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ABSTRACT

We propose a model-free offline multi-step reinforcement learning (RL) algorithm,
Conservative Peng’s Q(λ) (CPQL). Our algorithm adapts the Peng’s Q(λ) (PQL)
operator for conservative value estimation as an alternative to the Bellman operator.
To the best of our knowledge, this is the first work in offline RL to theoretically and
empirically demonstrate the effectiveness of conservative value estimation with the
multi-step operator by fully leveraging offline trajectories. The fixed point of the
PQL operator in offline RL lies closer to the value function of the behavior policy,
thereby naturally inducing implicit behavior regularization. CPQL simultaneously
mitigates over-pessimistic value estimation, achieves performance greater than
(or equal to) that of the behavior policy, and provides near-optimal performance
guarantees — a milestone that previous conservative approaches could not achieve.
Extensive numerical experiments on the D4RL benchmark demonstrate that CPQL
consistently and significantly outperforms existing offline single-step baselines. In
addition to the contributions of CPQL in offline RL, our proposed method also
contributes to the framework of offline-to-online learning. Using the Q-function
pre-trained by CPQL in offline settings enables the online PQL agent to avoid the
performance drop typically observed at the start of fine-tuning and attain robust
performance improvement.

1 INTRODUCTION

Offline RL aims to learn policies from a static dataset collected under unknown behavior policies
without further interactions with the actual environment. However, offline RL faces a major challenge
known as distributional shift (Levine et al., 2020). A distributional shift arises when the state-action
distribution under the learned policy diverges significantly from that under the behavior policy.
This issue is exacerbated when the application of the Bellman updates to value functions involves
querying values of out-of-distribution (OOD) state-action pairs, which can lead to an accumulation of
extrapolation errors and ultimately result in poor performance of learned policies.

To tackle OOD actions in policy evaluation, conservative Q-learning (CQL) (Kumar et al., 2020)
penalizes the learned Q-function for OOD actions induced by the learning policy. Building on CQL,
subsequent algorithms (Ma et al., 2021; Lyu et al., 2022; Chen et al., 2023; Nakamoto et al., 2023;
Shao et al., 2023; Yeom et al., 2024) address the potential over-pessimism in both in-distribution and
OOD actions, which stems from excessively conservative value estimates. These approaches rely on
additional components, such as estimating the unknown behavior policy to handle OOD actions (Lyu
et al., 2022; Yeom et al., 2024) or introducing extra networks for a quantile (Ma et al., 2021) or a state
value function (Chen et al., 2023; Nakamoto et al., 2023), which may lead to increased complexity
and further drawbacks despite their intentions to address the over-pessimism — such drawbacks
include distribution mismatches between the estimated behavior policy and the dataset (Zhuang et al.,
2023; Kun et al., 2024), the need for extensive parameter tuning, and prolonged training times.

Intuitively, leveraging offline trajectories that span multiple timesteps, rather than individual single-
timestep transitions, provides more information about the behavior policy and can potentially prevent
the selection of OOD actions for offline datasets. Although trajectories are readily available in offline
datasets, most previous model-free offline RL methods for policy evaluation utilize these trajectories
only in the form of fragmented single-step transitions (Fujimoto et al., 2019; Kumar et al., 2019; Wu
et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021). Hence, the following question arises:
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Can we design a value estimation method for offline RL that utilizes the multi-step learning?

In online RL counterparts of offline RL, there is a line of work that extends a single-step temporal-
difference (TD) learning (e.g., Q-learning (WATKINS, 1989)) to multi-step generalizations (Peng &
Williams, 1994; Precup, 2000; Munos et al., 2016; Harutyunyan et al., 2016; Rowland et al., 2020;
Kozuno et al., 2021), introducing multi-step operators that leverage temporally extended trajectories
to update Q-values. These operators improve learning efficiency and provide a more forward-looking
perspective, leading to enhanced performance in determining optimal actions compared to the single-
step Bellman operator across various benchmarks (Harb & Precup, 2017; Mousavi et al., 2017; Hessel
et al., 2018; Barth-Maron et al., 2018; Kapturowski et al., 2018; Daley & Amato, 2019). However,
whether such an extension to multi-step TD learning is possible in offline RL is still unclear. Hence,
the follow-up questions arise:

What is a suitable multi-step operator for offline RL?
Is it possible to demonstrate that the multi-step operator enhances performance?

In this paper, we propose an effective conservative multi-step Q-learning algorithm for a model-free
offline RL, Conservative Peng’s Q(λ) (CPQL). Our algorithm builds on conservative value estimation
by incorporating the Peng’s Q(λ) (PQL) operator (Peng & Williams, 1994; Kozuno et al., 2021)
instead of the standard Bellman operator. Unlike other multi-step operators (Precup, 2000; Munos
et al., 2016; Harutyunyan et al., 2016; Rowland et al., 2020) that truncate trajectories, the PQL
operator fully leverages entire trajectories to improve policy evaluation. Since the PQL operator does
not use importance sampling, which requires estimating the behavior policy from offline datasets,
it avoids the mismatch issues arising from inaccurate behavior policy estimation (Zhuang et al.,
2023; Kun et al., 2024). Because the fixed point of the PQL operator in offline RL converges to
the Q-function of a mixture policy that interpolates the behavior policy and target policy, coupling
it with a conservative value estimation method ensures that even mild conservatism is sufficient
to mitigate Q-value overestimation caused by distribution shift. In contrast to other conservative
methods (Kumar et al., 2020; Ma et al., 2021; Lyu et al., 2022; Chen et al., 2023; Nakamoto et al.,
2023; Shao et al., 2023; Yeom et al., 2024), CPQL mitigates over-pessimistic value estimation in the
Q-function (Theorem 1) without requiring additional estimation procedures or auxiliary networks.
Our main contributions are summarized as follows:

• We propose CPQL, the first multi-step Q-learning algorithm for a model-free offline RL.
CPQL adapts the PQL operator to conservative value estimation and fully leverages offline
trajectories without estimating additional models. To the best of our knowledge, our work is
the first to demonstrate both theoretically and empirically the effectiveness of conservative
multi-step value estimation.

• We provide rigorous theoretical analyses for CPQL. The policy learned by CPQL is guaran-
teed to achieve the performance greater than (or equal to) that of the behavior policy (Theo-
rem 2) and further reduces the sub-optimality gap than CQL (Theorem 3). Our theoretical
analyses effectively address the key limitations of over-pessimistic value estimation in offline
RL, ensuring balanced conservatism and improved policy exploration.

• Extensive numerical experiments on the D4RL benchmark demonstrate that CPQL consis-
tently and significantly outperforms existing offline single-step RL algorithms. In contrast to
CQL, whose performance is highly sensitive to the choice of the conservatism parameter (An
et al., 2021; Ghasemipour et al., 2022; Tarasov et al., 2024b), CPQL remains robust across a
wide range of the conservatism parameter.

• Beyond the contribution of CPQL to mitigating over-pessimistic value estimation in offline
RL, CPQL also contributes to the framework of offline-to-online learning. Using the Q-
function pre-trained by CPQL enables the online PQL agent to avoid the performance drop
observed at the start of the online phase and attain robust performance improvement.

2 RELATED WORK

Model-free Offline RL. To overcome the distributional shift and extrapolation error, model-free
offline RL methods focus on learning policies using techniques such as penalizing learned value
functions to assign low values to unseen actions (Kumar et al., 2020; Ma et al., 2021; Lyu et al.,
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2022; Chen et al., 2023; Nakamoto et al., 2023; Shao et al., 2023; Ma et al., 2023; Yeom et al.,
2024), constraining the learned policy to remain similar to the behavior policy (Fujimoto et al., 2019;
Kumar et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021; Fakoor et al., 2021; Ghasemipour et al.,
2021; Wu et al., 2022; Tarasov et al., 2024a), quantifying the uncertainty (Wu et al., 2021; Zanette
et al., 2021) with adding ensemble techniques to obtain a robust value function (Bai et al., 2021;
An et al., 2021; Ghasemipour et al., 2022; Yang et al., 2022; Nikulin et al., 2023), and learning
without querying OOD actions (Chen et al., 2020; Kostrikov et al., 2022). However, most model-free
offline RL algorithms use the single-step TD learning for off-policy methods based on TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018), and AWR (Peng et al., 2019). Thus, our work addresses
over-pessimistic value estimates by leveraging multi-step TD learning based on offline trajectories.

Multi-step Operators. Among off-policy multi-step operators (WATKINS, 1989; Peng & Williams,
1994; Cichosz, 1994; Sutton & Barto, 1998; Precup, 2000; Munos et al., 2016; Harutyunyan et al.,
2016; Rowland et al., 2020; Kozuno et al., 2021; Daley et al., 2023) in online RL, the PQL operator
consistently outperforms the Bellman operator and other multi-step operators in several complex
online tasks (Harb & Precup, 2017; Mousavi et al., 2017; Hessel et al., 2018; Barth-Maron et al., 2018;
Kapturowski et al., 2018; Daley & Amato, 2019). The fixed point of the PQL operator in online RL
has been criticized for its inability to converge to the optimal Q-function without additional technical
conditions, such as the updated behavior policy being close to the target policy (Harutyunyan et al.,
2016; Kozuno et al., 2021). However, under the fixed behavior policy (offline settings), we exploit the
property (Kozuno et al., 2021) that its fixed point is closer to the Q-function of the behavior policy.
By integrating conservative value estimation into this property, CPQL tackles two central offline RL
challenges: distributional shift and overly pessimistic value estimates.

Offline-to-Online RL. To prevent the forgetting of offline pre-training benefits and to enable efficient
online exploration, offline-to-online RL methods have explored diverse techniques such as leveraging
an offline dataset to sample-efficient online fine-tuning (Nair et al., 2020; Lee et al., 2022; Song et al.,
2022), avoiding the need to retain offline data (Uchendu et al., 2023; Zhou et al., 2024), maintaining
a balanced replay buffer (Ball et al., 2023; Ji et al., 2024; Luo et al., 2024), calibrating the value
function (Nakamoto et al., 2023), adopting bayesian approaches (Hu et al., 2024), bridging the value
gap between offline and online RL (Yu & Zhang, 2023; Wagenmaker & Pacchiano, 2023), and
proposing policy expansion schemes (Zhang et al., 2023). However, since CPQL mitigates over-
pessimistic value estimation in the offline phase, it eliminates the need for additional mechanisms
such as critic-actor calibration or alignment when transitioning to vanilla PQL in the online learning.
This allows the online agent to directly leverage the pre-trained Q-function without further adjustment,
ensuring a smoother transition to online fine-tuning. As a result, CPQL avoids the performance drop
typically observed at the start of fine-tuning and attains robust performance improvement.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS

We consider a Markov Decision Process (MDP) defined by a tuple M := (S,A,P,R, d0, γ),
where S is the state space, A is the action space, P : S × A → ∆S represents the state tran-
sition probability kernel, R is the reward distribution, d0 ∈ ∆S is the initial state distribution,
and γ ∈ [0, 1) is the discount factor. We let the reward function r ∈ RS×A be defined as
r(s, a) :=

∫
r′R (dr′|s, a), and assume that |r(s, a)| ≤ Rmax, ∀ (s, a) ∈ S × A. Let a policy

π : S → ∆A be a mapping from states to actions (deterministic) or a probability distribution over
actions (stochastic). Given any policy π, an agent starts from an initial state s0 and interacts with
M, repeatedly taking actions, receiving rewards, and observing subsequent states. This process
generates a trajectory τ = {(st, at, r (st, at))}t≥0, where at ∼ π(·|st) and st+1 ∼ P(·|st, at).
The state-value function and action-value function (Q-function) for the policy π are defined as
V π(s) := Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s] and Qπ(s, a) := Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s, a0 = a],

respectively. We define the discounted state visitation distribution of a policy π under the environment
M as dπM (s) := (1− γ)

∑∞
t=0 γ

tPrπ (st = s | s0 ∼ d0,P), where Prπ (st = s | s0 ∼ d0,P) de-
note the probability of reaching state s at time-step t under π and P , starting from initial state
s0 distributed according to the initial state distribution d0. Similarly, we define the discounted
state-action visitation distribution as dπM (s, a) := dπM (s)π (a|s).
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3.2 OFF-POLICY OPERATORS

Off-policy RL consists of two main tasks: evaluation and improvement. The evaluation process is to
learn the Q-function of a fixed policy. In the improvement setting, the goal is to obtain an optimal
policy π∗ that maximizes the expected discounted return under d0, represented as maxπ JM(π) :=
Es∼d0

[V π (s)] = 1
1−γEs,a∼dπ

M
[r (s, a)] . Operators are a fundamental concept in RL because all

value-based RL algorithms update the Q-function using a recursion Qk+1 := OkQk, where Ok :
RS×A → RS×A is an operator that specifies the update rule of the algorithm. We define Pπ as the
transition matrix coupled with the policy, given by PπQ(s, a) := Es′∼P(·|s,a), a′∼π(·|s′) [Q(s′, a′)] .

