

WHEN LANGUAGE MODELS LOSE THEIR MIND: THE CONSEQUENCES OF BRAIN MISALIGNMENT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While brain-aligned large language models (LLMs) have garnered attention for
 012 their potential as cognitive models and for potential for enhanced safety and trust-
 013 worthiness in AI, the role of this brain alignment for linguistic competence re-
 014 mains uncertain. In this work, we investigate the functional implications of brain
 015 alignment by introducing brain-misaligned models—LLMs intentionally trained to
 016 predict brain activity poorly while maintaining high language modeling perfor-
 017 mance. We evaluate these models on over 200 downstream tasks encompassing
 018 diverse linguistic domains, including semantics, syntax, discourse, reasoning, and
 019 morphology. By comparing brain-misaligned models with well-matched brain-
 020 aligned counterparts, we isolate the specific impact of brain alignment on language
 021 understanding. Our experiments reveal that brain misalignment substantially im-
 022 pairs downstream performance, highlighting the critical role of brain alignment in
 023 achieving robust linguistic competence. These findings underscore the importance
 024 of brain alignment in LLMs and offer novel insights into the relationship between
 025 neural representations and linguistic processing.

1 INTRODUCTION

029 A growing body of work studies the intriguing parallels between pretrained large language models
 030 (LLMs) and the human brain, demonstrating a substantial degree of alignment between brain activity
 031 patterns and LLM activations when humans and LLMs are presented with the same linguistic input
 032 (Toneva & Webbe, 2019; Caucheteux & King, 2020; Schrimpf et al., 2021; Goldstein et al., 2022;
 033 Aw & Toneva, 2023; Merlin & Toneva, 2024; Karamolegkou et al., 2023). This existing brain-LLM
 034 alignment has excited both cognitive scientists and AI researchers. From a cognitive perspective,
 035 brain-aligned LLMs can serve as model organisms for studying natural language processing in the
 036 human brain, offering insights into mechanisms that may underlie human-like linguistic behavior
 037 and representation (Toneva, 2021). From an AI perspective, researchers posit that brain-aligned
 038 LLMs may be safer and more trustworthy (Mineault et al., 2024). Relatedly, a recent study demon-
 039 strated the first substantial downstream benefits of improving brain alignment of a speech language
 040 model, by showing that brain-tuning a model significantly improves its performance on downstream
 041 semantic tasks (Moussa et al., 2025; Vattikonda et al., 2025).

042 Despite this promise of brain-LLM alignment, its necessity for model performance remains an open
 043 question. It is unclear whether alignment with the human brain is inherently required for LLMs to
 044 perform well on linguistic tasks, or whether the relationship between brain alignment and model
 045 behavior is more nuanced. To address this gap, it is essential to understand not only the presence of
 046 alignment but also its functional implications.

047 In this work, we take a direct approach to investigate the effect of brain alignment on LLM perfor-
 048 mance. We introduce brain-misaligned models—language models specifically trained to predict brain
 049 activity poorly while maintaining robust language modeling performance on the same linguistic in-
 050 puts. We evaluate these models across more than 200 downstream tasks spanning a broad spectrum
 051 of linguistic capabilities, including semantics, syntax, discourse, reasoning, and morphology. By
 052 comparing brain-misaligned models with well-matched models that differ primarily in their ability
 053 to predict brain activity rather than their language modeling proficiency, we isolate the impact of
 054 brain alignment on downstream linguistic performance. Our results reveal that brain-misalignment
 055 significantly impairs the ability of LLMs to perform linguistic tasks. These findings suggest that

Figure 1: A schematic of the proposed approach. Our method is based on fine-tuning a pretrained language model with two simultaneous objectives: maintaining its language modeling ability while reducing its alignment with brain recordings. Language modeling performance is preserved by continuing training on a fine-tuning dataset using the standard language modeling objective. Brain alignment is reduced by introducing a second prediction head and a gradient reversal layer, which encourages the model to produce representations that are uninformative about the corresponding brain activity.

alignment with the human brain is crucial for LLMs to achieve strong linguistic performance, shedding light on the functional relevance of brain alignment in modern language models.

Our main contributions can be summarized as follows:

1. We develop brain-misaligned models that allow us to investigate the effect of brain alignment on the linguistic competence of language models.
2. We evaluate the effect of brain misalignment on a comprehensive set of linguistic tasks, comprising more than 200 datasets. These tasks are designed to assess various linguistic subfields (syntax, semantics, discourse, reasoning, and morphology) and linguistic phenomena (e.g., part of speech, protoroles, coreference resolution).
3. Via comparisons with well-matched controls, we show that brain misalignment significantly decreases linguistic competence. This suggests that brain alignment is necessary to maintain linguistic competence in language models.
4. We find that the competence drop is especially pronounced in semantic and syntactic tasks, demonstrating the importance of brain alignment for language models.
5. To further validate our findings, we also finetune a model using brain recordings, showing that the model improves in every linguistic subfield with respect to other fine-tuned models, and is also better than pretrained models, in particular for semantics and syntax tasks.

2 RELATED WORKS

A growing body of research investigates the alignment between pretrained language models and human brain activity during language comprehension (Wehbe et al., 2014b; Jain & Huth, 2018; Toneva & Wehbe, 2019; Abdou et al., 2021; Schrimpf et al., 2021; Hosseini et al., 2024). Other studies have focused on understanding the factors that drive this alignment, identifying model characteristics or representational properties that correlate with neural responses (Goldstein et al., 2022; Toneva et al., 2022a; Oota et al., 2024a,b; Caucheteux et al., 2021; Reddy & Wehbe, 2021; Toneva et al., 2022b; Kauf et al., 2023; Gauthier & Levy, 2019; Aw & Toneva, 2023; Merlin & Toneva, 2024). Additionally, previous work have started to use brain data for finetuning language models (Schwartz et al., 2019) showing that is possible to improve downstream performance of pretrained language model (Negi et al., 2025). Our work extends these findings by investigating whether this alignment is not only observed but also functionally relevant for language processing, specifically, whether brain alignment is necessary for maintaining linguistic competence in language models.

108 In fact, a substantial body of work has focused on evaluating the linguistic competencies of lan-
 109 guage models. These studies aim to systematically assess the extent to which models capture vari-
 110 ous linguistic phenomena, including syntax, semantics, morphology, and discourse-level reasoning
 111 (Amouyal et al., 2024; Blevins et al., 2023). Benchmarks such as BLiMP (Warstadt et al., 2020),
 112 GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019), and more recently Holmes (Waldis
 113 et al., 2024) have been used to evaluate models’ understanding of language. Our study contributes
 114 to this line of research by examining how these linguistic competencies are affected when the align-
 115 ment between language model representations and brain activity is manipulated.

116 Additionally, a growing line of work in Causal NLP aims to uncover causal relationships between
 117 model components, training signals, or representations and downstream performance (Feder et al.,
 118 2021; 2022; Liu et al., 2023; Ortú et al., 2024). These studies design interventions or counterfactual
 119 setups to test whether certain features are causally implicated in model predictions or behaviors. Our
 120 approach is aligned with those works. We intervene on brain alignment, training models to preserve
 121 or disrupt alignment, and estimate its causal role in supporting linguistic competence.

122

123 3 METHODOLOGY

124

125 3.1 PRETRAINED MODELS

126

127 We use BERT-based (Devlin et al., 2019), GPT2-based (Radford et al., 2019) and Llama-based (Liu
 128 et al., 2024) language models. In particular, we focus on the bert-base-cased, gpt-small
 129 and meta-llama/Llama-3.2-1B provided by Hugging Face (Wolf et al., 2020). BERT, GPT2
 130 and Llama have achieved strong performance on various NLP tasks, such as question answering
 131 and sentence classification. Moreover, they have been extensively studied in prior work on brain
 132 alignment (Toneva & Wehbe, 2019; Caucheteux et al., 2021; Oota et al., 2024b).

