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Abstract
Large pre-trained models such as BERT have001
been shown to demonstrate biased behavior002
towards different demographic groups, such003
as gender, race, or religion. Despite the de-004
velopment and proposal of various debiasing005
methods, there is a paucity of prior research006
focusing on the efficacy of debiasing methods007
in removing the latent demographic informa-008
tion encoded in internal representations. We009
examine the effectiveness of some recent bias010
mitigation methods in removing stereotypical011
gender information from internal model repre-012
sentations using Minimum Description Length013
(MDL) probing. We discover that the effective-014
ness of current debiasing techniques might not015
necessarily be indicative of reduced latent gen-016
der bias in representations. Furthermore, we in-017
vestigate the effect of debiasing methods on in-018
ternal representations using layerwise probing,019
showing that they tend to concentrate gender020
information in a few layers. We additionally021
apply a number of state-of-the-art debiasing022
methods to the layers with the highest gender023
information concentration, finding that by fo-024
cusing on these layers, there is only a minimal025
change in model behavior with respect to fair-026
ness and performance.027

1 Introduction028

Recent research indicates that pre-trained language029

models, such as BERT (Devlin et al., 2019), exhibit030

different societal stereotypes, including racism and031

sexism. Given the extensive implementation of032

these models and the numerous concerns it can033

cause, various methods have been proposed to034

mitigate bias in these models, either by manipu-035

lating datasets (Zhao et al., 2018a), refining the036

learning algorithm (Kaneko and Bollegala, 2021a),037

or by modifying the architecture of the network038

(Lauscher et al., 2021). Despite all these efforts,039

to our knowledge, no research has so far focused040

on the effectiveness of these methods in remov-041

ing gender information from model representations.042

As a result, there is limited evidence demonstrat- 043

ing whether these debiasing strategies eliminate 044

encoded gender-biased information. 045

In this paper, we carry out a set of experiments 046

to determine if the existing debiasing techniques 047

used to mitigate gender bias are also effective in 048

reducing the captured bias information in model 049

representations. We study three different debias- 050

ing techniques, from those that change the train- 051

ing dataset or the learning objective to those that 052

directly alter model’s architecture. We evaluate 053

the amount of captured gendered information by 054

BERT’s representations using two probing datasets, 055

BiosBias (De-Arteaga et al., 2019), and Funpedia 056

(Dinan et al., 2020). We find that the significant per- 057

formance improvements of debiasing techniques on 058

bias datasets might not necessarily indicate that the 059

gender information is discarded (or even reduced) 060

from their representations. While some methods, 061

such as counterfactual augmentation (Zhao et al., 062

2018a), tend to significantly reduce the encoded 063

gender information in some cases, others either 064

have negligible effect on BERT’s internal represen- 065

tation or even amplify the gender information that 066

they encode. 067

Furthermore, we apply MDL probing, an 068

information-theoretic probing classifier proposed 069

by Voita and Titov (2020) in a layerwise setting 070

in order to determine the layers that encode the 071

gendered information the most. We find that it is 072

indeed the case that some layers encode more of the 073

gendered information in comparison to other lay- 074

ers, with deeper layers consistently having higher 075

gender information concentration in comparison 076

to earlier layers. We apply MDL probing to the 077

base, fine-tuned, and debiased models to determine 078

the effects of debiasing on intermediate representa- 079

tions. We hypothesize that an effective debiasing 080

method should have the largest effect on layers that 081

encode the gendered information the most. 082

We finally apply counterfactual augmentation 083
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(Zhao et al., 2018a) and adapter-based debiasing084

