than their language modeling proficiency, we isolate the impact of
brain alignment on downstream linguistic performance. Our results reveal that brain-misalignment
significantly impairs the ability of LLMs to perform linguistic tasks. These findings suggest that
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Figure 1: A schematic of the proposed approach. Our method is based on fine-tuning a pretrained
language model with two simultaneous objectives: maintaining its language modeling ability while
reducing its alignment with brain recordings. Language modeling performance is preserved by
continuing training on a fine-tuning dataset using the standard language modeling objective. Brain
alignment is reduced by introducing a second prediction head and a gradient reversal layer, which
encourages the model to produce representations that are uninformative about the corresponding
brain activity.

alignment with the human brain is crucial for LLMs to achieve strong linguistic performance, shed-
ding light on the functional relevance of brain alignment in modern language models.

Our main contributions can be summarized as follows:

1. We develop brain-misaligned models that allow us to investigate the effect of brain align-
ment on the linguistic competence of language models.

2. We evaluate the effect of brain misalignment on a comprehensive set of linguistic tasks,
comprising more than 200 datasets. These tasks are designed to assess various linguistic
subfields (syntax, semantics, discourse, reasoning, and morphology) and linguistic phe-
nomena (e.g., part of speech, protoroles, coreference resolution).

3. Via comparisons with well-matched controls, we show that brain misalignment signifi-
cantly decreases linguistic competence, indicating that brain alignment is needed to crucial
linguistic competence in language models.

4. We find that the competence drop is especially pronounced in semantic, syntactic and rea-
soning tasks, demonstrating the importance of brain alignment for semantic understanding
in language models.

2 RELATED WORKS

A growing body of research investigates the alignment between pretrained language models and hu-
man brain activity during language comprehension (Wehbe et al., 2014b; Jain & Huth, 2018; Toneva
& Wehbe, 2019; Abdou et al., 2021; Schrimpf et al., 2021; Hosseini et al., 2024). Other studies have
focused on understanding the factors that drive this alignment, identifying model characteristics or
representational properties that correlate with neural responses (Goldstein et al., 2022; Toneva et al.,
2022a; Oota et al., 2024a;b; Caucheteux et al., 2021; Reddy & Wehbe, 2021; Toneva et al., 2022b;
Kauf et al., 2023; Gauthier & Levy, 2019; Aw & Toneva, 2023; Merlin & Toneva, 2024). Our
work extends these findings by investigating whether this alignment is not only observed but also
functionally relevant for language processing, specifically, whether brain alignment is necessary for
maintaining linguistic competence in language models.

In fact, a substantial body of work has focused on evaluating the linguistic competencies of lan-
guage models. These studies aim to systematically assess the extent to which models capture vari-
ous linguistic phenomena, including syntax, semantics, morphology, and discourse-level reasoning
(Amouyal et al., 2024; Blevins et al., 2023). Benchmarks such as BLiMP (Warstadt et al., 2020),
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019), and more recently Holmes (Waldis

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2024) have been used to evaluate models’ understanding of language. Our study contributes
to this line of research by examining how these linguistic competencies are affected when the align-
ment between language model representations and brain activity is manipulated.

Additionally, a growing line of work in Causal NLP aims to uncover causal relationships between
model components, training signals, or representations and downstream performance (Feder et al.,
2021; 2022; Liu et al., 2025; Ortu et al., 2024). These studies design interventions or counterfactual
setups to test whether certain features are causally implicated in model predictions or behaviors. Our
approach is aligned with those works, we intervene on brain alignment, training models to preserve
or disrupt alignment, and estimate its causal role in supporting linguistic competence.

3 METHODOLOGY

3.1 PRETRAINED MODELS

We use BERT-based (Devlin et al., 2019) and GPT2-based (Radford et al., 2019) language models.
In particular, we focus on the bert-base-cased and gpt-small provided by Hugging Face
(Wolf et al., 2020). BERT and GPT2 have achieved strong performance on various NLP tasks, such
as question answering and sentence classification. Moreover, they have been extensively studied in
prior work on brain alignment (Toneva & Wehbe, 2019; Caucheteux et al., 2021; Oota et al., 2024b).

