Under review as a conference paper at ICLR 2026

PENG’S Q(\) FOR CONSERVATIVE VALUE ESTIMATION
IN OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a model-free offline multi-step reinforcement learning (RL) algorithm,
Conservative Peng’s Q(\) (CPQL). Our algorithm adapts the Peng’s Q()\) (PQL)
operator for conservative value estimation as an alternative to the Bellman operator.
To the best of our knowledge, this is the first work in offline RL to theoretically and
empirically demonstrate the effectiveness of conservative value estimation with the
multi-step operator by fully leveraging offline trajectories. The fixed point of the
PQL operator in offline RL lies closer to the value function of the behavior policy,
thereby naturally inducing implicit behavior regularization. CPQL simultaneously
mitigates over-pessimistic value estimation, achieves performance greater than
(or equal to) that of the behavior policy, and provides near-optimal performance
guarantees — a milestone that previous conservative approaches could not achieve.
Extensive numerical experiments on the D4RL benchmark demonstrate that CPQL
consistently and significantly outperforms existing offline single-step baselines. In
addition to the contributions of CPQL in offline RL, our proposed method also
contributes to the framework of offline-to-online learning. Using the Q-function
pre-trained by CPQL in offline settings enables the online PQL agent to avoid the
performance drop typically observed at the start of fine-tuning and attain robust
performance improvement.

1 INTRODUCTION

Offline RL aims to learn policies from a static dataset collected under unknown behavior policies
without further interactions with the actual environment. However, offline RL faces a major challenge
known as distributional shift (Levine et al., 2020). A distributional shift arises when the state-action
distribution under the learned policy diverges significantly from that under the behavior policy.
This issue is exacerbated when the application of the Bellman updates to value functions involves
querying values of out-of-distribution (OOD) state-action pairs, which can lead to an accumulation of
extrapolation errors and ultimately result in poor performance of learned policies.

To tackle OOD actions in policy evaluation, conservative Q-learning (CQL) (Kumar et al., [2020)
penalizes the learned Q-function for OOD actions induced by the learning policy. Building on CQL,
subsequent algorithms (Ma et al., 2021} |Lyu et al., 2022} |Chen et al., |2023; |Nakamoto et al., [2023};
Shao et al., 2023} Yeom et al., 2024)) address the potential over-pessimism in both in-distribution and
OOD actions, which stems from excessively conservative value estimates. These approaches rely on
additional components, such as estimating the unknown behavior policy to handle OOD actions (Lyu
et al.,2022;|Yeom et al.| 2024) or introducing extra networks for a quantile (Ma et al.,|2021)) or a state
value function (Chen et al., 2023} [Nakamoto et al., [2023)), which may lead to increased complexity
and further drawbacks despite their intentions to address the over-pessimism — such drawbacks
include distribution mismatches between the estimated behavior policy and the dataset (Zhuang et al.
2023; Kun et al.l 2024), the need for extensive parameter tuning, and prolonged training times.

Intuitively, leveraging offline trajectories that span multiple timesteps, rather than individual single-
timestep transitions, provides more information about the behavior policy and can potentially prevent
the selection of OOD actions for offline datasets. Although trajectories are readily available in offline
datasets, most previous model-free offline RL methods for policy evaluation utilize these trajectories
only in the form of fragmented single-step transitions (Fujimoto et al., 2019} |[Kumar et al.l 2019; Wu
et al.,[2019; |Fujimoto & Gul [2021; [Kostrikov et al., [2021)). Hence, the following question arises:



Under review as a conference paper at ICLR 2026

Can we design a value estimation method for offline RL that utilizes the multi-step learning?

In online RL counterparts of offline RL, there is a line of work that extends a single-step temporal-
difference (TD) learning (e.g., Q-learning (WATKINS| [1989)) to multi-step generalizations (Peng &
Williams, |{1994; Precup, [2000; Munos et al., 20165 |Harutyunyan et al., 2016; Rowland et al., 2020;
Kozuno et al.} 2021)), introducing multi-step operators that leverage temporally extended trajectories
to update Q-values. These operators improve learning efficiency and provide a more forward-looking
perspective, leading to enhanced performance in determining optimal actions compared to the single-
step Bellman operator across various benchmarks (Harb & Precup, 2017; Mousavi et al.|[2017; Hessel
et al.,|2018; Barth-Maron et al.,|2018; [Kapturowski et al.| 2018} |Daley & Amato, [2019). However,
whether such an extension to multi-step TD learning is possible in offline RL is still unclear. Hence,
the follow-up questions arise:

What is a suitable multi-step operator for offline RL?
Is it possible to demonstrate that the multi-step operator enhances performance?

In this paper, we propose an effective conservative multi-step Q-learning algorithm for a model-free
offline RL, Conservative Peng’s Q(\) (CPQL). Our algorithm builds on conservative value estimation
by incorporating the Peng’s Q(\) (PQL) operator (Peng & Williams, [1994; |Kozuno et al., [2021)
instead of the standard Bellman operator. Unlike other multi-step operators (Precup, [2000; Munos
et al., 2016; Harutyunyan et al.l 2016} [Rowland et al., 2020) that truncate trajectories, the PQL
operator fully leverages entire trajectories to improve policy evaluation. Since the PQL operator does
not use importance sampling, which requires estimating the behavior policy from offline datasets,
it avoids the mismatch issues arising from inaccurate behavior policy estimation (Zhuang et al.,
2023; Kun et al., 2024). Because the fixed point of the PQL operator in offline RL converges to
the Q-function of a mixture policy that interpolates the behavior policy and target policy, coupling
it with a conservative value estimation method ensures that even mild conservatism is sufficient
to mitigate Q-value overestimation caused by distribution shift. In contrast to other conservative
methods (Kumar et al.,|2020; Ma et al., 2021} [Lyu et al., [2022; |Chen et al., 2023 Nakamoto et al.,
2023; Shao et al., [2023; | Yeom et al., [2024)), CPQL mitigates over-pessimistic value estimation in the
Q-function (Theorem [I)) without requiring additional estimation procedures or auxiliary networks.
Our main contributions are summarized as follows:

* We propose CPQL, the first multi-step Q-learning algorithm for a model-free offline RL.
CPQL adapts the PQL operator to conservative value estimation and fully leverages offline
trajectories without estimating additional models. To the best of our knowledge, our work is
the first to demonstrate both theoretically and empirically the effectiveness of conservative
multi-step value estimation.

* We provide rigorous theoretical analyses for CPQL. The policy learned by CPQL is guaran-
teed to achieve the performance greater than (or equal to) that of the behavior policy (Theo-
rem[2) and further reduces the sub-optimality gap than CQL (Theorem 3. Our theoretical
analyses effectively address the key limitations of over-pessimistic value estimation in offline
RL, ensuring balanced conservatism and improved policy exploration.

» Extensive numerical experiments on the D4RL benchmark demonstrate that CPQL consis-
tently and significantly outperforms existing offline single-step RL algorithms. In contrast to
CQL, whose performance is highly sensitive to the choice of the conservatism parameter (An
et al.l 2021} |Ghasemipour et al., 2022} Tarasov et al.,|2024b)), CPQL remains robust across a
wide range of the conservatism parameter.

* Beyond the contribution of CPQL to mitigating over-pessimistic value estimation in offline
RL, CPQL also contributes to the framework of offline-to-online learning. Using the Q-
function pre-trained by CPQL enables the online PQL agent to avoid the performance drop
observed at the start of the online phase and attain robust performance improvement.

2 RELATED WORK

Model-free Offline RL. To overcome the distributional shift and extrapolation error, model-free
offline RL methods focus on learning policies using techniques such as penalizing learned value
functions to assign low values to unseen actions (Kumar et al., [2020; [Ma et al., [2021}; [Lyu et al.,



Under review as a conference paper at ICLR 2026

2022} |Chen et al.l 2023} [Nakamoto et al., [2023; [Shao et al., [2023; Ma et al.l 2023} [Yeom et al.|
2024)), constraining the learned policy to remain similar to the behavior policy (Fujimoto et al.,[2019;
Kumar et al.,|2019; Wu et al., |2019; |[Fujimoto & Gu, 2021} [Fakoor et al., 20215 Ghasemipour et al.}
2021; Wu et al.| 2022} [Tarasov et al., 20244a), quantifying the uncertainty (Wu et al.} 2021 |Zanette
et al., [2021) with adding ensemble techniques to obtain a robust value function (Bai et al.| 2021}
An et al.l 2021} Ghasemipour et al., [2022; [Yang et al.| [2022; Nikulin et al., 2023)), and learning
without querying OOD actions (Chen et al.,|2020; Kostrikov et al., 2022). However, most model-free
offline RL algorithms use the single-step TD learning for off-policy methods based on TD3 (Fujimoto
et al.,|2018), SAC (Haarnoja et al., [2018)), and AWR (Peng et al.,[2019). Thus, our work addresses
over-pessimistic value estimates by leveraging multi-step TD learning based on offline trajectories.