(Lauscher et al., 2021) only to the layers that en-085

code the highest amount of gender information. We086

observe that by carefully selecting the layers that087

are to be debiased, we can reach a performance that088

is comparable to a full-model debiasing, in which089

every layer of a given model is debiased.090

Our work is inspired by Mendelson and Belinkov091

(2021) who studied the impact of debiasing tech-092

niques used to reduce the model’s reliance on spuri-093

ous correlations between data and labels in natural094

language inference on model’s representations. Our095

contribution is threefold:096

• We utilize MDL probing to determine the en-097

coded gendered information in pre-trained lan-098

guage models. We show that debiasing tech-099

niques do not necessarily reduce the encoded100

bias information in internal representations.101

• We extend the probing to layer-wise analysis102

of pre-trained language models to determine103

the distribution of encoded information across104

layers. We find that some layers tend to en-105

code this information more than the others.106

This observation can be used to develop effi-107

cient and effective debiasing techniques that108

focus on specific layers.109

• To test our hypothesis, we apply two debiasing110

techniques only on layers with the highest111

gender information concentration, finding that112

it is indeed possible to develop models that are113

comparable to fully debiased models, while114

modifying only a small portion of model’s115

weights.116

2 Background117

In this section, we discuss MDL probing, the tech-118

nique we employ to measure gender information119

captured by model representations, as well as com-120

mon measurement metrics used to quantify bias in121

neural networks.122

2.1 MDL Probing123

Traditionally, in order to extract the information124

encoded in a model’s representations, a shallow125

classifier was trained using the model representa-126

tions with the goal of predicting a linguistic feature127

(Belinkov, 2022). However, it has been shown128

that such models are unreliable, as they tend to129

classify representations of random data almost sim-130

ilarly to the representations of real data (Zhang and131

Bowman, 2018), highlighting the fact that these 132

methods are inadequate to capture variations in rep- 133

resentations, making their results hyperparameter- 134

dependent. 135

To address this problem, Voita and Titov (2020) 136

have proposed Minimum Description Length Prob- 137

ing, where in addition to the accuracy of the shal- 138

low classifier, this criteria measures how much 139

effort does it need to extract that information 140

from the model representations. Formally, they 141

establish that a code exists to losslessly com- 142

press the labels using Shannon-Huffman code 143

such that Lp(y1,z|x1,z) = −
∑z

i=1 log2p(yi|xi). 144

Note that this is the Cross-Entropy loss. Fur- 145

thermore, they define the uniform code length as 146

Lunif (yi,z|xi,z) = zlog2(C) where C is the num- 147

ber of classes in our task. 148

Having calculated the uniform code length, they 149

compare the Cross-Entropy loss against the uni- 150

form code length to find the final compression. 151

Given a model Pθ(y|x) with learnable parameters 152

θ, they choose blocks 1 = n0 < n1 < ... < ns = 153

N and encode data by these blocks. The model 154

starts by transmitting the data using the uniform 155

code length for the first chunk. The model is then 156

trained to predict labels y from the data x, and also 157

used to predict the labels. The next block is trans- 158

mitted using this trained new model. This process 159

continues until the entire dataset is covered. Final 160

compression is calculated as follows: 161

Lonline (y1:z | x1:z) = z1 log2C

−
S−1∑
i=1

log2 pθi
(
yni+1:ni+1 | xni+1:ni+1

) (1) 162

Note that this encourages the model to perform 163

well with smaller blocks, as if the model performs 164

well in compressing the data in the block ni, the 165

compression will be increased for the subsequent 166

block ni+1. 167

2.2 Bias Measurement Methods 168

Fairness metrics are measurement criteria which 169

are used to observe a model’s performance with 170

respect to protected variables such as gender. Vari- 171

ous methods have been proposed to measure gender 172

bias in machine learning models. One of the com- 173

mon approaches to measuring gender bias is by 174

looking at the statistical differences across multi- 175

ple values of the protected variables. Statistical 176

parity, for instance, states that a classifier should 177
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have an equal probability of assigning true output178

