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ABSTRACT

Task-Oriented Dialogue (TOD) systems are commonly used to assist users in
achieving specific goals through human-computer interactions. Existing methods
typically employ a single model during response generation to simultaneously
learn response policy and perform fine-grained knowledge retrieval. However,
these task-coupling methods often lead to suboptimal response generation, incor-
porating irrelevant knowledge and policy-violating styles, which makes optimiz-
ing TOD systems more difficult. To address this challenge, we propose a novel
small-to-large model collaboration framework for task-oriented dialogue, named
SMART. This framework utilizes a small language model to generate style-only
responses without knowledge, while a large language model retrieves top-1 rele-
vant knowledge from the knowledge base independently. The style-only responses
are finally filled with top-1 relevant knowledge and form the completed responses
to users. Finally, a re-thinker is designed to check the contextual relevance and
knowledge accuracy of responses. Experiments on two public datasets demon-
strate that SMART outperforms existing methods by an average of 5.79% in Entity
Fl1.

1 INTRODUCTION

Task-Oriented Dialogue (TOD) systems interact with users in natural language to help them accom-
plish information-driven tasks, such as hotel booking, weather inquiry, and scheduling tasks |(Chen
et al.| (2017). All of these tasks require TOD systems to generate highly accurate knowledge-based
responses and perform specific actions. Therefore, TOD tasks often necessitate multi-step knowl-
edge retrieval from an external knowledge base to generate accurate responses for users |Qin et al.
(2023a). As illustrated in Figure [1| (a), some existing methods directly utilize a single language
model (LM) to generate responses based on both the dialogue context and the entire knowledge
base |[Rony et al.|(2022); Dong & Chen|(2023). In these methods, the LM-based generators produce
responses token by token while simultaneously performing knowledge retrieval. However, there are
two main challenges: (1) When the knowledge base is large, the model input becomes excessively
long, leading to an increased response generation time. (2) Since an entire knowledge base is used as
input, the model struggles to generate precise responses among a vast number of knowledge records.

To address these challenges, some works propose alleviation strategies [Wan et al.| (2023)); Shi et al.
(2023); [Shen et al.| (2023). These methods employ a knowledge retriever to first select the top-K
relevant knowledge records from the knowledge base, and then feed the selected records together
with the dialogue context to the generator for response generation [Chen et al.| (2025a), as shown
in Figure[I] (b). However, they still require the LM-based generator to retrieve fine-grained knowl-
edge from the top-K records during response generation. In practice, these methods frequently
generate suboptimal responses that include policy-violating styles and irrelevant knowledge. An-
other key limitation of these approaches lies in their retrievers: they typically encode each entire
knowledge record into a single vector and perform retrieval based on vector similarity. This coarse-
grained matching strategy makes it difficult to capture fine-grained attribute-value differences be-
tween knowledge records. As a result, the retrieved top-K knowledge may still contain irrelevant or
noisy entries.
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Figure 1: Methods for task-oriented dialogue. (a) This kind of method employs the dialogue con-
text and entire knowledge base as input to LM for response generation with knowledge. (b) This
kind of method utilizes a knowledge retriever to conduct coarse-grained knowledge retrieval. (c)
Our method, which totally decouples response generation and knowledge retrieval, enabling each
component to focus on a single task.

In this paper, we introduce SMART (Small-to-large Model collAboration fRamework for Task-
oriented dialogue), a novel framework designed to alleviate the task-coupling limitations of existing
TOD systems. SMART fully decouples knowledge retrieval from response generation, enabling
each component to focus on a single task. A Small Language Model (SLM) is trained to gen-
erate style-only responses containing placeholder slots for attributes, while a training-free Large
Language Model (LLM) leverages a fine-to-coarse retrieval mechanism to retrieve the most relevant
knowledge record (top-1) from an attribute-filtered knowledge base which filters irrelevant attributes
based on the attribute slots. Then, the attributes of the top-1 knowledge record are directly filled into
the slots of the style-only response. This task separation allows for targeted optimization and better
generalization. To ensure a relevant and accurate final response, we introduce a re-thinker module
that evaluates both the contextual relevance and correctness of the generated output. Experiments
on two public datasets demonstrate that SMART consistently outperforms existing methods, achiev-
ing an average improvement of 5.79% in Entity F1 score. In summary, this paper provides three
contributions:

* We propose a new small-to-large model collaboration framework for task-oriented dialogue
named SMART. It synergizes the efficiency of a small language model for response style
learning with the precise knowledge retrieval of a frozen large language model, and thereby
enables a balanced and adaptable method for task-oriented dialogue.