Bellman Operator. The Bellman operator T π : RS×A → RS×A is defined as T πQ := r + γPπQ.
We denote the set of all greedy policies with respect to Q as G(Q). The Bellman optimality operator
T ∗ is defined by T ∗Q := T πQQ, where πQ ∈ G(Q).

Peng’s Q(λ) (PQL). For λ ∈ [0, 1], PQL updates the Q-function using the recursion Qk+1 :=
T πβ,k,πk

λ Qk (Peng & Williams, 1994; Kozuno et al., 2021), where πk ∈ G(Qk). The PQL operator
T πβ ,π
λ : RS×A → RS×A is defined as T πβ ,π

λ Q := (1− λ)
∑∞

n=1λ
n−1T πβ ,π

n Q, where T πβ ,π
n Q :=

(T πβ )
n−1 T πQ is the uncorrected n-step return operator (WATKINS, 1989; Cichosz, 1994; Sutton

& Barto, 1998; Hessel et al., 2018).

3.3 OFFLINE RL

In offline RL, the learned policy is constrained to a static dataset without additional interactions
with the environment during the control process. The offline dataset D consists of either trajectories
{τi}ni=1 gathered by unknown behavior policies πβ . On all states s ∈ D, we denote the empirical

behavior policy as π̂β (a|s) :=
∑

s,a∈D 1[s=s,a=a]∑
s∈D 1[s=s] . We define the state space induced by D as S(D),

consisting of all states inD. SinceD typically covers a subset of the tuple space, offline RL algorithms
based on the Bellman operator suffer from action distribution shift. Because the learning policy is
updated to maximize Q-values, cumulative extrapolation errors in unseen actions can drive it toward
OOD actions with erroneously high Q-values (Levine et al., 2020).

To address the overestimated Q-value problem, CQL (Kumar et al., 2020) penalizes the learned
Q-function for OOD actions induced by the learning policy. The objective function of CQL with a
non-negative conservatism parameter α is defined as follows:
1

2
Es,a,s′∼D

[
(Q (s, a)− T πQ (s, a))

2
]
+ α

(
Es∼D,a∼π(·|s) [Q (s, a)]− Es,a∼D [Q (s, a)]

)
, (1)

4 CONSERVATIVE PQL

In this section, we develop the CPQL algorithm, where the learned Q-function mitigates overestima-
tion bias in value estimation. We provide several novel theoretical results that include guarantees for
the sub-optimality gap between the optimal policy and the policy learned via CPQL. It is important
to note that PQL has not been studied under offline RL settings. Hence, we first present how previ-
ous findings on online PQL can be adapted to offline PQL, addressing fundamental challenges of
Q-learning in offline RL.

4.1 TOWARDS OFFLINE PQL

Prior works (Peng & Williams, 1994; Sutton & Barto, 1998; Kozuno et al., 2021) have investigated
the PQL operator only in online RL. In this work, we focus on constructing the PQL operator in
offline RL for the first time. Adapting PQL to offline RL not only facilitates faster convergence to the
fixed point but also mitigates the effects of extrapolation errors and over-pessimistic value estimation,
which are key issues in offline RL. We begin by recalling the fixed-point characterization of the PQL
operator and reinterpreting it from an offline RL perspective. We consider the exact case where no
update errors exist in the value functions.

Proposition 1 (Harutyunyan et al. (2016)) The fixed point of the PQL operator, Qπβ ,π , satisfies:

Qπβ ,π = (λT πβ + (1− λ) T π)Qπβ ,π.

4
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Proposition 1 states that a fixed point of the PQL operator coincides with the fixed point of λT πβ +
(1− λ) T π for the target policy π. Since λT πβ + (1− λ) T π is a contraction with modulus γ under
L∞-norm, the existence and uniqueness of this fixed point are guaranteed. However, this fixed point
does not ensure the convergence of the optimal Q-function in online RL unless πβ is sufficiently close
to π (Harutyunyan et al., 2016; Kozuno et al., 2021). In contrast, when we use the fixed empirical
behavior policy π̂β from D, the Q-function updated by the PQL operator converges to Qλπ̂β+(1−λ)π .

Proposition 2 (Kozuno et al. (2021)) Let π be a policy such that Qλπ̂β+(1−λ)π ≥ Qλπ̂β+(1−λ)π̄

holds pointwise for any policy π̄. Then, Qk for the k-th iteration, updated by the PQL operator,
uniformly converges to Qλπ̂β+(1−λ)π with a contraction rate of βk, where β := γ(1−λ)

1−γλ .

Proposition 2 states a trade-off between bias and contraction rate, that is, PQL with the fixed behavior
policy converges to a biased fixed point that differs from Q∗, with a contraction rate β.

Interpretation to offline RL. Prior work (Kozuno et al., 2021) focused on online RL, particularly
on how updating the behavior policy is necessary for this fixed point to converge to Q∗. However, the
fixed point Qπ with λ = 0, corresponding to the value derived from the Bellman operator, can still
deviate from Q∗ due to distribution shift in offline RL (Fujimoto et al., 2019; Kumar et al., 2019;
Levine et al., 2020). Thus, one of our main points is that we should focus on how an appropriately
chosen λ mitigates Q-value overestimation for the learned policy by shifting the fixed point closer to
Qπ̂β , rather than focusing only on increasing the bias introduced by a large λ. The fixed point lies
closer to the behavioral value naturally induces implicit behavior regularization. A carefully chosen
λ can effectively address the over-pessimism problem in conservative value estimation methods and
yield a more robust learned Q-function, as it mitigates the influence of the learned policy.

4.2 THEORETICAL ANALYSIS

We aim to mitigate the over-pessimistic estimation of Q-values for the learned policy induced
by conservatism. We integrate the PQL operator into the CQL loss, as it provides a simple and
effective way to alleviate the over-pessimism of Q-values. We replace the standard Bellman operator
in Equation 1 with the PQL operator. This leads to the following iterative Q-value update in CPQL:

Q̂k+1 ∈ argmin
Q

{
1

2
Es,a,s′∼D

[(
Q (s, a)− T π̂β ,πk

λ Q̂k (s, a)
)2]

+ α
(
Es∼D,a∼πk(·|s) [Q (s, a)]− Es,a∼D [Q (s, a)]

)}
. (2)

The following theorem shows that the expectation of the learned Q-function obtained by iterat-
ing Equation 2 lower-bounds the expectation of the true Q-function. This result is an adaptation of
Theorem 3.2 in Kumar et al. (2020). The proofs with sampling error is deferred to Appendix B.1.

Theorem 1 (Lower Bound on the State Value Function of CPQL) Let Q̂λπ̂β+(1−λ)π denote the
Q-function derived from CPQL as defined in Equation 2. Then, the state value of λπ̂β + (1− λ)π,

V̂ λπ̂β+(1−λ)π(s) = Ea∼(λπ̂β+(1−λ)π)(·|s)

[
Q̂λπ̂β+(1−λ)π(s, a)

]
, lower-bounds the true state value

of the policy obtained via exact policy evaluation, V λπ̂β+(1−λ)π(s). Formally, with probability at
least 1− δ, for all s ∈ S(D) and some α > 0,

V̂ λπ̂β+(1−λ)π(s) ≤ V λπ̂β+(1−λ)π(s).

The next two theorems show that the policy learned by CPQL is guaranteed to achieve the performance
greater than (or equal to) that of π̂β (Theorem 2) and reduces the sub-optimality gap (Theorem 3),
previous conservative value estimation methods had not achieved. The proof with sampling error is
deferred to Appendix B.2 and B.3.

Theorem 2 (Comparison to the Behavior Policy) Let π̂ := argmaxπ Es∼d0

[
V̂ λπ̂β+(1−λ)π(s)

]
.

With probability at least 1− δ, λπ̂β + (1− λ) π̂ achieves a policy improvement over π̂β in the actual
MDPM as follows:

JM (λπ̂β + (1− λ) π̂) ≥JM (π̂β) +
α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M (s)

[
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

− 1

]]

5
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Theorem 3 (Sub-Optimality Gap) With probability at least 1−δ, the gap of the expected discounted
return between the optimal policy π∗ and the mixture policy λπ̂β + (1− λ) π̂ under the actual MDP
M satisfies

JM (π∗)− JM (π̂, λπ̂β + (1− λ) π̂)

≤ 2λRmax

(1− γ)
2Es∼d

λπ̂β+(1−λ)π∗

M

[
dTV (π∗, π̂β) (s)

]
+

2α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M (s)

[
dTV (π∗, π̂)(s)

(
ξ(π̂)(s) +

γ

1− γ
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

])]
where ξ(π̂)(s) :=

∑
a∈A

π∗(a|s)+π̂(a|s)
π̂β(a|s) and dTV(π1, π2) is the total variation distance of π1 and π2.

Discussion of Theorems 2 and 3. In Theorem 2, λπ̂β + (1− λ)π̂ achieves at least the performance
of π̂β under the actual MDPM. When accounting for sampling error, α is chosen such that the
conservative term exceeds the sum of the sampling error terms. However, an excessively large α does
not guarantee that the sub-optimality gap decreases. In Theorem 3, increasing α significantly can lead
to larger influence of ξ(π̂) and Ea∼π̂(·|s)[π̂ (a|s) /π̂β (a|s)] on the RHS. To reduce these gaps, it is
crucial to control the two unbounded terms, since their reduction has a greater effect than reducing the
total variation distance (≤ 1). Thus, π̂ approaches π̂β when α takes on a large value by Theorem 2.
However, CPQL can reduce the sub-optimality gap more effectively than CQL. If π̂ deviates from π̂β ,
leading to ξ(π̂) and Ea∼π̂(·|s)[π̂ (a|s) /π̂β (a|s)] growing to infinity. While CQL lacks a mechanism
to directly mitigate this divergence, CPQL addresses it through λ, which balances between the first
and second terms on the RHS. For example, Since π∗ and π̂β are fixed policies, if π̂β is similar to π∗,
choosing a large value of λ further reduces the sub-optimality gap. Conversely, if π̂β differs from π∗,
adjusting a suitable value of λ is effective than CQL in reducing the sub-optimality gap.

4.3 PROPOSED ALGORITHM

Algorithm 1 Conservative Peng’s Q(λ) (CPQL)
Require: Critic networks Qθ1 , Qθ2 , Actor network πϕ, Dataset D, Conservatism factor α, and λ

1: Initialize target networks θ−1 ← θ1, θ−2 ← θ2
2: for gradient step t = 1, 2, · · · do
3: Samples batch partial trajectories each of length n, {(s0, a0, r0, s1, a1, r1, · · · , sn)}, from D
4: for i = n− 1 to 0 do
5: Compute Q̂i

θj
= ri+γQθ−

j
(si+1, πϕ(si+1))+γλ

(
Q̂i+1

θj
−Qθ−

j
(si+1, πϕ(si+1)

)
, j = 1, 2

6: end for
7: Construct target value y = minj=1,2 Q̂

0
θj
− γnαtd log πϕ(·|sn)

8: Update critic θj for j = 1, 2 with gradient descent via minimizing

αEs∼D

[
log
∑
a

exp
(
Qθj (s, a)

)
− Ea∼πβ(·|s)

[
Qθj (s, a)

]]
+
1

2
Es,a,s′∼D

[(
Qθj (s, a)− y

)2]
9: Update actor ϕ with gradient ascent via maximizing

Es∼D,a∼πϕ(·|s)

[
min
j=1,2

Qθj (s, a)− αpol log πϕ(·|s)
]

10: Update target networks: θ−j → τθj + (1− τ) θ−j , j = 1, 2
11: end for

Algorithm 1 presents a general version of our proposed method. In Line 5, given a partial trajectory
of length n, we recursively compute the target Q-function using the trace parameter λ. While updates
are based on SAC (Haarnoja et al., 2018), we set αtd = 0 at all steps except the last (Line 7), ensuring
stability during Q-function updates. Because the entropy bonus term is added to the target Q-function
at each step, amplifying its numerical scale and complicating value estimations (Kozuno et al.,
2021). In Line 8, we adopt the log-sum-exp method from CQL (Kumar et al., 2019) to incorporate
conservative value estimation. Compared to CQL, CPQL reduces the influence of the learned policy
on Q-value estimates, enabling stable learning even with a small conservatism factor α (see Question
(ii) in Section 5).
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Table 1: Results for MuJoCo locomotion, Adroit manipulation, and AntMaze navigation tasks in
offline D4RL. * indicates reproduced results: (algorithm*) for all datasets, (score*) for a specific
dataset. Bold numbers are the scores within 2% of the highest in each environment.