3.2 FMRI DATA

We use two publicly available fMRI datasets to measure the brain alignment of language model rep-
resentations. The data included in the first dataset, provided by Wehbe et al., 2014a, were collected
from eight participants as they read Chapter 9 of Harry Potter and the Sorcerer’s Stone (Rowling
et al., 1998) word by word. The chapter was divided into four runs of similar length, each separated
by a short break. Each word was presented for 0.5 seconds, and one fMRI image (TR) was ac-
quired every 2 seconds, resulting in 1211 brain images per participant. The fMRI data in the second
dataset, made publicly available by Deniz et al., 2019, consist of recordings from six participants
who read and listened to the same 11 stories from The Moth Radio Hour. For each modality, the
dataset includes 4028 fMRI images. During reading, each word was presented for exactly the same
duration as in the audio recording. In our analysis, we used only the reading data. These datasets
are among the largest publicly available collections in terms of the amount of data per participant,
which is crucial for obtaining accurate estimates of brain alignment.

3.3 CONTROLLING BRAIN ALIGNMENT

To investigate the effect of brain alignment of a language model on its downstream linguistic com-
petence, we develop two models: the Brain Misaligned model and the Brain Preserving model. The
Brain Misaligned model is trained to reduce alignment with brain recordings, while the Brain Pre-
serving model serves as a comparison baseline that preserves brain alignment while controlling for
possible confounding factors.

3.3.1 BRAIN MISALIGNED MODEL

To evaluate the influence of brain-related information, which is an abstract concept for which no
clear counterfactual input exists, we must develop methods that allow us to remove such informa-
tion directly from the language model representations. In this study, we address this challenge by
designing an intervention to language models that aims to remove brain-related information from
their representations, without the need to generate counterfactual inputs. This enables us to investi-
gate the necessity of brain alignment for natural language processing abilities.

Our approach is based on adversarial fine-tuning (Ganin et al., 2016) of language models, using
a prediction head (brain mapping head in Figure 1) and a gradient reversal layer to remove the
targeted capacity, i.e. brain prediction, while simultaneously fine-tuning a second head to preserve
the language modeling performance.

The model is finetuned using the stimuli from the Harry Potter fMRI dataset (Wehbe et al., 2014a)
or from the Moth Radio Hour fMRI dataset for the language modeling loss, and the corresponding
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fMRI recordings for the loss of the brain mapping head. For training, we select only voxels with an
estimated noise ceiling > 0.05 (see Appendix C for details) belonging to regions of the brain known
to process language (Fedorenko et al., 2010; Fedorenko & Thompson-Schill, 2014; Binder et al.,
2009; Oota et al., 2024a) and used by previous works to investigate brain alignment of language
models. Additional details on the prediction of brain recordings are reported in Appendix B. The
total loss is defined as:

L = ωlm → Llm + ωba → Lba (1)

where Llm is the language modeling loss, Lba is the brain-alignment loss, and ωlm and ωba are
weighting factors to balance the two objectives. The language modeling loss Llm corresponds to
the standard cross-entropy loss used during language model pretraining, while the brain-alignment
loss Lba is defined as the mean negative squared Pearson correlation between the predicted voxels
in each batch and the ground truth voxel values. ωlm is fixed at 0.1, a value chosen based on the
relative magnitude of the losses prior to fine-tuning (see Section 3.3.3 for details).

3.3.2 BRAIN PRESERVING MODEL

Similarly, we designed a control condition to account for potential confounding factors and to serve
as a comparison for the Brain Misaligned model. We finetune this model using the same procedure
as for the Brain Misaligned model, but during training we permute the order of the fMRI images to
disrupt the correspondence between stimuli and brain activity. This allows us to quantify the effect
of brain misalignment.

By using permuted fMRI images, our method also accounts for the effects of the adversarial removal
itself, which can influence the model’s representations. In this way, we are able to control for poten-
tial confounders such as the effect of fine-tuning on language modeling and the effect of adversarial
fine-tuning. The only difference between conditions remains the correspondence between stimuli
and fMRI images.

