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ABSTRACT

While brain-aligned large language models (LLMs) have garnered attention for
their potential as cognitive models and for potential for enhanced safety and trust-
worthiness in Al, the role of this brain alignment for linguistic competence re-
mains uncertain. In this work, we investigate the functional implications of brain
alignment by introducing brain-misaligned models—LLMs intentionally trained to
predict brain activity poorly while maintaining high language modeling perfor-
mance. We evaluate these models on over 200 downstream tasks encompassing
diverse linguistic domains, including semantics, syntax, discourse, reasoning, and
morphology. By comparing brain-misaligned models with well-matched brain-
aligned counterparts, we isolate the specific impact of brain alignment on language
understanding. Our experiments reveal that brain misalignment substantially im-
pairs downstream performance, highlighting the critical role of brain alignment in
achieving robust linguistic competence. These findings underscore the importance
of brain alignment in LLMs and offer novel insights into the relationship between
neural representations and linguistic processing.

1 INTRODUCTION

A growing body of work studies the intriguing parallels between pretrained large language models
(LLMs) and the human brain, demonstrating a substantial degree of alignment between brain activity
patterns and LLLM activations when humans and LLMs are presented with the same linguistic input
(Toneva & Wehbe| 2019; |Caucheteux & King| 2020; |Schrimpf et al., 2021} |Goldstein et al., 2022}
Aw & Toneva, 2023} Merlin & Toneva, 2024} Karamolegkou et al.|2023)). This existing brain-LLM
alignment has excited both cognitive scientists and Al researchers. From a cognitive perspective,
brain-aligned LLMs can serve as model organisms for studying natural language processing in the
human brain, offering insights into mechanisms that may underlie human-like linguistic behavior
and representation (Toneva, 2021). From an Al perspective, researchers posit that brain-aligned
LLMs may be safer and more trustworthy (Mineault et al.,[2024). Relatedly, a recent study demon-
strated the first substantial downstream benefits of improving brain alignment of a speech language
model, by showing that brain-tuning a model significantly improves its performance on downstream
semantic tasks (Moussa et al., 20255 |Vattikonda et al., 2025)).

Despite this promise of brain-LLM alignment, its necessity for model performance remains an open
question. It is unclear whether alignment with the human brain is inherently required for LLMs to
perform well on linguistic tasks, or whether the relationship between brain alignment and model
behavior is more nuanced. To address this gap, it is essential to understand not only the presence of
alignment but also its functional implications.

In this work, we take a direct approach to investigate the effect of brain alignment on LLM perfor-
mance. We introduce brain-misaligned models—language models specifically trained to predict brain
activity poorly while maintaining robust language modeling performance on the same linguistic in-
puts. We evaluate these models across more than 200 downstream tasks spanning a broad spectrum
of linguistic capabilities, including semantics, syntax, discourse, reasoning, and morphology. By
comparing brain-misaligned models with well-matched models that differ primarily in their ability
to predict brain activity rather than their language modeling proficiency, we isolate the impact of
brain alignment on downstream linguistic performance. Our results reveal that brain-misalignment
significantly impairs the ability of LLMs to perform linguistic tasks. These findings suggest that
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Figure 1: A schematic of the proposed approach. Our method is based on fine-tuning a pretrained
language model with two simultaneous objectives: maintaining its language modeling ability while
reducing its alignment with brain recordings. Language modeling performance is preserved by
continuing training on a fine-tuning dataset using the standard language modeling objective. Brain
alignment is reduced by introducing a second prediction head and a gradient reversal layer, which
encourages the model to produce representations that are uninformative about the corresponding
brain activity.

alignment with the human brain is crucial for LLMs to achieve strong linguistic performance, shed-
ding light on the functional relevance of brain alignment in modern language models.

Our main contributions can be summarized as follows:

1. We develop brain-misaligned models that allow us to investigate the effect of brain align-
ment on the linguistic competence of language models.

2. We evaluate the effect of brain misalignment on a comprehensive set of linguistic tasks,
comprising more than 200 datasets. These tasks are designed to assess various linguistic
subfields (syntax, semantics, discourse, reasoning, and morphology) and linguistic phe-
nomena (e.g., part of speech, protoroles, coreference resolution).

3. Via comparisons with well-matched controls, we show that brain misalignment signifi-
cantly decreases linguistic competence. This suggests that brain alignment is necessary to
maintain linguistic competence in language models.

4. We find that the competence drop is especially pronounced in semantic and syntactic tasks,
demonstrating the importance of brain alignment for language models.

5. To further validate our findings, we also finetune a model using brain recordings, showing
that the model improves in every linguistic subfield with respect to other fine-tuned models,
and is also better than pretrained models, in particular for semantics and syntax tasks.

2 RELATED WORKS

A growing body of research investigates the alignment between pretrained language models and hu-
man brain activity during language comprehension (Wehbe et al., 2014b; Jain & Huth, 2018; Toneva
& Wehbe, 2019;|Abdou et al.,[2021}; Schrimpf et al.,|202 1} Hosseini et al.,|2024). Other studies have
focused on understanding the factors that drive this alignment, identifying model characteristics or
representational properties that correlate with neural responses (Goldstein et al.,|[2022; [Toneva et al.,
2022a;|Oota et al., [2024a:b; |Caucheteux et al.,[2021; Reddy & Wehbe, 2021} [Toneva et al., [2022b;
Kauf et al.| 2023} |Gauthier & Levy, [2019; |Aw & Toneval [2023; Merlin & Toneva, 2024)). Addition-
ally, previous work have started to use brain data for finetuning language models (Schwartz et al.|
2019) showing that is possible to improve downstream performance of pretrained language model
(Negi et al., [2025). Our work extends these findings by investigating whether this alignment is not
only observed but also functionally relevant for language processing, specifically, whether brain
alignment is necessary for maintaining linguistic competence in language models.
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In fact, a substantial body of work has focused on evaluating the linguistic competencies of lan-
guage models. These studies aim to systematically assess the extent to which models capture vari-
ous linguistic phenomena, including syntax, semantics, morphology, and discourse-level reasoning
(Amouyal et al., 2024; Blevins et al.,|2023). Benchmarks such as BLIMP (Warstadt et al., |2020),
GLUE (Wang et al.| [2018)), SuperGLUE (Wang et al., [2019), and more recently Holmes (Waldis
et al., [2024) have been used to evaluate models’ understanding of language. Our study contributes
to this line of research by examining how these linguistic competencies are affected when the align-
ment between language model representations and brain activity is manipulated.

Additionally, a growing line of work in Causal NLP aims to uncover causal relationships between
model components, training signals, or representations and downstream performance (Feder et al.|
2021520225 Liu et al., 2025; Ortu et al., 2024). These studies design interventions or counterfactual
setups to test whether certain features are causally implicated in model predictions or behaviors. Our
approach is aligned with those works. We intervene on brain alignment, training models to preserve
or disrupt alignment, and estimate its causal role in supporting linguistic competence.