* We introduce a novel fine-to-coarse knowledge retrieval mechanism. It leverages attribute
slots from style-only responses to filter out irrelevant knowledge attributes, thereby nar-
rowing the retrieval scope to select the top-1 knowledge record. This mechanism improves
the precision of retrieving relevant knowledge while reducing computational costs.

* Experiments on all two publicly available datasets demonstrate our proposed method out-
performs state-of-the-art baselines. A series of in-depth experiments analyses validates
the effectiveness of both the small-to-large model collaboration framework and the fine-to-
coarse knowledge retrieval mechanism.

2 RELATED WORK

Existing end-to-end task-oriented dialogue (TOD) systems can generally be categorized into two
paradigms: the unified paradigm and the pseudo-pipeline paradigm.

The unified paradigm employs a single model to directly generate responses based on both the
dialogue context and the knowledge base. For instance, Madotto et al.[(2018)) propose Mem2Seq,
an end-to-end neural network that uses a memory network to store dialogue context and knowledge
records, followed by a pointer network to generate responses. Qin et al.|(2020) extend Mem2Seq
with a shared-private framework to separately learn domain-shared and domain-specific knowledge.
With the rise of pre-trained language models (PLMs), many works adopt PLMs to build unified
systems. [Budzianowski & Vuli¢| (2019) propose fine-tuning PLMs for dialogue tasks, while |Yang
et al.[(2021)) directly use GPT-2 to model the entire dialogue session as a sequence of user utterances,
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belief states, database results, system acts, and responses. Wang et al.|(2022) enhance GPT-2 with
lightweight adapter and CopyNet modules (GPT-Adapter-CopyNet) for better domain adaptation
and entity generation. Rony et al.|(2022) propose DialoKG, which dynamically embeds knowledge
into context for GPT-2. To further improve generation accuracy, Ding et al.|(2024) introduce a prefix
trie to constrain GPT-2’s outputs, ensuring consistency with the knowledge base.

However, jointly optimizing knowledge retrieval and response generation in a single model often
leads to suboptimal performance and poor interpretability. To address this, the pseudo-pipeline
paradigm separates the TOD task into two loosely coupled components: a retriever and a genera-
tor. For example, (Cai et al|(2019) utilize a retriever to retrieve past similar dialogues and extract
a retrieval-based skeleton, which is then used to generate a final response. [Tian et al.| (2022) pro-
pose Q-TOD, which extracts query representations from dialogue context for knowledge retrieval,
followed by response generation. [Wan et al.| (2023)) propose MAKER, a multi-granular retriever that
includes both entity and attribute selectors to improve knowledge relevance. |Shen et al.[(2023)) use
maximal marginal likelihood to train the retriever using feedback from response generation. Sim-
ilarly, [Shi et al.| (2023)) propose a dual feedback mechanism to jointly optimize the retriever and
generator. |Dong et al.| (2024) employ LLMs as knowledge retrievers and separate LMs for genera-
tion. SAGE Chen et al.|(2025a)) further introduces span-level attention in the generator to focus on a
single knowledge record among top-K retrieved candidates, alleviating entity inconsistency.

In summary, while recent pseudo-pipeline methods such as MAKER and SAGE attempt to sepa-
rate knowledge retrieval and response generation, they still rely on a single model to perform each
sub-task. In contrast, our SMART framework explicitly coordinates a small model for style-only
response generation and a large model for knowledge retrieval and verification, enabling a clear
functional separation and enhanced interpretability.

3 METHOD

3.1 PROBLEM DEFINITION

For the i-th dialogue turn, the dialogue context d; consists of the full dialogue history and the current
user utterance u;. It is defined as d; = [u1,81,...,ui—1, Si—1,U;], where u; and s; denote the
user utterance and system response at turn j. An external knowledge base K is used to provide
knowledge for TOD system to generate a informative response. The knowledge base contains N

knowledge records, denoted as K = [e1,ea,...,en]. Each knowledge record e; is a collection

1,1 2,2 J

of attribute—value pairs and can be represented as e; = [(a},v}), (a2,v2),..., (a?,v?)], where a!
denotes the j-th attribute and vf denotes its corresponding value. The attribute set of the knowledge
base is denoted as A = {a',a?,...,aM}, where M is the total number of attributes in knowledge
base schema. The system generates a response s; based on the ¢-th turn dialogue context d; and the

knowledge base K.