133

134

3.2 FMRI DATA

135

136

We use two publicly available fMRI datasets to measure the brain alignment of language model rep-
 137 resentations. The data included in the first dataset, provided by Wehbe et al. (2014a), were collected
 138 from eight participants as they read Chapter 9 of Harry Potter and the Sorcerer’s Stone (Rowling
 139 et al., 1998) word by word. The chapter was divided into four runs of similar length, each separated
 140 by a short break. Each word was presented for 0.5 seconds, and one fMRI image (TR) was ac-
 141 quired every 2 seconds, resulting in 1211 brain images per participant. The fMRI data in the second
 142 dataset, made publicly available by Deniz et al. (2019), consist of recordings from six participants
 143 who read and listened to the same 11 stories from The Moth Radio Hour. For each modality, the
 144 dataset includes 4028 fMRI images. During reading, each word was presented for exactly the same
 145 duration as in the audio recording. In our analysis, we used only the reading data. These datasets
 146 are among the largest publicly available collections in terms of the amount of data per participant,
 which is crucial for obtaining accurate estimates of brain alignment.

147

148

3.3 CONTROLLING BRAIN ALIGNMENT

149

150

To investigate the effect of brain alignment of a language model on its downstream linguistic com-
 151 petence, we develop three models: the Brain Misaligned model, the Brain Preserving model and the
 152 Brain Tuned model. The Brain Misaligned model is trained to reduce alignment with brain record-
 153 ings, while the Brain Preserving model serves as a comparison baseline that preserves brain align-
 154 ment while controlling for possible confounding factors. We also designed a Brain Tuned model
 155 that is trained to improve alignment with brain recordings. This model serves to further validate our
 analysis.

156

157

3.3.1 BRAIN MISALIGNED MODEL

158

159

160

161

To evaluate the influence of brain-related information, which is an abstract concept for which no
 clear counterfactual input exists, we must develop methods that allow us to remove such informa-
 tion directly from the language model representations. In this study, we address this challenge by
 designing an intervention to language models that aims to remove brain-related information from

162 their representations, without the need to generate counterfactual inputs. This enables us to investigate
 163 the necessity of brain alignment for natural language processing abilities.
 164

165 Our approach is based on adversarial fine-tuning (Ganin et al., 2016) of language models, using
 166 a prediction head (*brain mapping head* in Figure 1) and a gradient reversal layer to remove the
 167 targeted capacity, i.e. brain prediction, while simultaneously fine-tuning a second head to preserve
 168 the language modeling performance.

169 The model is finetuned using the stimuli from the Harry Potter fMRI dataset (Wehbe et al., 2014a)
 170 or from the Moth Radio Hour fMRI dataset for the language modeling loss, and the corresponding
 171 fMRI recordings for the loss of the brain mapping head. For training, we select only voxels with an
 172 estimated noise ceiling > 0.05 (see Appendix C for details) belonging to regions of the brain known
 173 to process language (Fedorenko et al., 2010; Fedorenko & Thompson-Schill, 2014; Binder et al.,
 174 2009; Oota et al., 2024a) and used by previous works to investigate brain alignment of language
 175 models. Additional details on the prediction of brain recordings are reported in Appendix B. The
 176 total loss is defined as:

$$\mathcal{L} = \omega_{lm} * \mathcal{L}_{lm} + \omega_{ba} * \mathcal{L}_{ba}$$

177 where \mathcal{L}_{lm} is the language modeling loss, \mathcal{L}_{ba} is the brain-alignment loss, and ω_{lm} and ω_{ba} are
 178 weighting factors to balance the two objectives. The language modeling loss \mathcal{L}_{lm} corresponds to
 179 the standard cross-entropy loss used during language model pretraining, while the brain-alignment
 180 loss \mathcal{L}_{ba} is defined as the mean negative squared Pearson correlation between the predicted voxels
 181 in each batch and the ground truth voxel values. ω_{lm} is fixed at 0.1, a value chosen based on the
 182 relative magnitude of the losses prior to fine-tuning (see Section 3.3.4 for details).
 183

184 3.3.2 BRAIN PRESERVING MODEL

185 Similarly, we designed a control condition to account for potential confounding factors and to serve
 186 as a comparison for the Brain Misaligned model. We finetune this model using the same procedure
 187 as for the Brain Misaligned model, but during training we permute the order of the fMRI images to
 188 disrupt the correspondence between stimuli and brain activity.
 189

190 By using permuted fMRI images, our method also accounts for the effects of the adversarial removal
 191 itself, which can influence the model’s representations. This controls for potential confounders such
 192 as the effect of fine-tuning on language modeling and the effect of adversarial fine-tuning. The only
 193 difference between conditions remains the correspondence between stimuli and fMRI images.
 194

195 3.3.3 BRAIN TUNED MODEL

196 To complement our analysis, we designed a Brain Tuned model. This model was finetuned using the
 197 same procedure as the Brain Misaligned model (i.e. a language modeling head and a brain mapping
 198 head), but we removed the gradient reversal layer and use as loss function \mathcal{L}_{ba} the mean negative
 199 Pearson correlation. This procedure actively encourages the model to increase its alignment with
 200 brain recordings while maintaining language modeling performance. This model serves as a validation
 201 tool to test the complementary hypothesis: if decreasing alignment impairs competence, does
 202 increasing it lead to performance gains?
 203

204 3.3.4 MODEL SELECTION AND TRAINING

205 To train the models, we use training samples consisting of sequences of words corresponding to 5
 206 TRs. The stimulus text is divided into four consecutive sections to enable cross-validation.
 207

208 For training of BERT-based, GPT2-based and Llama-based Misaligned, Brain Preserving and Brain
 209 Tuned models we train applying LORA (Hu et al., 2022) to the parameters. We train for 5 epochs
 210 with a batch size of 16, and AdamW as optimizer. The language modeling loss weight $\omega_{lm} = 0.1$
 211 and $\omega_{ba} = 10$.
 212

213 **Conditions for a successful comparison between models.** The comparison is considered suc-
 214 cessful when the Brain Misaligned and Brain Preserving models achieve similar performance on the
 215 language modeling objective (tested using Wilcoxon signed-rank test, $p < 0.05$), while the Brain
 Misaligned model shows a significantly lower ability to align with brain recordings.

216 3.4 EVALUATION
217

218 To evaluate the models, we use three types of tasks: language modeling, brain alignment, and down-
219 stream linguistic tasks. Both language modeling and brain alignment are evaluated using the same
220 text, which corresponds to the fMRI stimulus, and is held-out during training. We assess these two
221 tasks using overlapping sequences of words belonging to 5 TRs, following the approach of previous
222 work (Merlin & Toneva, 2024).

223

224 **Language modeling.** For language modeling we follow the best practice for evaluation of BERT-
225 based, GPT2-based and Llama-based models. For each test example, we measure the average cross
226 entropy across the randomly masked tokens (15% of total number of tokens, see Devlin et al. (2018)
227 for details) for BERT-based models, for GPT2-based and Llama-based models the cross entropy
228 over all tokens (see Radford et al. (2019) for details).

229

230 **Brain alignment.** We measure the brain alignment between BERT, GPT2 and Llama representa-
231 tions and fMRI recordings using a linear prediction head on top of the last transformer block. This
232 prediction head is trained to output brain activity values from the model’s representations and is
233 widely used in previous work to assess how well language models can predict brain signals (Jain
234 & Huth, 2018; Toneva & Wehbe, 2019; Schrimpf et al., 2021). We train this linear function, regu-
235 larized with a ridge penalty, using cross-validation and evaluate its performance on held-out data.
236 The ridge parameter is selected via nested cross-validation. Consequently, for each participant, we
237 train one model for each held-out run (see Section 3.2), then aggregate the predictions to compute
238 brain alignment. Further details on the prediction head are provided in Appendix B. Brain alignment
239 is quantified using Pearson correlation, computed between the predictions on held-out data and the
240 corresponding ground truth values. Specifically, for a model q and voxel v_j with corresponding
241 held-out fMRI values y_j , brain alignment is computed as:

$$241 \text{brain alignment}(q, v_j) = \text{corr}(\hat{y}_j, y_j),$$

242 where $\hat{y}_j = q(X)W_{q,j}$, X is the input text sample to model q , and $W_{q,j}$ are the learned prediction
243 weights for voxel v_j .