3 METHODOLOGY

3.1 PRETRAINED MODELS

We use BERT-based (Devlin et al.,2019), GPT2-based (Radford et al.,2019) and Llama-based (Liu
et al.| [2024)) language models. In particular, we focus on the bert-base-cased, gpt—-small
and meta-1lama/Llama-3.2-1B provided by Hugging Face (Wolf et al.,[2020). BERT, GPT2
and Llama have achieved strong performance on various NLP tasks, such as question answering
and sentence classification. Moreover, they have been extensively studied in prior work on brain
alignment (Toneva & Wehbel 2019; |Caucheteux et al.,[2021}; |Oota et al., 2024b).

3.2 FMRI DATA

We use two publicly available fMRI datasets to measure the brain alignment of language model rep-
resentations. The data included in the first dataset, provided by Wehbe et al.|[2014a, were collected
from eight participants as they read Chapter 9 of Harry Potter and the Sorcerer’s Stone (Rowling
et al., 1998) word by word. The chapter was divided into four runs of similar length, each separated
by a short break. Each word was presented for 0.5 seconds, and one fMRI image (TR) was ac-
quired every 2 seconds, resulting in 1211 brain images per participant. The fMRI data in the second
dataset, made publicly available by Deniz et al., 2019, consist of recordings from six participants
who read and listened to the same 11 stories from The Moth Radio Hour. For each modality, the
dataset includes 4028 fMRI images. During reading, each word was presented for exactly the same
duration as in the audio recording. In our analysis, we used only the reading data. These datasets
are among the largest publicly available collections in terms of the amount of data per participant,
which is crucial for obtaining accurate estimates of brain alignment.

3.3 CONTROLLING BRAIN ALIGNMENT

To investigate the effect of brain alignment of a language model on its downstream linguistic com-
petence, we develop three models: the Brain Misaligned model, the Brain Preserving model and the
Brain Tuned model. The Brain Misaligned model is trained to reduce alignment with brain record-
ings, while the Brain Preserving model serves as a comparison baseline that preserves brain align-
ment while controlling for possible confounding factors. We also designed a Brain Tuned model
that is trained to improve alignment with brain recordings. This model serves to further validate our
analysis.

3.3.1 BRAIN MISALIGNED MODEL

To evaluate the influence of brain-related information, which is an abstract concept for which no
clear counterfactual input exists, we must develop methods that allow us to remove such informa-
tion directly from the language model representations. In this study, we address this challenge by
designing an intervention to language models that aims to remove brain-related information from
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their representations, without the need to generate counterfactual inputs. This enables us to investi-
gate the necessity of brain alignment for natural language processing abilities.

Our approach is based on adversarial fine-tuning (Ganin et al., 2016) of language models, using
a prediction head (brain mapping head in Figure |1) and a gradient reversal layer to remove the
targeted capacity, i.e. brain prediction, while simultaneously fine-tuning a second head to preserve
the language modeling performance.

The model is finetuned using the stimuli from the Harry Potter fMRI dataset (Wehbe et al., [2014a)
or from the Moth Radio Hour fMRI dataset for the language modeling loss, and the corresponding
fMRI recordings for the loss of the brain mapping head. For training, we select only voxels with an
estimated noise ceiling > 0.05 (see Appendix [C|for details) belonging to regions of the brain known
to process language (Fedorenko et al., [2010; [Fedorenko & Thompson-Schill, 2014} Binder et al.}
2009 Oota et al., 2024a) and used by previous works to investigate brain alignment of language
models. Additional details on the prediction of brain recordings are reported in Appendix [B| The
total loss is defined as:

L= Wim, * ﬁlm + Whq * ACba

where L, is the language modeling loss, L, is the brain-alignment loss, and wy,, and wy, are
weighting factors to balance the two objectives. The language modeling loss £;,,, corresponds to
the standard cross-entropy loss used during language model pretraining, while the brain-alignment
loss Ly, is defined as the mean negative squared Pearson correlation between the predicted voxels
in each batch and the ground truth voxel values. wy,, is fixed at 0.1, a value chosen based on the
relative magnitude of the losses prior to fine-tuning (see Section [3.3.4]for details).

3.3.2 BRAIN PRESERVING MODEL

Similarly, we designed a control condition to account for potential confounding factors and to serve
as a comparison for the Brain Misaligned model. We finetune this model using the same procedure
as for the Brain Misaligned model, but during training we permute the order of the fMRI images to
disrupt the correspondence between stimuli and brain activity.

By using permuted fMRI images, our method also accounts for the effects of the adversarial removal
itself, which can influence the model’s representations. This controls for potential confounders such
as the effect of fine-tuning on language modeling and the effect of adversarial fine-tuning. The only
difference between conditions remains the correspondence between stimuli and fMRI images.

3.3.3 BRAIN TUNED MODEL

To complement our analysis, we designed a Brain Tuned model. This model was finetuned using the
same procedure as the Brain Misaligned model(i.e. a language modeling head and a brain mapping
head), but we removed the gradient reversal layer and use as loss function L, the mean negative
Pearson correlation. This procedure actively encourages the model to increase its alignment with
brain recordings while maintaining language modeling performance. This model serves as a valida-
tion tool to test the complementary hypothesis: if decreasing alignment impairs competence, does
increasing it lead to performance gains?

3.3.4 MODEL SELECTION AND TRAINING

To train the models, we use training samples consisting of sequences of words corresponding to 5
TRs. The stimulus text is divided into four consecutive sections to enable cross-validation.

For training of BERT-based, GPT2-based and Llama-based Misaligned, Brain Preserving and Brain
Tuned models we train applying LoRA (Hu et al., [2022) to the parameters. We train for 5 epochs
with a batch size of 16, and AdamW as optimizer. The language modeling loss weight w;,,, = 0.1
and wyp, = 10.

Conditions for a successful comparison between models. The comparison is considered suc-
cessful when the Brain Misaligned and Brain Preserving models achieve similar performance on the
language modeling objective (tested using Wilcoxon signed-rank test, p < 0.05), while the Brain
Misaligned model shows a significantly lower ability to align with brain recordings.
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3.4 EVALUATION

To evaluate the models, we use three types of tasks: language modeling, brain alignment, and down-
stream linguistic tasks. Both language modeling and brain alignment are evaluated using the same
text, which corresponds to the fMRI stimulus, and is held-out during training. We assess these two
tasks using overlapping sequences of words belonging to 5 TRs, following the approach of previous
work (Merlin & Toneva, 2024).

Language modeling. For language modeling we follow the best practice for evaluation of BERT-
based, GPT2-based and Llama-based models. or each test example, we measure the average cross
entropy across the randomly masked tokens (15% of total number of tokens,see Devlin et al.|(2018)
for details) for BERT-based models, for GPT2-based and Llama-based models the cross entropy
over all tokens (see |[Radford et al. (2019) for details).