Task BC∗ TD3+BC CQL IQL MCQ MISA CSVE EPQ∗ CPQL (ours)

halfcheetah-random 2.2 11.0 17.5∗ 13.1∗ 28.5 2.5∗ 26.8 31.9 38.8 ± 1.0
hopper-random 3.7 8.5 7.9∗ 7.9∗ 31.8 9.9∗ 26.1 30.3 31.5 ± 0.5
walker2d-random 1.3 1.6 5.1∗ 5.4∗ 17.0 9.0∗ 6.2 11.2 21.2 ± 0.7
halfcheetah-medium 43.2 48.3 47.0∗ 47.4 64.3 47.4 48.4 67.1 66.6 ± 0.9
hopper-medium 54.1 59.3 53.0∗ 66.2 78.4 67.1 96.7 100.4 99.7 ± 2.0
walker2d-medium 70.9 83.7 73.3∗ 78.3 91.0 84.1 83.2 86.4 90.0 ± 1.5
halfcheetah-medium-replay 37.6 44.6 45.5∗ 44.2 56.8 45.6 54.5 51.4 60.3 ± 0.8
hopper-medium-replay 16.6 60.9 88.7∗ 94.7 101.6 98.6 91.7 97.3 103.0 ± 0.6
walker2d-medium-replay 20.3 81.8 81.8∗ 73.8 91.3 86.2 78.0 86.0 97.4 ± 4.0
halfcheetah-medium-expert 44.0 90.7 75.6∗ 86.7 87.5 94.7 93.1 86.6 95.3 ± 0.6
hopper-medium-expert 53.9 98.0 105.6∗ 91.5 111.2 109.8 94.1 110.4 111.3 ± 1.2
walker2d-medium-expert 90.1 110.1 107.9∗ 109.6 114.2 109.4 109.0 110.9 112.9 ± 2.0
halfcheetah-expert 91.8 96.7 96.3∗ 95.0∗ 96.2 95.9∗ 93.8 102.9 98.0 ± 1.6
hopper-expert 107.7 107.8 96.5∗ 109.4∗ 111.4 111.9∗ 111.3 111.1 112.0 ± 0.6
walker2d-expert 106.7 110.2 108.5∗ 109.9∗ 107.2 109.3∗ 108.5 109.8 114.1 ± 0.5
MuJoCo Total 744.1 1013.2 1010.2 1033.1 1188.4 1081.4 1121.4 1193.7 1252.1

pen-human 34.4 64.8∗ 37.5 71.5 68.5 88.1 106.2 65.7 72.1 ± 4.6
door-human 0.5 0.0∗ 9.9 4.3 2.3 5.2 2.8 5.1 14.3 ± 2.2
hammer-human 1.5 1.8∗ 4.4 1.4 1.3 8.1 3.5 0.3 1.4 ± 0.9
relocate-human 0.0 0.1∗ 0.2 0.1 0.1 0.1 0.1 0.1 0.1 ± 0.0

pen-cloned 56.9 49.0∗ 39.2 37.3 49.4 58.6 54.5 55.8 70.9 ± 6.9
door-cloned -0.1 0.0∗ 0.4 1.6 1.3 0.5 1.2 0.5 6.4 ± 5.0
hammer-cloned 0.8 0.2∗ 2.1 2.1 1.4 2.2 0.5 1.2 1.6 ± 1.1
relocate-cloned -0.1 -0.2∗ -0.1 -0.2 0.0 -0.1 -0.3 -0.1 -0.1 ± 0.0

Adroit Total 93.9 115.7 93.6 118.1 124.3 162.7 168.5 128.7 166.7

antmaze-umaze 65.0 78.6 74.0 87.5 98.3∗ 92.3 - 96.2 96.7 ± 1.9
antmaze-umaze-diverse 55.0 71.4 84.0 62.2 80.0∗ 89.1 - 72.3 68.6 ± 0.5
antmaze-medium-play 0.0 10.6 61.2 71.2 52.5∗ 63.0 - 59.0 72.4 ± 1.2
antmaze-medium-diverse 0.0 3.0 53.7 70.0 37.5∗ 62.8 - 57.5 71.7 ± 0.8
antmaze-large-play 0.0 0.2 15.8 39.6 2.5∗ 17.5 - 23.8 41.6 ± 5.2
antmaze-large-diverse 0.0 0.0 14.9 47.5 7.5∗ 23.4 - 17.4 46.6 ± 4.9
Antmaze Total 120.0 163.8 303.6 378.0 278.3∗ 348.1 - 326.2 397

5 EXPERIMENTS

In this section, we describe our detailed experimental procedures and report the corresponding results
to address the following pertinent questions:

(i) How does the performance of CPQL compare to prior single-step offline baselines, some of
which incorporate conservative value estimation methods, across various tasks and datasets?

(ii) What advantage does CPQL provide over CQL in terms of sensitivity to the conservatism
parameter α, and does it mitigate over-conservatism while achieving strong performance?

(iii) How does CPQL compare with other multi-step operators (e.g., Uncorrected N-step, Retrace,
and Tree-backup) when combined with conservative value estimation? (Note that there are
no existing offline RL methods with a multi-step operator. Here, we are asking a question
on ablation.)

(iv) Can the online PQL agent, using the Q-function pre-trained by CPQL in offline settings,
mitigate performance drop at the start of the online phase and enable faster adaptation and
improvement in online learning compared to offline-to-online baselines?

For a fair comparison, we evaluate all algorithms using results after 1M gradient steps in offline
D4RL (Fu et al., 2020). In the offline-to-online setting, we first pre-train algorithms for 0.25M offline
steps and then fine-tune them for 0.3M online steps. Our score is computed from the policy during
the last 10 iterations, averaged over 5 seeds, with ± denoting the standard deviation across seeds. For
CPQL evaluation, we set n = 5 to cap the length of the partial trajectories. (Details see Appendix C).
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Tasks. MuJoCo (Todorov et al., 2012) consists of datasets from three environments (HalfCheetah,
Hopper, and Walker2d), each with five dataset types (Random, Medium, Medium-Replay, Medium-
Expert, and Expert). Adroit (Rajeswaran et al., 2017) involves two dataset types (human and cloned)
and four Shadow Hand robot tasks (hammer, door, pen, and relocate). AntMaze provides three maze
layouts (umaze, medium, and large) and three dataset types (umaze, play, and diverse).

Baselines. In the offline setting, we compare CPQL to prior model-free single-step offline RL
algorithms: (i) TD3+BC (Fujimoto & Gu, 2021) that incorporates an explicit policy constraint
through the behavior cloning (BC), (ii) CQL (Kumar et al., 2020) that penalizes the Q-function
for OOD actions, (iii) IQL (Kostrikov et al., 2022) that learns the Q-function without querying
OOD actions, (iv) MCQ Lyu et al. (2022) that uses the mildly conservative Bellman operator, (v)
MISA Ma et al. (2023) that constrains the policy based on mutual information, (vi) CSVE (Chen
et al., 2023) that learns conservative state-value function, and (vii) EPQ (Yeom et al., 2024) that learns
the Q-function by selectively penalizing states with insufficient action coverage. In offline-to-online
RL, we evaluate the performance of CPQL (offline pretraining) followed by PQL (online fine-tuning),
and compare it against several algorithms: (i) AWAC (Nair et al., 2020) that utilizes the advantage
weighted actor-critic with weighted maximum likelihood, (ii) Cal-QL (Nakamoto et al., 2023) that
calibrates the value-function, (iii) IQL (Kostrikov et al., 2022), (iv) SPOT (Wu et al., 2022) that uses
density-based regularization, and (v) CQL (Kumar et al., 2020) (offline) to SAC (online).

5.1 RESULTS ON OFFLINE AND OFFLINE-TO-ONLINE D4RL

Question (i): Our experimental results, summarized in Table 1, are based on evaluations carried out
across diverse tasks. CPQL achieves the high performance in the vast majority of the tasks with 22
out of 29 tasks. In MuJoCo locomotion tasks, CPQL consistently achieves remarkable performance
improvements across all tasks, regardless of data distribution—whether diverse (Random, Medium-
Replay) or narrow (Medium, Medium-Expert). In Adroit manipulation tasks, CPQL surpasses all other
algorithms for door on human and cloned datasets. Excluding only CSVE in the pen-human dataset,
we achieve high performance in two pen tasks. In Antmaze navigation tasks, CPQL demonstrates
outstanding performance despite sparse rewards and diverse datasets (undirected and multi-task).
These results on diverse tasks demonstrate that CPQL effectively mitigates the problem of over-
pessimistic value estimation by leveraging actual trajectories and the PQL operator.
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Figure 1: Normalized scores of different conservatism parameters α in Walker2d tasks.

Question (ii): CPQL maintains high performance even at small α than CQL. The smaller α helps
CPQL address the issue of overly penalizing the Q-values of certain states in CQL, particularly
less observed or unobserved states in D. Prior works (An et al., 2021; Ghasemipour et al., 2022;
Tarasov et al., 2024b) have pointed out that CQL is extremely sensitive to the choice of α, as even
small changes can lead to significant performance differences. In Figure 1, the red line representing
CQL clearly illustrates this sensitivity issue. In contrast, CPQL outperforms CQL and exhibits less
sensitivity to α across diverse datasets. By mitigating over-conservatism, CPQL enables the learned
policy to better explore promising actions. As shown in Theorem 3, selecting an appropriate λ
reduces the sub-optimality gap and yields remarkable scores across diverse datasets.

Question (iii): In Figure 2, the Uncorrected n-step return, Retrace, and Tree-backup operators indeed
learn faster during the first 0.2M steps, but their performance drops after reaching an early peak.
Retrace (Munos et al., 2016) suffers from performance degradation because it relies on accurate
behavior policy estimation, which is difficult to estimate (Zhuang et al., 2023; Kun et al., 2024).
Tree-backup (Precup, 2000) is developed for discrete action spaces, and in continuous spaces, it leads
to unstable updates due to the numerical scale of lnπ. The Uncorrected n-step return overly restricts
exploration of OOD actions, which can lead to unstable performance in the later stages of training.
However, CPQL achieves both stable and competitive performance without additional requirements.
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Figure 2: Comparisons of CPQL (ours) with CQL using alternative multi-step operators on MuJoCo tasks.
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Figure 3: Comparing CPQL→PQL (ours) with several baselines for offline-to-online RL.
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Question (iv): In Figure 3, we show that initial-
izing PQL with the Q-function pre-trained by
CPQL helps the online agent avoid or quickly
recover from the performance drop at the start of
online fine-tuning and achieve robust improve-
ment. First, CPQL outperforms other offline-
to-online baselines with only 0.25M gradient
steps, so the online agent is initialized with the
well-trained Q-function, reducing exploration
trials. Second, in Figure 4, the Q-values learned
by PQL do not degrade at the start of the online
phase. Since CPQL reduces the influence of the learned policy on Q-value estimation (Proposition 2
and Theorem 1), the average Q-value gradually increases after pretraining across different values of α.
In contrast, when transitioning from CQL to SAC, a larger α shows a more severe performance drop.
While Cal-QL avoids the performance drop, its performance improvement is significantly slower.