3.3.3 MODEL SELECTION AND TRAINING

To train the models, we use training samples consisting of sequences of words corresponding to 5
TRs. The stimulus text is divided into four consecutive sections to enable cross-validation.

For hyperparameter selection, we reserve a subset of the training data for validation. Once the best
hyperparameters are identified, we retrain the final models on the full training set.

We perform a grid search over learning rates [5e↑5, 1e↑5, 5e↑6, 1e↑6] and weights for the regres-
sion loss [2, 4, 7, 10, 13] (denoted as ωba in Equation 1). The optimizer is AdamW, with a batch
size of 16, a default language modeling loss weight of 0.1, and training is run for 5 epochs with
checkpoints saved after each epoch, based on preliminary experiments.

We select the best combination of learning rate, ωba, and epoch checkpoint as the one that maximizes
the difference in brain alignment between the Brain Preserving and Brain Misaligned model trained
with the same hyperparameter, while maintaining comparable language modeling performance. The
final models are retrained using the selected configuration and evaluated on the held-out test set.

Depending on stability observed in preliminary experiments, we used either full fine-tuning (as
described above) or parameter-efficient fine-tuning with the LoRA framework (Hu et al., 2022).
Full fine-tuning was applied for the BERT-based models on the Harry Potter dataset, whereas in
other model–dataset combinations LoRA provided more stable training dynamics, even with default
Huggingface hyperparameters. For these models, we set ωba = 10 and trained for 5 epochs.

Conditions for a successful comparison between models. The comparison is considered suc-
cessful when the Brain Misaligned and Brain Preserving models achieve similar performance on the
language modeling objective (tested using Wilcoxon signed-rank test, p < 0.05), while the Brain
Misaligned model shows a significantly lower ability to align with brain recordings.
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3.4 EVALUATION

To evaluate the models, we use three types of tasks: language modeling, brain alignment, and down-
stream linguistic tasks. Both language modeling and brain alignment are evaluated using the same
text, which corresponds to the fMRI stimulus, and is held-out during training. We assess these two
tasks using overlapping sequences of words belonging to 5 TRs, following the approach of previous
work (Merlin & Toneva, 2024).

Language modeling. For language modeling we follow the best practice for evaluation of BERT-
based and GPT2-based models. For each test example it is measured the average cross entropy
across the randomly masked tokens (15% of total number of tokens,see Devlin et al. (2018) for
details) for BERT-based models and for GPT2-based models the cross entropy over all tokens (see
Radford et al. (2019) for details).

Brain alignment. We measure the brain alignment between BERT and GPT2 representations and
fMRI recordings using a linear prediction head on top of the last transformer block. This prediction
head is trained to output brain activity values from the model’s representations and is widely used
in previous work to assess how well language models can predict brain signals (Jain & Huth, 2018;
Toneva & Wehbe, 2019; Schrimpf et al., 2021). We train this linear function, regularized with
a ridge penalty, using cross-validation and evaluate its performance on held-out data. The ridge
parameter is selected via nested cross-validation. Consequently, for each participant, we train one
model for each held-out run (see Section 3.2), then aggregate the predictions to compute brain
alignment. Further details on the prediction head are provided in Appendix B. Brain alignment is
quantified using Pearson correlation, computed between the predictions on held-out data and the
corresponding ground truth values. Specifically, for a model q and voxel vj with corresponding
held-out fMRI values yj , brain alignment is computed as:

brain alignment(q, vj) = corr(ŷj , yj),

where ŷj = q(X)Wq,j , X is the input text sample to model q, and Wq,j are the learned prediction
weights for voxel vj .

Linguistic competence. To investigate the linguistic competence of language models, we use
more that 200 datasets, designed to evaluate linguistic competence in language models via classifier-
based probing (Waldis et al., 2024). The benchmark covers datasets spanning various linguistic
phenomena and subfields, including syntax, morphology, semantics, reasoning, and discourse, ex-
amples of tasks are reported in Table 1. Details about the benchmark and the included datasets are
provided in Appendix A. For each task, each model is evaluated using 6 seeds, which influence the
probe initialization and the ordering of data during training and evaluation.