Multi-step Operators. Among off-policy multi-step operators (WATKINS| [1989; [Peng & Williams),
1994; |Cichosz, |1994; |Sutton & Bartol 1998 |[Precup), 2000; [Munos et al., 2016} |[Harutyunyan et al.}
2016; |[Rowland et al.| [2020; Kozuno et al., 2021} Daley et al., 2023)) in online RL, the PQL operator
consistently outperforms the Bellman operator and other multi-step operators in several complex
online tasks (Harb & Precup,2017; Mousavi et al.,[2017; Hessel et al., 2018; |Barth-Maron et al.,[2018];
Kapturowski et al., 2018} |Daley & Amato, |2019). The fixed point of the PQL operator in online RL
has been criticized for its inability to converge to the optimal Q-function without additional technical
conditions, such as the updated behavior policy being close to the target policy (Harutyunyan et al.|
2016} Kozuno et al., 2021). However, under the fixed behavior policy (offline settings), we exploit the
property (Kozuno et al.,[2021)) that its fixed point is closer to the Q-function of the behavior policy.
By integrating conservative value estimation into this property, CPQL tackles two central offline RL
challenges: distributional shift and overly pessimistic value estimates.

Offline-to-Online RL. To prevent the forgetting of offline pre-training benefits and to enable efficient
online exploration, offline-to-online RL methods have explored diverse techniques such as leveraging
an offline dataset to sample-efficient online fine-tuning (Nair et al., 2020; |Lee et al., 2022;|Song et al.,
2022), avoiding the need to retain offline data (Uchendu et al., 2023 Zhou et al., 2024), maintaining
a balanced replay buffer (Ball et al.| 2023 Ji et al., [2024; [Luo et al., 2024), calibrating the value
function (Nakamoto et al.,|2023), adopting bayesian approaches (Hu et al., 2024), bridging the value
gap between offline and online RL (Yu & Zhang| 2023; Wagenmaker & Pacchiano, [2023)), and
proposing policy expansion schemes (Zhang et al.| 2023). However, since CPQL mitigates over-
pessimistic value estimation in the offline phase, it eliminates the need for additional mechanisms
such as critic-actor calibration or alignment when transitioning to vanilla PQL in the online learning.
This allows the online agent to directly leverage the pre-trained Q-function without further adjustment,
ensuring a smoother transition to online fine-tuning. As a result, CPQL avoids the performance drop
typically observed at the start of fine-tuning and attains robust performance improvement.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS

We consider a Markov Decision Process (MDP) defined by a tuple M := (S, A, P, R,dy,7),
where S is the state space, A is the action space, P : S x A — Ag represents the state tran-
sition probability kernel, R is the reward distribution, dyg € Ag is the initial state distribution,
and v € [0,1) is the discount factor. We let the reward function r € RS*A be defined as
r(s,a) = [1"R(dr'|s,a), and assume that |r(s,a)| < Rmax, V(s,a) € S x A. Let a policy
m: S — A4 be a mapping from states to actions (deterministic) or a probability distribution over
actions (stochastic). Given any policy 7, an agent starts from an initial state sy and interacts with
M, repeatedly taking actions, receiving rewards, and observing subsequent states. This process
generates a trajectory 7 = {(s¢,as,7 (5¢,a¢))}5. Where a; ~ w(-|s;) and s¢p1 ~ P(-|ss, ar).
The state-value function and action-value function (Q-function) for the policy 7 are defined as
V7(s) 1= By [0 Y7 (st,ar) | s0 = 5] and Q7(s,) = Eq [Y0% 7' 7(st,ac) | 50 = s, a0 = al,
respectively. We define the discounted state visitation distribution of a policy 7 under the environment
Mas di (s) == (1 =) > oo V' Pr” (st = s | so ~ do, P), where Pr” (s; = s | s ~ do, P) de-
note the probability of reaching state s at time-step ¢ under 7 and P, starting from initial state
so distributed according to the initial state distribution dy. Similarly, we define the discounted
state-action visitation distribution as d%, (s, a) := d}, (s) 7 (a|s).



Under review as a conference paper at ICLR 2026

3.2 OFF-POLICY OPERATORS

Off-policy RL consists of two main tasks: evaluation and improvement. The evaluation process is to
learn the Q-function of a fixed policy. In the improvement setting, the goal is to obtain an optimal
policy 7* that maximizes the expected discounted return under dy, represented as max, Jaq(m) :=
Esa, [V™ ()] = ﬁEMNdL [r (s,a)]. Operators are a fundamental concept in RL because all
value-based RL algorithms update the Q-function using a recursion Q1 := OrQy, where Oy :
RS*A — RS*A s an operator that specifies the update rule of the algorithm. We define P™ as the

transition matrix coupled with the policy, given by P"Q(s, a) := By p(.|s,a), a~n(-|s1) [Q(",a")] -

Bellman Operator. The Bellman operator 77 : RSXA — RSXA is defined as 77 Q := r + yP™Q.
We denote the set of all greedy policies with respect to @ as G(Q). The Bellman optimality operator
T* is defined by 7*Q := 772 @), where mg € G(Q).

Peng’s Q(\) (PQL). For A € [0, 1], PQL updates the Q-function using the recursion Q1 =
T, %™ Q) (Peng & Williams, [1994; |Kozuno et al., [2021), where 7, € G(Qx). The PQL operator
T0T  RSA 5 RO A s defined as T, " Q := (1 — \) Y0 A" L1T,7°"Q, where 7, 7" Q =
(T™s )”_1 T7™Q is the uncorrected n-step return operator (WATKINS| |1989; [Cichosz, |1994; Sutton
& Barto, [1998; [Hessel et al., [2018)).

3.3 OFFLINE RL

In offline RL, the learned policy is constrained to a static dataset without additional interactions

with the environment during the control process. The offline dataset D consists of either trajectories

{7}, gathered by unknown behavior policies 5. On all states s € D, we denote the empirical
Es.aE”D 1[s=s,a=a]

behavior policy as 7g (als) := SR =+ We define the state space induced by D as S(D),
sE

consisting of all states in D. Since D typically covers a subset of the tuple space, offline RL algorithms
based on the Bellman operator suffer from action distribution shift. Because the learning policy is
updated to maximize Q-values, cumulative extrapolation errors in unseen actions can drive it toward
OOD actions with erroneously high Q-values (Levine et al., [2020).

To address the overestimated Q-value problem, CQL (Kumar et al., 2020) penalizes the learned
Q-function for OOD actions induced by the learning policy. The objective function of CQL with a
non-negative conservatism parameter « is defined as follows:

1

§]Es,a,s’~D |:(Q (87 a) - TWQ (S’ a))2:| +a (ESND,aNTr(-|5) [Q (37 CL)] - Es,aND [Q (37 G)D 5 (1)

4 CONSERVATIVE PQL

In this section, we develop the CPQL algorithm, where the learned Q-function mitigates overestima-
tion bias in value estimation. We provide several novel theoretical results that include guarantees for
the sub-optimality gap between the optimal policy and the policy learned via CPQL. It is important
to note that PQL has not been studied under offline RL settings. Hence, we first present how previ-
ous findings on online PQL can be adapted to offline PQL, addressing fundamental challenges of
Q-learning in offline RL.

4.1 TOWARDS OFFLINE PQL

Prior works (Peng & Williams), |1994; Sutton & Barto, |1998}; |Kozuno et al., [2021)) have investigated
the PQL operator only in online RL. In this work, we focus on constructing the PQL operator in
offline RL for the first time. Adapting PQL to offline RL not only facilitates faster convergence to the
fixed point but also mitigates the effects of extrapolation errors and over-pessimistic value estimation,
which are key issues in offline RL. We begin by recalling the fixed-point characterization of the PQL
operator and reinterpreting it from an offline RL perspective. We consider the exact case where no
update errors exist in the value functions.