6 CONCLUSION

CPQL proposes the first approach to a model-free offline multi-step RL algorithm by incorporating
the PQL operator for conservative value estimation, mitigating over-pessimistic Q-function, and
reducing the sub-optimality gap. A key insight of CPQL is that the fixed point of the PQL operator lies
closer to the value function of the behavior policy, thereby inducing implicit behavior regularization.
CPQL outperforms existing offline RL algorithms, and its pre-trained Q-function enables PQL to
avoid the performance drop at the start of fine-tuning and achieve robust performance improvement
in the online phase.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as an assistive tool for writing. Specifically, we
employed an LLM to improve clarity, grammar, and style of exposition. No part of the research
ideation, algorithm design, theoretical analysis, or experimental results involved the use of LLMs.
The authors take full responsibility for the content of the paper.
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A PROOF OF TECHNICAL LEMMAS FOR THEOREMS

First, we provide a Lemma and a proof for the sampling error bound of the PQL operator. We assume
the concentration properties of the reward function and the transition dynamics:

Assumption 1 Given a state-action pair (s, a) ∈ D, the following relationships hold with probability
at least 1− δ,

|r (s, a)− r̂ (s, a)| ≤ Cδ
r√

N (s, a)
,
∥∥∥P (· | s, a)− P̂ (· | s, a)

∥∥∥
1
≤ Cδ

P√
N (s, a)

,

where Cδ
r and Cδ

P are constants that depend on δ ∈ (0, 1), N (s, a) is the number of samples for
(s, a), and the concentration properties of r and T , respectively.

Under Assumption 1 and Proposition 1, the sampling error between the empirical PQL operator and
the actual PQL operator can be bounded, as shown in the following proof:

Lemma 1 (Sampling Error Bound of the PQL operator) Given a state-action pair (s, a) ∈ D,
with probability at least 1− δ, the sampling error between the empirical PQL operator and the actual
PQL operator for (s, a) satisfies the following inequality:∣∣∣T π̂β ,π

λ Q(s, a)− T̂ π̂β ,π
λ Q(s, a)

∣∣∣ ≤ Cδ
r + γCδ

PRmax/(1− γ)

(1− γλ)
√
N(s, a)

,

where Cδ
r,P is a constant dependent on the concentration properties r and P , with δ ∈ (0, 1).

Proof For (s, a),∣∣∣T π̂β ,π
λ Q(s, a)− T̂ π̂β ,π

λ Q(s, a)
∣∣∣

=

∣∣∣∣(I − γλP π̂β
)−1

(r + γ(1− λ)PπQ(s, a))−
(
I − γλP̂ π̂β

)−1 (
r̂ + γ(1− λ)P̂πQ(s, a)

)∣∣∣∣
≤
∣∣∣(I − γλP π̂β

)−1
(r + γ(1− λ)PπQ(s, a))−

(
I − γλP π̂β

)−1
(
r̂ + γ(1− λ)P̂πQ(s, a)

)∣∣∣
+

∣∣∣∣(I − γλP π̂β
)−1

(
r̂ + γ(1− λ)P̂πQ(s, a)

)
−
(
I − γλP̂ π̂β

)−1 (
r̂ + γ(1− λ)P̂πQ(s, a)

)∣∣∣∣
≤
∣∣∣(I − γλP π̂β

)−1
∣∣∣ (|r(s, a)− r̂(s, a)|+ γ(1− λ)

∥∥∥Pπ(·|s, a)− P̂π(·|s, a)
∥∥∥
1
Q(s, a)

)
+

∣∣∣∣(I − γλP π̂β
)−1 −

(
I − γλP̂ π̂β

)−1
∣∣∣∣ ∣∣∣r̂ + γ(1− λ)P̂πQ(s, a)

∣∣∣
≤
∣∣∣(I − γλP π̂β

)−1
∣∣∣ (|r(s, a)− r̂(s, a)|+ γ(1− λ)

∥∥∥Pπ(·|s, a)− P̂π(·|s, a)
∥∥∥
1
Q(s, a)

)
+ λγ

∣∣∣(I − γλP π̂β
)−1
∣∣∣ ∥∥∥P π̂β (·|s, a)− P̂ π̂β (·|s, a)

∥∥∥
1

∣∣∣∣(I − γλP̂ π̂β

)−1
∣∣∣∣ (1− γλ)Rmax

1− γ

≤ Cδ
r + γ(1− λ)Cδ

PRmax/(1− γ)

(1− γλ)
√
N(s, a)

+
γλCδ

PRmax/(1− γ)

(1− γλ)
√
N(s, a)

≤ Cδ
r + γCδ

PRmax/(1− γ)

(1− γλ)
√
N(s, a)

.

This completes the proof of Lemma 1.

Based on the interpretation of the sampling error of the PQL operator, if λ is zero, the sampling error
of the PQL operator is equivalent to that of the Bellman operator. For example, when λ = 0, the
sampling error between the empirical PQL operator and the actual PQL operator for (s, a) is bounded

by Cδ
r+γCδ

PRmax/(1−γ)√
N(s,a)

. This result aligns with the sampling error between the empirical Bellman

operator and the actual Bellman operator (Section D.3 in Kumar et al. (2020)).
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Now, we provide proofs for several technical lemmas that utilize our theorems, such as the construction
of the conservative value estimation and the sub-optimality gap between the optimal and learned
policies. In Lemma 2, Ea∼π(·|s)

[
π(a|s)
π̂β(a|s) − 1

]
has non-negative values for all states in S(D). In

other words, Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
is greater than or equal to 1 for any π.

Lemma 2 For any state s and any two policies π1 and π2, the following inequality holds:

Ea∼π1(·|s)

[
π1(a|s)
π2(a|s)

− 1

]
≥ 0.

with equality if and only if π1 = π2.

Proof For any state s,

Ea∼π1(·|s)

[
π1(a|s)
π2(a|s)

− 1

]
=
∑
a

π1(a|s)
(
π1(a|s)
π2(a|s)

− 1

)
=
∑
a

(π1(a|s)− π2(a|s) + π2(a|s))
(
π1(a|s)
π2(a|s)

− 1

)
=
∑
a

(π1(a|s)− π2(a|s))
(
π1(a|s)
π2(a|s)

− 1

)
+
∑
a

π1(a|s)
(
π1(a|s)
π2(a|s)

− 1

)
=
∑
a

(π1(a|s)− π2(a|s))
(
π1(a|s)− π2(a|s)

π2(a|s)

)
+
∑
a

(π1(a|s)− π2(a|s))

=
∑
a

(π1(a|s)− π2(a|s))2

π2(a|s)

≥ 0,

where the last equality follows from the fact that π1(a|s) and π2(a|s) are positive values for all
actions and

∑
a π1(a|s) =

∑
a π2(a|s) = 1. This concludes the proof.

Next, two lemmas are adaptations of Lemma 3 from Achiam et al. (2017).

Lemma 3 For any two polices π1 and π2, the vector difference of the discounted future state visitation
distributions on two different policies holds:

dπ1 − dπ2 = γ (I − γPπ1)
−1

(Pπ1 − Pπ2) dπ2 .

Proof Recall that the discounted state visitation distribution of a policy π, dπ , which is defined as

dπ (s) = (1− γ)

∞∑
t=0

γtPr (st = s | π,P) .

For finite state spaces, dπ can be expressed in vector form as follows:

dπ = (1− γ)

∞∑
t=0

(γPπ)
t
d0 = (1− γ) (I − γPπ)

−1
d0,

where d0 is the initial state distribution. Then, we obtain

dπ1 − dπ2 = (1− γ)
[
(I − γPπ1)

−1 − (I − γPπ2)
−1
]
d0

= (1− γ) (I − γPπ1)
−1
[
(I − γPπ2)− (I − γPπ1)

]
(I − γPπ2)

−1
d0

= γ (1− γ) (I − γPπ1)
−1

(Pπ1 − Pπ2) (I − γPπ2)
−1

d0

= γ (I − γPπ1)
−1

(Pπ1 − Pπ2) dπ2 .

This concludes the proof.
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Lemma 4 The divergence between discounted state visitation distributions, ||dπ1 −dπ2 ||, is bounded
by an average divergence of the policies π1 and π2:

||dπ1 − dπ2 ||1 ≤
γ

1− γ
Es∼dπ2

[∑
a

∣∣∣π1(a|s)− π2(a|s)
∣∣∣]

=
2γ

1− γ
Es∼dπ2 [dTV (π1, π2) (s)] ,

where dTV (π1, π2) (s) = (1/2)
∑

a |π1(a|s)− π2(a|s)|.

Proof First, from Lemma 3, we obtain

||dπ1 − dπ2 ||1 = γ|| (I − γPπ1)
−1

(Pπ1 − Pπ2) dπ2 ||1
≤ γ|| (I − γPπ1)

−1 ||1|| (Pπ1 − Pπ2) dπ2 ||1.

|| (I − γPπ1)
−1 ||1 is bounded by:

|| (I − γPπ1)
−1 ||1 ≤

∞∑
t=0

γt (||Pπ1 ||1)t = (1− γ)
−1

.

To conclude the lemma, we bound || (Pπ1 − Pπ2) dπ2 ||1.

|| (Pπ1 − Pπ2) dπ2 ||1 =
∑
s′

∣∣∣∣∣∑
s

(Pπ1 − Pπ2) dπ2

∣∣∣∣∣
=
∑
s,s′

|Pπ1 − Pπ2 | dπ2

=
∑
s,s′

∣∣∣∣∣∑
a

P (s′|s, a) (π1(a|s)− π2(a|s)) dπ2 (s)

∣∣∣∣∣
≤
∑
s,a,s′

P (s′|s, a) |π1(a|s)− π2(a|s)| dπ2 (s)

≤
∑
s,a

|π1(a|s)− π2(a|s)| dπ2 (s)

= Es∼dπ2

[∑
a

∣∣∣π1(a|s)− π2(a|s)
∣∣∣]

Therefore, we obtain that:

||dπ1 − dπ2 ||1 ≤
γ

1− γ
Es∼dπ2

[∑
a

∣∣∣π1(a|s)− π2(a|s)
∣∣∣] .

If we express this inequality in terms of the total variation distance, it becomes the following
inequality:

||dπ1 − dπ2 ||1 ≤
2γ

1− γ
Es∼dπ2 [dTV (π1, π2) (s)] .

This concludes the proof.
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We prove the following lemma, which bounds the difference between the expected discounted return
underM and M̂.

Lemma 5 Given any policy π, for any MDPM and the empirical MDP M̂, the following holds
with probability at least 1− δ:∣∣JM(λπ̂β + (1− λ)π)− JM̂(λπ̂β + (1− λ)π)

∣∣
≤ Cδ

r + γRmaxC
δ
P/(1− γ)

1− γ
E
s∼d

λπ̂β+(1−λ)π

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π(·|s)

[
π (a|s)
π̂β (a|s)

])]
.