To determine whether one model outperforms the other, we not only compare the average evaluation
metric (see Waldis et al. (2024) for details), but also assess whether the difference is statistically
significant using a two-sample t-test. We assign a “win” to a model only for datasets where the
difference reaches statistical significance. For each dataset and model pair, we thus obtain a binary
“win” matrix indicating whether one model significantly outperforms the other (1) or not (0). Since
each subject has a pair of models (Brain Misaligned and Brain Preserving) corresponding to different
held-out runs during training, we average the resulting win matrices across runs, yielding a win
score for each participant, dataset, and model. The win score quantifies how consistently one model
outperforms the other across different held-out runs.

4 RESULTS

4.1 EFFECTS ON BRAIN ALIGNMENT

Figure 2A–D shows brain alignment of the BERT-based Brain Misaligned and Brain Preserving
models on the Harry Potter dataset, as well as a contrast between the two, for a representative
participant. Specifically, Figures 2A and 2B show the Pearson correlation between the predicted
voxel values and the ground truth for the Brain Preserving model and the Brain Misaligned model,
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A) Brain Preserving B) Brain Misaligned

Pearson Correlation Pearson Correlation

C) Brain Misalignment Effect D) Language ROIs

Difference in Pearson Correlation

Figure 2: Brain alignment of the BERT-based Brain Preserving (A) and Brain Misaligned (B) mod-
els for one participant on the Harry Potter dataset (see Appendix D for all participants), and the
difference between the two (C). The Brain Misaligned model exhibits substantially weaker align-
ment, particularly in language regions (C, D).

Table 1: Examples for linguistic subfields from Waldis et al. (2024). The relevant part of the example
for the specific label is underlined.

Type Phenomena Example Label

Morphology Subject-Verb Agreement And then, the cucumber was hurled into the air. Correct
And then, the cucumber were hurled into the air. Wrong

Syntax Part-of-Speech And then, the cucumber was hurled into the air. NN (Noun Singular)
Semantics Semantic Roles And then, the cucumber was hurled into the air. Direction
Reasoning Negation And then, the cucumber was hurled into the air. No Negation
Discourse Node Type in Rhetorical Tree And then, the cucumber was hurled into the air. Satellite

respectively. Figure 2C shows the contrast between the two models, i.e., the difference in Pear-
son correlation for each voxel. Results for the remaining participants, other language models and
datasets are consistent and reported in Appendix D, E, F, G.

Brain Preserving Model. In Figure 2A, we observe that the Brain Preserving model aligns well
with brain activity across the whole brain, and in particular within language-related regions (visual-
ized in Figure 2D), as identified by previous work (Fedorenko et al., 2010; Fedorenko & Thompson-
Schill, 2014; Binder et al., 2009). We quantify the alignment of the Brain Preserving model in
Appendix D. Since these models are explicitly finetuned to preserve brain alignment, this result is
consistent with prior studies showing that language models, exhibit alignment with fMRI signals
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(Toneva & Wehbe, 2019; Schrimpf et al., 2021; Goldstein et al., 2022; Oota et al., 2024b; Merlin &
Toneva, 2024).

Brain Misaligned Model. In Figure 2B, we observe that the Brain Misaligned model does not
align well with brain activity across the whole brain. The Pearson correlation values are particularly
low in several brain areas. We quantify the alignment of brain misaligned model in Appendix D.

To show the effect of brain misalignment, in Figure 2C we show the contrast between the Pearson
correlation values of the Brain Preserving model and the Brain Misaligned model. As expected,
the difference in Pearson correlation is especially high in language-related regions (visualized in
Figure 2D). This confirms that our approach is effective at removing brain-relevant information in
particular in language-related areas.

We assess whether the average brain correlation (computed across voxels in language regions with
an estimated noise ceiling > 0.05, see Appendix C,??) significantly differs between the two models
using a t-test. We find that for six participants, there is a significant drop in brain alignment, while
no significant difference in language modeling ability is observed between the two models. Only the
models corresponding to these participants are included in the comparison of linguistic competence.