Proposition 1 (Harutyunyan et al.|(2016)) The fixed point of the PQL operator, Q™#'™, satisfies:
QW/;,‘IT — (AT’H‘[{ _|_ (1 _ A) T7T) Qﬂ‘@,ﬂ‘.



Under review as a conference paper at ICLR 2026

Proposition 1| states that a fixed point of the PQL operator coincides with the fixed point of A7 ™8 +
(1 = X) T for the target policy 7. Since AT ™ 4 (1 — X\) 7™ is a contraction with modulus -y under
L°-norm, the existence and uniqueness of this fixed point are guaranteed. However, this fixed point
does not ensure the convergence of the optimal Q-function in online RL unless 73 is sufficiently close
to 7 (Harutyunyan et al.,[2016; | Kozuno et al., 2021)). In contrast, when we use the fixed empirical
behavior policy 75 from D, the Q-function updated by the PQL operator converges to Qs +(1=)7,

Proposition 2 (Kozuno et al| 2021)) Let 7 be a policy such that Qs +(1=7m > QA Ts+(1-N)7
holds pointwise for any policy ©. Then, Qy for the k-th iteration, updated by the PQL operator,

y(1=X)

uniformly converges to Q st 1=X7 \with a contraction rate of B¥, where  := —

Proposition 2] states a trade-off between bias and contraction rate, that is, PQL with the fixed behavior
policy converges to a biased fixed point that differs from Q)*, with a contraction rate (.

Interpretation to offline RL. Prior work (Kozuno et al,|2021) focused on online RL, particularly
on how updating the behavior policy is necessary for this fixed point to converge to QQ*. However, the
fixed point Q™ with A = 0, corresponding to the value derived from the Bellman operator, can still
deviate from Q* due to distribution shift in offline RL (Fujimoto et al.,[2019; |Kumar et al.,[2019;
Levine et al., 2020). Thus, one of our main points is that we should focus on how an appropriately
chosen \ mitigates Q-value overestimation for the learned policy by shifting the fixed point closer to
Q7#, rather than focusing only on increasing the bias introduced by a large A. The fixed point lies
closer to the behavioral value naturally induces implicit behavior regularization. A carefully chosen
A can effectively address the over-pessimism problem in conservative value estimation methods and
yield a more robust learned Q-function, as it mitigates the influence of the learned policy.

4.2 THEORETICAL ANALYSIS

We aim to mitigate the over-pessimistic estimation of Q-values for the learned policy induced
by conservatism. We integrate the PQL operator into the CQL loss, as it provides a simple and
effective way to alleviate the over-pessimism of Q-values. We replace the standard Bellman operator
in Equation[T| with the PQL operator. This leads to the following iterative Q-value update in CPQL:

A : 1 T3, T N 2
Qry1 € argclgnm{ZEs,a_rs/ND [(Q (s,a) =T, """ Qu (s, a)) }

+ a (ESND,aNTrk(-\s) [Q (Sa a)] - ]ES,QN’D [Q (37 CL)]) } (2)

The following theorem shows that the expectation of the learned Q-function obtained by iterat-
ing Equation [2]lower-bounds the expectation of the true Q-function. This result is an adaptation of
Theorem 3.2 in|Kumar et al.|(2020). The proofs with sampling error is deferred to Appendix

Theorem 1 (Lower Bound on the State Value Function of CPQL) Let @’\’%ﬁﬂlf’\)” denote the
QO-function derived from CPQL as defined in Equation Then, the state value of Mg + (1 — \) m,

VAT HA-M7(g) = Eanrg+(1=2)m)(]s) [@)‘ﬁ/ﬁ(l’k)“(s, a)}, lower-bounds the true state value
of the policy obtained via exact policy evaluation, VAﬁ3+(1’A)”(S). Formally, with probability at
least 1 — 6, for all s € S(D) and some o > 0,

‘7>\ﬁ—ﬁ+(1_/\)ﬂ(8) < V}\ﬁ'ﬁ"‘(l—)\)ﬂ'(s).

The next two theorems show that the policy learned by CPQL is guaranteed to achieve the performance
greater than (or equal to) that of 773 (Theorem [2)) and reduces the sub-optimality gap (Theorem ,
previous conservative value estimation methods had not achieved. The proof with sampling error is

deferred to Appendix [B.2]and

Theorem 2 (Comparison to the Behavior Policy) Let & := argmax, Esq, {17””* +(1*’\)’T(s)} )
With probability at least 1 — 6, Aftg + (1 — X) & achieves a policy improvement over 7t g in the actual
MDP M as follows:

) . ) all —N) 7 (als)
1— > _— % ki ~i(-]s) | = -1
Tat (Vg o+ (1= N &) 2Tpa () + =B, pgranoe {E Cls) [m (als)




Under review as a conference paper at ICLR 2026

Theorem 3 (Sub-Optimality Gap) With probability at least 1—4, the gap of the expected discounted
return between the optimal policy ©* and the mixture policy A\itg + (1 — A) & under the actual MDP
M satisfies

Jpm (%) = T (7, Mg + (1= M) @)

2)\Rmax * A
S TR, o [drv (57 7) ()
20(1 = A) . . v 7(als)
——FE # 1-XA)7* d * 7]Ea~7”r |s) | & -1
+ 2 E saone  ldny (26 (€0)6) + T2 Bascro 110
where (7)(s) = ZaeA% and dpv (71, m2) is the total variation distance of w1 and mo.

Discussion of Theorems [2|and 3} In Theorem[2} A7 + (1 — )7 achieves at least the performance
of 73 under the actual MDP M. When accounting for sampling error, « is chosen such that the
conservative term exceeds the sum of the sampling error terms. However, an excessively large o does
not guarantee that the sub-optimality gap decreases. In Theorem 3] increasing « significantly can lead
to larger influence of {(7) and E,z(.|5)[7 (als) /75 (a|s)] on the RHS. To reduce these gaps, it is
crucial to control the two unbounded terms, since their reduction has a greater effect than reducing the
total variation distance (< 1). Thus, 7 approaches 73 when « takes on a large value by Theorem
However, CPQL can reduce the sub-optimality gap more effectively than CQL. If 7 deviates from 73,
leading to {(7) and Eqwx(.|s) [T (als) /7g (a]s)] growing to infinity. While CQL lacks a mechanism
to directly mitigate this divergence, CPQL addresses it through A, which balances between the first
and second terms on the RHS. For example, Since 7* and 7 are fixed policies, if 7g is similar to 7,
choosing a large value of \ further reduces the sub-optimality gap. Conversely, if 74 differs from 7*,
adjusting a suitable value of A is effective than CQL in reducing the sub-optimality gap.

4.3 PROPOSED ALGORITHM

Algorithm 1 Conservative Peng’s Q(\) (CPQL)
Require: Critic networks Qg, , Qg,, Actor network 74, Dataset D, Conservatism factor o, and A

1: Initialize target networks 0, < 01, 05 < 0

2: for gradientstept =1,2,--- do

3:  Samples batch partial trajectories each of length n, {(so, ao, 70, $1,@1,71,"** , Sn)}, from D
fori =n—1to0do

Compute Q0 = it Q- (Si+1, Tp(si41))+7A (QZrl — Q- (Si+1, 7T¢(5i+1)),j =12

end for R
Construct target value y = min;— o ng — Y v log my (+]sn)

A

Update critic 6; for j = 1, 2 with gradient descent via minimizing

+iBy 0 [(er (s,0) = yﬂ

a]ESND ]-Og Z exp (QGJ- (37 CL)) - anﬂg(-|s) [Q9j (87 a)} 9

9:  Update actor ¢ with gradient ascent via maximizing
]ESND,a~W¢(-\s) j:i1n2 er (57 a) — Qpol log 7T¢(|5):|

10:  Update target networks: 0, — 70; + (1 —7)6;,j = 1,2
11: end for

Algorithm [T| presents a general version of our proposed method. In Line 5, given a partial trajectory
of length n, we recursively compute the target Q-function using the trace parameter A. While updates
are based on SAC (Haarnoja et al.,[2018), we set arqg = 0 at all steps except the last (Line 7), ensuring
stability during Q-function updates. Because the entropy bonus term is added to the target Q-function
at each step, amplifying its numerical scale and complicating value estimations (Kozuno et al.,
2021). In Line 8, we adopt the log-sum-exp method from CQL (Kumar et al.l|2019) to incorporate
conservative value estimation. Compared to CQL, CPQL reduces the influence of the learned policy
on Q-value estimates, enabling stable learning even with a small conservatism factor « (see Question
(i) in Section 3)).