Proof To prove this inequality, we use the triangle inequality to separate the gap in the expected
discounted return into differences in rewards and transition dynamics, as follows:∣∣JM̂ (λπ̂β + (1− λ)π)− JM (λπ̂β + (1− λ)π)

∣∣
=

1

1− γ

∣∣∣∣∣∑
s,a

d
λπ̂β+(1−λ)π

M̂
(s) (λπβ(a|s) + (1− λ)π(a|s)) rM̂ (s, a)

−
∑
s,a

d
λπ̂β(a|s)+(1−λ)π(a|s)
M (s) (λπβ + (1− λ)π) (a|s)rM (s, a)

∣∣∣∣∣
≤ 1

1− γ

∣∣∣∣∣∣∣
∑
s,a

d
λπ̂β+(1−λ)π

M̂
(s) (λπβ(a|s) + (1− λ)π(a|s))

(
rM̂ (s, a)− rM (s, a)

)︸ ︷︷ ︸
=:∆r(s)

∣∣∣∣∣∣∣
+

1

1− γ

∣∣∣∣∣∣∣∣
∑
s,a

(
d
λπ̂β+(1−λ)π

M̂
(s)− d

λπ̂β+(1−λ)π
M (s)

)
︸ ︷︷ ︸

=:∆d(s)

π(a|s)rM (s, a)

∣∣∣∣∣∣∣∣ .
We first bound the term that includes the difference between the actual rewards and the estimated
rewards by applying concentration inequalities to derive an upper bound for ∆r (s). Note that under
concentration assumptions, and using the fact that E [∆r (s)] = 0 in the limit of infinite data, we
obtain:

|∆r (s)| ≤
∑
a

(λπβ(a|s) + (1− λ)π(a|s))
∣∣rM̂ (s, a)− rM (s, a)

∣∣
≤
∑
a

(λπβ(a|s) + (1− λ)π(a|s)) Cδ
r√

N (s) · π̂β(a|s)

=
Cδ

r√
N (s)

∑
a

(
λ
√
π̂β(a|s) + (1− λ)

π(a|s)√
π̂β(a|s)

)

≤ Cδ
r√

N (s)

(
λ
√
|A|+ (1− λ)

∑
a

π(a|s)√
π̂β(a|s)

)
. (3)

Next, we bound the term that involves the difference between the actual and estimated transition
dynamics by applying concentration inequalities to derive an upper bound for ∆d (s). By Lemma 3,
we obtain the following equation:

∆d = γ
(
I − γPλπ̂β+(1−λ)π

M̂

)−1 (
Pλπ̂β+(1−λ)π
M − Pλπ̂β+(1−λ)π

M̂

)
︸ ︷︷ ︸

=:∆P

d
λπ̂β+(1−λ)π

M̂
.
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We know that γ is positive and || (I − γPπ)
−1 ||1 ≤ (1− γ)

−1 for any policy π, we only need to
bound the remaining terms.∣∣∣∣∣∣∣∣∆P d

λπ̂β+(1−λ)π

M̂

∣∣∣∣∣∣∣∣
1

=
∑
s′

∣∣∣∣∣∑
s

∆P (s′|s) dλπ̂β+(1−λ)π

M̂
(s)

∣∣∣∣∣
≤
∑
s′,s

|∆P (s′|s)| dλπ̂β+(1−λ)π

M̂

=
∑
s′,s

∣∣∣∣∣∑
a

(
PM̂ (s′|s, a)− PM (s′|s, a)

)
(λπ̂β(a|s) + (1− λ)π(a|s))

∣∣∣∣∣ dλπ̂β+(1−λ)π

M̂
(s)

≤
∑
s′,s

∣∣∣∣∣∣∣∣PM̂ (·|s, a)− PM (·|s, a)
∣∣∣∣∣∣∣∣
1

(λπ̂β(a|s) + (1− λ)π(a|s)) dλπ̂β+(1−λ)π

M̂
(s)

≤
∑
s

d
λπ̂β+(1−λ)π

M̂
(s)

Cδ
P√

N (s)

∑
a

λπ̂β(a|s) + (1− λ)π(a|s)√
π̂β(a|s)

=
∑
s

d
λπ̂β+(1−λ)π

M̂
(s)

Cδ
P√

N (s)

∑
a

(
λ
√
π̂β(a|s) + (1− λ)

π(a|s)√
π̂β(a|s)

)

≤
∑
s

d
λπ̂β+(1−λ)π

M̂
(s)

Cδ
P√

N (s)

(
λ
√
|A|+ (1− λ)

∑
a

π(a|s)√
π̂β(a|s)

)
where the last inequality is derived from the Cauchy–Schwarz inequality. Hence, we can bound
∆d (s) as follows:

|∆d(s)| ≤
γCδ

P
1− γ

∑
s

d
λπ̂β+(1−λ)π

M̂
(s)

1√
N (s)

(
λ
√
|A|+ (1− λ)

∑
a

π(a|s)√
π̂β(a|s)

)
. (4)

To derive the final upper bound of the objective function, it is necessary to bound
∑

a
π(a|s)√
π̂β(a|s)

, as

follows:

Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
=
∑
a

(π(a|s))2

π̂β(a|s)
=
∑
a

(
π(a|s)√
π̂β(a|s)

)2

≤

(∑
a

π(a|s)√
π̂β(a|s)

)2

≤ |A|Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
Then we obtain√

Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
≤
∑
a

π(a|s)√
π̂β(a|s)

≤

√
|A|Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
. (5)

By Equation 3, Equation 4, and Equation 5, we have that:∣∣JM(π, λπ̂β + (1− λ)π)− JM̂(π, λπ̂β + (1− λ)π)
∣∣

≤ Cδ
r + γRmaxC

δ
P/(1− γ)

1− γ
E
s∼d

λπ̂β+(1−λ)π

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π(·|s)

[
π (a|s)
π̂β (a|s)

])]
(6)

Equation 6 reflects the tradeoff between 1 and
√

Ea∼π(·|s)

[
π(a|s)
π̂β(a|s)

]
(≥ 1), by weighting them with λ

and 1− λ, respectively. This equation can more effectively reduce the difference than the single-step
method. This completes the proof of Lemma 5.
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B PROOF OF THEOREMS

In this appendix, we provide all proof of our main theorem with the sampling error.

B.1 THEOREM 1

Theorem 1 (Lower Bound on the State Value Function of CPQL) Let Q̂λπ̂β+(1−λ)π denote the
Q-function derived from CPQL as defined in Equation 2. Then, the state value of λπ̂β + (1− λ)π,

V̂ λπ̂β+(1−λ)π(s) = Ea∼(λπ̂β+(1−λ)π)(·|s)

[
Q̂λπ̂β+(1−λ)π(s, a)

]
, lower-bounds the true state value

of the policy obtained via exact policy evaluation, V λπ̂β+(1−λ)π(s), for sufficiently large α. Formally,
with probability at least 1− δ, for all s ∈ S(D),

V̂ λπ̂β+(1−λ)π(s) ≤ V λπ̂β+(1−λ)π(s),

if α ≥ Cδ
r+γRmaxC

δ
P/(1−γ)

(1−γλ)(1−λ)(1−γ) max
s,a∈D

1√
N(s,a)

max
s∈S(D)

(
Ea∼π(·|s)

[
π(a|s)
π̂β(a|s) − 1

])−1

Proof By setting the derivative of Equation 2 to zero, we derive the following recursive update
expression for Q̂k+1 in terms of Q̂k, incorporating the sampling error under Lemma 1. Given a
state-action pair (s, a), with high probability ≥ 1− δ:

Q̂k+1 (s, a) = T̂
π̂β ,πk

λ Q̂k (s, a)− α

[
πk(a|s)
π̂β(a|s)

− 1

]
≤ T π̂β ,πk

λ Q̂k (s, a)− α

[
πk(a|s)
π̂β(a|s)

− 1

]
+

Cδ
r,P

(1− γλ) (1− γ)
√
N (s, a)

.

In Proposition 2, we known that limk→∞ Q̂k = Q̂λπ̂β+(1−λ)π when the function approximation error
is zero for every (s, a) ∈ S × A. Thus, the state value function of λπ̂β + (1 − λ)πk, on the other
hand, V̂k+1 is underestimated, since:

V̂k+1(s) = T
π̂β ,πk

λ V̂k(s)− αEa∼(λπ̂β+(1−λ)πk)(·|s)

[
πk(a|s)
π̂β(a|s)

− 1

]
+ Ea∼(λπ̂β+(1−λ)πk)(·|s)

[
Cδ

r,P

(1− γλ) (1− γ)
√
N (s, a)

]
.

Now, we can compute the fixed point of the recursion in the above equation. Because the fixed
point of the PQL operator coincides with the unique fixed point of T λπ̂β+(1−λ)π, this gives us the
following estimated policy value:

V̂ λπ̂β+(1−λ)π(s)

= V λπ̂β+(1−λ)π(s)− α

[(
I − γPλπ̂β+(1−λ)π

)−1

Ea∼(λπ̂β+(1−λ)π)(·|s)

[
π(a|s)
π̂β(a|s)

− 1

]]
(s)

+

[(
I − γPλπ̂β+(1−λ)π

)−1

Ea∼(λπ̂β+(1−λ)πk)(·|s)

[
Cδ

r,P

(1− γλ) (1− γ)
√
N (s, a)

]]
(s). (7)

In this case, the choice of α, that prevents overestimation is given by:

α ≥ Cδ
r + γRmaxC

δ
P/(1− γ)

(1− γλ) (1− λ) (1− γ)
max
s,a∈D

1√
N(s, a)

max
s∈S(D)

(
Ea∼π(·|s)

[
π (a|s)
π̂β (a|s)

− 1

])−1

This completes the proof of Theorem 1.
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B.2 THEOREM 2

We prove that λπ̂β + (1− λ)π̂ achieves at least the performance of π̂β in the actual MDPM.

Theorem 2 (Comparison to the Behavior Policy) Let π̂ := argmaxπ Es∼d0

[
V̂ λπ̂β+(1−λ)π(s)

]
.

With probability at least 1− δ, λπ̂β + (1− λ) π̂ achieves a policy improvement over π̂β in the actual
MDPM as follows:

JM (λπ̂β + (1− λ) π̂) ≥JM (π̂β) +
α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

− 1

]]
−

Cδ
r,P

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[ √
|A|√
N (s)

(
1+λ+ (1−λ)

√
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

])]
,

where Cδ
r,P is a constant dependent on the concentration properties r and P .

Proof The proof of this statement is divided into three parts:

JM (λπ̂β + (1− λ) π̂)− JM (π̂β)

= JM (λπ̂β + (1− λ) π̂)− JM̂ (λπ̂β + (1− λ) π̂)︸ ︷︷ ︸
=:∆1

+ JM̂ (λπ̂β + (1− λ) π̂)− JM̂ (π̂β)︸ ︷︷ ︸
=:∆2

+ JM̂ (π̂β)− JM (π̂β)︸ ︷︷ ︸
=:∆3

.

By Lemma 5, we obtain the upper bound of ∆1 and ∆3, as follows:

|∆1| ≤
Cδ

r + γRmaxC
δ
P/(1− γ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

])]

|∆3| ≤
Cδ

r + γRmaxC
δ
P/(1− γ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[ √
|A|√
N (s)

]
.

Next, we obtain the lower bound of ∆2 by the definition of π̂ and Equation 7:

JM̂ (π̂, λπ̂β + (1− λ) π̂)− α (1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]]
≥ J (π̂β)− 0.

Thus, we have that:

∆2 ≥
α (1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]]
Therefore, by integrating the bound of ∆1, ∆2, and ∆3, we obtain that:

JM (λπ̂β + (1− λ) π̂)

≥ JM (π̂β) +
α (1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]]
−

Cδ
r,P

1− γ
E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[ √
|A|√
N (s)

(
1 + λ+ (1− λ)

√
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

])]
,

where Cδ
r,P = Cδ

r + γRmaxC
δ
P/(1− γ).

This completes the proof of Theorem 2.

When λ = 0, we obtain the following equality:

JM (π̂)− JM (π̂β)

≥ α

1− γ
Es∼dπ̂

M̂
(s)

[
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]]
−

2Cδ
r,P

1− γ
Es∼dπ̂

M̂
(s)

[ √
|A|√
N(s)

√
Ea∼π̂(·|s)

[
π̂ (a|s)
π̂β (a|s)

]]
.

This result coincides with Theorem 3.6 from CQL (Kumar et al., 2020). Our theorem converges
under the same conditions, thereby ensuring consistency with the CQL framework.
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B.3 THEOREM 3

We first present, to the best of our knowledge, theoretical guarantees concerning the sub-optimality
gap between the optimal policy and the mixture policy.

Theorem 3 (Sub-Optimality Gap) With probability at least 1−δ, the gap of the expected discounted
return between the optimal policy π∗ and the mixture policy λπ̂β + (1− λ)π̂ under the actual MDP
M satisfies

JM (π∗)− JM (λπ̂β + (1− λ) π̂)

≤ 2λRmax

(1− γ)
2Es∼d

λπ̂β+(1−λ)π∗

M̂

[
dTV (π∗, π̂β) (s)

]
+

2α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[
dTV (π∗, π̂)(s)

(
ξ(π̂)(s) +

γ

1− γ
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

])]
+

Cδ
r,P

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

])]

+
Cδ

r,P

1− γ
Es∼dπ∗

M̂
(s)

[ √
|A|√
N (s)

√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

]]
,

where ξ(π̂)(s) :=
∑

a∈A
π∗(a|s)+π̂(a|s)

π̂β(a|s) and dTV (π1, π2) is the total variation distance of π1 and π2.