4.2 EFFECTS ON LINGUISTIC COMPETENCE

Figures 3A, 3B, and 4 show the performance on linguistic competence of the BERT-based Brain
Misaligned and Brain Preserving models on the Harry Potter dataset. Specifically, Figure 3A il-
lustrates the overall effect on linguistic competence, considering all tasks. Figure 3B presents the
results by linguistic subfields, while Figure 4 focuses on specific linguistic phenomena. Results on
the remaining combinations of models and dataset are reported in Appendix E, F, G.

Effects on the Overall Linguistic Competence. Figure 3A shows the average win rate in the lin-
guistic competence benchmark for the BERT-based Brain Misaligned model and the Brain Preserv-
ing model, corresponding to the selected participants. We observe a significant difference between
the two conditions. These results indicate that removing brain alignment leads to lower performance
on downstream linguistic tasks, suggesting that brain alignment is necessary to preserve linguistic
competence.

Effects across Linguistic Subfields. We further investigate this effect by analyzing performance
across different linguistic subfields: syntax, semantics, discourse, reasoning, and morphology. As
shown in Figure 3B, the Brain Misaligned model consistently underperforms the Brain Preserving
model in discourse, semantics, and syntax tasks, with the difference being statistically significant
for semantics. This suggests that brain alignment is particularly important for supporting semantic
understanding.

Effects across Linguistic Phenomena. To gain finer-grained insights, we analyzed results based
on specific linguistic phenomena, focusing on those represented by more than five datasets. As
shown in Figure 4, we found that the performance gap is particularly strong (even if not statistically
significant) for tasks involving negative polarity item licensing and quantifiers, providing further evi-
dence that brain alignment is crucial for these phenomena. Examples for these linguistic phenomena
can be found in Table 2.

Effects on other experimental settings Results for other experimental settings are reported in
Appendix E, F, G. In the other experimental combinations of models and datasets, we observe
a marked difference in performance between the Brain Misaligned and Brain Preserving on the
overall linguistic competence. For the BERT-based models on the Moth Radio hour the difference
is significant, although for GPT2-based models on the Harry Potter dataset the difference does not
reach conventional statistical significance (p = 0.055), the trend mirrors the effect observed in the
BERT-based models. For the GPT2-based models on the Moth Radio Hour dataset, results are not
consistent due to the weaker effect of brain removal. Partitioning the tasks in linguistic subfield and
linguistic phenomena, each combination reveal unique differences, but overall greater difference is
shown for semantics, syntax, and reasoning.
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A) All tasks B) Tasks split by linguistic subfield

Figure 3: Average win rate and standard error of the BERT-based Brain Misaligned and Brain Pre-
serving models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counter-
part across tasks and participants. The Brain Preserving model significantly outperforms the Brain
Misaligned model (p < 0.01, Wilcoxon signed-rank test) (Left). This result suggests that removing
brain alignment impairs linguistic competence. The Brain Preserving model shows an higher win
rate in the syntax, discourse and reasoning subfield (Right) and significantly higher in semantics
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing
brain alignment particularly affects semantic tasks.

Figure 4: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Brain Preserving models tend to outperform Brain Misaligned models, particularly in cat-
egories such as negative polarity item licensing and quantifiers. Some concrete examples of the
linguistic tasks are provided in the Table 2.

5 DISCUSSION

To investigate the necessity of brain alignment in language models, we designed two models: the
Brain Misaligned model, which is intended to remove brain alignment while preserving language
modeling capabilities, and the Brain Preserving model, which accounts for potential confounders.

We showed that the Brain Misaligned model is indeed not aligned with brain recordings, while
the Brain Preserving model exhibits strong alignment, particularly in language-related regions of
interest. The contrast between the two models, across multiple experimental settings, reveals that
the difference in alignment is especially pronounced in these areas.
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We further evaluated the linguistic competence of these models to reveal the functional importance
of brain alignment. Our results demonstrate that Brain Misaligned models perform worse than Brain
Preserving models on linguistic tasks, across multiple model-dataset combinations, supporting the
hypothesis that brain alignment is crucial for maintaining linguistic competence. Across multiple
experimental settings the performance drop is particularly evident in tasks related to the semantic,
syntactic and reasoning subfield, although there are unique differences in every experimental setting.