Under review as a conference paper at ICLR 2026

Table 1: Results for MuJoCo locomotion, Adroit manipulation, and AntMaze navigation tasks in
offline D4RL. * indicates reproduced results: (algorithm*) for all datasets, (score*) for a specific
dataset. Bold numbers are the scores within 2% of the highest in each environment.

Task BC* TD3+BC CQL IQL MCQ MISA CSVE EPQ" | CPQL (ours)
halfcheetah-random 2.2 11.0 17.5* 13.1* 28.5 2.5" 26.8 31.9 38.8 + 1.0
hopper-random 3.7 8.5 7.9 7.9* 31.8 9.9* 26.1 30.3 315+ 0.5
walker2d-random 1.3 1.6 5.1° 5.4* 17.0 9.0* 6.2 11.2 21.2 +0.7
halfcheetah-medium 43.2 48.3 47.0* 47.4 64.3 47.4 48.4 67.1 66.6 + 0.9
hopper-medium 54.1 59.3 53.0" 66.2 78.4 67.1 96.7 100.4 99.7 £ 2.0
walker2d-medium 70.9 83.7  73.3" 78.3 91.0 84.1 83.2 86.4 90.0 £ 1.5
halfcheetah-medium-replay ~ 37.6 446 4557 442 56.8 45.6 54.5 514 60.3 + 0.8
hopper-medium-replay 16.6 609  83.7" 947  101.6 98.6 91.7 97.3 | 103.0 £ 0.6
walker2d-medium-replay 20.3 81.8 81.8* 73.8 91.3 86.2 78.0 86.0 97.4 +4.0
halfcheetah-medium-expert ~ 44.0 90.7  75.6" 86.7 87.5 94.7 93.1 86.6 95.3 + 0.6
hopper-medium-expert 53.9 98.0 105.6 91.5 111.2 109.8 94.1 1104 | 111.3+1.2
walker2d-medium-expert 90.1 110.1  107.9* 109.6 1142 109.4 109.0 1109 | 1129 +2.0
halfcheetah-expert 91.8 96.7  96.3* 95.0* 96.2  95.9* 93.8 102.9 98.0 £ 1.6
hopper-expert 107.7 107.8 965 1094* 1114 111.9° 1113 1111 | 112.0 £ 0.6
walker2d-expert 106.7 110.2  108.5* 109.9" 107.2  109.3* 108.5 109.8 | 114.1 +0.5
MuJoCo Total 744.1 10132 10102 1033.1 11884 1081.4 11214 1193.7 | 1252.1
pen-human 344 64.8* 37.5 71.5 68.5 88.1 106.2 65.7 72.1+4.6
door-human 0.5 0.0* 9.9 4.3 2.3 52 2.8 5.1 14.3 £ 2.2
hammer-human 1.5 1.8" 4.4 1.4 1.3 8.1 3.5 0.3 1.4+09
relocate-human 0.0 0.1* 0.2 0.1 0.1 0.1 0.1 0.1 0.1+0.0
pen-cloned 56.9 49.0" 39.2 37.3 49.4 58.6 54.5 55.8 70.9 + 6.9
door-cloned -0.1 0.0* 0.4 1.6 1.3 0.5 1.2 0.5 6.4+5.0
hammer-cloned 0.8 0.2* 2.1 2.1 1.4 2.2 0.5 1.2 1.6 = 1.1
relocate-cloned -0.1 -0.2% -0.1 -0.2 0.0 -0.1 -0.3 -0.1 -0.1 £0.0
Adroit Total 93.9 115.7 93.6 118.1 124.3 162.7  168.5 128.7 | 166.7
antmaze-umaze 65.0 78.6 74.0 87.5 98.3" 92.3 - 96.2 96.7 + 1.9
antmaze-umaze-diverse 55.0 71.4 84.0 62.2 80.0* 89.1 - 72.3 68.6 +£ 0.5
antmaze-medium-play 0.0 10.6 61.2 71.2 5257 63.0 - 59.0 724 +1.2
antmaze-medium-diverse 0.0 3.0 53.7 70.0 37.5* 62.8 - 57.5 71.7 £ 0.8
antmaze-large-play 0.0 0.2 15.8 39.6 2.5" 17.5 - 23.8 41.6 5.2
antmaze-large-diverse 0.0 0.0 14.9 47.5 7.5 234 - 17.4 46.6 + 4.9
Antmaze Total 120.0 163.8 303.6 378.0 278.3" 348.1 - 3262 | 397

5 EXPERIMENTS

In this section, we describe our detailed experimental procedures and report the corresponding results
to address the following pertinent questions:

(i) How does the performance of CPQL compare to prior single-step offline baselines, some of
which incorporate conservative value estimation methods, across various tasks and datasets?

(i1)) What advantage does CPQL provide over CQL in terms of sensitivity to the conservatism
parameter «, and does it mitigate over-conservatism while achieving strong performance?

(iii) How does CPQL compare with other multi-step operators (e.g., Uncorrected N-step, Retrace,
and Tree-backup) when combined with conservative value estimation? (Note that there are
no existing offline RL methods with a multi-step operator. Here, we are asking a question
on ablation.)

(iv) Can the online PQL agent, using the Q-function pre-trained by CPQL in offline settings,
mitigate performance drop at the start of the online phase and enable faster adaptation and
improvement in online learning compared to offline-to-online baselines?

For a fair comparison, we evaluate all algorithms using results after 1M gradient steps in offline
DA4RL (Fu et al., 2020). In the offline-to-online setting, we first pre-train algorithms for 0.25M offline
steps and then fine-tune them for 0.3M online steps. Our score is computed from the policy during
the last 10 iterations, averaged over 5 seeds, with &+ denoting the standard deviation across seeds. For
CPQL evaluation, we set n = 5 to cap the length of the partial trajectories. (Details see Appendix [C).



Under review as a conference paper at ICLR 2026

Tasks. MuJoCo (Todorov et al.,|2012) consists of datasets from three environments (HalfCheetah,
Hopper, and Walker2d), each with five dataset types (Random, Medium, Medium-Replay, Medium-
Expert, and Expert). Adroit (Rajeswaran et al.l 2017) involves two dataset types (human and cloned)
and four Shadow Hand robot tasks (hammer, door, pen, and relocate). AntMaze provides three maze
layouts (umaze, medium, and large) and three dataset types (umaze, play, and diverse).

Baselines. In the offline setting, we compare CPQL to prior model-free single-step offline RL
algorithms: (i) TD3+BC (Fujimoto & Gul 2021) that incorporates an explicit policy constraint
through the behavior cloning (BC), (ii)) CQL (Kumar et al., 2020) that penalizes the Q-function
for OOD actions, (iii) IQL (Kostrikov et al.l [2022) that learns the Q-function without querying
OOD actions, (iv) MCQ Lyu et al.| (2022)) that uses the mildly conservative Bellman operator, (v)
MISA Ma et al.| (2023) that constrains the policy based on mutual information, (vi) CSVE (Chen
et al.,2023) that learns conservative state-value function, and (vii) EPQ (Yeom et al.,|2024)) that learns
the Q-function by selectively penalizing states with insufficient action coverage. In offline-to-online
RL, we evaluate the performance of CPQL (offline pretraining) followed by PQL (online fine-tuning),
and compare it against several algorithms: (i) AWAC (Nair et al.,[2020) that utilizes the advantage
weighted actor-critic with weighted maximum likelihood, (ii) Cal-QL (Nakamoto et al.,[2023) that
calibrates the value-function, (iii) IQL (Kostrikov et al.,[2022), (iv) SPOT (Wu et al., [2022) that uses
density-based regularization, and (v) CQL (Kumar et al.| 2020)) (offline) to SAC (online).

5.1 RESULTS ON OFFLINE AND OFFLINE-TO-ONLINE D4RL

Question (i): Our experimental results, summarized in Table|l} are based on evaluations carried out
across diverse tasks. CPQL achieves the high performance in the vast majority of the tasks with 22
out of 29 tasks. In MuJoCo locomotion tasks, CPQL consistently achieves remarkable performance
improvements across all tasks, regardless of data distribution—whether diverse (Random, Medium-
Replay) or narrow (Medium, Medium-Expert). In Adroit manipulation tasks, CPQL surpasses all other
algorithms for door on human and cloned datasets. Excluding only CSVE in the pen-human dataset,
we achieve high performance in two pen tasks. In Antmaze navigation tasks, CPQL demonstrates
outstanding performance despite sparse rewards and diverse datasets (undirected and multi-task).
These results on diverse tasks demonstrate that CPQL effectively mitigates the problem of over-
pessimistic value estimation by leveraging actual trajectories and the PQL operator.