for samples with different values for protected vari-179

ables. In this study, we utilized differences in recall,180

precision, and F1 scores for measuring bias.181

3 Methodology182

To investigate the effect of gender debiasing meth-183

ods on internal model representations, we devel-184

oped a general framework based on the online code185

length, a variation of MDL probing proposed by186

Voita and Titov (2020), to quantify the gender in-187

formation contained in the model representations.188

We have conducted our experiments partially utiliz-189

ing the code provided by Orgad et al. (2022)1 and190

using two datasets and three debiasing techniques.191

Datasets. Probing datasets are defined as D =192

{X,Yp}, where X is the textual input and Yp is193

the label of the knowledge characteristic we are194

investigating, which is gender information in our195

study. A number of datasets have been proposed196

with the goal of measuring fairness, either in spe-197

cific tasks, or language modeling in general. Task198

specific datasets aim to measure societal bias us-199

ing a downstream task. Datasets such as WinoBias200

(Zhao et al., 2018a), EEC (Kiritchenko and Mo-201

hammad, 2018), and BiosBias (De-Arteaga et al.,202

2019) fall into this category. On the other hand,203

datasets such as StereoSet (Nadeem et al., 2021),204

and CrowS-Pairs (Nangia et al., 2020) aim to mea-205

sure societal biases using the language modeling206

capabilities of a pre-trained model. BiosBias (De-207

Arteaga et al., 2019) and Funpedia (Dinan et al.,208

2020) were used in our experiments, with the gen-209

der feature as the probing label. BiosBias is a set of210

396,347 biographies with the occupation of the tar-211

get person being the target label. Gender labels for212

each biography are also provided which are used213

for our probing task. Funpedia is a set of 23,000214

biography sentences pulled from Wikipedia and215

rephrased to be conversational. The target label for216

Funpedia is the gender of the target person of the217

sentence. We test all of our models on 20% of the218

BiosBias dataset and the Funpedia evaluation set;219

therefore, we have adequate data to train the prob-220

ing classifier as well as sufficient data to evaluate221

the model representations.222

Model. Textual input is represented using a lan-223

guage model fθ : X → Z, where X is the textual224

input, Z is the latent representation of the text, and225

1https://github.com/technion-cs-nlp/gender_internal

θ contains the weights of the model. Experiments 226

are conducted using model-generated representa- 227

tions Z. More specifically, we employed BERT 228

base uncased model prior to and following the ex- 229

ecution of multiple debiasing techniques. We ad- 230

ditionally test our approach on BERT models pre- 231

trained on BiosBias and Funpedia with respect to 232

their original objectives (occupation classification 233

and gender classification, respectively) in order to 234

determine the effect of pre-training in injecting gen- 235

der information into model representations across 236

various datasets. 237

Debiasing Methods. Debiasing methods are 238

techniques for modifying model’s weights θ us- 239

ing either continuous training on modified algo- 240

rithms or training objectives, or by modifying the 241

representation space using an auxiliary algorithm. 242

To implement our framework of measuring gender 243

information in the representations generated by de- 244

biasing methods, we investigate the following three 245

debiasing techniques: 246

• Proposed by Zhao et al. (2018a), counterfac- 247

tual data augmentation (CDA) is the process 248

of automatically generating text instances that 249

counter the stereotypical bias presented in rep- 250

resentation. Using general terms and nouns to 251

describe the involved groups, this technique 252

is widely used to counteract various types of 253

bias, particularly gender and ethnicity. 254

• Lauscher et al. (2021) proposed ADELE 255

(adapter-based debiasing), in which they in- 256

ject adapter modules into original pretrained 257

language model architecture and train adapter 258

modules using a counterfactually augmented 259

dataset, while maintaining the original PLM 260

parameters. They observe that their proposed 261

method improves model’s fairness without 262

much alteration in the initial knowledge. 263

• Kaneko and Bollegala (2021b) proposed a 264

post-processing debiasing method that can be 265

applied to token-level or sentence-level rep- 266

resentations. They assert that their proposed 267

debiasing technique preserves semantic infor- 268

mation captured in contextualised embeddings 269

while removing gender-related bias through 270

an orthogonal projection at the intermediate 271

layers. 272
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Figure 1: Layerwise compression of BERT models on Funpedia and BiosBias probing dataset. Higher values
indicate that the layer contains more gender information. (See the Appendix for result tables)

Model Compression
Random 7.43
Base 22.99
Fine Tuned 7.37
Contextualized Debiasing 22.91
CDA 16.98
ADELE 24.29

Table 1: Results indicating the captured gender informa-
tion prior to, and after applying the debiasing techniques
on the BERT base model using BiosBias dataset, as well
the captured gender information when the model is fine-
tuned on the occupation prediction task, or randomly
initialized.