These findings, across multiple model-dataset combinations, suggest that brain-aligned information
plays a key role in supporting performance on linguistic tasks. It is important to note that the absence
of statistically significant differences for other linguistic subfields or phenomena does not imply that
brain alignment is unimportant for those tasks.

Limitations. Our study has three main limitations. Firstly, the benchmark used to assess linguis-
tic competence, while extensive, is not exhaustive. There are many additional datasets available
that could be included in future evaluations. Moreover, some linguistic subfields (e.g., discourse)
and specific linguistic phenomena are represented by only a few datasets. As a result, the observed
behavior of the Brain Misaligned and Brain Preserving models may be influenced by the limited
coverage and distribution of tasks in certain categories. Secondly, our results are based on limited
fMRI dataset. Although these dataset are among the largest available in terms of data per participant
and has been widely studied in previous work, the findings may still be specific to their charac-
teristics. We designed our experiments using cross-validation, testing on held-out data and across
multiple participants to improve generalizability. However, results might differ with different text
genres or other types of linguistic stimuli. Expanding to more datasets, languages, or cognitive tasks
would be an important next step. Thirdly, in model-dataset combinations where brain misalignment
was effective, the Brain Misaligned model generally showed worse performance. However, there
are differences across models in task performance within each linguistic subfield. Datasets and
models can contain different types of information related to linguistic subfields. Nevertheless, our
results are informative in demonstrating the effectiveness of our methodology and in highlighting
the importance of the emergent brain alignment ability of language models.

6 CONCLUSION

We designed a direct approach to investigate the necessity of brain alignment in pretrained language
models. Specifically, we introduced two models: the Brain Misaligned model and the Brain Preserv-
ing model. When used together, they allow us to isolate and control for the effect of brain alignment
on downstream linguistic competence.

We evaluated these models on more than 200 datasets spanning various linguistic subfields, includ-
ing semantics, syntax, morphology, discourse, and reasoning, as well as a broad range of linguistic
phenomena. Our results revealed a significant drop in linguistic competence, particularly on seman-
tic, syntax and reasoning tasks, for the Brain Misaligned model, suggesting that brain alignment
plays a critical role in downstream linguistic performance.

These findings are highly relevant to the natural language processing literature. Previous studies
have explored why brain alignment emerges during pretraining, pointing to possible contributing
factors and suggesting that if this alignment emerges, it may reflect shared information acquisition
between artificial and biological neural networks.

Our work contributes a new dimension to this discussion: we not only ask why brain alignment
emerges, but also whether it is important for linguistic competence. Our results provide initial
evidence that brain alignment is functionally important, motivating future research in this area.

Moreover, our methodology provides a general framework for assessing the causal role of emer-
gent properties, as brain alignment, in language models. Future work could apply our methodology
to different models, exploring other datasets, or extending the approach to assess the necessity of
alignment-related capabilities across different modalities (e.g., speech, text, image) or neural archi-
tectures.
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A LINGUISTIC COMPETENCE BENCHMARK

We evaluated the linguistic competence of language models using classifier-based probing on more
than 200 datasets collected from various sources and included in the Holmes benchmark (Waldis
et al., 2024). The benchmark covers datasets spanning a wide range of linguistic phenomena and
subfields, including syntax, morphology, semantics, reasoning, and discourse. A comprehensive list
of linguistic phenomena and their corresponding subfields is provided in Table 3. For the evaluation,
we use the flash-holmes version of the benchmark, which is designed to reduce computational
cost while maintaining precision in assessing language model performance (see Waldis et al. (2024)
for details). Examples of tasks associated with the linguistic phenomena used in our study are
reported in Table 2 and illustrated in Figure 4.

Table 2: Examples for selected linguistc phenomena from Waldis et al. (2024). The asterisk (*)
indicates the correct option when applicable.