3.2 MODEL ARCHITECTURE

The proposed SMART consists of a response style generator, a fine-to-coarse knowledge retriever,
and a re-thinker. The overall architecture of SMART is shown in Figure 2] Firstly, the response
style generator according to the i-th turn dialogue context d; to generate the style-only response p;.
This response is not a completed response, there are some placeholder attribute slots A; in it. These
attribute slots are then used as attribute filters for fine-to-coarse knowledge retrieval. That means
for each record in the knowledge base, only the attributes corresponding to the slots are retained
for subsequent top-1 knowledge retrieval, while the remaining attributes are removed by an attribute
filter. Next, the parameters-frozen LLM-based knowledge retriever is utilized to retrieve the most
relevant knowledge based on dialogue context d; and an attribute-filtered knowledge base K ". The
values of the attributes from the retrieved knowledge are finally filled into the style-only response
and form the ¢-th turn completed response §;.
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Figure 2: The overall architecture of SMART.

3.3 THE RESPONSE STYLE GENERATOR

The response style generator is designed to rapidly generate a style-only response that includes
specific attribute slots A;, which are essential for both fine-to-coarse retrieval and final response
generation. Given the i-th dialogue context d;, an encoder Encgy transforms the raw dialogue context
into a vector representation hftm. As Encq consists of an SLM, the context length is limited. we
adopt a time-window strategy that retains only the most recent K dialogue turns, truncating the full
dialogue context d; as truncated context d'"", and obtain a corresponding vector representation hf”/ .

The vector hftm/ is then passed to a decoder Decy with a specific adapter layer, which decodes the
embedded context into a predicted style-only response p;. This response is not fully completed and
instead contains attribute slots A;, placeholders for specific details that will be filled after knowledge
retrieval. Formally,

f)i = LM(dana alma 0ap); (1)

where 0;,,, are the parameters of the SLM used for response style generator, 6, are parameters of
the specific adapter layer.

To comprehensively train the response style generator, we adopt a multi-task training strategy. In
addition to generating style-only responses denoted as p;, the model is also tasked with predicting
the corresponding completed response §;. This auxiliary task encourages the model not only to
capture the stylistic policy of responses but also to develop a better understanding of fine-grained
knowledge usage, such as assessing whether specific attribute values are appropriate in context.
To facilitate this, we introduce a completed response task adapter layer with parameters 6, into
the decoder Decg, enhancing the generator’s versatility and its ability to generalize across varying
dialogue contexts. Formally,

§ = LM, K O ). @

It is worth noting that the completed response generation task is only used in the training phase.

To train these two types of responses, we employ a straightforward yet effective approach using
cross-entropy (CE) loss. The specific loss function used in the training process is described in
Equation 3]

Etotal = CE(ﬁupl) + CE(élzﬂ Si) (3)

The p; is the golden style-only response and s; is the golden completed response from the datasets.
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3.4 THE FINE-TO-COARSE KNOWLEDGE RETRIEVER

To enable more precise knowledge retrieval, we propose a fine-to-coarse retrieval mechanism that
incorporates attribute-based filtering. Each knowledge record in K is associated with multiple at-
tributes (e.g., “name”, “phone”, “address”, and “type”). However, in most real-world scenarios,
many attributes in the retrieved knowledge record are redundant and not ultimately used in the final
response. To address this issue, we extract a subset of relevant attribute slots A; obtained from the
style-only response to retain only the necessary information and discard irrelevant attributes from

the knowledge base. The attribute-based filtering process is formally defined in Equation [4]

K' = Filter(K, A)) (4)