Brain alignment. We measure the brain alignment between BERT, GPT2 and Llama representa-
tions and fMRI recordings using a linear prediction head on top of the last transformer block. This
prediction head is trained to output brain activity values from the model’s representations and is
widely used in previous work to assess how well language models can predict brain signals (Jain
& Huth| 2018} [Toneva & Wehbe, 2019} |[Schrimpf et al.| [2021). We train this linear function, regu-
larized with a ridge penalty, using cross-validation and evaluate its performance on held-out data.
The ridge parameter is selected via nested cross-validation. Consequently, for each participant, we
train one model for each held-out run (see Section [3.2), then aggregate the predictions to compute
brain alignment. Further details on the prediction head are provided in Appendix[B] Brain alignment
is quantified using Pearson correlation, computed between the predictions on held-out data and the
corresponding ground truth values. Specifically, for a model ¢ and voxel v; with corresponding
held-out fMRI values y;, brain alignment is computed as:

brain alignment(q,v;) = corr(y;,v;),

where g; = q(X)W, ;, X is the input text sample to model ¢, and W, ; are the learned prediction
weights for voxel v;.

Linguistic competence. To investigate the linguistic competence of language models, we use
more than 200 datasets, designed to evaluate linguistic competence in language models via classifier-
based probing (Waldis et al.| [2024). The benchmark covers datasets spanning various linguistic
phenomena and subfields, including syntax, morphology, semantics, reasoning, and discourse, ex-
amples of tasks are reported in Appendix Table [I| Details about the benchmark and the included
datasets are provided in Appendix [A. For each task, each model is evaluated using 6 seeds, which
influence the probe initialization and the ordering of data during training and evaluation.

To determine whether one model outperforms the other, we not only compare the average evaluation
metric (see |Waldis et al. (2024) for details), but also assess whether the difference is statistically
significant using a two-sample t-test. We assign a “win” to a model only for datasets where the
difference reaches statistical significance. For each dataset and model pair, we thus obtain a binary
“win” matrix indicating whether one model significantly outperforms the other (1) or not (0). Since
each subject has a pair of models corresponding to different held-out runs during training, we av-
erage the resulting win matrices across runs, yielding a win score for each participant, dataset, and
model. The win score quantifies how consistently one model outperforms the other across different
held-out runs.

4 RESULTS

4.1 EFFECTS ON BRAIN ALIGNMENT

Figure 2JA-D shows brain alignment of the BERT-based Brain Misaligned and Brain Preserving
models on the Harry Potter dataset, as well as a contrast between the two, for a representative
participant. Specifically, Figures [JJA and 2B show the Pearson correlation between the predicted
voxel values and the ground truth for the Brain Preserving model and the Brain Misaligned model,
respectively. Figure shows the contrast between the two models, i.e., the difference in Pear-
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Figure 2: Brain alignment of the BERT-based Brain Preserving (A) and Brain Misaligned (B) mod-
els for one participant on the Harry Potter dataset (see Appendix [D for all participants), and the
difference between the two (C). The Brain Misaligned model exhibits substantially weaker align-
ment, particularly in language regions (C, D).

son correlation for each voxel. Results for the remaining participants, other language models and
datasets are consistent and reported in Appendix D, [E, [F| [G| [H, [

Brain Preserving Model. In Figure[2]A, we observe that the Brain Preserving model aligns well
with brain activity across the whole brain, and in particular within language-related regions (visual-
ized in Figure 2D), as identified by previous work (Fedorenko et al.|[2010} [Fedorenko & Thompson-|
Schill, 2014; Binder et al., [2009). We quantify the alignment of the Brain Preserving model in
Appenclﬁ;E Since these models are explicitly finetuned to preserve brain alignment, this result is
consistent with prior studies showing that language models, exhibit alignment with fMRI signals

Toneva & Wehbel 2019} [Schrimpf et al.} 2021}, |[Goldstein et al.| 2022} [Oota et al., [2024b} Merlin &
Toneva, 2024).

Brain Misaligned Model. In Figure 2B, we observe that the Brain Misaligned model does not
align well with brain activity across the whole brain. The Pearson correlation values are particularly
low in several brain areas. We quantify the alignment of brain misaligned model in Appendix [D.

To show the effect of brain misalignment, in Figure 2IC we show the contrast between the Pearson
correlation values of the Brain Preserving model and the Brain Misaligned model. As expected,
the difference in Pearson correlation is especially high in language-related regions (visualized in
Figure 2D). This confirms that our approach is effective at removing brain-relevant information in
particular in language-related areas.
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We assess whether the average brain correlation (computed across voxels in language regions with an
estimated noise ceiling > 0.05, see Appendix [C) significantly differs between the two models using
a t-test. For example, for BERT trained on Harry Potter dataset we find that for six participants,
there is a significant drop in brain alignment, while no significant difference in language modeling
ability is observed between the two models. Only the models corresponding to these participants are
included in the comparison of linguistic competence.

4.2 EFFECTS ON LINGUISTIC COMPETENCE

Figures 3]A, 3B, and 4] show the performance on linguistic competence averaged across models and
dataset combinations (BERT-Harry, BERT-Moth, GPT2-Harry, GPT2-Moth, Llama-Harry, Llama-
Moth). Specifically, Figure [3A illustrates the overall effect on linguistic competence, considering
all tasks. Figure |3B presents the results by linguistic subfields, while Figure |4| focuses on specific
linguistic phenomena. Specific results for each combinations of models and dataset are reported in

Appendix [E, [, [G; [H, [

Effects on the Overall Linguistic Competence. Figure [3JA shows the average win rate in the
linguistic competence benchmark for the Brain Misaligned models and the Brain Preserving models.
We observe a significant difference between the two conditions. These results indicate that removing
brain alignment leads to lower performance on downstream linguistic tasks, suggesting that brain
alignment is necessary to preserve linguistic competence. Statistical tests on each individual model
and dataset combinations reveal a marked difference in performance between the Brain Misaligned
and Brain Preserving on the overall linguistic competence. For the BERT-based and Llama-based
models the difference is significant, although for GPT2-based models on the Harry Potter dataset the
difference does not reach conventional statistical significance (p-value = 0.055), the trend mirrors
the effect observed in the BERT-based models. For the GPT2-based models on the Moth Radio Hour
dataset, results are not consistent due to the weaker effect of brain removal.

Effects across Linguistic Subfields. We further investigate this effect by analyzing performance
across different linguistic subfields: syntax, semantics, discourse, reasoning, and morphology. As
shown in Figure [3B, the Brain Misaligned model consistently underperforms the Brain Preserving
model in discourse, morphology, reasoning, semantics, and syntax tasks. This suggests that brain
alignment is particularly important for supporting linguistic competence. Statistical tests on individ-
ual model and dataset combinations reveal significant differences in the majority of model- dataset
combinations, even though the averaged results are not statistically significant. In particular, BERT
trained on Harry Potter reveals statistical significance across all linguistic subfields. BERT trained
on Moth Radio Hour and Llama trained on Harry Potter on the semantics and syntax subfields, while
Llama trained on Moth Radio Hour on the the syntax and morphology subfields.