244

245 **Linguistic competence.** To investigate the linguistic competence of language models, we use
246 more than 200 datasets, designed to evaluate linguistic competence in language models via classifier-
247 based probing (Waldis et al., 2024). The benchmark covers datasets spanning various linguistic
248 phenomena and subfields, including syntax, morphology, semantics, reasoning, and discourse, ex-
249 examples of tasks are reported in Appendix Table I. Details about the benchmark and the included
250 datasets are provided in Appendix A. For each task, each model is evaluated using 6 seeds, which
251 influence the probe initialization and the ordering of data during training and evaluation.

252 To determine whether one model outperforms the other, we not only compare the average evaluation
253 metric (see Waldis et al. (2024) for details), but also assess whether the difference is statistically
254 significant using a two-sample t-test. We assign a “win” to a model only for datasets where the
255 difference reaches statistical significance. For each dataset and model pair, we thus obtain a binary
256 “win” matrix indicating whether one model significantly outperforms the other (1) or not (0). Since
257 each subject has a pair of models corresponding to different held-out runs during training, we av-
258 erage the resulting win matrices across runs, yielding a win score for each participant, dataset, and
259 model. The win score quantifies how consistently one model outperforms the other across different
260 held-out runs.

261

262 4 RESULTS
263264 4.1 EFFECTS ON BRAIN ALIGNMENT
265

266 Figure 2A-D shows brain alignment of the BERT-based Brain Misaligned and Brain Preserving
267 models on the Harry Potter dataset, as well as a contrast between the two, for a representative
268 participant. Specifically, Figures 2A and 2B show the Pearson correlation between the predicted
269 voxel values and the ground truth for the Brain Preserving model and the Brain Misaligned model,
respectively. Figure 2C shows the contrast between the two models, i.e., the difference in Pear-

Figure 2: Brain alignment of the BERT-based Brain Preserving (A) and Brain Misaligned (B) models for one participant on the Harry Potter dataset (see Appendix D for all participants), and the difference between the two (C). The Brain Misaligned model exhibits substantially weaker alignment, particularly in language regions (C, D).

son correlation for each voxel. Results for the remaining participants, other language models and datasets are consistent and reported in Appendix D, E, F, G, H, I.

Brain Preserving Model. In Figure 2A, we observe that the Brain Preserving model aligns well with brain activity across the whole brain, and in particular within language-related regions (visualized in Figure 2D), as identified by previous work (Fedorenko et al., 2010; Fedorenko & Thompson-Schill, 2014; Binder et al., 2009). We quantify the alignment of the Brain Preserving model in Appendix D. Since these models are explicitly finetuned to preserve brain alignment, this result is consistent with prior studies showing that language models, exhibit alignment with fMRI signals (Toneva & Wehbe, 2019; Schrimpf et al., 2021; Goldstein et al., 2022; Oota et al., 2024b; Merlin & Toneva, 2024).

Brain Misaligned Model. In Figure 2B, we observe that the Brain Misaligned model does not align well with brain activity across the whole brain. The Pearson correlation values are particularly low in several brain areas. We quantify the alignment of brain misaligned model in Appendix D.

To show the effect of brain misalignment, in Figure 2C we show the contrast between the Pearson correlation values of the Brain Preserving model and the Brain Misaligned model. As expected, the difference in Pearson correlation is especially high in language-related regions (visualized in Figure 2D). This confirms that our approach is effective at removing brain-relevant information in particular in language-related areas.

324 We assess whether the average brain correlation (computed across voxels in language regions with an
 325 estimated noise ceiling > 0.05 , see Appendix 326 significantly differs between the two models using
 327 a t-test. For example, for BERT trained on Harry Potter dataset we find that for six participants,
 328 there is a significant drop in brain alignment, while no significant difference in language modeling
 329 ability is observed between the two models. Only the models corresponding to these participants are
 330 included in the comparison of linguistic competence.

331 4.2 EFFECTS ON LINGUISTIC COMPETENCE

332 Figures 3A, 3B, and 4 show the performance on linguistic competence averaged across models and
 333 dataset combinations (BERT-Harry, BERT-Moth, GPT2-Harry, GPT2-Moth, Llama-Harry, Llama-
 334 Moth). Specifically, Figure 3A illustrates the overall effect on linguistic competence, considering
 335 all tasks. Figure 3B presents the results by linguistic subfields, while Figure 4 focuses on specific
 336 linguistic phenomena. Specific results for each combinations of models and dataset are reported in
 337 Appendix E, F, G, H, I.

338
 339 **Effects on the Overall Linguistic Competence.** Figure 3A shows the average win rate in the
 340 linguistic competence benchmark for the Brain Misaligned models and the Brain Preserving models.
 341 We observe a significant difference between the two conditions. These results indicate that removing
 342 brain alignment leads to lower performance on downstream linguistic tasks, suggesting that brain
 343 alignment is necessary to preserve linguistic competence. Statistical tests on each individual model
 344 and dataset combinations reveal a marked difference in performance between the Brain Misaligned
 345 and Brain Preserving on the overall linguistic competence. For the BERT-based and Llama-based
 346 models the difference is significant, although for GPT2-based models on the Harry Potter dataset the
 347 difference does not reach conventional statistical significance (p -value = 0.055), the trend mirrors
 348 the effect observed in the BERT-based models. For the GPT2-based models on the Moth Radio Hour
 349 dataset, results are not consistent due to the weaker effect of brain removal.

350
 351 **Effects across Linguistic Subfields.** We further investigate this effect by analyzing performance
 352 across different linguistic subfields: syntax, semantics, discourse, reasoning, and morphology. As
 353 shown in Figure 3B, the Brain Misaligned model consistently underperforms the Brain Preserving
 354 model in discourse, morphology, reasoning, semantics, and syntax tasks. This suggests that brain
 355 alignment is particularly important for supporting linguistic competence. Statistical tests on individual
 356 model and dataset combinations reveal significant differences in the majority of model- dataset
 357 combinations, even though the averaged results are not statistically significant. In particular, BERT
 358 trained on Harry Potter reveals statistical significance across all linguistic subfields. BERT trained
 359 on Moth Radio Hour and Llama trained on Harry Potter on the semantics and syntax subfields, while
 360 Llama trained on Moth Radio Hour on the the syntax and morphology subfields.

361
 362 **Effects across Linguistic Phenomena.** To gain finer-grained insights, we analyzed results based
 363 on specific linguistic phenomena, focusing on those represented by more than five datasets. As
 364 shown in Figure 4, we found that for the majority of tasks the the Brain Preserving models are better
 365 than the Brain Misaligned models, providing further evidence that brain alignment is crucial for
 366 these phenomena. Examples for these linguistic phenomena can be found in Table 2.

367 4.3 FURTHER VALIDATION VIA BRAIN-TUNING

368 We conducted a complementary analysis by introducing a Brain Tuned model, in which, contrary
 369 to the Brain Misaligned model, the brain alignment capabilities were intentionally increased during
 370 training.