K'isa fine-grained attribute knowledge base obtained by applying a simple filtering function Filter
to K, which retains only the attributes specified in A; for each knowledge record. Next, the fine-to-

coarse knowledge retriever takes both the filtered knowledge base K " and the dialogue context d;
as input. The retriever leverages the inference capabilities of LLM to assess the relevance of each
candidate knowledge record, evaluating how well it matches the dialogue context. The used prompt
P’ designed as ”Dialogue context: {}. Knowledge records: {}. According to the dialogue context,
determine which knowledge records are appropriate. Answering with the name of the knowledge
record is fine.”’. Through this process, the retriever directly selects the top-1 most relevant knowledge
record for the ¢-th turn eﬁ‘)p , ensuring the most accurate response is generated in response generation
phase. Formally,

P = LLM(d;, K, P"). (5)
Given top-1 most relevant knowledge record ez‘)p , the value of the attributes from the retrieved top-1
relevant knowledge record are filled into the style-only response and form the i-th turn completed
response §;. Formally,

3; = Fill(el?, p;) (6)

7

3.5 THE RE-THINKER

The re-thinker is designed to reassess and refine the completed response by given the dialogue
context d; and retrieved top-1 knowledge record. The re-thinker evaluates this completed response
by concatenating it with the dialogue history to assess whether the response is appropriate in the
given context. The prompt used for re-think is designed as "Dialogue context: {}. A response: {}.
Do you think the response fits the context? Answer yes or no is enough. Think step by step.”

If the response is deemed appropriate, this completed response is used as the final completed re-
sponse. Otherwise, a re-generation prompts P9 is designed to guide the LLM to generate a contex-
tually response. The prompt is "Dialogue context: {}. Knowledge records: {}. An example of a
non-applicable response: {}. You need to respond to the user based on the given dialogue context,
the non-applicable response sample, and the knowledge record I have provided to you. So, your
response is?”

This re-thinker ensures that SMART output is both contextually knowledge relevant and style-
compliant, while also being refined through an additional layer of evaluation to guarantee its overall
quality and speed.

4 EXPERIMENT

4.1 DATASET

The effectiveness of the proposed model was validated using two publicly available task-oriented
dialogue datasets: CamRest|Wen et al.|(2017), and MultiWOZ 2.1 (MWOZ) Budzianowski et al.
(2018). The Camrest dataset primarily focuses on the restaurant reservation domain and contains
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676 multi-turn dialogues. The MWOZ dataset consisted of five domains: train, hotel, restaurant,
taxi, and attraction. It is composed of 2,877 multi-turn dialogues. Each dataset was further divided
into training, validation, and test sets following previous work [Wan et al.| (2023).

4.2 EVALUATION METRICS

To evaluate model performance, we use five metrics: BLEU (4-gram), Entity F1, Entity precision,
Entity recall, and Entity accuracy. BLEU Papineni et al.|(2002) measures fluency via n-gram overlap
between the enerated text and the reference text. Entity F1 |Eric et al. (2017)), the harmonic mean
of precision and recall, assesses accurate entity identification and use in dialogue. Entity Precision
evaluates the correctness of generated entities, Entity Recall measures coverage of reference entities,
and Entity Accuracy gauges overall entity recognition accuracy.

4.3 BASELINE

To objectively evaluate our method, we select a variety of representative baseline models for com-
parison, categorizing them according to their knowledge retrieval strategies in response generatiorﬂ

Implicit retrieval: These methods integrated the processes of knowledge retrieval and response gen-
eration within a single model, including GraphMemDialog |Wu et al.| (2022), ECO Huang et al.
(2022), DialoKG [Rony et al.| (2022), MPEToDs |Qin et al.| (2023b), PluDG |Dong & Chen| (2023)),
Uni-ToD |Ding et al.|(2024)) and IEM |Chen et al.[(2024).

Explicit retrieval: These methods utilize a knowledge retriever to retrieved the top- K relevant knowl-
edge records, only conduct fine-grained knowledge retrieval during the response generation, includ-
ing Q-TOD [Tian et al.|(2022), MAKER |Wan et al.|(2023), DF-TOD [Shi et al.| (2023), RGA-TOD
Shen et al.[(2023)), and MLTOD Dong et al.|(2024).

4.4 IMPLEMENTATION

We use the base version of Flan-T5 |[Raffel et al| (2020) as the response style generator. During
training, we set the learning rate to 5 x 10~° and employ the AdamW optimizer. Additionally, we
utilize a Llama-3-8B model with frozen parameters as both the fine-to-coarse knowledge retriever
and the re-thinker. All experiments are conducted on an NVIDIA RTX 3090 GPU with 24GB of
memory.