—e— CQL —=— CPQL(A=0.1) —— CPQL(A=0.3) —+— CPQL (A=0.5) —¥— CPQL (A=0.7) CPQL (A=0.9)
Medium Medium-Replay Medium-Expert Expert
100 1 120
S r: j——
80 80 9 | 100 100
60 60 /L— 80 80

Normalized Score

01 5.0 01 5.0 01 5.0 01 5.0

) 30 05 3 05 30 05 3
Conservatism Parameter a Conservatism Parameter a Conservatism Parameter a Conservatism Parameter a

Figure 1: Normalized scores of different conservatism parameters « in Walker2d tasks.

Question (ii): CPQL maintains high performance even at small o than CQL. The smaller « helps
CPQL address the issue of overly penalizing the Q-values of certain states in CQL, particularly
less observed or unobserved states in D. Prior works (An et al., 2021; |Ghasemipour et al., 2022}
Tarasov et al.,|2024b) have pointed out that CQL is extremely sensitive to the choice of «, as even
small changes can lead to significant performance differences. In Figure|l| the red line representing
CQL clearly illustrates this sensitivity issue. In contrast, CPQL outperforms CQL and exhibits less
sensitivity to « across diverse datasets. By mitigating over-conservatism, CPQL enables the learned
policy to better explore promising actions. As shown in Theorem [3] selecting an appropriate A
reduces the sub-optimality gap and yields remarkable scores across diverse datasets.

Question (iii): In Figure[2] the Uncorrected n-step return, Retrace, and Tree-backup operators indeed
learn faster during the first 0.2M steps, but their performance drops after reaching an early peak.
Retrace (Munos et al.| 2016) suffers from performance degradation because it relies on accurate
behavior policy estimation, which is difficult to estimate (Zhuang et al., [2023; |Kun et al., [2024).
Tree-backup (Precupl|2000) is developed for discrete action spaces, and in continuous spaces, it leads
to unstable updates due to the numerical scale of In 7. The Uncorrected n-step return overly restricts
exploration of OOD actions, which can lead to unstable performance in the later stages of training.
However, CPQL achieves both stable and competitive performance without additional requirements.



Under review as a conference paper at ICLR 2026

—— CPQL (ours) CQL w/ N-step —— CQL w/ Retrace —— CQL w/ Tree-backup
Halfcheetah-random-v2 Hopper-medium-v2 Walker2d-medium-replay-v2 Halfcheetah-medium-replay-v2
a0 100 0
100
©3s N S "
S w w0
0 a0
o 25
©
£ s « o
S
=z " 2 10
s 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 056 08 10 00 02 04 056 08 10
Timesteps 1e6 Timesteps 1e6 Timesteps 1e6 Timesteps 166

Figure 2: Comparisons of CPQL (ours) with CQL using alternative multi-step operators on MuJoCo tasks.

—— CPQL - PQL (ours) — AWAC —— Cal-QL  — QL SPOT —— CQL - SAC
Halfcheetah-random-v2 Hopper-random-v2 Walker2d-random-v2 Hopper-medium-v2
offine Oniine offine Oniine offine Oniine offine Oniine

&

01 02 o 01 02 o

3 01 02 o 01 02 03 o 01 02 o 01 02 03

01 0z o o1 02
Walker2d-medium-v2 Halfcheetah-medium-replay-v2 Hopper-medium-replay-v2 Walker2d-medium-replay-v2
Offline Online " offline Online Offline Online Offline Online

//

E\:
\

01 02 o 01 02 o

3 01 02 o o 02 03 o 01 02 o 01 02 03

01 02 o o1 02 1
Halfcheetah-medium-expert-v2 Walker2d-medium-expert-v2 Halfcheetah-expert-v2 Walker2d-expert-v2

Offine Online , |offiine Online 10 |Offine Online Offline Online

80

&0

a0

20

02

02 03 o 02 03

Normalized Score

02 o

02 3 02 o 01 02 o o 02 o 01
Million Timesteps Million Timesteps Million Timesteps Million Timesteps

Figure 3: Comparing CPQL—PQL (ours) with several baselines for offline-to-online RL.

Question (iv): In Figure 3] we show that initial- phalfcheetah-medium-v2 g Welker2d-medium-v2
izing PQL with the Q-function pre-trained by .

CPQL helps the online agent avoid or quickly

recover from the performance drop at the start of

/ 300 \\7
online fine-tuning and achieve robust improve- g™ :
ment. First, CPQL outperforms other offline- ¢, — oo
to-online baselines with only 0.25M gradient = — e o)

800 400

\

350 D

Average Q-values

Ccal-QL

steps, so the online agent is initialized with the B E—
well-trained Q-function, reducing exploration Million Timesteps
trials. Second, in FigureEL the Q-values learned Figure 4: Average Q-values by conservatism parameter
by PQL do not degrade at the start of the online ¢ for CPQL—PQL (ours), CQL—SAC, and Cal-QL.
phase. Since CPQL reduces the influence of the learned policy on Q-value estimation (Proposition 2]
and Theorem|[T), the average Q-value gradually increases after pretraining across different values of c.
In contrast, when transitioning from CQL to SAC, a larger o shows a more severe performance drop.
While Cal-QL avoids the performance drop, its performance improvement is significantly slower.

o 20 01 02 o

1o
Million Timesteps

6 CONCLUSION

CPQL proposes the first approach to a model-free offline multi-step RL algorithm by incorporating
the PQL operator for conservative value estimation, mitigating over-pessimistic Q-function, and
reducing the sub-optimality gap. A key insight of CPQL is that the fixed point of the PQL operator lies
closer to the value function of the behavior policy, thereby inducing implicit behavior regularization.
CPQL outperforms existing offline RL algorithms, and its pre-trained Q-function enables PQL to
avoid the performance drop at the start of fine-tuning and achieve robust performance improvement
in the online phase.



Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as an assistive tool for writing. Specifically, we
employed an LLM to improve clarity, grammar, and style of exposition. No part of the research
ideation, algorithm design, theoretical analysis, or experimental results involved the use of LLMs.
The authors take full responsibility for the content of the paper.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22-31. PMLR, 2017.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2021.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, TB Dhruva,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In International Conference on Learning Representations, 2018.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084—15097, 2021.

Liting Chen, Jie Yan, Zhengdao Shao, Lu Wang, Qingwei Lin, Saravanakumar Rajmohan, Thomas
Moscibroda, and Dongmei Zhang. Conservative state value estimation for offline reinforcement
learning. Advances in Neural Information Processing Systems, 37, 2023.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353-18363, 2020.

Pawel Cichosz. Truncating temporal differences: On the efficient implementation of td (lambda) for
reinforcement learning. Journal of Artificial Intelligence Research, 2:287-318, 1994.

Brett Daley and Christopher Amato. Reconciling A-returns with experience replay. Advances in
Neural Information Processing Systems, 32, 2019.

Brett Daley, Martha White, Christopher Amato, and Marlos C Machado. Trajectory-aware eligibility
traces for off-policy reinforcement learning. In International Conference on Machine Learning,
pp. 6818-6835. PMLR, 2023.

Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola. Continu-
ous doubly constrained batch reinforcement learning. Advances in Neural Information Processing
Systems, 34:11260-11273, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 35:20132-20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

10



Under review as a conference paper at ICLR 2026

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267-18281, 2022.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max
g-learning operator for simple yet effective offline and online rl. In International Conference on
Machine Learning, pp. 3682-3691. PMLR, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Jean Harb and Doina Precup. Investigating recurrence and eligibility traces in deep g-networks. arXiv
preprint arXiv:1704.05495, 2017.

Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q () with off-policy
corrections. In International Conference on Algorithmic Learning Theory, pp. 305-320. Springer,
2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie Lv, Changjie
Fan, Qianchuan Zhao, and Chongjie Zhang. Bayesian design principles for offline-to-online
reinforcement learning. In International Conference on Machine Learning, pp. 19491-19515.
PMLR, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273-1286, 2021.

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing
serendipity: Exploiting the value of past success in off-policy actor-critic. In International
Conference on Machine Learning, pp. 21672-21718. PMLR, 2024.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
2181021823, 2020.