371 We then compared this new model with the Brain Preserving model. The analysis reveals that in
 372 every experimental setting, the Brain Tuned model consistently outperforms the Brain Preserving
 373 model with a statistically significant difference. This result suggests that increasing brain alignment
 374 translates into a general improvement in linguistic competence. Averaged results across model and
 375 dataset combinations are shown in Figure 5A. Figure 5B shows the averaged results across linguistic
 376 subfield, showing a statistically significant results for the syntax and semantic subfield, and Figure 6
 377 shows the differences across linguistic phenomena, showing statistically significant results for two
 378 tasks. Detailed results for each of these combinations are available in the Appendix D, E, F, G, H, I.

Figure 3: Average win rate and standard error across models and dataset combinations of the Brain Misaligned and Brain Preserving models across tasks (Left) and across different linguistic subfields (Right). The average win rate indicates how often each model outperforms its counterpart across model and dataset combinations. The Brain Preserving model significantly outperforms the Brain Misaligned model ($p < 0.05$, Wilcoxon signed-rank test) (Left). This result suggests that removing brain alignment impairs linguistic competence. The Brain Preserving model shows an higher win rate in all the linguistic subfield, in particular for semantics and syntax (Right), even if the differences are not statistically significant (assessed using Wilcoxon signed-rank test with Holm-Bonferroni correction), because of unique differences across model-dataset combinations.

Figure 4: Average win rate with standard error across model and dataset combinations, across various linguistic phenomena for the Brain Misaligned and Brain Preserving models. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Brain Preserving models tend to outperform Brain Misaligned models in the majority of tasks. Some concrete examples of the linguistic tasks are provided in the Table 2.

We also compared the Brain Tuned model directly with the original Pretrained model (i.e., the base model before any alignment intervention). While the Brain Tuned model showed an advantage in the majority of experimental settings, the Pretrained model maintained stronger performance in some settings. Results are reported in the Appendix [D](#) [E](#) [F](#) [G](#) [H](#) [I](#)

5 DISCUSSION

To investigate the importance of brain alignment in language models, we designed two models: the Brain Misaligned model, which is intended to remove brain alignment while preserving language modeling capabilities, and the Brain Preserving model, which accounts for potential confounders.

Figure 5: Average win rate and standard error across models and dataset combinations of the Brain Preserving and Brain Tuned models across tasks (Left) and across different linguistic subfields (Right). The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.05$, Wilcoxon signed-rank test) (Left). This result suggests that improving the brain alignment lead to performance gains in linguistic competence. The Brain Tuned model shows an higher win rate in the discourse, morphology, reasoning, semantics and syntax subfield (Right) and significantly higher in semantics and syntax ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affects semantics and syntax tasks.

Figure 6: Average win rate with standard error across model and dataset combinations, across various linguistic phenomena for the Brain Tuned and Brain Preserving models. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Brain Tuned models tend to outperform Brain Preserving models in the majority of tasks, with statistically significant difference ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction) for filler gap and negative polarity item licensing. Some concrete examples of the linguistic tasks are provided in the Table 2.

We showed that the Brain Misaligned model has weak alignment with brain recordings, while the Brain Preserving model exhibits stronger alignment, particularly in language-related regions of interest. The contrast between the two models, across multiple experimental settings, reveals that the difference in alignment is especially pronounced in these areas.

We further evaluated the linguistic competence of these models to reveal the functional importance of brain alignment. Our results demonstrate that Brain Misaligned models perform worse than Brain Preserving models on linguistic tasks, across multiple model-dataset combinations, supporting the hypothesis that brain alignment is crucial for maintaining linguistic competence. Across multiple experimental settings the performance drop is particularly evident in tasks related to the semantic and syntactic subfield, although there are unique differences in every experimental setting.

486 We extended this investigation by introducing a Brain Tuned model, designed to increase brain
 487 alignment. The results of this intervention further strengthen our core argument. We found that the
 488 Brain Tuned model systematically outperformed the Brain Preserving model in all experimental set-
 489 tings and in particular in semantic and syntax tasks. In many model-dataset combinations the Brain
 490 Tuned model outperform the pretrained model on linguistic competence highlighting the relevance
 491 of brain-related signal for improving those competences.

492 These findings, across multiple model-dataset combinations, suggest that brain-aligned information
 493 plays a key role in supporting performance on linguistic tasks. It is important to note that the absence
 494 of statistically significant differences for other linguistic subfields or phenomena does not imply that
 495 brain alignment is unimportant for those tasks.

496

497

498 **Limitations.** Our study has three main limitations. Firstly, the benchmark used to assess linguis-
 499 tic competence, while extensive, is not exhaustive. There are many additional datasets available
 500 that could be included in future evaluations (Wang et al., 2018; 2019). Moreover, some linguistic
 501 subfields (e.g., discourse) and specific linguistic phenomena are represented by only a few datasets.
 502 As a result, the observed behavior of the Brain Misaligned and Brain Preserving models may be
 503 influenced by the limited coverage and distribution of tasks in certain categories. Secondly, our
 504 results are based on limited fMRI datasets. While these widely studied datasets offer extensive
 505 per-participant data, findings may still be specific to their characteristics. We designed our ex-
 506 periments using cross-validation, testing on held-out data and across multiple participants to improve
 507 generalizability. However, results might differ with different types of linguistic stimuli. Expanding
 508 to more datasets, languages, or cognitive tasks would be an important next step. Thirdly, while the
 509 “Brain Misaligned” model does show a clear overall worse performance, there are differences across
 510 linguistic subfields depending on the model-dataset combination. Datasets and models can contain
 511 different types of information related to linguistic subfields. Nevertheless, our results are informa-
 512 tive in demonstrating the effectiveness of our methodology and in highlighting the importance of the
 513 emergent brain alignment ability of language models.

514

515

6 CONCLUSION

516

517

518 We designed a direct approach to investigate the necessity of brain alignment in pretrained language
 519 models. Specifically, we introduced two models: the Brain Misaligned model and the Brain Preserv-
 520 ing model. When used together, they allow us to isolate and control for the effect of brain alignment
 521 on downstream linguistic competence.

522

523 We evaluated these models on more than 200 datasets spanning various linguistic subfields, includ-
 524 ing semantics, syntax, morphology, discourse, and reasoning, as well as a broad range of linguistic
 525 phenomena. Our results revealed a significant drop in linguistic competence, particularly on seman-
 526 tic and syntactic tasks, for the Brain Misaligned model, suggesting that brain alignment plays
 527 a critical role in downstream linguistic performance. This conclusion is further supported by our
 528 complementary finding that a Brain Tuned model, optimized to increase alignment, consistently
 529 outperformed the Brain Preserving model particularly in those tasks.

530

531

532 These findings are highly relevant to the natural language processing literature. Previous studies
 533 have explored why brain alignment emerges during pretraining, pointing to possible contributing
 534 factors and suggesting that if this alignment emerges, it may reflect shared information acquisition
 535 between artificial and biological neural networks.

536

537

538

539 Our work contributes a new dimension to this discussion: we not only ask why brain alignment
 emerges, but also whether it is important for linguistic competence. Our results provide initial
 evidence that brain alignment is functionally important, motivating future research in this area.

540

541

542

543 Moreover, our methodology provides a general framework for assessing the causal role of emerg-
 544 ent properties, as brain alignment, in language models. Future work could apply our methodology
 545 to different models, exploring other datasets, or extending the approach to assess the necessity of
 546 alignment-related capabilities across different modalities (e.g., speech, image) or neural archi-
 547 tectures.

540 REFERENCES
541

542 Mostafa Abdou, Ana Valeria González, Mariya Toneva, Daniel Hershcovich, and Anders Søgaard.
543 Does injecting linguistic structure into language models lead to better alignment with brain record-
544 ings? *arXiv preprint arXiv:2101.12608*, 2021.

545 Samuel Amouyal, Aya Meltzer-Asscher, and Jonathan Berant. Large language models for psy-
546 cholinguistic plausibility pretesting. In Yvette Graham and Matthew Purver (eds.), *Findings of*
547 *the Association for Computational Linguistics: EACL 2024*, pp. 166–181, St. Julian’s, Malta,
548 March 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.findings-eacl.12/>.