4.5 MAIN RESULTS

To comprehensively compare the performance of SMART with several baseline models, we utilize
two public datasets and five metrics to evaluate these methods. SMART consistently outperforms
baseline models in all metrics across the datasets and achieved state-of-the-art (SOTA). On the Cam-
Rest dataset, SMART achieves a BLEU score of 27.21, which represents a 4.7% improvement over
the second-best baseline, IEM (25.99). In terms of entity metrics, SMART surpass baselines by
2.5% in Entity F1, 1.3% in Entity Precision, 3.1% in Entity Recall, and 3.9% in Entity Accuracy, re-
spectively. On the MWOZ dataset, SMART achieves a BLEU of 18.82, improving by 3.1% over the
previous SOTA baseline DF-TOD (18.26). Additionally, SMART outperforms LQ-TOD by 9.1%
in Entity F1, 10.1% in Entity recall, and 5.9% in Entity accuracy. compared to MAKER, SMART
achieves a 4.2% boost in Entity Precision. These results demonstrate SMART has an advantage in
generating fluent, and knowledge-accurate response, highlighting effectiveness of our small-to-large
model coordinated retrieval and response framework.

4.6 ABLATION STUDY

To explore the contribution of each part from SMART, we conduct the ablation study experimenﬂ
Table |2 presents the results of the experiment. When we remove the fine-to-coarse knowledge
retriever (W/o fine-to-coarse knowledge retriever) and use the coarse-to-fine knowledge retriever

!The descriptions of these baselines are detailed in the Section
’The result of ablation study on CamRest dataset can be found in Appendix
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Table 1: Performance comparison of SMART and baseline models on two public datasets (CamRest
and MWOZ). Bold numbers indicate the state-of-the-art results. Numbers with underline indicate
the second results.

Dataset Method BLEU Entity F1  Entity Precision Entity Recall ~Entity Accuracy
GraphMemDialog|Wu et al.|[(2022)  22.30 64.40 - - -
ECO|Huang et al.|(2022) 18.42 71.56 - - -
DialoKG|Rony et al.|(2022) 23.40 75.60 77.31 73.97 50.32
MPEToDs |Qin et al.|(2023b) 19.30 58.90 - - -
PluDG Dong & Chen|(2023) 23.00 76.90 77.20 76.61 51.86

CamRest MAKER Wa_n et al. (2023) 25.04 73.09 73.89 72.31 46.32
DF-TOD |Shi et al.|(2023) 25.85 72.83 - - -
RGA-TOD |Shen et al.|(2023) 25.00 72.09 - - -
Uni-TOD |Ding et al.|(2024) 24.70 77.80 78.89 76.78 52.39
IEM Chen et al.[(2024) 25.99 77.12 77.34 76.91 51.05
MLTOD Dong et al.|(2024) 25.20 77.49 77.85 77.13 51.79
SMART(Ours) 27.21 79.72 79.92 79.53 54.43
GraphMemDialog[Wu et al.[(2022)  14.90 40.20 - - -
ECO|Huang et al.|(2022) 12.61 40.87 - - -
DialoKG|Rony et al.[(2022) 12.60 43.50 43.87 43.12 31.47
MPEToDs|Qin et al.|(2023b) 13.60 36.60 - - -
PluDG |Dong & Chen|(2023) 9.20 42.40 43.56 41.32 30.28

MWOZ MAKER |Wan et al.|(2023) 17.23 53.68 55.17 52.27 37.21
DF-TOD |Shi et al.|(2023) 18.26 52.52 - - -
RGA-TOD|Shen et al.|(2023) 16.97 51.99 - - -
Uni-TOD |Ding et al.|(2024) 12.30 44.30 46.27 42.49 33.07
IEM |Chen et al.|(2024) 15.18 45.20 47.42 43.18 32.89
LQ-TOD|Chen et al.|(2025b) 17.97 54.35 54.53 54.17 38.78
SMART(Ours) 18.82 58.55 57.48 59.65 41.07

Table 2: Model ablation experiments for two different modules on MWOZ dataset.