Byeongchan Kim and Min-hwan Oh. Model-based offline reinforcement learning with count-based
conservatism. In International Conference on Machine Learning, pp. 16728—-16746. PMLR, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774-5783. PMLR, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022.

11



Under review as a conference paper at ICLR 2026

Tadashi Kozuno, Yunhao Tang, Mark Rowland, Rémi Munos, Steven Kapturowski, Will Dabney,
Michal Valko, and David Abel. Revisiting peng’s q(\) for modern reinforcement learning. In
International Conference on Machine Learning, pp. 5794-5804. PMLR, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,
33,2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 34:1179-1191, 2020.

LEI Kun, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang Gao, and Huazhe Xu. Uni-04: Unifying
online and offline deep reinforcement learning with multi-step on-policy optimization. In The
Twelfth International Conference on Learning Representations, 2024.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jinyi Liu, Yi Ma, Jianye Hao, Yujing Hu, Yan Zheng, Tangjie Lv, and Changjie Fan. A trajectory
perspective on the role of data sampling techniques in offline reinforcement learning. In Proceed-
ings of the 23rd International Conference on Autonomous Agents and Multiagent Systems, pp.
1229-1237, 2024.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J Roberts. Revisiting
design choices in offline model based reinforcement learning. In International Conference on
Learning Representations, 2021.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. In International
Conference on Machine Learning, pp. 33411-33431. PMLR, 2024.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36:1711-1724, 2022.

Xiao Ma, Bingyi Kang, Zhongwen Xu, Min Lin, and Shuicheng Yan. Mutual information regularized
offline reinforcement learning. Advances in Neural Information Processing Systems, 37, 2023.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforcement
learning. Advances in neural information processing systems, 34:19235-19247, 2021.

Seyed Sajad Mousavi, Michael Schukat, Enda Howley, and Patrick Mannion. Applying q ()\)-learning
in deep reinforcement learning to play atari games. In AAMAS Adaptive Learning Agents (ALA)
Workshop, pp. 1-6, 2017.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 37, 2023.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International Conference on Machine Learning, pp. 26228-26244.
PMLR, 2023.

Kwanyoung Park and Youngwoon Lee. Model-based offline reinforcement learning with lower
expectile g-learning. In International Conference on Learning Representations, 2025.

12



Under review as a conference paper at ICLR 2026

Jing Peng and Ronald J Williams. Incremental multi-step g-learning. In Machine Learning Proceed-
ings 1994, pp. 226-232. Elsevier, 1994.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, pp. 80, 2000.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In Learning for dynamics and control, pp. 1154—1168.
PMLR, 2021.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082—-16097,
2022.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34—44. PMLR, 2020.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conserva-
tive q learning for offline multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 37, 2023.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman
inconsistency for model-based offline reinforcement learning. In International Conference on
Machine Learning, pp. 33177-33194. PMLR, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024a.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 37, 2024b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In
International Conference on Machine Learning, pp. 34556-34583. PMLR, 2023.

Andrew Wagenmaker and Aldo Pacchiano. Leveraging offline data in online reinforcement learning.
In International Conference on Machine Learning, pp. 35300-35338. PMLR, 2023.

CJCH WATKINS. Learning from delayed rewards. PhD thesis, Cambridge University, 1989.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy optimiza-
tion for offline reinforcement learning. Advances in Neural Information Processing Systems, 35:
31278-31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

13



Under review as a conference paper at ICLR 2026

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhutdi-
nov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In
International Conference on Machine Learning, pp. 11319-11328. PMLR, 2021.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample softmax
for offline reinforcement learning. arXiv preprint arXiv:2302.14372, 2023.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Tengyu Xu, Yue Wang, Shaofeng Zou, and Yingbin Liang. Provably efficient offline reinforcement
learning with trajectory-wise reward. IEEE Transactions on Information Theory, 2024.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Robust
offline reinforcement learning via conservative smoothing. Advances in neural information
processing systems, 35:23851-23866, 2022.

Junghyuk Yeom, Yonghyeon Jo, Jungmo Kim, Sanghyeon Lee, and Seungyul Han. Exclusively
penalized g-learning for offline reinforcement learning. Advances in Neural Information Processing
Systems, 38, 2024.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129-14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954-28967, 2021.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning. In
International Conference on Machine Learning, pp. 40452—40474. PMLR, 2023.

Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Boosting offline
reinforcement learning via data rebalancing. arXiv preprint arXiv:2210.09241, 2022.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 34:13626—
13640, 2021.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforcement
learning. arXiv preprint arXiv:2302.00935, 2023.

Jing Zhang, Linjiajie Fang, Kexin Shi, Wenjia Wang, and Bingyi Jing. Q-distribution guided g-
learning for offline reinforcement learning: Uncertainty penalized g-value via consistency model.
Advances in Neural Information Processing Systems, 37:54421-54462, 2024.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online rein-
forcement learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762,
2024.

Zifeng Zhuang, LEI Kun, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization. In The Eleventh International Conference on Learning Representations, 2023.

14



Under review as a conference paper at ICLR 2026

A PROOF OF TECHNICAL LEMMAS FOR THEOREMS

First, we provide a Lemma and a proof for the sampling error bound of the PQL operator. We assume
the concentration properties of the reward function and the transition dynamics:

Assumption 1 Given a state-action pair (s, a) € D, the following relationships hold with probability
at least 1 — 6,

I (s.0) — # (s,)| < — &7 PClow B0 ci

\/N(s7a)’ 1§7\/N(s,a)’

where C2 and C% are constants that depend on & € (0,1), N (s, a) is the number of samples for
(s,a), and the concentration properties of r and T, respectively.

Under Assumption [T]and Proposition [I] the sampling error between the empirical PQL operator and
the actual PQL operator can be bounded, as shown in the following proof:

Lemma 1 (Sampling Error Bound of the PQL operator) Given a state-action pair (s,a) € D,

with probability at least 1 — §, the sampling error between the empirical PQL operator and the actual

PQL operator for (s, a) satisfies the following inequality:

Cf, + ’)’C%Rma)(/(l - ’7)
(1= VN Gs,a)

~

T Qs,0) = T Qs a)| <

K
where Cf p Is a constant dependent on the concentration properties r and P, with 6 € (0,1).
Proof For (s,a),

Qs @) =TT Qs 0)

(T=\P%) 7 (4 5(1 = NP Q(s,a) — (T - mﬁffﬁ)_l (7 +90 = NP"Q(s,0)) ‘

< ‘ (T = AP™) (1 +4(1 = NP™Q(s,a)) — (T — yAP™) " (r (1= NPTQ(s, a)) ]

+ (T = Py (r (1= NPTQ(s, a)) - (I - »mS*B)_l (r (1= NPTQ(s, a)) ‘
< |@=P7) | (I(s,0) = 75, ) 4+ (1= 0) [P, @) = B7(Ls,0)|| Q(s, )

+|(@—aP™) T - (- wﬁffﬁ)fl

P41 = NPTQ(s,a)

<|@ =) 7 (s @) = (s, @) + (1= N [P Cls @) = P ls,0) || Qs.a)

gy 1 7 S# 570\ | (1= YA) Rimax
+)\7‘(I—7>\73 o) \ HP 5(|s,a) — P ﬂ(.|s,a)H1 '(I—WD ") R
< Cg + 7(1 _ /\)C%Rm‘aX/(l B ’Y) + ’YAO%Rmax/(l B 7)
- (1 =~vA\)/N(s,a) (1 =~M\)/N(s,a)
CP +70% Rinax /(1 — )
(1 =7A)y/N(s,a)
This completes the proof of Lemma I |

Based on the interpretation of the sampling error of the PQL operator, if X is zero, the sampling error
of the PQL operator is equivalent to that of the Bellman operator. For example, when A = 0, the
sampling error between the empirical PQL operator and the actual PQL operator for (s, a) is bounded
by Ci +'}’C% RmaX/(l_’Y) . Thls

\/N(s,a)

operator and the actual Bellman operator (Section D.3 in |[Kumar et al.|(2020)).

result aligns with the sampling error between the empirical Bellman

15



Under review as a conference paper at ICLR 2026

Now, we provide proofs for several technical lemmas that utilize our theorems, such as the construction
of the conservative value estimation and the sub-optimality gap between the optimal and learned

policies. In Lemma Eger(.|s) {7:';(((21‘?5)) — 1} has non-negative values for all states in S(D). In

w(als)
#p(als)

other words, Eqr(.|s) [ ] is greater than or equal to 1 for any 7.