Effects across Linguistic Phenomena. To gain finer-grained insights, we analyzed results based
on specific linguistic phenomena, focusing on those represented by more than five datasets. As
shown in Figure[d] we found that for the majority of tasks the the Brain Preserving models are better
than the Brain Misaligned models, providing further evidence that brain alignment is crucial for
these phenomena. Examples for these linguistic phenomena can be found in Table 2]

4.3 FURTHER VALIDATION VIA BRAIN-TUNING

We conducted a complementary analysis by introducing a Brain Tuned model, in which, contrary
to the Brain Misaligned model, the brain alignment capabilities were intentionally increased during
training.

We then compared this new model with the Brain Preserving model. The analysis reveals that in
every experimental setting, the Brain Tuned model consistently outperforms the Brain Preserving
model with a statistically significant difference. This result suggests that increasing brain alignment
translates into a general improvement in linguistic competence. Averaged results across model and
dataset combinations are shown in Figure[S|]A. Figure 5B shows the averaged results across linguistic
subfield, showing a statistically significant results for the syntax and semantic subfield, and Figure|[6]
shows the differences across linguistic phenomena, showing statistically significant results for two
tasks. Detailed results for each of these combinations are available in the Appendix [D, [E, [FIG[H, [
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Figure 3: Average win rate and standard error across models and dataset combinations of the Brain
Misaligned and Brain Preserving models across tasks (Left) and across different linguistic subfields
(Right). The average win rate indicates how often each model outperforms its counterpart across
model and dataset combinations. The Brain Preserving model significantly outperforms the Brain
Misaligned model (p < 0.05, Wilcoxon signed-rank test) (Left). This result suggests that removing
brain alignment impairs linguistic competence. The Brain Preserving model shows an higher win
rate in all the linguistic subfield, in particular for semantics and syntax (Right), even if the differences
are not statistically significant (assessed using Wilcoxon signed-rank test with Holm-Bonferroni
correction), because of unique differences across model-dataset combinations.
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Figure 4: Average win rate with standard error across model and dataset combinations, across var-
ious linguistic phenomena for the Brain Misaligned and Brain Preserving models. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Brain Preserving models tend to outperform Brain Misaligned models in the majority of tasks.
Some concrete examples of the linguistic tasks are provided in the Table B}

We also compared the Brain Tuned model directly with the original Pretrained model (i.e., the base
model before any alignment intervention). While the Brain Tuned model showed an advantage in the
majority of experimental settings, the Pretrained model maintained stronger performance in some
settings. Results are reported in the Appendix D} [E, [FIGIH, [I.

5 DISCUSSION

To investigate the importance of brain alignment in language models, we designed two models: the
Brain Misaligned model, which is intended to remove brain alignment while preserving language
modeling capabilities, and the Brain Preserving model, which accounts for potential confounders.
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Figure 5: Average win rate and standard error across models and dataset combinations of the Brain
Preserving and Brain Tuned models across tasks (Left) and across different linguistic subfields
(Right). The Brain Tuned model significantly outperforms the Brain Preserving model (p < 0.05,
Wilcoxon signed-rank test) (Left). This result suggests that improving the brain alignment lead to
performance gains in linguistic competence. The Brain Tuned model shows an higher win rate in
the discourse, morphology, reasoning, semantics and syntax subfield (Right) and significantly higher
in semantics and syntax (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction),
suggesting that improving brain alignment affects semantics and syntax tasks.
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Figure 6: Average win rate with standard error across model and dataset combinations, across var-
ious linguistic phenomena for the Brain Tuned and Brain Preserving models. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard er-
ror. Brain Tuned models tend to outperform Brain Preserving models in the majority of tasks,
with statistically significant difference (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni
correction) for filler gap and negative polarity item licensing. Some concrete
examples of the linguistic tasks are provided in the Table

We showed that the Brain Misaligned model has weak alignment with brain recordings, while the
Brain Preserving model exhibits stronger alignment, particularly in language-related regions of in-
terest. The contrast between the two models, across multiple experimental settings, reveals that the
difference in alignment is especially pronounced in these areas.

We further evaluated the linguistic competence of these models to reveal the functional importance
of brain alignment. Our results demonstrate that Brain Misaligned models perform worse than Brain
Preserving models on linguistic tasks, across multiple model-dataset combinations, supporting the
hypothesis that brain alignment is crucial for maintaining linguistic competence. Across multiple
experimental settings the performance drop is particularly evident in tasks related to the semantic
and syntactic subfield, although there are unique differences in every experimental setting.
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We extended this investigation by introducing a Brain Tuned model, designed to increase brain
alignment. The results of this intervention further strengthen our core argument. We found that the
Brain Tuned model systematically outperformed the Brain Preserving model in all experimental set-
tings and in particular in semantic and syntax tasks. In many model-dataset combinations the Brain
Tuned model outperform the pretrained model on linguistic competence highlighting the relevance
of brain-related signal for improving those competences.

These findings, across multiple model-dataset combinations, suggest that brain-aligned information
plays a key role in supporting performance on linguistic tasks. It is important to note that the absence
of statistically significant differences for other linguistic subfields or phenomena does not imply that
brain alignment is unimportant for those tasks.

Limitations. Our study has three main limitations. Firstly, the benchmark used to assess linguis-
tic competence, while extensive, is not exhaustive. There are many additional datasets available
that could be included in future evaluations(Wang et al., 2018; 2019). Moreover, some linguistic
subfields (e.g., discourse) and specific linguistic phenomena are represented by only a few datasets.
As a result, the observed behavior of the Brain Misaligned and Brain Preserving models may be
influenced by the limited coverage and distribution of tasks in certain categories. Secondly, our
results are based on limited fMRI datasets. While these widely studied datasets offer extensive
per-participant data, findings may still be specific to their characteristics. We designed our exper-
iments using cross-validation, testing on held-out data and across multiple participants to improve
generalizability. However, results might differ with different types of linguistic stimuli. Expanding
to more datasets, languages, or cognitive tasks would be an important next step. Thirdly, while the
”Brain Misaligned” model does show a clear overall worse performance, there are differences across
linguistic subfields depending on the model-dataset combination. Datasets and models can contain
different types of information related to linguistic subfields. Nevertheless, our results are informa-
tive in demonstrating the effectiveness of our methodology and in highlighting the importance of the
emergent brain alignment ability of language models.

6 CONCLUSION

We designed a direct approach to investigate the necessity of brain alignment in pretrained language
models. Specifically, we introduced two models: the Brain Misaligned model and the Brain Preserv-
ing model. When used together, they allow us to isolate and control for the effect of brain alignment
on downstream linguistic competence.