Method BLEU Entity F1 Entity Precision  Entity Recall ~ Entity Acc.
Ours 18.82 58.55 57.48 59.65 41.07

w/o fine-to-coarse knowledge retriever 14.34 (4.48]) 55.64 (291)) 54.47(3.01)) 56.87 (2.78)) 39.22 (1.85))
w/o completed response generation task  16.32 (2.50]) 56.32(2.23]) 55.72(1.76)) 56.93 (2.72)) 39.93 (1.14))
w/o re-thinker 17.01 (1.81}) 57.31(1.24)) 56.76 (0.72]) 57.87 (1.78)) 40.75(0.32))

from MAKER [Wan et al, (2023) to conduct knowledge retrieval, the performance is depressing.
As the same, when we remove the re-thinker (w/o re-thinker), SMART also has a performance
decline. In addition, removing the completed response generation task (w/o completed response
generation task) also leads to a noticeable drop across most evaluation metrics, showing that this
module is essential for ensuring accurate and coherent response generation. These results indicate
that the fine-to-coarse knowledge retriever, the re-thinker, and the completed response generation
task all play crucial roles in the overall effectiveness of SMART, as their removal negatively impacts
performance across all evaluation metrics.

4.7 EFFECT OF DIRECT LLM-BASED GENERATION

A potential concern is whether it is necessary Taple 3: Comparison between direct LLM Re-
to use an SLM for style-only response genera- Thinker and our style-only LM approach on
tion. One might argue that directly feeding the (CamRest and MWOZ, datasets.

raneved knowledge into an LLM for generation, — CamRest MWOZ
with appropriate prompting or few-shot learning, BLEU Entity FI BLEU Entity Fl

could achieve similar effects without additional ~ Jemini-2 flash O o
modeling. To verify this, we conduct experiments  Qwen2.5-7B 092 5281 132 3552
on the CamRest and MWOZ datasets. Although ~ Llama3-88 081 5160 171 34.36

h . bili di 1 Llama3-8B (Finetuned) 5.38 54.87 245 35.32
LLMs have strong reasoning ability, directly us- Ours 2721 7972 1882  58.55

ing them for response generation without finetun-
ing often results in verbose outputs containing irrelevant or excessive attributes. This substantially
lowers BLEU and Entity F1 scores. In contrast, training a style-only SLM ensures concise, stylized
responses that are easier to control. Table E] shows the results. Across both datasets, the direct LLM
for generation underperforms compared to our style-only approach. While finetuning improves
performance (e.g., Llama3-8B (Finetuned)), it still falls significantly short of our method. These
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Table 4: The impact of large-small language model collaboration framework.

Retrieval method Generation method BLEU 1 Entity F1 T Time (s) |
LLM Coarse-only Retrieval LLM Generation 7.41 41.39 16.98
LLM Coarse to Fine Retrieval LLM Generation 9.74 43.09 23.67
LLM Fine to Coarse Retrieval LLM Generation 10.34 47.05 14.32
LLM Coarse-only Retrieval LM Generation 14.64 51.95 12.52
LLM Coarse to Fine Retrieval LM Generation 16.49 53.95 16.38
LLM Fine to Coarse Retrieval LM Generation 18.82 58.55 11.13
LM Retrieval LM Generation 17.23 53.68 10.89
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Figure 3: Different LLMs Performance in fine-  Figure 4: Performance of different LLMs in the
to-coarse retrieval. re-thinker.

results confirm that the style-only SLM plays a crucial role in achieving high-quality task-oriented
responses while costing fewer computational resources.

4.8 COORDINATED STRATEGY OF LARGE-SMALL LANGUAGE MODEL COORDINATED
FRAMEWORK

In order to explore how to coordinate large language model and small language model to achieve
the best performance for TOD, we try several model-coordinated strategies. Table [4] presents an
analysis of different model-coordinated strategies between large and small language models within
the coordinated framework of SMART. The table compares various retrieval methods: LLM based
coarse-only retrieval, LLM based coarse-to-fine retrieval, and LLM based fine-to-coarse retrieval
and their corresponding generation methods. We evaluate their impact on three metrics: BLEU, En-
tity F1, and inference time. The results reveal that the best-performing configuration is the strategy
of LLM-based fine-to-coarse retrieval with LM-based generation, achieving the highest BLEU score
(18.82) and Entity F1 (58.55). Moreover, regardless of the retrieval method, using LLM generation
yields lower BLEU and Entity F1 scores than using LM generation, likely because task-oriented
dialogue demands high accuracy and strict adherence, while LLMs prioritize naturalness and diver-
sity, often introducing redundancy or deviations from reference responses. In terms of efficiency,
our method achieves the lowest latency among all approaches involving LLMs, with an average in-
ference time of only 11.13 seconds. This is just about 0.2 seconds slower than the pure LM-based
model (10.89 seconds), while still substantially faster than other strategies involving LLMs (e.g.,
23.67 seconds for LLM coarse-to-fine retrieval). These findings demonstrate that our approach not
only maintains high efficiency but also effectively leverages the advantages of LLMs. Overall, the
coordinated fine-to-coarse retrieval with LM-based generation yields the most balanced and effective
results in both quality and efficiency.