Lemma 2 For any state s and any two policies w1 and o, the following inequality holds:

an'n'l(<|s) |:

with equality if and only if ™1 = .

m1(als)

ma(als)

—1} > 0.

Proof For any state s,

o ] Zren (255

ma(als)

=3 (mlals) = maals) + maal) (W“) _ 1>

ma(als)
= Z (m1(als) — m2(als)) (Z;(zg - 1) +2_mlals) (Z;EZB - 1)

a

m1(als) — ma(als)

= 3 (ma(als) — ma(als) (LT S ) — ol

a

_ N\~ (m(als) = ma(als))”
-2 ma(als)

a

=0,

where the last equality follows from the fact that 7 (a|s) and 72 (a|s) are positive values for all
actions and ) m(als) = >, m2(a|s) = 1. This concludes the proof. |

Next, two lemmas are adaptations of Lemma 3 from|Achiam et al.|(2017).

Lemma 3 For any two polices 71 and s, the vector difference of the discounted future state visitation
distributions on two different policies holds:

d™ —d™ =~ (I —yP™) " (P — P"2)d™.

Proof Recall that the discounted state visitation distribution of a policy 7, d", which is defined as
o0
d"(s)=(1—7)) _ +'Pr(s;=s|mP).
t=0

For finite state spaces, d” can be expressed in vector form as follows:

oo

d"= (1= (P do=(1=7) (I =7P")"" do,
t=0

where d is the initial state distribution. Then, we obtain
A7 —d™ = (1) [(L=P™) 7 = (=P dg
= (1= =yP™) " [T =yP™) = (= vP™) (1 = 7P™) " do
=y (1= (I =yP™) " (P™ = P™) (I —yP™) " dy
=y (I —yP™)" (P™ — P™2)d™.
This concludes the proof. ]

16



Under review as a conference paper at ICLR 2026

Lemma 4 The divergence between discounted state visitation distributions, ||d™
by an average divergence of the policies m and ma:

||[d™ —d™2||; < ﬁ]ESNUm [Z‘m(cﬂs) — 7T2(a|s)”

2
TR
1—

where dpy (11, 72) (s) = (1/2) >_, |m1(als) — m2(als)|.
Proof First, from Lemma[3] we obtain
7 = dmlly =l (=P (P~ P
<A =P™) L[ (P™ = P™2) d™||v.
| (I —~P™)~"||; is bounded by:

s~d™2 [dTV (7T17 71'2) (3)} 5

(I =2P™)" ||1<Z’Y Pl =1 -n""

To conclude the lemma, we bound || (P™ — P7™2) d™2||;.

1P =Py =3

s/

> (P —P™)d™

S

= [P™ —P™|d"™

s,s’

=2

s,s’

< Y P(s'ls.a) mi(als) —mo(als)| d™ (s)

sas

<Y Im(als) — m2(als)|d™ (s)

= Esugr [Z’mws) - 7T2(a|5)”

Therefore, we obtain that:

||d™ —d™2||; < ﬁESNdW lZ‘ﬂ'l((ﬂs) — 7r2(a|s)” :

ZP "|s,a) (m1(als) — m2(als)) d™ (s)

—d™2||, is bounded

If we express this inequality in terms of the total variation distance, it becomes the following

inequality:

2
Hdﬂ'l _ dﬂ'2H1 S %ESN(FQ [dTV (7'1'17 7'('2) (S)] .

This concludes the proof.

17



Under review as a conference paper at ICLR 2026

We prove the following lemma, which bounds the difference between the expected discounted return
under M and M.

Lemma 5 Given any policy =, for any MDP M and the empirical MDP M\ the following holds
with probability at least 1 — 0:

| TmAg + (1= X)) — Jz(Meg + (1= N) )|
0,6 + ’YRmaxCJ /(1 —17) \/W  (als)
< 1_ 77; Eswdj\;ﬁﬂl—x)«(s) l N ) <)\ + (1= \/Ea~7r(-|s) [frg(&S)})] .

Proof To prove this inequality, we use the triangle inequality to separate the gap in the expected
discounted return into differences in rewards and transition dynamics, as follows:

|JA(>\fr5 + (1 =Nm) = Jpm Mg+ (1= X))

T Zd*’fﬂ*“ VT (5) (Ama(als) + (1= Nm(als)) rig (s, )

SIS () (Amg + (1 - A)m) (al ) (s, a)

s,a

IN

T (DO (5) (mp(als) + (1= We(al) (g (5:0) = raa (5:)
e =:A,(s)

1 Mg +(1—A)7 NgH(1—A)m
) (2 (s) — dx; (5)) mwlals)rad (s,a)]

s,a

=:Aq4(s)

We first bound the term that includes the difference between the actual rewards and the estimated
rewards by applying concentration inequalities to derive an upper bound for A,. (s). Note that under
concentration assumptions, and using the fact that E [A, (s)] = 0 in the limit of infinite data, we
obtain:

S <Y (mslals) + (1= Mm(als)) |riz (s,a) = raq (s, a)|

5
<> (Ams(als) + (1 — M) (als)) N (Sfrﬁﬂ(a|s)

<M/ﬁﬁ(a|8) . A)W)

s (als)

06

< Nr(g)( A=) Tal) 3

Next, we bound the term that involves the difference between the actual and estimated transition
dynamics by applying concentration inequalities to derive an upper bound for A, (s). By Lemma
we obtain the following equation:

Mig+(1—A)7 Ag+(1=N7 oA +(1-N)7) Ads+(1-M)7
Ai=(T-1Py ) (P31 PY )d .

=:Ap

18



Under review as a conference paper at ICLR 2026

We know that v is positive and || (I —vP™) " ||; < (1 —~)~" for any policy 7, we only need to
bound the remaining terms.

Mg+ (1=M\)w
[

1

_ Z ZAP )\775+ 1-XN)m (S)|

SZ|AP( | )|dATr5+(1 )

=313 (P (515,0) = Paa (5']5,0)) (g (als) + (1= N m(als))| d e TV (s)

a

(a(ale) + (1= X)) a5

Mg(als) + (1 — X) w(als)

\/ Z 7p(als)
DI ﬁz(xm 1- o)

m(als)

et AN (s cs ( A+ (1- A )
<245 O e (VA Z\/wm

where the last inequality is derived from the Cauchy—Schwarz inequality. Hence, we can bound
Ag (s) as follows:

7C% Ag+(1-A)m 1
A — d— —2) 4
|Aa(s)] < T E o () I ( |Al+ ( § T an ) 4)

To derive the final upper bound of the objective function, it is necessary to bound —mlals)

A

-y ‘%(-s,a)mus,a)

< Zd)\ﬂ'g-‘r(l A)Tr

follows:

w(als) ] _ <= (w(als)® _ = _wlals) \
Far [wwﬂ‘;A Z( A )

ip(als) ws(als)

2
7(als)
(Z m) <A B [ 55

Then we obtain

\/]an(.ls) [m (als) } Z\/WT \/|A|an t 7T((a||))] ®

By Equation 3] Equation[d] and Equation[5] we have that:
| T (m, Mg + (1= X)) — Jq(m, Mg + (1= A) )|

076 + 7Rrrlaxcfl§7/(1 N 7) V “A| ™ (a|5)
< 1—~ ESNdj\;ﬁJr(l—A)«(s) ~ (S) A+ (1=N) anﬂus) |:ﬁg (as):|
(6)

m(als)
7\'/5 a

EquationHreﬂects the tradeoff between 1 and \/ Eqnr(|s) { }(> 1), by weighting them with A

and 1 — A, respectively. This equation can more effectively reduce the difference than the single-step
method. This completes the proof of Lemma 5] ]

19



Under review as a conference paper at ICLR 2026

B PROOF OF THEOREMS

In this appendix, we provide all proof of our main theorem with the sampling error.