We evaluated these models on more than 200 datasets spanning various linguistic subfields, includ-
ing semantics, syntax, morphology, discourse, and reasoning, as well as a broad range of linguistic
phenomena. Our results revealed a significant drop in linguistic competence, particularly on se-
mantic and syntactic tasks, for the Brain Misaligned model, suggesting that brain alignment plays
a critical role in downstream linguistic performance. This conclusion is further supported by our
complementary finding that a Brain Tuned model, optimized to increase alignment, consistently
outperformed the Brain Preserving model particularly in those tasks.

These findings are highly relevant to the natural language processing literature. Previous studies
have explored why brain alignment emerges during pretraining, pointing to possible contributing
factors and suggesting that if this alignment emerges, it may reflect shared information acquisition
between artificial and biological neural networks.

Our work contributes a new dimension to this discussion: we not only ask why brain alignment
emerges, but also whether it is important for linguistic competence. Our results provide initial
evidence that brain alignment is functionally important, motivating future research in this area.

Moreover, our methodology provides a general framework for assessing the causal role of emer-
gent properties, as brain alignment, in language models. Future work could apply our methodology
to different models, exploring other datasets, or extending the approach to assess the necessity of
alignment-related capabilities across different modalities (e.g., speech, image) or neural architec-
tures.
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A LINGUISTIC COMPETENCE BENCHMARK

We evaluated the linguistic competence of language models using classifier-based probing on more
than 200 datasets collected from various sources and included in the Holmes benchmark (Waldis
et al., |2024). The benchmark covers datasets spanning a wide range of linguistic phenomena and
subfields, including syntax, morphology, semantics, reasoning, and discourse. A comprehensive list
of linguistic phenomena and their corresponding subfields is provided in Table 3} For the evaluation,
we use the flash-holmes version of the benchmark, which is designed to reduce computational
cost while maintaining precision in assessing language model performance (see Waldis et al. (2024
for details). Examples of tasks associated with the linguistic phenomena and linguistic subfield used
in our study are reported in Tables|[T|2]and illustrated in Figure ]

Table 1: Examples for linguistic subfields from|Waldis et al. (2024)). The relevant part of the example
for the specific label is underlined.

Type Phenomena Example Label

. And then, the cucumber was hurled into the air. Correct
Morphology Subject-Verb Agreement And then, the cucumber were hurled into the air. Wrong
Syntax Part-of-Speech And then, the cucumber was hurled into the air. NN (Noun Singular)
Semantics Semantic Roles And then, the cucumber was hurled into the air. Direction
Reasoning Negation And then, the cucumber was hurled into the air. No Negation
Discourse Node Type in Rhetorical Tree And then, the cucumber was hurled into the air. Satellite
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Table 2: Examples for selected linguistic phenomena from [Waldis et al.| (2024). The asterisk (*)
indicates the correct option when applicable.

Phenomena \ Hlustrative Example

argument-structure Most cashiers are disliked*/flirted.

binding Carlos said that Lori helped him*/himself.

determiner noun agreement Craig explored that grocery store*/stores.

event structure Give them to a library or burn them. = Distributive

filler-gap Brett knew what many waiters find.*/Brett knew that many waiters find.
genericity I assume you mean the crazy horse memorial. = Not Dynamic
island-effects Which bikes is John fixing?*/Which is John fixing bikes?

antonym negation It was not*/really hot, it was cold.

negative polarity item licensing | Only/Even Bill would ever complain.

semantic proto-roles These look fine to me. = Exists as physical

quantifiers There aren’t many*/all lights darkening.

rethorical structure theory The statistics quoted by the ” new ” Census Bureau report = Elaboration
subject-verb agreement A sketch of lights does not*/do not appear.

B BRAIN MAPPING HEAD

To predict the fMRI recordings corresponding to each TR, we use a linear function, regularized
with a ridge penalty, that maps model representations to fMRI space, specifically targeting voxels
with an estimated noise ceiling > 0.5 located in language-related regions of interest (Figure D).
This function is trained in a cross-validated way and evaluated on held-out data. The ridge penalty
is selected via nested cross-validation. For each participant, we train four functions, each using
three of the four fMRI subsets for training and the remaining one for testing. To generate model
representations, we average the token embeddings corresponding to each TR, and construct the
input by concatenating the embeddings from the current TR with those from the previous five TRs.
The features of the words presented in the previous TRs are included to account for the lag in the
hemodynamic response that fMRI records. Because the response measured by fMRI is an indirect
consequence of brain activity that peaks about 6 seconds after stimulus onset, predictive methods
commonly include preceding time points (Nishimoto et al.,|2011; [Wehbe et al., [2014a; Huth et al.|
2016). This allows for a data-driven estimation of the hemodynamic response functions (HRFs)
for each voxel, which is preferable to assuming one because different voxels may exhibit different
HRFs.

15



Under review as a conference paper at ICLR 2026

Table 3: List of linguistic phenomena and their corresponding subfields in the Holmes benchmark.

linguistic phenomena subfield linguistic phenomena subfield
next sentence prediction discourse semantic odd man out semantics
rhetorical structure theory discourse word sense semantics
sentence order discourse word content semantics
discourse connective discourse coordination inversion semantics
coreference resolution discourse object animacy semantics
bridging discourse event structure semantics
irregular forms morphology factuality semantics
subject-verb agreement morphology complex words semantics
determiner noun agreement morphology genericity semantics
anaphor agreement morphology metaphor semantics
age comparison reasoning named entity labeling semantics
negation reasoning negative polarity item licensing semantics
speculation reasoning argument structure syntax
multi-hop composition reasoning bigram-shift syntax
property conjunction reasoning binding syntax
object comparison reasoning tree-depth syntax
antonym negation reasoning case syntax
encyclopedic composition reasoning subject-verb agreement syntax
taxonomy conjunction reasoning anaphor agreement syntax
always never reasoning top-constituent-task syntax
object gender semantics subject number syntax
passive semantics deoncausative-inchoative alternation  syntax
protoroles semantics control / raising syntax
quantifiers semantics ellipsis syntax
synonym-/antonym-detection  semantics sentence length syntax
verb dynamic semantics filler gap syntax
semantic role labeling semantics readability syntax
sentiment analysis semantics island effects syntax
time semantics local attractor syntax
subject animacy semantics part-of-speech syntax
subject gender semantics object number syntax
tense semantics constituent parsing syntax
relation classification semantics negative polarity item licensing syntax

C NOISE CEILING ESTIMATION

To assess the signal quality of the fMRI data, we estimated noise ceiling values, which quantify
the proportion of variance that could be explained by an ideal data-generating model. This method
involves predicting the fMRI activity of a target participant using linear models trained on data from
another participant. For a more detailed explanation, refer to [Schrimpf et al. (2021)). Estimating the
noise ceiling is particularly useful given the inherently high level of noise in fMRI data.
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[1=0.05

Noise ceiling values

Figure 7: Voxel-wise estimated noise ceiling values for participants included in Harry Potter
dataset(Wehbe et al., [2014a). To exclude noisy voxels, we selected, for each participant, those
with noise ceiling estimates above 0.05.