4 Representation-Level Analysis273

In this section, we detail the first experiment we274

conduct to determine the efficacy of debiasing tech-275

niques in removing gender signals from model rep-276

resentations. We begin by describing our exper-277

imental setup, and then analyze and explain our278

findings.279

Model Compression
Random 2.30
Base 3.52
Fine Tuned 6.06
Contextualized Debiasing 3.87
CDA 3.67

Table 2: Results indicating the captured gender infor-
mation prior to, and after applying the debiasing tech-
niques on the BERT base model using Funpedia dataset,
as well the captured gender information when the model
is fine-tuned on the gender prediction task, or randomly
initialized.

4.1 Experimental Setup 280

For our first experiment, we employ the probing 281

datasets described in Section 3 and compute online 282

code length, and subsequently, the compression 283

for model representations. We carry out our ex- 284

periments on a BERT base model before and after 285

applying the three debiasing techniques described 286

in the previous section. We followed the hypter- 287

parameter setting of Lauscher et al. (2021) to im- 288

plement counterfactual augmentation and adapter- 289
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based debiasing techniques. The Wikipedia dataset290

was augmented with the word pairs employed by291

Lauscher et al. (2021), trained both models using292

the standard MLM procedure for BERT training,293

and masked 15% of the tokens on the CDA dataset294

over the course of two epochs. For the experiments295

on contextualised representation debiasing Kaneko296

and Bollegala (2021b), we used the models pro-297

vided in their GitHub repository.298

In addition, we conduct our experiments with299

randomly initialized BERT base weights as a base-300

line for gender information extractability of repre-301

sentations of a random model. We expect that a302

randomly initialized model will capture less gender303

information in comparison to other models. Ad-304

ditionally, we conduct our tests using fine-tuned305

models on BiosBias and Funpedia datasets using306

occupation prediction and gender prediction tasks,307

respectively, to measure the gender information in-308

jected into the model as a result of fine-tuning. We309

hypothesize that the captured gender information310

by model representations largely depends on the311

task on which the model is fine-tuned. Tasks re-312

quiring gender information will lead to higher gen-313

der information captured by model representations,314

whereas tasks that require little gender information315

might decrease this information.316

To determine what layers of the model capture317

the most gender information, we conduct probing318

experiments in a layerwise setting. We extract the319

representations of the model for each layer given320

a dataset, and apply Minimum Description Length321

probing to each representation individually and322

compute the associated compression.323

4.2 Results324

Effectiveness of Debiasing Methods in Remov-325

ing Gender Information. Tables 1 and 2 show326

the results of layerwise probing experiments for327

the BiosBias and Funpedia gender prediction tasks,328

respectively. For the BiosBias dataset, we find that329

out of the three tested debiasing techniques, coun-330

terfactual augmentation of the dataset is the only331

technique that results in a reduced compression332

in Minimum Description Length Probing. This333

indicates that the other techniques fail to meaning-334

fully reduce the gender information captured in335

model representations, and in the case of ADELE,336

increase it. This finding is particularly interesting337

as ADELE adapters are trained using the same pro-338

cedure as counterfactual fine-tuning of the model.339

We believe that it might be the case that these debi- 340

asing techniques, make use of gender information 341

to make fairer decisions with respect to a gender, 342

rather than removing it completely. Our results in 343

Section 5 further conforms with this hypothesis. 344

In the case of Funpedia, we find that fine-tuning 345

a model on the gender-prediction task significantly 346

increases the captured gender information. This 347

contradicts our observation on the previous task, 348

in which fine-tuning a model on the occupation 349

prediction task significantly decreases the compres- 350

sion. This is in line with our previous assumption 351

that the captured gender information largely de- 352

pends on the task on which the model is trained 353

on, meaning that when a model does not require 354

the captured gender information, it simply discards 355

it. Furthermore, we find no meaningful decrease 356

in gender information when applying other debias- 357

ing techniques, showcasing the inefficacy of such 358

techniques in removing gender information and 359

conforming with our previous results. 360

Gender information is Captured in The Final 361

Layers. Figure 1 showcases our results from the 362

layerwise analysis experiment. We observe that 363

later layers, layer 10 and onwards in particular, 364

boast significantly higher compression in compari- 365

son to earlier layers. This means that these layers 366

are extensively used during model inference regard- 367

ing gender tasks. Inferring the gender of a person 368

from a given text requires semantic knowledge over 369

the input text to handle the required agreement be- 370

tween different parts of the sentence. Thus, our 371

finding is in line with a previous work by Jawahar 372

et al. (2019) in which they show that semantic in- 373

formation is mostly encoded by the later layers of 374

the BERT model. 375

We find this information useful as it can be uti- 376

lized while developing truly gender-neutral models 377

by mainly focusing on layers that carry the most 378

gender information during the debiasing phase and 379

significantly decrease the number of trained param- 380

eters in such models. 381

5 Partial Debiasing 382

Results obtained in section 4 indicates that most 383

of the gender information is concentrated in only a 384

few layers of the BERT model. Namely, layers 9 385

through 12 contain the highest amount of encoded 386

gender information. In this section, we apply two 387

debiasing methods only on layers that contain the 388
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Model Female Male
∆ Recall ∆ F1 ∆ Precision

Recall Precision F1 Recall Precision F1

Base 62.22 68.22 65.08 77.53 70.39 73.79 15.31 8.71 2.17
Zari 71.11 53.01 60.74 45.75 73.85 56.5 -25.36 -4.24 20.84

CDA Full 58.47 67.89 62.83 78.87 68.71 73.44 20.39 10.62 0.82
CDA Last-4 57.04 71.86 63.60 80.92 68.56 74.23 23.88 10.63 -3.3

ADELE Full 60.72 69.15 64.66 77.03 72.93 69.24 16.31 8.27 0.09
ADELE Last-4 55.00 75.9 63.78 83.05 67.4 74.41 28.04 10.63 -8.5

Table 3: Performance Results for Base and Debiased BERT models in scrubbed gender prediction task. ∆ indicates
difference in a given metric and is calculated using Metric(Male) − Metric(Female)

Model Female Male
∆ Recall ∆ F1 ∆ Precision

Recall Precision F1 Recall Precision F1

Base 78.90 78.44 78.67 81.13 80.20 80.66 2.22 1.99 1.76
Zari 82.42 79.8 81.09 84.18 81.6 82.87 1.75 1.78 1.8

CDA Full 78.66 78.44 78.55 80.75 80.39 80.57 2.09 2.02 1.95
CDA Last-4 79.00 78.54 78.77 81.17 80.59 80.88 2.17 2.12 2.05

ADELE Full 79.01 77.66 78.33 81.14 80.46 80.80 2.13 2.47 2.80
ADELE Last-4 78.53 78.17 78.35 80.68 80.74 80.71 2.15 2.36 2.57

Table 4: Performance Results for Base and Debiased BERT models in occupation prediction task. ∆ indicates
difference in a given metric and is calculated using Metric(Male) − Metric(Female)