549

550 Khai Loong Aw and Mariya Toneva. Training language models to summarize narratives improves
551 brain alignment. In *The Eleventh International Conference on Learning Representations*, 2023.

552

553 Jeffrey R Binder, Rutvik H Desai, William W Graves, and Lisa L Conant. Where is the semantic
554 system? a critical review and meta-analysis of 120 functional neuroimaging studies. *Cerebral*
555 *cortex*, 19(12):2767–2796, 2009.

556

557 Terra Blevins, Hila Gonen, and Luke Zettlemoyer. Prompting language models for linguistic
558 structure. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of*
559 *the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
560 *Papers)*, pp. 6649–6663, Toronto, Canada, July 2023. Association for Computational Linguis-
561 *tics*. doi: 10.18653/v1/2023.acl-long.367. URL <https://aclanthology.org/2023.acl-long.367/>.

562

563 Charlotte Caucheteux and Jean-Rémi King. Language processing in brains and deep neural net-
564 works: computational convergence and its limits. *BioRxiv*, 2020.

565

566 Charlotte Caucheteux, Alexandre Gramfort, and Jean-Remi King. Decomposing lexical and com-
567 positional syntax and semantics with deep language models. *arXiv preprint arXiv:2103.01620*,
568 2021.

569

570 Fatma Deniz, Anwar O Nunez-Elizalde, Alexander G Huth, and Jack L Gallant. The representation
571 of semantic information across human cerebral cortex during listening versus reading is invariant
572 to stimulus modality. *Journal of Neuroscience*, 39(39):7722–7736, 2019.

573

574 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
575 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

576

577 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
578 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
579 *the North American chapter of the association for computational linguistics: human language*
580 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

581

582 Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation
583 through counterfactual language models. *Computational Linguistics*, 47(2):333–386, 07 2021.
584 ISSN 0891-2017. doi: 10.1162/coli_a_00404. URL https://doi.org/10.1162/coli_a_00404.

585

586 Amir Feder, Katherine A Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-
587 Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E Roberts, et al. Causal in-
588 ference in natural language processing: Estimation, prediction, interpretation and beyond. *Trans-*
589 *actions of the Association for Computational Linguistics*, 10:1138–1158, 2022.

590

591 E. Fedorenko, P.-J. Hsieh, A. Nieto-Castanon, S. Whitfield-Gabrieli, and N. Kanwisher. New method
592 for fMRI investigations of language: Defining ROIs functionally in individual subjects. *Journal*
593 *of Neurophysiology*, 104(2):1177–1194, 2010.

594

595 Evelina Fedorenko and Sharon L Thompson-Schill. Reworking the language network. *Trends in*
596 *cognitive sciences*, 18(3):120–126, 2014.

594 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 595 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 596 *Journal of machine learning research*, 17(59):1–35, 2016.

597

598 Jon Gauthier and Roger Levy. Linking artificial and human neural representations of language. In
 599 Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Confer-
 600 ence on Empirical Methods in Natural Language Processing and the 9th International Joint Con-
 601 ference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 529–539, Hong Kong, China,
 602 November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1050. URL
<https://aclanthology.org/D19-1050>.

603

604 Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A
 605 Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for
 606 language processing in humans and deep language models. *Nature neuroscience*, 25(3):369–380,
 607 2022.

608 Eghbal A. Hosseini, Martin Schrimpf, Yian Zhang, Samuel Bowman, Noga Zaslavsky, and Evelina
 609 Fedorenko. Artificial Neural Network Language Models Predict Human Brain Responses to
 610 Language Even After a Developmentally Realistic Amount of Training. *Neurobiology of Lan-
 611 guage*, 5(1):43–63, 04 2024. ISSN 2641-4368. doi: 10.1162/nol_a_00137. URL https://doi.org/10.1162/nol_a_00137.

612

613 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 614 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 615 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

616

617 Alexander G Huth, Wendy A De Heer, Thomas L Griffiths, Frédéric E Theunissen, and Jack L
 618 Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex. *Nature*, 532
 619 (7600):453–458, 2016.

620

621 Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fMRI.
 622 In *Advances in Neural Information Processing Systems*, pp. 6628–6637, 2018.

623

624 Antonia Karamolegkou, Mostafa Abdou, and Anders Søgaard. Mapping brains with language mod-
 625 els: A survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of
 626 the Association for Computational Linguistics: ACL 2023*, pp. 9748–9762, Toronto, Canada, July
 627 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.618. URL
<https://aclanthology.org/2023.findings-acl.618/>.

628

629 Carina Kauf, Greta Tuckute, Roger Levy, Jacob Andreas, and Evelina Fedorenko. Lexical semantic
 630 content, not syntactic structure, is the main contributor to ann-brain similarity of fmri responses in
 631 the language network. *bioRxiv*, 2023. doi: 10.1101/2023.05.05.539646. URL <https://www.biorxiv.org/content/early/2023/05/06/2023.05.05.539646>.

632

633 Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan Yang, Yuhang Zhou, Fuxiao Liu, Tian-
 634 rui Guan, Haoliang Wang, Tong Yu, Julian McAuley, Wei Ai, and Furong Huang. Large lan-
 635 guage models and causal inference in collaboration: A comprehensive survey. In Luis Chiruzzo,
 636 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics:
 637 NAACL 2025*, pp. 7668–7684, Albuquerque, New Mexico, April 2025. Association for Compu-
 638 tational Linguistics. ISBN 979-8-89176-195-7. URL <https://aclanthology.org/2025.findings-naacl.427/>.

639

640 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 641 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
 642 tion with learned rotations. *arXiv preprint arXiv:2405.16406*, 2024.

643

644 Gabriele Merlin and Mariya Toneva. Language models and brains align due to more than next-word
 645 prediction and word-level information. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 646 (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Process-
 647 ing*, pp. 18431–18454, Miami, Florida, USA, November 2024. Association for Computational
 648 Linguistics. doi: 10.18653/v1/2024.emnlp-main.1024. URL <https://aclanthology.org/2024.emnlp-main.1024/>.

648 Patrick Mineault, Niccolò Zanichelli, Joanne Zichen Peng, Anton Arkhipov, Eli Bingham, Julian
 649 Jara-Ettinger, Emily Mackevicius, Adam Marblestone, Marcelo Mattar, Andrew Payne, et al.
 650 Neuroai for ai safety. *arXiv preprint arXiv:2411.18526*, 2024.

651 Omer Moussa, Dietrich Klakow, and Mariya Toneva. Improving semantic understanding in speech
 652 language models via brain-tuning. *ICLR*, 2025.

653 Anuja Negi, Subba Reddy Oota, Anwar O Nunez-Elizalde, Manish Gupta, and Fatma Deniz. Brain-
 654 informed fine-tuning for improved multilingual understanding in language models. *bioRxiv*, pp.
 655 2025–07, 2025.

656 Shinji Nishimoto, An T Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, and Jack L Gallant. Re-
 657 constructing visual experiences from brain activity evoked by natural movies. *Current biology*,
 658 21(19):1641–1646, 2011.

659 Subba Reddy Oota, Emin Çelik, Fatma Deniz, and Mariya Toneva. Speech language models lack
 660 important brain-relevant semantics. *ACL*, 2024a.

661 Subba Reddy Oota, Manish Gupta, and Mariya Toneva. Joint processing of linguistic properties in
 662 brains and language models. *Advances in Neural Information Processing Systems*, 36, 2024b.

663 Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya Sachan, Alberto Cazzaniga, and Bernhard
 664 Schölkopf. Competition of mechanisms: Tracing how language models handle facts and coun-
 665 terfactuals. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the*
 666 *62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-*
 667 *pers)*, pp. 8420–8436, Bangkok, Thailand, August 2024. Association for Computational Linguis-
 668 *tics*. doi: 10.18653/v1/2024.acl-long.458. URL <https://aclanthology.org/2024.acl-long.458/>.