[]>0.05

Noise ceiling values

Figure 8: Voxel-wise estimated noise ceiling values for participants included in Moth Radio Hour
dataset (Deniz et al.,|2019). To exclude noisy voxels, we selected, for each participant, those with
noise ceiling estimates above 0.05.
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D BERT MISALIGNMENT ON HARRY POTTER DATASET

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure[9] as well as a quantitative summary in Figure [I0] Figure[TT|report
the quantitative summary for brain alignment for the Brain Tuned model compared to Brain Pre-
serving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
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Figure 9: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Harry
Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations between
model activations and brain responses for each subject. The left column displays results for the
Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the digtribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 10: Median Pearson correlation for BERT-based models on the Harry Potter dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
seven subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 11: Median Pearson correlation for BERT-based models on the Harry Potter dataset for each
participant. Brain Preserving models perform significantly worse than Brain Tuned models for six
subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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A) All tasks B) Tasks split by linguistic subfield
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Figure 12: Average win rate and standard error of the BERT-based Brain Misaligned and Brain Pre-
serving models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Preserving model significantly outperforms the Brain Mis-
aligned model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left).
This result suggests that removing brain alignment negatively influences linguistic competence. The
Brain Preserving model shows a significantly higher win rate in all the linguistic subfield (Right)
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving
brain alignment affect all linguistic subfields.
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Figure 13: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table E}
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B) Tasks split by linguistic subfield
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Figure 14: Average win rate and standard error of the BERT-based Brain Preserving and Brain
Tuned models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preseving
model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This
result suggests that improving brain alignment positively influences linguistic competence. The
Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and
discourse subfield (Right) and significantly higher for all linguistic subfields (p < 0.05, Wilcoxon
signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect

all linguistic subfields.
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Figure 15: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table
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Figure 16: Average win rate and standard error of the BERT-based Brain Tuned and Pretrained
models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic
subfields (Right). The win rate indicates how often each model outperforms its counterpart across
tasks and participants. The Brain Tuned model shows a higher win rate in the morphology subfield
(Right) (although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no signifi-
cance), suggesting that improving brain alignment affect this linguistic subfield.
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Figure 17: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the
average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table
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E BERT MISALIGNMENT ON MOTH RADIO HOUR DATASET

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure [I8] as well as a quantitative summary in Figure [I9] Figure [20]
report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
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Figure 18: Performances of BERT-based Brain Misaligned and Brain Preserving models on the Moth
Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 19: Median Pearson correlation for BERT-based models on the Moth Radio Hour dataset
for each participant. Brain Misaligned models perform significantly worse than Brain Preserving
models for six subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 20: Median Pearson correlation for BERT-based models on the Moth Radio Hour dataset for
each participant. Brain Preserving models perform significantly worse than Brain Tuned models for
five subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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A) All tasks B) Tasks split by linguistic subfield
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Figure 21: Average win rate and standard error of the BERT-based Brain Misaligned and Brain
Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across
different linguistic subfields (Right). The win rate indicates how often each model outperforms its
counterpart across tasks and participants. The Brain Preserving model significantly outperforms the
Brain Misaligned model (p < 0.01, indicated by **), as assessed using a Wilcoxon signed-rank test
(Left). This result suggests that removing brain alignment negatively influences linguistic compe-
tence. The Brain Preserving model shows a higher win rate in the syntax, semantics, reasoning and
discourse subfield (Right) and significantly higher for syntax and semantics subfields (p < 0.05,
Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain align-
ment particularly affect syntax and semantic tasks.
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Figure 22: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly
in categories such as genericity and quantifiers. Some concrete examples of the linguistic tasks are
provided in the Table 2|
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Figure 23: Average win rate and standard error of the BERT-based Brain Preserving and Brain
Tuned models on the Moth Radio Hour dataset across participants and tasks (Left) and across dif-
ferent linguistic subfields (Right). The win rate indicates how often each model outperforms its
counterpart across tasks and participants. The Brain Tuned model significantly outperforms the
Brain Preseving model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank
test (Left). This result suggests that improving brain alignment positively influences linguistic com-
petence. The Brain Tuned model shows a higher win rate in the syntax, semantics, morphology and
discourse subfield (Right) and significantly higher for syntax, semantics and morphology subfields
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving
brain alignment affect those linguistic subfields.

Brain Preserving
sk EEE Brain Tuned
*ok

=
o
*
*
*
*

Average win rate
o o o
IN o ©
—
= #
—
——i
I N N *
e—
| &
(0}
oy j—
e
B
—
——

0.2
0.0 <
& S e Q QS Qo ) % &
N &€ & & & & & N 2N N A‘\\Q} 006
(@ & <& < X Q ‘(\ “ Q \ O X
S N 2 > & e e < 2 N & 3
N 0 < x§ N N S e W O 2 4
& Q& > Q 2 < N\ L D S
3 2 3 S N ] & N
Q N NG &
<& N 2 & & N
D 8 < < X
N $ NG
© & & ®
K & 0\ &
N\ \
& R O
2 N >
X< N 4
e xS <
O q’b
&

Figure 24: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table
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Figure 25: Average win rate and standard error of the BERT-based Brain Tuned and Pretrained
models on the Moth Radio Hour dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model
(p < 0.05, indicated by *), as assessed using a Wilcoxon signed-rank test (Left). This result suggests
that improving brain alignment positively influences linguistic competence. The Brain Tuned model
shows a higher win rate in the syntax subfield (Right) and significantly higher for syntax subfield
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving
brain alignment affect that linguistic subfield.
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Figure 26: Average win rate with standard error across various linguistic phenomena for the BERT-
based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table