most gender information and report our observa-389

tions.390

We find that debiasing the layers with the high-391

est gender information does not adversely affect392

the model performance and fairness by a signifi-393

cant margin in comparison to debiasing the entire394

model, and requires the training of only a portion395

of model parameters. Furthermore, we find results396

that further support our previous hypothesis regard-397

ing the usage of gender information by debiased398

models to yield fairer results and not removing this399

information entirely.400

5.1 Experimental Setup401

To develop partially debiased models, we take two402

of the aforementioned debiasing techniques, coun-403

terfactual augmentation and ADELE adapter debi-404

asing, and apply them to the final 4 layers of the405

BERT model. The training process remains the406

same as Section 4, but we additionally freeze the407

initial 8 layers of the model so that debiasing is408

applied only to layers 9 through 12. In the case409

of ADELE, adapter modules are added only to the410

final 4 layers of the model.411

We test our models in two settings. First, we412

use the scrubbed version of BiosBias in which all413

words containing a gender indicator are replaced 414

by a meaningless token ("_" in this case) and train 415

a shallow classifier to predict the associated gen- 416

der of each input. The shallow classifier utilizes a 417

Sigmoid activation function. For the second test, 418

we again use the BiosBias dataset and train a shal- 419

low classifier to predict the associated occupation 420

of each person that the input text mentions. The 421

dataset contains 28 classes, and Softmax activation 422

function is used for the shallow classifier. In both 423

cases, we use 20% of the data for testing, and the 424

rest of the data for training. We run our tests 5 times 425

for each model and report the average performance. 426

As our fairness metric, we calculate the differ- 427

ence in Recall, Precision and F1-score with respect 428

to gender in both settings. e.g. the number of cor- 429

rectly predicted occupations for females out of all 430

female instances of the dataset. 431

5.2 Results 432

In this section, we demonstrate and analyze our 433

findings achieved by running BERT base and BERT 434

debiased models on scrubbed gender prediction and 435

occupation prediction tasks. 436
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5.2.1 Scrubbed Gender Prediction437