Proof The proof of this statement is divided into four parts:

JM (π∗)− JM (λπ̂β + (1− λ) π̂)

= JM (π∗)− JM̂ (π∗)︸ ︷︷ ︸
=:∆1

+ JM̂ (π∗)− JM̂ (λπ̂β + (1− λ)π∗)︸ ︷︷ ︸
=:∆2

+ JM̂ (λπ̂β + (1− λ)π∗)− JM̂ (λπ̂β + (1− λ) π̂)︸ ︷︷ ︸
=:∆3

+ JM̂ (λπ̂β + (1− λ) π̂)− JM (λπ̂β + (1− λ) π̂)︸ ︷︷ ︸
=:∆4

.

By Lemma 5, we obtain the upper bound of ∆1 and ∆4, as follows:

|∆1| ≤
Cδ

r + γRmaxC
δ
P/(1− γ)

1− γ
Es∼dπ∗

M̂
(s)

[ √
|A|√
N (s)

(√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

])]

|∆4| ≤
Cδ

r + γRmaxC
δ
P/(1− γ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

])]
Next, we derive the upper bound of ∆2, as follows:

|∆2| =
1

1− γ

∣∣∣∣∣∑
s,a

(
dπ

∗

M̂ (s)π∗(a|s)− d
λπ̂β+(1−λ)π∗

M̂
(s) (λπ̂β + (1− λ)π∗) (a|s)

)
rM̂ (s, a)

∣∣∣∣∣
≤ Rmax

1− γ

∣∣∣∣∣∑
s

(
dπ

∗

M̂ (s)− d
λπ̂β+(1−λ)π∗

M̂
(s)
)∣∣∣∣∣+ λRmax

1− γ

∣∣∣∣∣∑
s,a

d
λπ̂β+(1−λ)π∗

M̂
(s) (π∗ − π̂β) (s, a)

∣∣∣∣∣
=

γλRmax

(1− γ)
2Es∼d

λπ̂β+(1−λ)π∗

M̂

[∑
a

∣∣∣π∗(a|s)− π̂β(a|s)
∣∣∣]+ λRmax

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂

[∑
a

∣∣∣π∗(a|s)− π̂β(a|s)
∣∣∣]

=
2λRmax

(1− γ)
2Es∼d

λπ̂β+(1−λ)π∗

M̂

[dTV (π∗, π̂β) (s)] ,

where the second inequality follows from Lemma 4 and the last equality holds with the definition of
total variance distance, dTV (π1, π2) (s) =

∑
a |π1(a|s)− π2(a|s)| /2.
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By the definition of π̂ and Equation 7, we derive the upper bound of ∆3, as follows:

|∆3| ≤
α

1− γ

∣∣∣∣∣Es∼d
λπ̂β+(1−λ)π∗

M̂
(s)

[
Ea∼(λπ̂β+(1−λ)π∗)(·|s)

[
π∗(a|s)
π̂β(a|s)

− 1

]]

− E
s∼d

λπ̂β+(1−λ)π̂

M̂
(s)

[
Ea∼(λπ̂β+(1−λ)π̂)(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]] ∣∣∣∣∣
≤ α(1− λ)

1− γ

∣∣∣∣Es∼d
λπ̂β+(1−λ)π∗

M̂
(s)

[
Ea∼π∗(·|s)

[
π∗(a|s)
π̂β(a|s)

]
− Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

]]∣∣∣∣
+

α(1− λ)

1− γ

∑
s

∣∣∣dλπ̂β+(1−λ)π̂

M̂
(s)− d

λπ̂β+(1−λ)π∗

M̂
(s)
∣∣∣Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]

≤ α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[∑
a

(π∗(a|s) + π̂ (a|s)) |π∗(a|s)− π̂ (a|s)|
π̂β(a|s)

]

+
α(1− λ)

1− γ

∑
s

∣∣∣dλπ̂β+(1−λ)π̂
M (s)− d

λπ̂β+(1−λ)π∗

M (s)
∣∣∣Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]

≤ α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)


∑
a

π∗(a|s) + π̂ (a|s)
π̂β(a|s)︸ ︷︷ ︸

:=ξ(π̂)(s)

∑
a

|π∗(a|s)− π̂ (a|s)|


+

αγ (1− λ)

(1− γ)
2 E

s∼d
λπ̂β+(1−λ)π∗

M (s)

[
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

]∑
a

∣∣∣π̂(a|s)− π∗(a|s)
∣∣∣] ,

≤ 2α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[
dTV (π∗, π̂) (s)

(
ξ (π̂) (s) +

γ

1− γ
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

])]
,

where the last inequality follows from the definition of ξ (π̂) and Lemma 4.

Therefore, by integrating the bound of ∆1, ∆2, ∆3 and ∆4, we have that:

JM (π∗)− JM (λπ̂β + (1− λ) π̂)

≤ 2λRmax

(1− γ)
2Es∼d

λπ̂β+(1−λ)π∗

M̂

[
dTV (π∗, π̂β) (s)

]
+

2α(1− λ)

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[
dTV (π∗, π̂)(s)

(
ξ(π̂)(s) +

γ

1− γ
Ea∼π̂(·|s)

[
π̂(a|s)
π̂β(a|s)

− 1

])]
+

Cδ
r,P

1− γ
E
s∼d

λπ̂β+(1−λ)π∗

M̂
(s)

[ √
|A|√
N (s)

(
λ+ (1− λ)

√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

])]

+
Cδ

r,P

1− γ
Es∼dπ∗

M̂
(s)

[ √
|A|√
N (s)

√
Ea∼π∗(·|s)

[
π∗ (a|s)
π̂β (a|s)

]]
,

This completes the proof of Theorem 3.
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C EXPERIMENTAL DETAILS AND PARAMETER SETUP

In this appendix, we first briefly introduce the calculation of normalized scores in the D4RL bench-
mark. We then describe our implementation and experimental details.

C.1 D4RL BENCHMARKS

D4RL provides a metric, the normalized score, which represents a normalized undiscounted average
return, to evaluate the performance of offline RL algorithms. It is calculated as follows:

Normalized score =
average return - return of the random policy

return of the expert policy - return of the random policy
× 100.

Note that 0 represents the performance of a random policy, and 100 represents the performance of
an expert policy. In D4RL, if the task is in the same environment, different types of datasets share
the same reference minimum and maximum scores. We summarize the reference score for each
environment in Table 2. For AntMaze, we set the number of episodes to 100 and evaluate the number
of times the goal is reached. If the ant successfully reaches the goal location, it is rewarded with 1.0,
indicating a successful episode. Conversely, if the ant fails to reach the goal, it receives a reward of
0.0, reflecting an unsuccessful attempt.

Table 2: The referenced min and max scores for the MuJoCo, Adroit and AntMaze datasets in D4RL.

Domain Task Reference Min Score Reference Max Score

MuJoCo Halfcheetah -280.18 12135.0
MuJoCo Hopper -20.27 3234.3
MuJoCo Walker2d 1.63 4592.3

Adroit Pen 96.26 3076.83
Adroit Door -56.51 2880.57
Adroit Hammer -274.86 12794.13
Adroit Relocate -6.43 4233.88

AntMaze Umaze / Medium / Large 0.0 1.0

C.2 BASELINES

C.2.1 OFFLINE BASELINES

To generate the results reported in Tables 1, we conduct experiments on MuJoCo “-v2”, Adroit
“-v0”, and Antmaze “-v0” datasets. We adopt behavior cloning (BC), several canonical offline RL
algorithms (TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020), and IQL (Kostrikov et al.,
2022)), and more recent extensions of CQL (MCQ (Lyu et al., 2022), MISA (Ma et al., 2023),
CSVE (Chen et al., 2023), and EPQ (Yeom et al., 2024)). For a fair comparison, we evaluate all
algorithms using results after 1M gradient steps. Thus, certain algorithms must be reproduced for all
datasets, while for some datasets, several algorithms with missing values must also be reproduced.

MuJoCo Locomotion Tasks. We take the results for TD3+BC (Table 9 in Fujimoto & Gu (2021)),
MCQ (Table 1 in Lyu et al. (2022)), and CSVE (Table 1 in Chen et al. (2023)) as reported in their
original papers. Since the reported scores in the CQL paper are based on ”-v0” datasets, and the
scores for BC are needed, we take the scores for BC and CQL from Table 1 in Lyu et al. (2022). Since
the IQL and MISA papers do not report performance on the Random and Expert datasets, we take the
results for IQL from Table 1 in Lyu et al. (2022) and for MISA from Table 1 in Yeom et al. (2024).
For the Medium, Medium-Replay, and Medium-Expert datasets, we directly take the results of IQL
(Table 1 in Kostrikov et al. (2022)) and MISA (Table 2 in Ma et al. (2023)) from their original papers.
Since the EPQ paper reports scores after 3M gradient steps, we run the official implementation of
EPQ on all datasets for 1M gradient steps, available at https://github.com/hyeon1996/EPQ.

Adroit Manipulation Tasks. We take the results for CQL (Table 2 in Kumar et al. (2020)), IQL
(Table 1 in Kostrikov et al. (2022)), MCQ (Table 9 in Lyu et al. (2022)), MISA (Table 2 in Ma et al.
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(2023)), and CSVE (Table 2 in Chen et al. (2023)) as reported in their original papers. Since the
scores for BC are needed, we take the scores for BC from Table 2 in Kumar et al. (2020). Since
the TD3+BC papers do not report performance on Adroit tasks, we take the results for TD3+BC
from Table 1 in Yeom et al. (2024). Since the EPQ paper reports scores after 0.3M gradient steps,
we run the official implementation of EPQ on all Adroit datasets for 1M gradient steps, available
at https://github.com/hyeon1996/EPQ.

AntMaze Navigation Tasks. We take the results for TD3+BC (Table 8 in Fujimoto & Gu (2021)),
CQL (Table 2 in Kumar et al. (2020)), IQL (Table 1 in Kostrikov et al. (2022)), and MISA (Table 2
in Ma et al. (2023)) as reported in their original papers. Since the scores for BC are needed, we take the
scores for BC from Table 2 in Kumar et al. (2020). Since the MCQ papers do not report performance
on AntMaze tasks, we take the results for MCQ from Table 1 in Yeom et al. (2024). Although a
repository (https://github.com/2023AnnonymousAuthor/csve) appears to be the code for the paper, it
does not provide parameters for the AntMaze dataset, preventing us from conducting experiments.
Since the EPQ paper reports scores after 3M gradient steps, we run the official implementation of
EPQ on all AntMaze datasets for 1M gradient steps, available at https://github.com/hyeon1996/EPQ.

C.2.2 OFFLINE-TO-ONLINE BASELINES

To generate the performance curve reported in Figure 3, we conduct experiments on MuJoCo “-v2”
datasets. We adopt canonical offline-to-online RL algorithms (AWAC (Nair et al., 2020) and Cal-
QL (Nakamoto et al., 2023)), offline RL algorithms that achieve high performance in online RL
(IQL (Kostrikov et al., 2022) and SPOT (Wu et al., 2022)), and CQL (Kumar et al., 2020) (offline) to
SAC (online). For a fair comparison, we evaluate all algorithms using results after 0.25M gradient
steps for offline settings and 0.3M gradient steps for online settings. We run the implementations
of the five algorithms based on the CORL (Tarasov et al., 2024b) GitHub repository, available
at https://github.com/tinkoff-ai/CORL.