29



Under review as a conference paper at ICLR 2026

F GPT2 MISALIGNMENT ON HARRY POTTER BRAIN DATA RESULTS

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure as well as a quantitative summary in Figure 28] Figure 29
report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
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Figure 27: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the
Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the djstribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 28: Median Pearson correlation for GPT2-based models on the Harry Potter dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
seven subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 29: Median Pearson correlation for GPT2-based models on the Harry Potter dataset for each
participant. Brain Preserving models perform significantly worse than Brain Tuned models for two
subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 30: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain Pre-
serving models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counter-
part across tasks and participants. The Brain Preserving model outperforms the Brain Misaligned
model (significance assessed using a Wilcoxon signed-rank test reveal p = 0.055) (Left). This re-
sult suggests that removing brain alignment negatively influences linguistic competence. The Brain
Preserving model shows a higher win rate in particular in the semantics and syntax subfield (Right)
(although Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), sug-
gesting that removing brain alignment particularly affect semantics and syntax processing tasks.
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Figure 31: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table E}
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Figure 32: Average win rate and standard error of the GPT2-based Brain Preserving and Brain Tuned
models on the Harry Potter dataset across participants and tasks (Left) and across different linguistic
subfields (Right). The win rate indicates how often each model outperforms its counterpart across
tasks and participants. The Brain Tuned model significantly outperforms the Brain Preseving model
(p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result
suggests that improving brain alignment positively influences linguistic competence. The Brain
Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse
subfield (Right) and significantly higher for syntax and morphology subfields (p < 0.05, Wilcoxon
signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect
those linguistic subfields.
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Figure 33: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table
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Figure 34: Average win rate and standard error of the GPT2-based Brain Tuned and Pretrained mod-
els on the Harry Potter dataset across participants and tasks (Left) and across different linguistic sub-
fields (Right). The win rate indicates how often each model outperforms its counterpart across tasks
and participants. The Brain Tuned model shows a higher win rate in the reasoning and discourse
subfield (Right) and significantly higher for discourse subfield (p < 0.05, Wilcoxon signed-rank test
with Holm-Bonferroni correction), suggesting that improving brain alignment affect that linguistic
subfield.
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Figure 35: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the
average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table

35



Under review as a conference paper at ICLR 2026

G GPT2 MISALIGNMENT ON MOTH RADIO HOUR DATASET

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure [36] as well as a quantitative summary in Figure Figure [3§]
report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure

390l [ 1} 2] [43| 4}
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Figure 36: Performances of GPT2-based Brain Misaligned and Brain Preserving models on the Moth
Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the distribution of brain alignment across subjects and
highlight areas where brain misalignment has effects.
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Figure 37: Median Pearson correlation for GPT2-based models on Moth Radio Hour dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
3 subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 38: Median Pearson correlation for GPT2-based models on Moth Radio Hour dataset for
each participant. Brain Preserving models perform significantly worse than Brain Tuned models for
six subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 39: Average win rate and standard error of the GPT2-based Brain Misaligned and Brain
Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across
different linguistic subfields (Right). The win rate indicates how often each model outperforms
its counterpart across tasks and participants. The Brain Preserving model shows a higher win rate
(Right) in the semantics and morphology subfield (although Wilcoxon signed-rank test with Holm-
Bonferroni correction reveal no significance), suggesting that removing brain alignment particularly
affect semantics and morphology tasks.
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Figure 40: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Brain Preserving models tend to outperform Brain Misaligned models, particularly in
categories such as genericity, event structure and binding. Some concrete examples of the linguistic
tasks are provided in the Table E}
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Figure 41: Average win rate and standard error of the GPT2-based Brain Preserving and Brain Tuned
models on the Moth Radio Hour dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preseving
model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This
result suggests that improving brain alignment positively influences linguistic competence. The
Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and
discourse subfield (Right) and significantly higher for syntax, semantics, reasoning and discourse
subfields (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that
improving brain alignment affect those linguistic subfields.
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Figure 42: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table
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Figure 43: Average win rate and standard error of the GPT2-based Brain Tuned and Pretrained
models on the Moth Radio Hour dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model
(p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result
suggests that improving brain alignment positively influences linguistic competence. The Brain
Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and discourse
subfield (Right) and significantly higher for reasoning and discourse subfields (p < 0.05, Wilcoxon
signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment affect
those linguistic subfields.
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Figure 44: Average win rate with standard error across various linguistic phenomena for the GPT2-
based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table
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H LLAMA MISALIGNMENT ON HARRY POTTER DATASET

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure @3] as well as a quantitative summary in Figure #6] Figure {7]
report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure

48l 4ol [501 [511 52} [53]
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Figure 45: Performances of Llama-based Brain Misaligned and Brain Preserving models on the
Harry Potter dataset at the brain alignment task. Brain plots show voxel-wise Pearson correlations
between model activations and brain responses for each subject. The left column displays results for
the Brain Preserving model, the center column for the Brain Misaligned model, and the right column
shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger alignment
with brain activity. These results illustrate the q'! tribution of brain alignment across subjects and

highlight areas where brain misalignment has effects



Under review as a conference paper at ICLR 2026

Median Pearson Correlations

0.20
B Brain Misaligned

Brain Preserving

0.15 -

0.10 -

*

0.05 -

Median Pearson Correlations
*

0.00 -
|

Figure 46: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each
participant. Brain Misaligned models perform significantly worse than Brain Preserving models for
seven subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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Figure 47: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each
participant. Brain Preserving models perform significantly worse than Brain Tuned models for seven
subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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A) All tasks B) Tasks split by linguistic subfield
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Figure 48: Average win rate and standard error of the Llama-based Brain Misaligned and Brain Pre-
serving models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Preserving model significantly outperforms the Brain Mis-
aligned model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left).
This result suggests that removing brain alignment negatively influences linguistic competence. The
Brain Preserving model shows a higher win rate in the syntax, semantics, reasoning, morphology
and discourse subfield (Right) and significantly higher for syntax and semantics subfields (p < 0.05,
Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing brain align-
ment particularly affect syntax and semantic tasks.
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Figure 49: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Misaligned and Brain Preserving models on the Harry Potter dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table E}
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A) All tasks B) Tasks split by linguistic subfield
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Figure 50: Average win rate and standard error of the Llama-based Brain Preserving and Brain
Tuned models on the Harry Potter dataset across participants and tasks (Left) and across different
linguistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Brain Preseving
model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This
result suggests that improving brain alignment positively influences linguistic competence. The
Brain Tuned model shows a higher win rate in the syntax, semantics, reasoning, morphology and
discourse subfield (Right) and significantly higher for syntax, semantics and morphology subfields
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that improving
brain alignment affect all linguistic subfields.
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Figure 51: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Preserving and Brain Tuned models on the Harry Potter dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table
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Figure 52: Average win rate and standard error of the Llama-based Brain Tuned and Pretrained mod-
els on the Harry Potter dataset across participants and tasks (Left) and across different linguistic sub-
fields (Right). The win rate indicates how often each model outperforms its counterpart across tasks
and participants. The Brain Tuned model significantly outperforms the Pretrained model (p < 0.001,
indicated by ***), as assessed using a Wilcoxon signed-rank test (Left). This result suggests that im-
proving brain alignment positively influences linguistic competence. The Brain Tuned model shows
a higher win rate in the syntax, semantics and reasoning subfields (Right) and significantly higher
for semantics and syntax subfields (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni
correction), suggesting that improving brain alignment affect those linguistic subfields.
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Figure 53: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Tuned and Pretrained models on the Harry Potter dataset. Each bar represents the
average win rate for a specific linguistic phenomenon, with error bars indicating standard error.