669 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 670 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

671 Aniketh Janardhan Reddy and Leila Wehbe. Can fmri reveal the representation of syntactic structure
 672 in the brain? *Advances in Neural Information Processing Systems*, 34:9843–9856, 2021.

673 J.K. Rowling, M. GrandPre, M. GrandPré, T. Taylor, Arthur A. Levine Books, and Scholastic
 674 Inc. *Harry Potter and the Sorcerer’s Stone*. Harry Potter. A.A. Levine Books, 1998. ISBN
 675 9780590353403. URL <https://books.google.de/books?id=zXqTdQaqLGkC>.

676 Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
 677 wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: In-
 678 tegrative modeling converges on predictive processing. *Proceedings of the National Academy of*
 679 *Sciences*, 118(45), 2021.

680 Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant bias in natural language
 681 processing models. *Advances in neural information processing systems*, 32, 2019.

682 Mariya Toneva. *Bridging language in machines with language in the brain*. PhD thesis, Carnegie
 683 Mellon University, 2021.

684 Mariya Toneva and Leila Wehbe. Interpreting and improving natural-language processing (in ma-
 685 chines) with natural language-processing (in the brain). *Advances in Neural Information Process-
 686 ing Systems*, 32, 2019.

687 Mariya Toneva, Tom M Mitchell, and Leila Wehbe. Combining computational controls with natural
 688 text reveals aspects of meaning composition. *Nature Computational Science*, 2(11):745–757,
 689 2022a.

690 Mariya Toneva, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. Same cause;
 691 different effects in the brain. *Causal Learning and Reasoning*, 2022b.

692 Nishitha Vattikonda, Aditya R Vaidya, Richard J Antonello, and Alexander G Huth. Brain-
 693 wavlm: Fine-tuning speech representations with brain responses to language. *arXiv preprint*
 694 *arXiv:2502.08866*, 2025.

702 Andreas Waldis, Yotam Perlitz, Leshem Choshen, Yufang Hou, and Iryna Gurevych. Holmes a
 703 benchmark to assess the linguistic competence of language models. *Transactions of the Asso-*
 704 *ciation for Computational Linguistics*, 12:1616–1647, 2024. doi: 10.1162/tacl_a_00718. URL
 705 <https://aclanthology.org/2024.tacl-1.88/>

706

707 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 708 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
 709 *preprint arXiv:1804.07461*, 2018.

710

711 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 712 Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
 713 understanding systems. *Advances in neural information processing systems*, 32, 2019.

714

715 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
 716 Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. *Transactions*
 717 *of the Association for Computational Linguistics*, 8:377–392, 2020.

718

719 Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell.
 720 Simultaneously uncovering the patterns of brain regions involved in different story reading sub-
 721 processes. *PloS one*, 9(11):e112575, 2014a.

722

723 Leila Wehbe, Ashish Vaswani, Kevin Knight, and Tom Mitchell. Aligning context-based statistical
 724 models of language with brain activity during reading. In *Proceedings of the 2014 Conference on*
 725 *Empirical Methods in Natural Language Processing*, pp. 233–243, 2014b.

726

727 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 728 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 729 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 730 Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
 731 language processing. In Qun Liu and David Schlangen (eds.), *Proceedings of the 2020 Confer-*
 732 *ence on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–
 733 45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 emnlp-demos.6. URL <https://aclanthology.org/2020.emnlp-demos.6/>

734

735

736 **A LINGUISTIC COMPETENCE BENCHMARK**

737

738 We evaluated the linguistic competence of language models using classifier-based probing on more
 739 than 200 datasets collected from various sources and included in the Holmes benchmark (Waldis
 740 et al. 2024). The benchmark covers datasets spanning a wide range of linguistic phenomena and
 741 subfields, including syntax, morphology, semantics, reasoning, and discourse. A comprehensive list
 742 of linguistic phenomena and their corresponding subfields is provided in Table 3. For the evaluation,
 743 we use the `flash-holmes` version of the benchmark, which is designed to reduce computational
 744 cost while maintaining precision in assessing language model performance (see Waldis et al. (2024)
 745 for details). Examples of tasks associated with the linguistic phenomena and linguistic subfield used
 746 in our study are reported in Tables 1 2 and illustrated in Figure 4.

747

748 Table 1: Examples for linguistic subfields from Waldis et al. (2024). The relevant part of the example
 749 for the specific label is underlined.

750

Type	Phenomena	Example	Label
Morphology	Subject-Verb Agreement	<u>And then, the cucumber <u>was</u> hurled into the air.</u> And then, the cucumber <u>were</u> hurled into the air.	Correct Wrong
Syntax	Part-of-Speech	And then, the <u>cucumber</u> was hurled into the air.	NN (Noun Singular)
Semantics	Semantic Roles	And then, the <u>cucumber</u> was hurled into the air.	Direction
Reasoning	Negation	And then, the <u>cucumber</u> was hurled into the air.	No Negation
Discourse	Node Type in Rhetorical Tree	And then, <u>the cucumber</u> was hurled into the air.	Satellite

756 Table 2: Examples for selected linguistic phenomena from [Waldis et al. \(2024\)](#). The asterisk (*)
 757 indicates the correct option when applicable.
 758

759 Phenomena	760 Illustrative Example
761 <i>argument-structure</i>	762 Most cashiers are <u>disliked</u> */flirted.
763 <i>binding</i>	764 Carlos said that Lori helped <u>him</u> */himself.
765 <i>determiner noun agreement</i>	766 Craig explored that grocery <u>store</u> */stores.
767 <i>event structure</i>	768 Give them to a library or <u>burn them</u> . \Rightarrow Distributive
769 <i>filler-gap</i>	770 Brett knew what many waiters <u>find</u> .*/Brett knew that many waiters find.
771 <i>genericity</i>	772 I assume you <u>mean</u> the crazy horse memorial. \Rightarrow Not Dynamic
773 <i>island-effects</i>	774 Which <u>bikes</u> is John fixing?*/Which is John fixing <u>bikes</u> ?
775 <i>antonym negation</i>	776 It was <u>not</u> */really hot, it was cold.
777 <i>negative polarity item licensing</i>	778 Only/Even Bill would ever complain.
779 <i>semantic proto-roles</i>	780 <u>These</u> look fine to me. \Rightarrow Exists as physical
781 <i>quantifiers</i>	782 There aren't <u>many</u> */all lights darkening.
783 <i>rhetorical structure theory</i>	784 <u>The statistics</u> quoted by the "new" Census Bureau <u>report</u> \Rightarrow Elaboration
785 <i>subject-verb agreement</i>	786 A sketch of lights <u>does not</u> */do not appear.

774 B BRAIN MAPPING HEAD

775 To predict the fMRI recordings corresponding to each TR, we use a linear function, regularized
 776 with a ridge penalty, that maps model representations to fMRI space, specifically targeting voxels
 777 with an estimated noise ceiling > 0.5 located in language-related regions of interest (Figure 2D).
 778 This function is trained in a cross-validated way and evaluated on held-out data. The ridge penalty
 779 is selected via nested cross-validation. For each participant, we train four functions, each using
 780 three of the four fMRI subsets for training and the remaining one for testing. To generate model
 781 representations, we average the token embeddings corresponding to each TR, and construct the
 782 input by concatenating the embeddings from the current TR with those from the previous five TRs.
 783 The features of the words presented in the previous TRs are included to account for the lag in the
 784 hemodynamic response that fMRI records. Because the response measured by fMRI is an indirect
 785 consequence of brain activity that peaks about 6 seconds after stimulus onset, predictive methods
 786 commonly include preceding time points ([Nishimoto et al. 2011](#), [Wehbe et al. 2014a](#), [Huth et al.](#)
 787 [2016](#)). This allows for a data-driven estimation of the hemodynamic response functions (HRFs)
 788 for each voxel, which is preferable to assuming one because different voxels may exhibit different
 789 HRFs.