Phenomena Illustrative Example

argument-structure Most cashiers are disliked*/flirted.
binding Carlos said that Lori helped him*/himself.
determiner noun agreement Craig explored that grocery store*/stores.
event structure Give them to a library or burn them. ↓ Distributive
filler-gap Brett knew what many waiters find.*/Brett knew that many waiters find.
genericity I assume you mean the crazy horse memorial. ↓ Not Dynamic
island-effects Which bikes is John fixing?*/Which is John fixing bikes?
antonym negation It was not*/really hot, it was cold.
negative polarity item licensing Only/Even Bill would ever complain.
semantic proto-roles These look fine to me. ↓ Exists as physical
quantifiers There aren’t many*/all lights darkening.
rethorical structure theory The statistics quoted by the ” new ” Census Bureau report ↓ Elaboration
subject-verb agreement A sketch of lights does not*/do not appear.

B BRAIN MAPPING HEAD

To predict the fMRI recordings corresponding to each TR, we use a linear function, regularized
with a ridge penalty, that maps model representations to fMRI space, specifically targeting voxels
with an estimated noise ceiling > 0.5 located in language-related regions of interest (Figure 2D).
This function is trained in a cross-validated way and evaluated on held-out data. The ridge penalty
is selected via nested cross-validation. For each participant, we train four functions, each using
three of the four fMRI subsets for training and the remaining one for testing. To generate model
representations, we average the token embeddings corresponding to each TR, and construct the
input by concatenating the embeddings from the current TR with those from the previous five TRs.
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Table 3: List of linguistic phenomena and their corresponding subfields in the Holmes benchmark.

linguistic phenomena subfield

next sentence prediction discourse
rethorical structure theory discourse
sentence order discourse
discourse connective discourse
coreference resolution discourse
bridging discourse
irregular forms morphology
subject-verb agreement morphology
determiner noun agreement morphology
anaphor agreement morphology
age comparison reasoning
negation reasoning
speculation reasoning
multi-hop composition reasoning
property conjunction reasoning
object comparision reasoning
antonym negation reasoning
encyclopedic composition reasoning
taxonomy conjunction reasoning
always never reasoning
object gender semantics
passive semantics
protoroles semantics
quantifiers semantics
synonym-/antonym-detection semantics
verb dynamic semantics
semantic role labeling semantics
sentiment analysis semantics
time semantics
subject animacy semantics
subject gender semantics
tense semantics
relation classification semantics

linguistic phenomena subfield

semantic odd man out semantics
word sense semantics
word content semantics
coordination inversion semantics
object animacy semantics
event structure semantics
factuality semantics
complex words semantics
genericity semantics
metaphor semantics
named entity labeling semantics
negative polarity item licensing semantics
argument structure syntax
bigram-shift syntax
binding syntax
tree-depth syntax
case syntax
subject-verb agreement syntax
anaphor agreement syntax
top-constituent-task syntax
subject number syntax
deoncausative-inchoative alternation syntax
control / raising syntax
ellipsis syntax
sentence length syntax
filler gap syntax
readability syntax
island effects syntax
local attractor syntax
part-of-speech syntax
object number syntax
constituent parsing syntax
negative polarity item licensing syntax

The features of the words presented in the previous TRs are included to account for the lag in the
hemodynamic response that fMRI records. Because the response measured by fMRI is an indirect
consequence of brain activity that peaks about 6 seconds after stimulus onset, predictive methods
commonly include preceding time points (Nishimoto et al., 2011; Wehbe et al., 2014a; Huth et al.,
2016). This allows for a data-driven estimation of the hemodynamic response functions (HRFs)
for each voxel, which is preferable to assuming one because different voxels may exhibit different
HRFs.
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C NOISE CEILING ESTIMATION

To assess the signal quality of the fMRI data, we estimated noise ceiling values, which quantify
the proportion of variance that could be explained by an ideal data-generating model. This method
involves predicting the fMRI activity of a target participant using linear models trained on data from
another participant. For a more detailed explanation, refer to Schrimpf et al. (2021). Estimating the
noise ceiling is particularly useful given the inherently high level of noise in fMRI data.

Figure 5: Voxel-wise estimated noise ceiling values for participants included in Harry Potter
dataset(Wehbe et al., 2014a). To exclude noisy voxels, we selected, for each participant, those
with noise ceiling estimates above 0.05.