C.3 CPQL IMPLEMENTATION DETAILS

Table 3: Hyperparameters setup for CPQL

Hyperparameter Value

SAC hyperparameters

Optimizer Adam (Kingma, 2014)
Critic learning rate 3e-4
Actor learning rate 1e-4
Batch size 256
Discount factor 0.99 / MuJoCo and Antmaze

0.90 / Adroit
Target update rate 5e-3
Target entropy -1 · Action Dimension
Entropy in Q-target False

Architecture

Critic hidden dim 256
Critic hidden layers 3 / MuJoCo and Adroit

5 / AntMaze
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor hidden layers ReLU

CPQL hyperparameters

Lagrange True / AntMaze
False / MuJoCo and Adroit

conservatism parameter {0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 10.0}
Lagrange gap 0.8 / AntMaze
Pre-training steps 0
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10
Trajectory Length 5
λ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}
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We set the trajectory length n = 5 for CPQL to cap the length of the partial trajectories. Across
all of our experiments, we tune the conservatism parameter α and λ from the following potential
values with grid search: α ∈ {0.1, 0.5, 1, 3, 5, 7, 10} and λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}.
In offline-to-online RL, we set the conservatism parameter α to either 1 or 5. We extend our
experiments to include α values lower than the previously typical choices of 5 and 10 used in CQL.
We optimize the learned policy following the standard SAC (Haarnoja et al., 2018) approach. We run
the CPQL implementation based on the CORL (Tarasov et al., 2024b) GitHub repository, available
at https://github.com/tinkoff-ai/CORL. The hyperparameter setup for CPQL, including the default
SAC configuration, is detailed in Table 3. We summarize the hyperparameters used for running the
MuJoCo, Adroit, and AntMaze tasks in Table 4. We plot the performance of CPQL in Figure 5 using
the best parameters from Tables 4.

Table 4: Detailed hyperparameters of CPQL, where we conduct experiments on MuJoCo-Gym
(“v2”) and Adroit and AntMaze (“v0”) datasets.

Task conservatism parameter α PQL parameter λ

halfcheetah-random 0.1 0.3
halfcheetah-medium 0.1 0.0
halfcheetah-medium-replay 0.1 0.3
halfcheetah-medium-expert 10.0 0.1
halfcheetah-expert 3.0 0.0

hopper-random 0.1 0.0
hopper-medium 0.1 0.7
hopper-medium-replay 0.5 0.1
hopper-medium-expert 5.0 0.1
hopper-expert 10.0 0.9

walker2d-random 0.5 0.9
walker2d-medium 1.0 0.5
walker2d-medium-replay 1.0 0.7
walker2d-medium-expert 1.0 0.95
walker2d-expert 1.0 0.99

pen-human 10.0 0.5
door-human 5.0 0.7
hammer-human 7.0 0.9
relocate-human 1.0 0.9

pen-cloned 1.0 0.5
door-cloned 3.0 0.1
hammer-cloned 5.0 0.7
relocate-cloned 10.0 0.1

antmaze-umaze 7.0 0.1
antmaze-diverse 5.0 0.9
antmaze-medium-play 10.0 0.3
antmaze-medium-diverse 5.0 0.1
antmaze-large-play 10.0 0.1
antmaze-large-diverse 5.0 0.0
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Figure 5: Performance of CPQL in MuJoCo locomotion tasks.
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C.4 RUNNING TIME

We compare the computational cost of CQL and CPQL, which use a single-step operator and a
multi-step operator, respectively. We run such a comparison based on the Hopper-Medium-v2 dataset
with a single GeForce RTX 3090 GPU. We measure the average runtime per epoch (1K training steps)
except for the evaluation step. The results are reported in Table 5. We observe that CQL and CPQL
have average runtimes of 40.6 and 42.4 seconds, respectively. The runtime difference between the
two algorithms is minimal, but as shown in Table 1, we observe significant performance differences.

Table 5: Computational costs of CQL and CPQL.

Epoch runtime (s) CQL CPQL

1,000 gradient steps 40.6 42.4

Compared to two recent conservative value estimation algorithms, MCQ (Lyu et al., 2022) and
EPQ (Yeom et al., 2024), CPQL not only outperforms diverse tasks but also has a lower runtime.
According to Table 3 in Yeom et al. (2024), the reported runtimes using a single NVIDIA RTX A5000
GPU are as follows: CQL (43.1 seconds), MCQ (58.1 seconds), and EPQ (54.8 seconds). For a fair
comparison, we compute the ratio that indicates how much the training time increases in Table 6. We
confirm that CPQL is the most efficient compared to other algorithms.

Table 6: Epoch runtime-increase relative to CQL.

Ratio of epoch runtime (%) CPQL MCQ EPQ

Epoch time growth 4.4 34.8 27.1

Additionally, MCQ and EPQ require more training time because they rely on autoencoder-based OOD
action estimation (Lyu et al., 2022) and additional penalty adaptation factors (Yeom et al., 2024),
respectively. Therefore, CPQL achieves superior performance with significantly lower computational
cost, outperforming MCQ and EPQ while requiring less training time by avoiding autoencoder-based
OOD action estimation and additional penalty adaptation factors.
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D COMPARISON WITH OTHER MULTI-STEP OPERATORS
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Figure 6: Comparison of CPQL (our) with CQL using alternative multi-step operators (Uncorrected
N-step, Retrace, and Tree-backup) on MuJoCo locomotion tasks from D4RL.
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Table 7: Computational costs of CQL (baseline), CPQL (our), Uncorrected N-step, Retrace, and
Tree-backup on the Hopper-medium-v2. We report the runtime per 1,000 gradient steps (in seconds).
For Retrace, the additional cost + α accounts for the extra time required to estimate the behavior
policy, typically using behavior cloning. CPQL’s computational cost is comparable to the single-step
operator, with only a marginal increase in runtime.

Epoch runtime (s) CQL (baseline) CPQL (ours) CQL w/ N-step CQL w/ Retrace CQL w/ Tree-backup

1,000 gradient steps 40.6 42.4 41.3 43.0 + α 43.0

E COMPARISON WITH PQL

In this section, we address the following question:

How does CPQL compare to a method that purely uses PQL, without the conservatism penalty?

In the main text, we focused primarily on evaluating performance across the D4RL benchmarks
(MuJoCo, AntMaze, and Adroit) in both offline and offline-to-online settings. We interpret the results
to clarify why the PQL operator is useful in offline RL and why CPQL is needed. To this end, we
evaluate CPQL and PQL on MuJoCo locomotion tasks, using the normalized return and the critic
model’s average Q-values over a batch size of samples as evaluation metrics.

Table 8: Normalized Return (Real Performance) of CPQL and PQL.

Task Algorithm λ = 0.3 λ = 0.7

hopper-medium-replay CPQL (α = 1) 102.6 ± 0.8 102.5 ± 0.7
PQL 24.9 ± 10.8 45.3 ± 27.9

walker2d-medium CPQL (α = 1) 85.1 ± 5.5 79.4 ± 18.6
PQL -0.2 ± 0.0 -0.2 ± 0.0

Table 9: Average Q-values (Estimated Values) of CPQL and PQL.

Task Algorithm λ = 0.3 λ = 0.7

hopper-medium-replay CPQL (α = 1) 235.8 ± 5.6 222.2 ± 4.9
PQL 314.7 ± 3.2 271.5 ± 4.0

walker2d-medium CPQL (α = 1) 335.4 ± 7.9 332.6 ± 7.7
PQL 4×1011 ± 1010 475.8 ± 6.1

We observe several notable findings in Table 8 and 9. Simply applying PQL to the offline dataset
substantially mitigates one of the most important challenges in offline RL, the overestimation of
Q-values caused by distribution shift. For instance, in the hopper-medium-replay dataset, SAC reports
the normalized score of only around 3.5 (from Table 1 in CQL paper), indicating a failure to learn the
optimal policy, whereas PQL achieves significantly higher performance. Nevertheless, the distribution
shift induced by the learned policy persisted, underscoring the necessity of CPQL to address this
limitation more effectively. In the walker2d-medium dataset, PQL with λ = 0.7 reduced average
Q-value overestimation compared to λ = 0.3, yet this reduction did not translate into an improved
normalized return.

In contrast, CPQL combines conservative value estimation with the PQL operator, suppressing
overestimation while incorporating long-horizon information. As a result, in both hopper-medium-
replay and walker2d-medium datasets, CPQL achieves much more stable and higher returns than
PQL, demonstrating that the synergistic integration of conservatism and the multi-step operator plays
a critical role in improving offline RL performance.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F CUSTOMIZED OFFLINE DATASETS

From the D4RL datasets, it is difficult to determine the exact behavior policy, which makes it
challenging to precisely measure the role of λ. To address this issues, we constructed customized
offline datasets in the Halfcheetah and Walker2d environment. Using SAC, we collected 200K
samples with the policy obtained at the point where the normalized score reached 20. We continued
training until the normalized score reached 100, designating this policy as the optimal policy. Based
on these setups, we conducted several ablation studies to better understand the effects of CPQL and
λ.

F.1 COMPARISON OF CQL, PQL, AND CPQL

Table 10: Normalized Return (Real Performance) and Average Q-values (Estimated Values) for the
customized dataset of Walker2d.

Walker2d Behavior Policy (πβ) Optimal Policy (π∗) CQL -

Normalized Return 20 100 45.9 ± 9.5 -
Average Q-values ≈ 192.74 ≈ 267.76 75.9 ± 5.4 -

Walker2d PQL (λ = 0.3) PQL (λ = 0.7) CPQL (λ = 0.3) CPQL (λ = 0.7)

Normalized Return -0.5 ± 0.0 0.1 ± 0.1 63.5 ± 8.9 81.3 ± 4.5
Average Q-values 4×1010 ± 2.3×109 438.7 ± 20.1 129.6 ± 5.9 174.3 ± 8.2

In Table 10, we set the conservatism parameter α to 5.0 for both CQL and CPQL. Comparing CQL
and PQL, CQL produces relatively low average Q-values due to the conservatism term, achieving a
performance of around 45.9. In contrast, PQL with λ = 0.3 suffers from the typical overestimation
problem in offline RL, but as λ increased to 0.7, its average Q-value decreased to around 438.7. It
shows the migration of the over-conservatism effect with the PQL operator. However, PQL still failed
to learn the optimal policy, because the learned policy still suffers a large distribution shift, leading to
high Q-values.

By adding the conservatism term to PQL, CPQL alleviates this issue and outperforms CQL in terms of
performance. This improvement occurs because, under the same conservatism parameter, CPQL has
mildly conservative Q-values. This aligns with the theoretical insights in Theorems 1- 3. Furthermore,
we observe that as λ increased, PQL’s average Q-values approached those of the behavior policy,
whereas CPQL’s average Q-values approached those of the optimal policy.

F.2 COMPARISON OF CPQL AND OTHER MULTI-STEP OPERATORS

Multi-step operators without a conservatism term are expected to fail to learn a policy that approaches
the optimal policy. Thus, we add the conservatism term with α = 1.0 for all algorithms.

Table 11: Normalized Return (Real Performance) and Average Q-values (Estimated Values) for the
customized dataset of Halfcheetah.

Halfcheetah CPQL CQL w/ Nstep CQL w/ Retrace CQL w/ Tree-backup

Normalized Return 39.6 ± 2.6 31.0 ± 2.8 39.5 ± 2.8 34.4 ± 3.1
Average Q-values 213.7 ± 10.1 127.6 ± 5.2 212.4 ± 10.5 130.5 ± 7.6

In Table 11, CPQL and CQL with Retrace achieved the highest performance (39.6 and 39.5),
maintaining relatively high average Q-values, 213, which indicates a milder conservatism. In contrast,
CQL with n-step returns and Tree-backup showed lower returns (31.0 and 34.4) and substantially
lower average Q-values, suggesting stronger conservatism. In this case, the n-step return prevents
the agent from exploring OOD actions. Tree-backup, on the other hand, was developed for discrete
action spaces, and in continuous spaces it leads to very unstable updates due to the numerical scale of
lnπ.
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In the above case of an offline dataset collected from a single policy, as in the previous experiments,
estimating the behavior policy is relatively straightforward. This explains why Retrace achieved
performance comparable to CPQL. However, an open question is whether Retrace would still perform
well when the offline dataset is generated by multiple behavior policies. To investigate this, we
collected four datasets in Walker2d with normalized scores of 20, 60, and 100, containing 200K,
120K, and 80K samples (ratio 5 : 3 : 2), resulting in a total of 400K samples for training. We add the
conservatism term with α = 5.0 for all algorithms.

Table 12: Normalized Return (Real Performance) for a toy example of the mixture dataset of
Walker2d.