790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 Table 3: List of linguistic phenomena and their corresponding subfields in the Holmes benchmark.
811

812 linguistic phenomena	813 subfield	814 linguistic phenomena	815 subfield
816 next sentence prediction	817 discourse	818 semantic odd man out	819 semantics
820 rhetorical structure theory	821 discourse	822 word sense	823 semantics
824 sentence order	825 discourse	826 word content	827 semantics
828 discourse connective	829 discourse	830 coordination inversion	831 semantics
832 coreference resolution	833 discourse	834 object animacy	835 semantics
836 bridging	837 discourse	838 event structure	839 semantics
840 irregular forms	841 morphology	842 factuality	843 semantics
844 subject-verb agreement	845 morphology	846 complex words	847 semantics
848 determiner noun agreement	849 morphology	850 genericity	851 semantics
852 anaphor agreement	853 morphology	854 metaphor	855 semantics
857 age comparison	858 reasoning	859 named entity labeling	860 semantics
862 negation	863 reasoning	864 negative polarity item licensing	865 semantics
867 speculation	868 reasoning	869 argument structure	870 syntax
873 multi-hop composition	874 reasoning	875 bigram-shift	876 syntax
878 property conjunction	879 reasoning	880 binding	881 syntax
883 object comparison	884 reasoning	885 tree-depth	886 syntax
889 antonym negation	890 reasoning	891 case	892 syntax
895 encyclopedic composition	896 reasoning	897 subject-verb agreement	898 syntax
900 taxonomy conjunction	901 reasoning	902 anaphor agreement	903 syntax
904 always never	905 reasoning	906 top-constituent-task	907 syntax
910 object gender	911 semantics	912 subject number	913 syntax
916 passive	917 semantics	920 deoncausative-inchoative alternation	921 syntax
922 protoroles	923 semantics	924 control / raising	925 syntax
928 quantifiers	929 semantics	930 ellipsis	931 syntax
934 synonym-/antonym-detection	935 semantics	936 sentence length	937 syntax
940 verb dynamic	941 semantics	942 filler gap	943 syntax
946 semantic role labeling	947 semantics	948 readability	949 syntax
952 sentiment analysis	953 semantics	954 island effects	955 syntax
958 time	959 semantics	960 local attractor	961 syntax
964 subject animacy	965 semantics	966 part-of-speech	967 syntax
970 subject gender	971 semantics	972 object number	973 syntax
976 tense	977 semantics	978 constituent parsing	979 syntax
983 relation classification	984 semantics	985 negative polarity item licensing	986 syntax

844
845 C NOISE CEILING ESTIMATION
846

848 To assess the signal quality of the fMRI data, we estimated noise ceiling values, which quantify
849 the proportion of variance that could be explained by an ideal data-generating model. This method
850 involves predicting the fMRI activity of a target participant using linear models trained on data from
851 another participant. For a more detailed explanation, refer to [Schrimpf et al. \(2021\)](#). Estimating the
852 noise ceiling is particularly useful given the inherently high level of noise in fMRI data.

853
854
855
856
857
858
859
860
861
862
863

882 Figure 7: Voxel-wise estimated noise ceiling values for participants included in Harry Potter
883 dataset (Wehbe et al., 2014a). To exclude noisy voxels, we selected, for each participant, those
884 with noise ceiling estimates above 0.05.

912 Figure 8: Voxel-wise estimated noise ceiling values for participants included in Moth Radio Hour
913 dataset (Deniz et al., 2019). To exclude noisy voxels, we selected, for each participant, those with
914 noise ceiling estimates above 0.05.

918 D BERT MISALIGNMENT ON HARRY POTTER DATASET

919

920 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
921 from each participant in Figure 9 as well as a quantitative summary in Figure 10. Figure 11 report
922 the quantitative summary for brain alignment for the Brain Tuned model compared to Brain Pre-
923 serving model. Results for the Holmes benchmark for all the comparisons are reported in Figure 12,
924 13, 14, 15, 16, 17.

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Figure 9: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations between model activations and brain responses for each subject. The left column displays results for the Brain Preserving model, the center column for the Brain Misaligned model, and the right column shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment with brain activity. These results illustrate the distribution of brain alignment across subjects and highlight areas where brain misalignment has effects.

1046 Figure 10: Median Pearson correlation for BERT-based models on the Harry Potter dataset for each
1047 participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
1048 seven subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

1073 Figure 11: Median Pearson correlation for BERT-based models on the Harry Potter dataset for each
1074 participant. Brain Preserving models perform significantly worse than Brain Tuned models for six
1075 subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

Figure 12: Average win rate and standard error of the BERT-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model significantly outperforms the Brain Misaligned model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that removing brain alignment negatively influences linguistic competence. The Brain Preserving model shows a significantly higher win rate in all the linguistic subfield (Right) ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect all linguistic subfields.

Figure 13: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 14: Average win rate and standard error of the BERT-based Brain Preserving and Brain Tuned models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for all linguistic subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect all linguistic subfields.

Figure 15: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 16: Average win rate and standard error of the BERT-based Brain Tuned and Pretrained models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model shows a higher win rate in the morphology subfield (Right) (although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), suggesting that improving brain alignment affect this linguistic subfield.

Figure 17: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

1242 E BERT MISALIGNMENT ON MOTH RADIO HOUR DATASET
12431244 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
1245 from each participant in Figure 18 as well as a quantitative summary in Figure 19. Figure 20
1246 report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
1247 Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
1248 21 22 23 24 25 26
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1340 Figure 18: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Moth
 1341 Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
 1342 between model activations and brain responses for each subject. The left column displays results for
 1343 the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
 1344 shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
 1345 with brain activity. These results illustrate the distribution of brain alignment across subjects and
 1346 highlight areas where brain misalignment has effects.

1347
 1348
 1349

1370 Figure 19: Median Pearson correlation for BERT-based models on the Moth Radio Hour dataset
1371 for each participant. Brain Misaligned models perform significantly worse than Brain Preserving
1372 models for six subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

1397 Figure 20: Median Pearson correlation for BERT-based models on the Moth Radio Hour dataset for
1398 each participant. Brain Preserving models perform significantly worse than Brain Tuned models for
1399 five subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

1400
1401
1402
1403

Figure 21: Average win rate and standard error of the BERT-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model significantly outperforms the Brain Misaligned model ($p < 0.01$, indicated by **), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that removing brain alignment negatively influences linguistic competence. The Brain Preserving model shows a higher win rate in the syntax, semantics, reasoning and discourse subfield (Right) and significantly higher for syntax and semantics subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain alignment particularly affect syntax and semantic tasks.

Figure 22: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly in categories such as genericity and quantifiers. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 23: Average win rate and standard error of the BERT-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, morphology and discourse subfield (Right) and significantly higher for syntax, semantics and morphology subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 24: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 25: Average win rate and standard error of the BERT-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model ($p < 0.05$, indicated by *), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax subfield (Right) and significantly higher for syntax subfield ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect that linguistic subfield.