Table 3 showcases the results for scrubbed gender438

prediction task for each of our models. Somewhat439

surprisingly, we find that BERT base model per-440

forms the best with respect to difference in Recall441

out of all models, with debiased models performing442

noticeably worse. To validate our observations and443

our implementation of debiasing techniques, we uti-444

lize Zari (Webster et al., 2020), a BERT large vari-445

ant pre-trained from scratch using Counterfactual446

Augmentation, and test it alongside our original447

models. We find that Zari, alongside other debiased448

models, perform worse than the base model with449

respect to Recall difference. More interestingly, we450

observe a trend in which models yield a higher Re-451

call score in comparison to Precision score in male452

samples, while yielding a higher Precision score453

in female samples. Suggesting that models often454

assign a false-negative value to female samples,455

while assigning a false-positive value to male sam-456

ples. This observation indicates that models have457

the tendency of predicting “Male” as the true label458

across all debiased models. The only exception to459

this observation is Zari, in which female samples460

have a higher recall score. We believe that this461

behavior by Zari is due to it being pre-trained from462

scratch using Counterfactual Augmentation, which463

has created different associations in comparison to464

the original BERT model.465

We believe that this observation bolsters our pre-466

vious hypothesis of debiasing techniques utilizing467

gender information to perform fairly in downstream468

tasks. With gender indicators removed from the in-469

put data in scrubbed gender prediction task, models470

fall back to utilizing correlations to make predic-471

tions. This observation indicates that the tested472

debiasing techniques do not remove underlying473

correlations between gender and profession in a474

representational level, but simply make use of the475

gender information that is encoded in the input data476

to make fairer predictions.477

5.2.2 Occupation Prediction478

Table 4 showcases the results for gender prediction479

task for each of our models. Unlike our previous480

observation, we find that the difference in Recall481

and Precision scores across genders to be much482

closer in this case. Furthermore, we find that the483

previously mentioned trend does not hold in the484

gender prediction task, in which models yield a485

higher Recall score to female samples, indicating486

that models refrain from using stereotypical be-487

havior when exposed to gender information in the 488

input data. 489

We find that all debiased models, including Zari 490

and partially debiased models, increase the pre- 491

dictive parity (reducing the difference in Recall) 492

in comparison to the BERT base model. Mean- 493

ing that P (Ŷ = 1|Y = 1, G = M) = P (Ŷ = 494

1|Y = 1, G = F ) is further maintained in these 495

models. On the other hand, we observe a decrease 496

in the predictive equality (increasing the difference 497

in Precision) in debiased models in comparison 498

to the BERT base model. Meaning that P (Ŷ = 499

1|Y = 0, G = M) = P (Ŷ = 1|Y = 0, G = F ) 500

is weakened in these models. We believe that this 501

behavior might be due to the nature of the BiosBias 502

dataset, in which most occupations have a stronger 503

male correlation. Debiasing the model decreases 504

the false-positive-rate of these classes for male sam- 505

ples, thus increasing the precision by a relatively 506

significant margin. Female samples, however, have 507

a weaker correlation with the occupations present 508

in the dataset, thus their false-positive-rate is either 509

unchanged or changed by a small margin. 510

Furthermore, we observe that models debiased 511

using only the final four layers of the model exhibit 512

no significant decrease in performance or fairness. 513

Both partially debiased models perform compara- 514

ble to the Base model, and yield a stronger pre- 515

dictive parity. In comparison to the fully debiased 516