Halfcheetah CPQL CQL w/ Retrace

Normalized Return 98.6 ± 3.5 87.8 ± 22.8

CPQL outperforms CQL with Retrace, indicating that CPQL has more robust performance for datasets
collected from multiple behavior policies. This trend is consistent with the results observed on the
D4RL random and medium-replay datasets

G ADDITIONAL BASELINES

G.1 OFFLINE RL

We evaluate our method on MuJoCo locomotion tasks in offline settings, comparing it against Q-
value uncertainty approaches for conservative estimation (ensemble-based: EDAC (An et al., 2021),
PBRL (Bai et al., 2021); non-ensemble: UWAC (Wu et al., 2021), QDQ (Zhang et al., 2024)) as
well as trajectory-based methods (DT (Chen et al., 2021), TT (Janner et al., 2021)). Comparison
to additional single-step baselines in effectively regulating OOD actions (X -QL (Garg et al., 2023),
SQL, EQL (Xu et al., 2023), and InAC (Xiao et al., 2023)).

Table 13: Results for MuJoCo locomotion tasks. * indicates methods trained with 3M gradient steps
as reported in original papers. All other methods are trained with 1M gradient steps. Bold numbers
are the scores within 2% of the highest in each environment.

Task EDAC∗ PBRL UWAC QDQ DT TT CPQL (ours)

halfcheetah-random 28.4 11.0 2.3 - - - 38.8 ± 1.0
hopper-random 25.3 26.8 2.7 - - - 31.5 ± 0.5
walker2d-random 16.6 8.1 2.0 - - - 21.2 ± 0.7

halfcheetah-medium-v2 65.9 58.2 42.2 74.1 42.6 46.9 66.6 ± 0.9
hopper-medium-v2 101.6 81.6 50.9 99.0 67.6 61.1 99.7 ± 2.0
walker2d-medium-v2 92.5 90.3 75.4 86.9 74.0 79.0 90.0 ± 1.5

halfcheetah-medium-replay-v2 61.3 49.5 35.9 63.7 36.6 41.9 60.3 ± 0.8
hopper-medium-replay-v2 101.0 100.7 25.3 102.4 82.7 91.5 103.0 ± 0.6
walker2d-medium-replay-v2 87.1 86.2 23.6 93.2 66.6 82.6 97.4 ± 4.0

halfcheetah-medium-expert-v2 106.3 93.6 42.7 99.3 86.8 95.0 95.3 ± 0.6
hopper-medium-expert-v2 110.7 111.2 44.9 113.5 107.6 110.0 111.3 ± 1.2
walker2d-medium-expert-v2 114.7 109.8 96.5 115.9 108.1 101.9 112.5 ± 0.5

halfcheetah-expert-v2 106.8 96.2 92.9 - - - 98.0 ± 1.6
hopper-expert-v2 110.1 110.4 110.5 - - - 112.0 ± 0.6
walker2d-expert-v2 115.1 108.8 108.4 - - - 112.5 ± 0.4

Across MuJoCo locomotion tasks, in Table 13, CPQL consistently achieves competitive or superior
performance compared to both Q-value uncertainty methods (with and without ensembles) and
trajectory-based approaches. In particular, it matches or exceeds the strongest baselines in medium,
medium-replay, and expert datasets, demonstrating robustness across varying data qualities. Fur-
thermore, in Table 14, when compared to recent single-step baselines designed to regulate OOD
actions, CPQL achieves the highest or near-highest scores across all benchmark settings. These results
confirm that CPQL is not only effective in addressing conservatism but also reliable in balancing
exploration and value estimation, leading to strong and stable returns across diverse offline RL tasks.
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Table 14: Results for MuJoCo locomotion tasks. Bold numbers are the scores within 2% of the
highest in each environment.

Task X -QL SQL EQL InAC CPQL (ours)

halfcheetah-medium 48.3 48.3 47.2 48.3 66.6 ± 0.9
hopper-medium 74.2 75.5 74.6 60.3 99.7 ± 2.0
walker2d-medium 84.2 84.2 83.2 82.7 90.0 ± 1.5

halfcheetah-medium-replay 45.2 44.8 44.5 44.3 60.3 ± 0.8
hopper-medium-replay 100.7 99.7 98.1 92.1 103.0 ± 0.6
walker2d-medium-replay 82.2 81.2 76.6 69.8 97.4 ± 4.0

halfcheetah-medium-expert 94.2 94.0 90.6 83.5 95.3 ± 0.6
hopper-medium-expert 111.2 111.8 105.5 93.8 111.3 ± 1.2
walker2d-medium-expert 112.7 110.0 110.2 109.0 112.5 ± 0.5

halfcheetah-expert - - - 93.6 98.0 ± 1.6
hopper-expert - - - 103.4 112.0 ± 0.6
walker2d-expert - - - 110.6 112.5 ± 0.4

G.2 OFFLINE-TO-ONLINE RL

We evaluate our method on the MuJoCo locomotion tasks and AntMaze navigation tasks after fine-
tuning with 300k online samples. We report the final normalized score average over five random
seeds, with ± indicating the 95%-confidence interval.

• MuJoCo locomotion tasks: We compare CPQL (offline) to PQL (online) against several
algorithms: (i) CQL (offline) to SAC (online), (ii) PEX (Zhang et al., 2023) that expands
the policy set during online fine-tuning using optimistic exploration (iii) RLPD (Ball et al.,
2023) that regularizes online updates using value and policy constraints from offline data,
and (iv) Cal-QL that calibrates the value-function. (see Table 15)

• AntMaze navigation tasks: These environments are known to be extremely challenging
for standard off-policy RL algorithms like SAC, due to their sparse rewards and complex
exploration requirements. As vanilla online algorithm fails to learn successful policies in
these tasks, we compare CPQL against several algorithms, including CQL. (see Table 16)

Table 15: Results for MuJoCo locomotion tasks in offline to online settings. Bold numbers are the
scores within 2% of the highest in each environment.

MuJoCo CQL→SAC PEX RLPD Cal-QL CPQL→PQL

halfcheetah-random 90.3 ± 3.1 60.9 ± 6.2 91.5 ± 3.1 32.9 ± 10.1 93.8 ± 6.3
hopper-random 33.7 ± 34.9 48.5 ± 48.3 90.2 ± 23.7 17.7 ± 32.3 102.0 ± 1.7
walker2d-random 3.8 ± 7.9 9.8 ± 2.0 87.7 ± 17.5 9.4 ± 7.0 88.6 ± 20.1

halfcheetah-medium 96.3 ± 1.6 70.4 ± 2.9 95.5 ± 1.9 77.0 ± 2.7 96.5 ± 1.7
hopper-medium 109.3 ± 1.1 86.2 ± 32.7 91.4 ± 34.5 100.7 ± 1.0 111.5 ± 0.7
walker2d-medium 114.4 ± 3.2 91.4 ± 17.8 121.6 ± 2.9 97.0 ± 10.2 127.8 ± 3.4

halfcheetah-medium-replay 94.8 ± 1.9 55.4 ± 6.3 90.1 ± 1.6 62.1 ± 1.4 95.8 ± 2.2
hopper-medium-replay 108.4 ± 3.4 95.3 ± 8.9 78.9 ± 30.4 101.4 ± 2.6 112.1 ± 2.5
walker2d-medium-replay 114.7 ± 11.1 87.2 ± 16.9 119.0 ± 2.6 98.4 ± 4.1 128.6 ± 4.8

From the results presented in the table above, CPQL to PQL method achieves significantly better
performance compared to other baselines. Several factors contribute to this advantage. First, the
Q-function learned by PQL does not degrade at the beginning of the online phase. This is because
CPQL reduces the influence of the learned policy on Q-value estimation, resulting in more stable value
learning. Second, compared to PEX, RLPD, and Cal-QL, PQL benefits from a stronger exploration
capability, as it is guided by a well-trained Q-function obtained from CPQL.
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Table 16: Results for AntMaze tasks in offline-to-online settings. Bold numbers are the scores within
2% of the highest in each environment.

AntMaze CQL PEX RLPD Cal-QL CPQL

antmaze-umaze 99.0 ± 0.7 95.2 ± 2.0 99.4 ± 1.0 90.1 ± 13.4 98.2 ± 1.0
antmaze-umaze-diverse 76.9 ± 49.3 34.8 ± 37.4 99.2 ± 1.2 75.2 ± 43.5 90.4 ± 3.1
antmaze-medium-play 94.4 ± 3.7 83.4 ± 2.9 97.4 ± 1.7 95.1 ± 7.8 93.4 ± 1.9
antmaze-medium-diverse 98.8 ± 3.1 86.6 ± 6.2 98.6 ± 1.7 96.3 ± 6.0 98.2 ± 1.8
antmaze-large-play 87.3 ± 7.0 56.0 ± 4.8 93.0 ± 3.1 75.0 ± 18.2 85.4 ± 6.3
antmaze-large-diverse 65.3 ± 35.1 60.4 ± 8.4 90.4 ± 4.8 74.4 ± 14.6 82.0 ± 5.6

In the AntMaze tasks, CPQL outperforms (or equal to) other baselines except for RLPD, with only a
slight performance gap compared to RLPD. The advantage of CPQL becomes even more pronounced
when compared to CQL. Taken together, the results from both the MuJoCo and AntMaze tasks
demonstrate that our algorithm is more robust and delivers superior overall performance.

H ADDITIONAL RELATED WORKS

Model-based Offline RL. Model-based offline RL methods build dynamics and reward models from
the offline dataset, leveraging state transitions and rewards of estimated model outputs for planning
and policy improvements. They typically achieve this by penalizing the reward function with the
error between the ground truth and estimated models (Yu et al., 2020; Kidambi et al., 2020; Rafailov
et al., 2021; Lu et al., 2021; Kim & Oh, 2023; Sun et al., 2023), learning conservative Q function
within the model-based regime (Yu et al., 2021), and training the policy and the dynamics model
adversarially (Rigter et al., 2022). Algorithms that learn by planning synthetic trajectories under esti-
mated dynamics typically perform policy evaluation using a single-step approach. However, applying
CPQL in model-based offline RL settings can be particularly beneficial, similar to COMBO (Yu et al.,
2021). It enables more conservative learning of the Q-function, mitigating overestimation issues.
This suggests that CPQL has broad applicability and can enhance various aspects of model-based
reinforcement learning.

Recently, Park & Lee (2025) considered a model-based offline RL approach, computing the target
Q-function by applying lower expectile regression to λ-returns on synthetic trajectories planned from
the estimated dynamics. This method differs from ours: we take a model-free offline RL approach,
leveraging offline trajectories collected from the actual environment. Our method effectively enhances
performance by utilizing real trajectories rather than relying on synthetic trajectories, which are
subject to model estimation uncertainty. Furthermore, while they additionally employ lower expectile
regression to obtain a conservative return estimate, CPQL derives a conservative value estimate solely
by integrating the multi-step operator with a conservative estimation mechanism.

Offline Trajectory. Several works (Yue et al., 2022; Liu et al., 2024; Xu et al., 2024) have attempted
to handle offline trajectories in different ways to adaptively utilize information from past observations,
where rewards have already been realized. They propose several methods, such as return-based
data rebalancing in Yue et al. (2022), priority assignment based on trajectory quality using average,
minimum, maximum, and quantile rewards in Liu et al. (2024), as well as a least-squares-based
reward redistribution method for reward estimation in Xu et al. (2024). However, these methods are
not applicable in sparse reward settings, such as AntMaze tasks, and were not empirically tested in
such environments. In contrast, we show that CPQL achieves superior performance in sparse reward
settings.

34


	Introduction
	Related Work
	Preliminaries
	Markov Decision Process
	Off-policy Operators
	Offline RL

	Conservative PQL
	Towards Offline PQL
	Theoretical Analysis
	Proposed Algorithm

	Experiments
	Results on offline and offline-to-online D4RL

	Conclusion
	Proof of Technical Lemmas for Theorems
	Proof of Theorems
	Theorem 1
	Theorem 2
	Theorem 3

	Experimental Details and Parameter Setup
	D4RL Benchmarks
	Baselines
	Offline Baselines
	Offline-to-Online Baselines

	CPQL Implementation Details
	Running Time

	Comparison with other Multi-Step Operators
	Comparison with PQL
	Customized Offline Datasets
	Comparison of CQL, PQL, and CPQL
	Comparison of CPQL and other multi-step operators

	Additional baselines
	Offline RL
	Offline-to-Online RL

	Additional Related Works