Figure 6: Voxel-wise estimated noise ceiling values for participants included in Moth Radio Hour
dataset (Deniz et al., 2019). To exclude noisy voxels, we selected, for each participant, those with
noise ceiling estimates above 0.05.
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D BERT MISALIGNMENT ON HARRY POTTER DATASET: ADDITIONAL
RESULTS

We report the brain alignment results for each model trained with data from each participant in
Figure 7, as well as a quantitative summary in Figure 8.
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Brain Preserving Brain Misaligned Difference

Figure 7: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Harry
Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations between
model activations and brain responses for each subject. The left column displays results for the
Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 8: Median Pearson correlation for BERT-based models on the Harry Potter dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
six subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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E BERT MISALIGNMENT ON MOTH RADIO HOUR DATASET

We report the brain alignment results for each model trained with data from each participant in
Figure 9, as well as a quantitative summary in Figure 10. Results for the Holmes benchmark are
reported in Figure 11, 12.

Brain Preserving Brain Misaligned Difference

Figure 9: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Moth
Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 10: Median Pearson correlation for BERT-based models on the Moth Radio Hour dataset
for each participant. Brain Misaligned models perform significantly worse than Brain Preserving
models for six subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).

A) All tasks B) Tasks split by linguistic subfield

Figure 11: Average win rate and standard error of the BERT-based Brain Misaligned and Brain
Preserving models on the Moth radion Hour dataset across participants and taks(Left) and across
different linguistic subfields (Right). The win rate indicates how often each model outperforms its
counterpart across tasks and participants. The Brain Preserving model significantly outperforms the
Brain Misaligned model (p < 0.01, indicated by **), as assessed using a Wilcoxon signed-rank test
(Left). This result suggests that removing brain alignment negatively influences linguistic compe-
tence. The Brain Preserving model shows a higher win rate in the syntax, semantics, reasoning and
discourse subfield (Right) and significantly higher for syntax and semantics subfields (p < 0.05,
Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain align-
ment particularly affect syntax and semantic tasks.
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Figure 12: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly
in categories such as genericity and quantifiers. Some concrete examples of the linguistic tasks are
provided in the Table 2.
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F GPT2 MISALIGNMENT ON HARRY POTTER BRAIN DATA RESULTS

We report the brain alignment results for each model trained with data from each participant in
Figure 13, as well as a quantitative summary in Figure 14. Results for the Holmes benchmark are
reported in Figure 15, 16.
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Brain Preserving Brain Misaligned Difference

Figure 13: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the
Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 14: Median Pearson correlation for GPT2-based models on the Harry Potter dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
seven subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).

A) All tasks B) Tasks split by linguistic subfield

Figure 15: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain Pre-
serving models on the Harry Potter dataset across participants and tasks(Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counter-
part across tasks and participants. The Brain Preserving model outperforms the Brain Misaligned
model (significance assessed using a Wilcoxon signed-rank test reveal p = 0.055) (Left). This re-
sult suggests that removing brain alignment negatively influences linguistic competence. The Brain
Preserving model shows a higher win rate in particular in the semantics and syntax subfield (Right)
(although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), sug-
gesting that removing brain alignment particularly affect semantics and syntax processing tasks.
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Figure 16: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table 2.
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G GPT2 MISALIGNMENT ON MOTH RADIO HOUR DATASET

We report the brain alignment results for each model trained with data from each participant in
Figure 17, as well as a quantitative summary in Figure 18. Results for the Holmes benchmark are
reported in Figure 19, 20.

Brain Preserving Brain Misaligned Difference

Figure 17: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the Moth
Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 18: Median Pearson correlation for GPT2-based models on Moth Radio Hour dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
3 subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).

A) All tasks B) Tasks split by linguistic subfield

Figure 19: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain
Preserving models on the Moth Radio Hour dataset across participants and tasks(Left) and across
different linguistic subfields (Right). The win rate indicates how often each model outperforms
its counterpart across tasks and participants. The Brain Preserving model shows a higher win rate
(Right) in the semantics and morphology subfield (although Wilcoxon signed-rank test with Holm-
Bonferroni correction reveal no significance), suggesting that removing brain alignment particularly
affect semantics and morphology tasks.
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Figure 20: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly in
categories such as genericity, event structure and binding. Some concrete examples of the linguistic
tasks are provided in the Table 2.
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