models, we observe a slight decrease in fairness 517

metrics in partial models, which is expected due 518

to their limited focus during the debiasing stage. 519

Further investigation is required to completely un- 520

derstand the effects of partial debiasing on model 521

fairness and behavior. However, our initial tests 522

demonstrate promising results which can be ap- 523

plied to any other debiasing approach. 524

6 Related Work 525

6.1 Gender Bias 526

Early studies concerning gender bias in language 527

models demonstrated that static embeddings not 528

only encode but also amplify human-like biases in 529

their representations (Islam et al., 2016; Bolukbasi 530

et al., 2016). A number of studies have suggested 531

methods for manipulating the embedding space or 532

learning algorithm to mitigate bias in such models 533

(Bolukbasi et al., 2016; Zhao et al., 2018b). But as 534

demonstrated by Gonen and Goldberg (2019), these 535

techniques only superficially remove biased infor- 536

mation from the embedding space of the model. 537

7



The introduction of contextualised word embed-538

dings such as BERT has raised the significance of539

this challenge, as manipulation in representation540

space is no longer as trivial as it was with static541

embeddings. It has been shown that contextualized542

language models also exhibit bias against demo-543

graphic groups such as race, gender, and religion544

(Zhao et al., 2019; Silva et al., 2021). Similar to545

static embeddings, a number of techniques have546

been proposed to mitigate bias at various levels,547

including methods that modify the language model548

itself and methods that are applied when fine-tuning549

the language model for a specific downstream task.550

In Section 3, we discussed some of the most no-551

table approaches for debiasing language models,552

which are used to reduce bias at the level of lan-553

guage modelling.554

6.2 Bias Probing555

Probing is a convenient technique for determining556

the nature and extent to which a model captures557

a particular knowledge characteristic. With the558

advancement of methods used to interpret model559

behaviour and the introduction of methods such560

as Minimum Description Length (Voita and Titov,561

2020, MDL) (which was thoroughly explained in562

Section 4), many studies have built upon this tech-563

nique to further investigate the knowledge captured564

by language models.565

Mendelson and Belinkov (2021) used MDL to566

demonstrate that debiasing methods used to make567

models robust against spurious correlations be-568

tween linguistic features and task labels in datasets569

cause the model to encode more biased informa-570

tion in its representations. More recently, Orgad571

et al. (2022) utilised MDL as a metric for assessing572

bias in model representations. They demonstrated573

that compression as an intrinsic bias metric, as574

compared to CEAT, the most prominent intrinsic575

bias measurement technique, has a much stronger576

correlation with extrinsic bias metrics used in con-577

junction with extrinsic bias mitigation techniques.578

Therefore, they argue that compression is a supe-579

rior intrinsic bias metric than CEAT. In contrast,580

we investigate the retention of gender information581

through MDL compression after intrinsically debi-582

asing a base model. In addition, MDL is applied583

layer-by-layer to determine the gender information584

captured by each layer.585

7 Conclusions 586

In this work, we apply Minimum Description 587

Length probing using two large datasets to identify 588

the effectiveness of gender debiasing methods in 589

removing the gender information encoded in BERT 590

model representations. We find that, despite the 591

success of such methods in forcing the model to 592

reduce biased behavior in downstream tasks, they 593

do not have a significant impact on the amount of 594

encoded gender information in model representa- 595

tions. 596

Additionally, we conducted evaluations in a lay- 597

erwise setting, showing that gender information is 598