4.9 IMPACT OF LARGE LANGUAGE MODEL ON FINE-TO-COARSE RETRIEVAL AND
RE-THINKING

To investigate the impact of different LLMs on fine-to-coarse retrieval and the Re-Thinker within the
SMARTS framework, we evaluated five models on the MultiWOZ dataset: GPT-40, GPT-40-mini,

Llama2-7B, Llama3-8B Dubey et al[(2024), and Deepseek-R 1-Distill-Qwen (7B)|Guo et al.| (2025).

The evaluation was conducted using entity-related metrics, including Entity F1, Entity Precision, and
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Entity Recall. The experimental results are illustrated in Figures [3]and[d] Specifically, Llama2-7B
demonstrated the weakest overall performance, with a particularly large gap compared to other mod-
els in fine-to-coarse retrieval. In contrast, GPT-40 and GPT-40-mini achieved highly similar results
across all three metrics under fine-to-coarse retrieval, suggesting that reducing model size did not
substantially impair performance. Within the Re-Thinker, GPT-40 achieved the best results in terms
of Entity F1 and Entity Precision, Llama3-8B excelled in Entity Recall, while Llama2-7B contin-
ued to lag behind across all measures. In summary, the findings indicate that within the SMARTS
framework, model performance in fine-to-coarse retrieval and the Re-Thinker does not solely de-
pend on model scale. Instead, it is more closely tied to the refinement of semantic representation
and the stability of reasoning processes. In particular, stronger semantic encoding supports more
accurate retrieval, while robust reasoning and self-correction capabilities enhance the effectiveness
of the Re-Thinker. Therefore, improving semantic alignment and self-refinement abilities is more
effective for boosting performance on complex tasks than merely increasing model size.

4.10 PERFORMANCE COMPARISON ON LARGE-SCALE KNOWLEDGE BASE

Previous methods are typically trained and eval-
uvated on standardized-scale knowledge bases. Table 5: The results of SMART and baseline
However, in real-world scenarios, knowledge is models with a large-scale knowledge base on
retrieved from large-scale knowledge bases. To the MWOZ and CamRest datasets respectively.
simulate such scenarios, following previous work
Ding et al|(2024); Wan et al| (2023)), we aggre-  Method BLESamggtsitty F1 BLE{IJ\/I ngity Fl
gate all knowledge records from the databases ~DF-Net B - 6.45 2731
provided from the CamRest and MWOZ datasets =~ EER 20.61 57.59 11.60 31.86
to construct a unified large-scale dataset to eval- ~ FG2Seq 1920 5935 1074 33.68
uate the performance of the methods. The re- CDNet 16.50 63.60 10.90 31.40

. Q-TOD 21.44 63.88 16.67 47.13
sults are shown in Table The results reveal  \ARER 2619 7209 1625  50.87
that the performance of existing systems deterio- Ours 26.56 717 17.41 56.45
rates when using the large-scale knowledge base
compared to their performance on standardized-scale knowledge bases. However, our model out-
performs the baselines under the large-scale knowledge base setting. This improvement can be at-
tributed to our fine-to-coarse knowledge retrieval mechanism and re-think mechanism, which enable
it to retrieve more precise knowledge and relevant attributes during response generation.