Figure 26: Average win rate with standard error across various linguistic phenomena for the BERT-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

1566 F GPT2 MISALIGNMENT ON HARRY POTTER BRAIN DATA RESULTS
15671568 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
1569 from each participant in Figure 27 as well as a quantitative summary in Figure 28. Figure 29
1570 report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
1571 Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
1572 30 31 32 33 34 35
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1671
 1672
 1673
 Figure 27: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the
 Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
 between model activations and brain responses for each subject. The left column displays results for
 the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
 shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
 with brain activity. These results illustrate the distribution of brain alignment across subjects and
 highlight areas where brain misalignment has effects.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

Figure 28: Median Pearson correlation for GPT2-based models on the Harry Potter dataset for each participant. Brain Misaligned models perform significantly worse than Brain Preserving models for seven subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

Figure 29: Median Pearson correlation for GPT2-based models on the Harry Potter dataset for each participant. Brain Preserving models perform significantly worse than Brain Tuned models for two subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

1724

1725

1726

1727

Figure 30: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model outperforms the Brain Misaligned model (significance assessed using a Wilcoxon signed-rank test reveal $p = 0.055$) (Left). This result suggests that removing brain alignment negatively influences linguistic competence. The Brain Preserving model shows a higher win rate in particular in the semantics and syntax subfield (Right) (although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), suggesting that removing brain alignment particularly affect semantics and syntax processing tasks.

Figure 31: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 32: Average win rate and standard error of the GPT2-based Brain Preserving and Brain Tuned models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for syntax and morphology subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 33: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 34: Average win rate and standard error of the GPT2-based Brain Tuned and Pretrained models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model shows a higher win rate in the reasoning and discourse subfield (Right) and significantly higher for discourse subfield ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect that linguistic subfield.

Figure 35: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

1890 **G GPT2 MISALIGNMENT ON MOTH RADIO HOUR DATASET**
18911892 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
1893 from each participant in Figure 36 as well as a quantitative summary in Figure 37. Figure 38
1894 report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
1895 Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
1896 39, 40, 41, 42, 43, 44.1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 36: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations between model activations and brain responses for each subject. The left column displays results for the Brain Preserving model, the center column for the Brain Misaligned model, and the right column shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment with brain activity. These results illustrate the distribution of brain alignment across subjects and highlight areas where brain misalignment has effects.

1995
1996
1997

Figure 37: Median Pearson correlation for GPT2-based models on Moth Radio Hour dataset for each participant. Brain Misaligned models perform significantly worse than Brain Preserving models for 3 subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

Figure 38: Median Pearson correlation for GPT2-based models on Moth Radio Hour dataset for each participant. Brain Preserving models perform significantly worse than Brain Tuned models for six subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

Figure 39: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model shows a higher win rate (Right) in the semantics and morphology subfield (although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), suggesting that removing brain alignment particularly affect semantics and morphology tasks.

Figure 40: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly in categories such as genericity, event structure and binding. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 41: Average win rate and standard error of the GPT2-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for syntax, semantics, reasoning and discourse subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 42: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 43: Average win rate and standard error of the GPT2-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for reasoning and discourse subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 44: Average win rate with standard error across various linguistic phenomena for the GPT2-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

2214 **H LLAMA MISALIGNMENT ON HARRY POTTER DATASET**
22152216 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
2217 from each participant in Figure 45 as well as a quantitative summary in Figure 46. Figure 47
2218 report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
2219 Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
2220 48 49 50 51 52 532221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

2319
 2320
 2321
 Figure 45: Performances of Llama-based Brain Misaligned and Brain Preserving models on the
 Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
 between model activations and brain responses for each subject. The left column displays results for
 the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
 shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
 with brain activity. These results illustrate the distribution of brain alignment across subjects and
 highlight areas where brain misalignment has effects.

Figure 46: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each participant. Brain Misaligned models perform significantly worse than Brain Preserving models for seven subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

Figure 47: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each participant. Brain Preserving models perform significantly worse than Brain Tuned models for seven subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

Figure 48: Average win rate and standard error of the Llama-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model significantly outperforms the Brain Misaligned model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that removing brain alignment negatively influences linguistic competence. The Brain Preserving model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for syntax and semantics subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain alignment particularly affect syntax and semantic tasks.

Figure 49: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 50: Average win rate and standard error of the Llama-based Brain Preserving and Brain Tuned models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse subfield (Right) and significantly higher for syntax, semantics and morphology subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect all linguistic subfields.

Figure 51: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 52: Average win rate and standard error of the Llama-based Brain Tuned and Pretrained models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics and reasoning subfields (Right) and significantly higher for semantics and syntax subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 53: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

2538 I LLAMA MISALIGNMENT ON MOTH RADIO HOUR DATASET

2539

2540 We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
2541 from each participant in Figure 54 as well as a quantitative summary in Figure 55. Figure 56
2542 report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
2543 Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
2544 57 58 59 60 61 62

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

2636 Figure 54: Performances of Llama-based Brain Misaligned and Brain Preserving models on the
 2637 Moth Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson corre-
 2638 lations between model activations and brain responses for each subject. The left column displays
 2639 results for the Brain Preserving model, the center column for the Brain Misaligned model, and the
 2640 right column shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger
 2641 alignment with brain activity. These results illustrate the distribution of brain alignment across sub-
 2642 jects and highlight areas where brain misalignment has effects.
 2643
 2644
 2645

2665 Figure 55: Median Pearson correlation for Llama-based models on the Moth Radio Hour dataset
 2666 for each participant. Brain Misaligned models perform significantly worse than Brain Preserving
 2667 models for eight subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank
 2668 test).

2693 Figure 56: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each
 2694 participant. Brain Preserving models perform significantly worse than Brain Tuned models for three
 2695 subjects ($p < 0.05$, indicated by * and assessed using the Wilcoxon signed-rank test).

2696
 2697
 2698
 2699

Figure 57: Average win rate and standard error of the Llama-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Preserving model significantly outperforms the Brain Misaligned model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that removing brain alignment negatively influences linguistic competence. The Brain Preserving model shows a higher win rate in the syntax, reasoning, morphology and discourse subfield (Right) and significantly higher for syntax and morphology subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain alignment particularly affect syntax and morphology tasks.

Figure 58: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 59: Average win rate and standard error of the Llama-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preserving model ($p < 0.001$, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics and discourse subfields (Right) and significantly higher for syntax and semantics subfields ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect those linguistic subfields.

Figure 60: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

Figure 61: Average win rate and standard error of the Llama-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset across participants and tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model ($p < 0.01$, indicated by **), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that improving brain alignment positively influences linguistic competence. The Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning and discourse subfield (Right) and significantly higher for syntax ($p < 0.05$, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect this linguistic subfield.

Figure 62: Average win rate with standard error across various linguistic phenomena for the Llama-based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Some concrete examples of the linguistic tasks are provided in the Table 2.

2862 **J AVERAGED COMPARISONS: ADDITIONAL RESULTS**
2863

2881 Figure 63: Averaged win rate with standard error for all model and dataset combinations across
2882 various linguistic phenomena of the Brain Tuned and Brain Preserving models. Each bar represents
2883 the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
2884 Brain Tuned models tend to outperform Brain Preserving models, particularly in categories such
2885 as filler gap and negative polarity item licensing. Some concrete examples of
2886 the linguistic tasks are provided in the Table 2

2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916

2917

2918

2919

2920

A) All tasks

B) Tasks split by linguistic subfield

Figure 64: Averaged win rate and standard error for all the model and dataset combinations of the Brain Tuned and Pretrained models across tasks (Left) and across different linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart across tasks and participants. The Brain Tuned models outperforms the Pretrained models (Left). This result suggests that train to align with brain recording lead to improvement in linguistic competence. The Brain Tuned model shows an higher win rate in the syntax and semantics subfields (Right) (although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), suggesting that removing brain alignment particularly affects those tasks.

2939

2940

2941

2942

2943

2944

2945

Figure 65: Averaged win rate and standard error for all the model and dataset combinations of the Brain Tuned and Pretrained models across different linguistic phenomena (Right). Each bar represents the average win rate for a specific linguistic phenomenon, with error bars indicating standard error. Brain Tuned models tend to outperform Pretrained models. Some concrete examples of the linguistic tasks are provided in the Table 2

2967

2968

2969