mostly concentrated in the later layers of the model, 599

with the highest concentration being in layers 9 600

through 12. We hypothesized that the observation 601

can be utilized to develop debiasing methods that 602

only focus on layers with the highest gender in- 603

formation, decreasing the number of parameters 604

to optimize and making more targeted changes to 605

the original model. To test our hypothesis, we ap- 606

plied Counterfactual Augmentation debiasing and 607

ADELE debiasing only to the final four layers of 608

a BERT model. Using the occupation prediction 609

task, we found that debiasing only the layers with 610

the highest gender information yields no significant 611

drawbacks with respect to model performance and 612

fairness, making this approach worthy of investiga- 613

tion in future work. Additionally, and somewhat 614

surprisingly, we found that when gender informa- 615

tion was scrubbed from the input sentences, debi- 616

ased models revert back to associating certain pro- 617

fessions with a gender. This observation provides 618

further support for our hypothesis that debiasing 619

methods do not necessarily remove the encoded 620

gender-information. On the contrary, debiased 621

models seem to utilize this inherent information 622

to reduce the biased behavior in downstream tasks. 623

8 Limitations 624

Due to the large amount of resources required to 625

conduct the extensive tests mentioned in sections 4 626

and 5, we can only confirm the correctness of our 627

results for the BERT models. As different models 628

tend to encode linguistic knowledge in different 629

layers (Fayyaz et al., 2021), it is currently diffi- 630

cult to generalize our observation to other models. 631

Further testing on other models is required to find 632

the layers that encode the gender information and 633

observe their behavior when partially debiased. 634

Furthermore, our technique requires the presence 635

8



of gender labels to measure the encoded gender636

information. This significantly reduces the datasets637

that our method can be applied on, which reduces638

its generalizability. Further methods, especially639

those not requiring explicit gender labels, will help640

in both confirming, or refuting our observations,641

and generalizing this approach to a more general642

setting.643
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A Result Tables 810

Model Layerwise Compression Compression Variance1 2 3 4 5 6 7 8 9 10 11 12
Random 4.4 2.95 8.29 8.42 7.92 8.34 7.8 8.02 6.04 10.59 8.34 7.43 3.77
Base 4.85 6.94 5.52 5.69 8.83 7.22 5.67 5.86 9.35 14.17 17.43 22.99 29.90
Fine Tuned 5.29 7.64 10.12 5.76 13.57 8.44 7.34 7.34 12.12 13.47 12.1 7.37 7.96
Contextualized Debiasing 5.23 10.41 8.56 7.09 9.81 10.15 6.54 5.98 10.43 19.11 17.47 22.91 29.30
CDA 11.14 9.49 7.11 4.46 4.18 3.81 3.51 4.71 5.98 9.24 11.99 16.98 17.25
ADELE 4.87 6.39 6.52 5.3 6.29 6.2 5.11 7.59 9.26 13.44 17.12 24.29 32.83

Table 5: Layerwise compression of BERT models on BiosBias probing dataset. Each cell represents the compression
achieved using either a base or debiased model from the representation extracted from the layer. Highlighted cells
represent the top three layers with the highest compression.

Model Layerwise Compression Compression Variance1 2 3 4 5 6 7 8 9 10 11 12
Random 2.30 2.30 2.30 2.30 2.29 2.29 2.30 2.30 2.30 2.30 2.30 2.30 1.38e−05

Base 2.56 2.72 2.74 3.34 3.27 3.25 2.83 2.61 3.25 3.23 3.39 3.52 0.33
Fine Tuned 2.62 2.86 2.84 3.45 3.49 3.34 3.32 3.35 5.54 6.24 6.18 6.06 1.89
Contextualized Debiasing 2.66 2.75 2.84 3.24 3.19 3.21 2.61 2.67 3.01 3.19 3.52 3.87 0.13
CDA 2.49 2.73 2.76 3.01 2.89 3.04 3.06 3.18 3.77 4.05 3.62 3.67 0.21
ADELE 2.51 2.6 2.64 2.98 2.94 3.1 2.73 3.22 3.58 3.55 3.61 3.79 0.18

Table 6: Layerwise compression of BERT models on FunPedia probing dataset. Each cell represents the compression
achieved using either a base or debiased model from the representation extracted from the layer. Highlighted cells
represent the top three layers with the highest compression.
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