4.11 HUMAN EVALUATION

We conduct a human evaluation by distributing
an online survey to 50 university volunteers. Our Table 6: The result of human evaluation on
method, SMART, is compared with two previ- MWQOZ dataset with stateful configuration.

ous state-of-the-art (SOTA) models, MAKER and

8 X Model Naturalness ~ Correctness  Task Completion
Uni-TOD. The evaluation assesses response natu- EM 39 37 33
ralness, correctness, and task completion using 50 MAKI;?)R 23 ‘312 3‘3

. Uni-TOD 3. . X
dialogue samples from the MWOZ dataset. The o i1 id i3

results, presented in Table @ show that SMART
consistently achieves the highest scores across all metrics. These findings suggest that SMART
integrates a more effective mechanism for generating human-like, contextually appropriate, and
goal-oriented responses, making it a strong candidate for task-oriented dialogue systems.

5 CONCLUSION

In this paper, we propose SMART, a novel small-to-large model coordinated framework for task-
oriented dialogue. SMART addresses the task-coupling limitations of traditional TOD systems by
introducing a fine-to-coarse knowledge retrieval mechanism and a re-thinker. These designs enhance
retrieval precision, reduce computational complexity, and improve response quality. By coordinat-
ing small and large language models, SMART effectively balances efficiency and informativeness.
Extensive experiments on two public datasets demonstrate its superior knowledge retrieval accuracy
and response generation capabilities, achieving effective improvements in Entity F1.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, large language models were used exclusively for language polishing; they were not
involved in any stage of paper conceptualization, structure design, or argument development.

B ABLATION STUDY ON CAMREST DATASET

To further validate the robustness of our approach, we additionally conduct an ablation study on
the CamRest dataset. Table [/|reports the results. Specifically, we examine the impact of three key
components: the fine-to-coarse knowledge retriever, the completed response generation task, and
the re-thinker module.

The results show that removing any of these components consistently leads to performance degrada-
tion across most evaluation metrics. In particular, removing the fine-to-coarse knowledge retriever
yields the largest drop in BLEU score and entity accuracy, highlighting its crucial role in ensuring
precise knowledge selection. Similarly, excluding the completed response generation task reduces
both precision and recall of entities, indicating that this task contributes to generating more infor-
mative and complete responses. Finally, removing the re-thinker module also results in noticeable
performance decline, demonstrating the effectiveness of iterative refinement in improving overall
system quality.

Overall, the ablation results on CamRest are largely consistent with those observed on the Multi-
WOZ dataset, further confirming the generalizability and necessity of each component in our frame-
work.

Table 7: Ablation study on the CamRest dataset.

Method BLEU Entity Entity Precision Entity Recall Entity Acc.
Ours 2721  79.72 79.92 79.53 54.43
w/o fine-to-coarse knowledge retriever 2533  78.01 77.90 78.13 51.21
w/o completed response generation task  25.79  78.54 78.11 78.98 52.85
w/o re-thinker 26.71  79.15 79.40 78.90 5391

C THE OVERALL INFERENCE PHASE

In the inference phase in SMART, the fine-tuned response style generator, with its compact parame-
ter size, rapidly produces an initial style-only response p;. Attribute slots is extracted from p; to form
a filtered knowledge base K ', excluding irrelevant attributes. The fine-to-coarse knowledge retriever
performs top-1 knowledge retrieval using K "and dialogue context, filling attribute values into p; to
create a completed response §;. The re-thinker evaluates §; for quality and contextual appropriate-
ness. If §; meets quality standards, it serves as the final response; otherwise, a re-generation phase
employs an LLM to produce a refined, high-quality response. This mechanism ensures SMART
balances speed and accuracy. The overall pseudo code of the SMART inference phase is presented
in Algorithm 1]
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Algorithm 1: Pseudo code of SMART inference

Input: i-th turn Dialogue context d;, Knowledge base K
Output: Response from ¢-th turn dialogue §;

Dis A; + LM(d!™) // Obtain a style-only response and attribute slots
K' + Filter(K , A;) /I Obtain a attribute filtered knowledge base according to the attribute slots

eEOP + LLM(d;, K', P") // Obtain the top-1 knowledge record by a dialogue context and a
attribute filtered knowledge base

Si Fill(eﬁ"p , D;) // Fill the attribute values into the style-only response and obtain a completed
response.

r <— Re-Thinker(s;, d;) // Determine whether the response is logical based on the dialogue
context and return a context-sensitive boolean value r.

if 7 is No then
L §; + LLM(d;, §;, €'°?, P9) // Re-generate a response as the final completed response.

(2
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