Some concrete examples of the linguistic tasks are provided in the Table
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I LLAMA MISALIGNMENT ON MOTH RADIO HOUR DATASET

We report the brain alignment results for Brain Misaligned and Brain Preserving trained with data
from each participant in Figure [54] as well as a quantitative summary in Figure 55 Figure [56|
report the quantitative summary for brain alignment for the Brain Tuned model compared to Brain
Preserving model. Results for the Holmes benchmark for all the comparisons are reported in Figure
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Figure 54: Performances of Llama-based Brain Misaligned and Brain Preserving models on the
Moth Radio Hour dataset at the brain alignment task. Brain plots show voxel-wise Pearson corre-
lations between model activations and brain responses for each subject. The left column displays
results for the Brain Preserving model, the center column for the Brain Misaligned model, and the
right column shows their difference (Preserving minus Misaligned). Warmer colors indicate stronger

alignment with brain activity. These results illustrate the distribution of brain alignment across sub-
jects and highlight areas where brain misalignment has effects.
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Figure 55: Median Pearson correlation for Llama-based models on the Moth Radio Hour dataset
for each participant. Brain Misaligned models perform significantly worse than Brain Preserving
models for eight subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank
test).
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Figure 56: Median Pearson correlation for Llama-based models on the Harry Potter dataset for each
participant. Brain Preserving models perform significantly worse than Brain Tuned models for three
subjects (p < 0.05, indicated by * and assessed using the Wilcoxon signed-rank test).
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A) All tasks B) Tasks split by linguistic subfield
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Figure 57: Average win rate and standard error of the Llama-based Brain Misaligned and Brain
Preserving models on the Moth Radio Hour dataset across participants and tasks (Left) and across
different linguistic subfields (Right). The win rate indicates how often each model outperforms its
counterpart across tasks and participants. The Brain Preserving model significantly outperforms
the Brain Misaligned model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-
rank test (Left). This result suggests that removing brain alignment negatively influences linguistic
competence. The Brain Preserving model shows a higher win rate in the syntax, reasoning, mor-
phology and discourse subfield (Right) and significantly higher for syntax and morphology subfields
(p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction), suggesting that removing
brain alignment particularly affect syntax and morphology tasks.
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Figure 58: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Misaligned and Brain Preserving models on the Moth Radio Hour dataset. Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Some concrete examples of the linguistic tasks are provided in the Table E}
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A) All tasks B) Tasks split by linguistic subfield
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Figure 59: Average win rate and standard error of the Llama-based Brain Preserving and Brain
Tuned models on the Moth Radio Hour dataset across participants and tasks (Left) and across dif-
ferent linguistic subfields (Right). The win rate indicates how often each model outperforms its
counterpart across tasks and participants. The Brain Tuned model significantly outperforms the
Brain Preseving model (p < 0.001, indicated by ***), as assessed using a Wilcoxon signed-rank
test (Left). This result suggests that improving brain alignment positively influences linguistic com-
petence. The Brain Tuned model shows a higher win rate in the syntax, semantics and discourse
subfields (Right) and significantly higher for syntax and semantics subfields (p < 0.05, Wilcoxon
signed-rank test with Holm-Bonferroni correction), suggesting that improving brain alignment af-
fect those linguistic subfields.

0.8
Brain Preserving
Bl Brain Tuned

=
N

o

o
*
%
*

Average win rate
o o o o o
o N w £~ (6]
—
I
= "
I
=
B
— %
*
|
2 =
A
—

0.1
4 N 4 } o o o
N 6‘(9 & S Q’OQ O & &0 & ¥ & 606
Y & <& © < ' & 9 & < S &
N 2 > & e e I 2 9 & R
xS S < x§ N N S e ““ O 2 4
& Q& > Q 2 < N\ L D S
X > X &) @Q < Q (O N
N QO O\ (%
e Q © ) <@ R
< > ¢ N )
q\) & R {d O
RS X X 5
@ © &° ¢
N\ \
& R ©
2 N >
X< N 4
e S <
O q’b
&

Figure 60: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Preserving and Brain Tuned models on the Moth Radio Hour dataset. Each bar repre-
sents the average win rate for a specific linguistic phenomenon, with error bars indicating standard
error. Some concrete examples of the linguistic tasks are provided in the Table
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A) All tasks B) Tasks split by linguistic subfield
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Figure 61: Average win rate and standard error of the Llama-based Brain Tuned and Pretrained
models on the Moth Radio Hour dataset across participants and tasks (Left) and across different lin-
guistic subfields (Right). The win rate indicates how often each model outperforms its counterpart
across tasks and participants. The Brain Tuned model significantly outperforms the Pretrained model
(p < 0.01, indicated by **), as assessed using a Wilcoxon signed-rank test (Left). This result sug-
gests that improving brain alignment positively influences linguistic competence. The Brain Tuned
model shows a higher win rate in the syntax, semantics, reasoning and discourse subfield (Right)
and significantly higher for syntax (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni
correction), suggesting that improving brain alignment affect this linguistic subfield.
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Figure 62: Average win rate with standard error across various linguistic phenomena for the Llama-
based Brain Tuned and Pretrained models on the Moth Radio Hour dataset. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Some concrete examples of the linguistic tasks are provided in the Table

53



Under review as a conference paper at ICLR 2026

J AVERAGED COMPARISONS: ADDITIONAL RESULTS
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Figure 63: Averaged win rate with standard error for all model and dataset combinations across
various linguistic phenomena of the Brain Tuned and Brain Preserving models. Each bar represents
the average win rate for a specific linguistic phenomenon, with error bars indicating standard error.
Brain Tuned models tend to outperform Brain Preserving models, particularly in categories such
asfiller gapandnegative polarity item licensing. Some concrete examples of
the linguistic tasks are provided in the Table
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A) All tasks B) Tasks split by linguistic subfield
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Figure 64: Averaged win rate and standard error for all the model and dataset combinations of
the Brain Tuned and Pretrained models across tasks (Left) and across different linguistic subfields
(Right). The win rate indicates how often each model outperforms its counterpart across tasks
and participants. The Brain Tuned models outperforms the Pretrained models (Left). This result
suggests that train to align with brain recording lead to improvement in linguistic competence. The
Brain Tuned model shows an higher win rate in the syntax and semantics subfields (Right) (although
Wilcoxon signed-rank test with Holm-Bonferroni correction reveal no significance), suggesting that
removing brain alignment particularly affects those tasks.

mmm Pretrained
BN Brain Tuned

Average win rate

Figure 65: Averaged win rate and standard error for all the model and dataset combinations of
the Brain Tuned and Pretrained models across different linguistic phenomena (Right). Each bar
represents the average win rate for a specific linguistic phenomenon, with error bars indicating
standard error. Brain Tuned models tend to outperform Pretrained models. Some concrete examples
of the linguistic tasks are provided in the Table
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