B.1 THEOREM[]

Theorem 1 (Lower Bound on the State Value Function of CPQL) Let Q*™¢+(1=N7 denote the
O-function derived from CPQL as defined in Equationl 2| Then, the state value of \tg + (1 — A\)m
‘7/\7}54_(1_)‘)”(8) = Ean(As+1-2)m)(- [Qmﬁ“‘(l M7 (s, a)}, lower-bounds the true state value

of the policy obtained via exact policy evaluatton, Y ARs+(1=A)m (8), for sufficiently large . Formally,
with probability at least 1 — §, for all s € §(D),

‘7)\7?[3%»(17)\)%(5) < V)\frﬁJr(lf)\)ﬂ'(S)

9

. C +7RmaxC /(1 7) 7r(a|s) _ B
ifo > SERRSHST may ot max (Bavncro | 7605 1))

Proof By settmg the derivative of Equation [2] to zero, we derive the following recursive update

expression for Qk+1 in terms of Qk, incorporating the sampling error under Lemma Given a
state-action pair (s, a), with high probability > 1 — §:

Qe = et~ [ )]
i (als) clp

=T Qk(s’a)a{ﬁg(as)} (1= (1 =) VN (s,a)

In Proposition we known that limy, _, o @k = @’\’?B‘*(l_/\)” when the function approximation error
is zero for every (s,a) € S x A. Thus, the state value function of A7g + (1 — A)m, on the other

hand, V1 is underestimated, since:

g T (als)
Vir1(s) = TU7™Vi(s) = 0B am(atyt (1= 2)mo) (o) L%ﬂ(als) - 1]
Chp

(=70 (1 =7) N(S»a)] .

Now, we can compute the fixed point of the recursion in the above equation. Because the fixed
point of the PQL operator coincides with the unique fixed point of 7278 +(1=N7 this gives us the
following estimated policy value:

+ Ea/\/()\ﬁ'ﬁ“r(l*)\)ﬂ'k)("s) l

‘7)\7}/54’(17}\)71‘(5)

-1
Mg+ (1= A +(1-A)m (a| )
RN () g [(I_Wp D) B gt (1 amle) [W(QH B 1” (s)

N -1 o4
T — 73)\#/3+(1—>\)7T an N N s rP (7
(2= ) Eeossmin | 76 e || - @

In this case, the choice of «, that prevents overestimation is given by:

+

06 +7Rmdxc’%/(1 _'Y) 1 ( |: ﬂ-(a|3) :|>_1
> max max | E,ox —= -1
= A=A A=A (1—7)saed /N(s,a)seS(D) C19) | %4 (als)
This completes the proof of Theorem I} ]

20



Under review as a conference paper at ICLR 2026

B.2 THEOREM[Z]

We prove that ATz + (1 — A)7 achieves at least the performance of 74 in the actual MDP M.

Theorem 2 (Comparison to the Behavior Policy) Let 7 := argmax, Esq, {17””* +(1*’\)’T(s)} )

With probability at least 1 — 6, Aftg + (1 — X) 7 achieves a policy improvement over 7t g in the actual
MDP M as follows:

A . . a(l—N) 7 (als)
\ 1 -\ > — 'K A g+ (1—N\)# E ~i(ls) | =y — 1
Tt Mg + (1= A7) 2Jaa (Rp) + = FB paarass { o rCls) Lwa (als)
§
r,P

c ST  (al)
- ’YESNdj\(;\'ﬂ‘F(lf)\)ﬁ'(s) [ N ) <1+)\ + (1_)‘)\/Ea~ﬁ'(‘|5) |:ﬁ-/3 (a|3):|>‘| )

where C g p is a constant dependent on the concentration properties r and P.

Proof The proof of this statement is divided into three parts:

I Mg + (1= A) ) = Jm (7p)
=Jm ()\ﬁ'ﬁJr(lf)\)fr)7JM\()\7¢1'[3+(1*)\)7?F)

+Jo(Ois+ (1=N)7

v — I (Tp) + I () — Im (7g) -

:2A2 :A'g

By Lemma[5] we obtain the upper bound of A; and Ag, as follows:
OE + VRmaxCP/(l - )

5 ~ \/W 7t (als)
T ]Eswdj\/:\l?g+(1—>\)?r(s) [ N (s) ()\ +(1=XN \/EaNfr(-s) [ﬁﬁ (a|8)]>]

C2 + 1B Ch/(1=7) VIA
AfgH(1=A)7 .
I—~ s~d () N (s)

Next, we obtain the lower bound of A, by the definition of 7 and Equation [7}
a(l-=X) 7i(als)
—E  sagra-nr, | Eeerls) | 5
Loy e <5>[ o [wn

|A] <

|Ag] <

I (7, Mg+ (1= M) 7) — —1”2J(ﬁ5)—0.

Thus, we have that:

a(l—X\ m(als
AQ 2 gEsNdTﬁ-Hl_x)ﬁ(S) |:]Ea~7'r( |b) |:(|) —_ 1:|:|
M

1—7 s(als)
Therefore, by integrating the bound of Ay, Ay, and A3, we obtain that:

Jm (Mg + (1= A7)

C a-N) #(als)
>J ——E  asgra-ne, | Bani(ls) | = -1
Z In (fg) + smd 2 ATV () [ ¢ [Wﬂ(&IS)

» S (als)
_ : _77 Eswdkjﬁﬂlﬂ\ﬁ(s) [ i (s) (1 + A+ (1 — )\) \/Ea~7?('|5) LATﬁ (a|s):| ,

where 067, = C’5 + ’yRmaXC’P/(l — ).
This completes the proof of Theorem [2] |

When )\ = 0, we obtain the following equality:
Im (7)) = Ja ()

A~ 206 / ~
> LESN(I’Ar (s) ]EaNﬂ'( |s) m -1 TPESNd (s |A aNﬂ'( |s) M .
L—y ™% Ta(als) T VN s (als)
This result coincides with Theorem 3.6 from CQL (Kumar et al.| [2020). Our theorem converges
under the same conditions, thereby ensuring consistency with the CQL framework.

21



Under review as a conference paper at ICLR 2026

B.3 THEOREM

We first present, to the best of our knowledge, theoretical guarantees concerning the sub-optimality
gap between the optimal policy and the mixture policy.

Theorem 3 (Sub-Optimality Gap) With probability at least 1—0, the gap of the expected discounted
return between the optimal policy m* and the mixture policy A\itg + (1 — A& under the actual MDP
M satisfies

I () = T (Mg + (1= A) )

2AR[I13¢X %
< (1_77)2 - dxw,j+<1 Ay [dTv (7", 7tg) (3)}
2a(1 — A . A
+ I(V)Es~dgﬁ+(1””(s) |:dTV (7", 7)(s) (f(w)(s) + %anﬂ 1s) [ﬁﬂ( als) 1})}
Crr VAl
"R Aot (l—A)* by 1—\ Eyore
T N [ N (s) A=A Cls)

Crp VIAl 7 (als)
+17 ESNdA (s) l\/ﬁ IEa~7r |s |:ﬁﬁ(a|8):| )

where £(7)(s):= ZGGAW and drv (w1, 72) is the total variation distance of w1 and .

Proof The proof of this statement is divided into four parts:

I (%) — T (Mg + (1 = N) 1)
=Jm (7'('*)—JM(TF*)-I—JM\(?T*)—J/\/Z()\ﬁ'/g—f—(l—)\)ﬂ'*)

=:Aq =:Ao
+JA7(>\7AT[5+(1—)\)7T*) —J/\//\l()\ﬁ'g-f—(l —A) @)
—:As
+JM\(>\7AT/3+(1 —NT) = JIpm AMg+ (1 =N 7).
=:Ay

By Lemma@ we obtain the upper bound of Ay and Ay, as follows:

VA \/ 7 (a]s)
N () ( Far 1) L%/a (M@D]

5 5 /(1 — -
|A4‘ S Or +’7RmaxC’P/( ’Y)E k7’r5+(17>\)7f*(s) [@ <A+ (1 _ )\) \/]anﬂ—*(,ls) |:7T (as)}>‘|

O} + Y RmaxCp /(1 = 7)

|A] <
1—v

s~d”M: (s)

1—v svd g

Next, we derive the upper bound of Ao, as follows:

Bl = > (7 () 7" (als) = a3 (5) (g + (1= ) (als) ) 7 (5. )
<7 ;(d%*(s)—di?’““)”* (5) )‘ e Zd”ﬁ“ VT (s) (x* — 7p) (5.0)
- mEswdgem»ﬂ [Za:‘w*(als) - frﬂ(als)‘ + )iRm:XESNd}:““”"* [za:‘ﬂ*(a|s) - ﬁ-ﬁ(a|5)”
= Bty pervomse [y (7,75 (o)

where the second inequality follows from Lemma[d]and the last equality holds with the definition of
total variance distance, dpv (71, m2) (s) = >, |m1(als) — ma(als)| /2.

22



Under review as a conference paper at ICLR 2026

By the definition of 7 and Equation[/| we derive the upper bound of Ag, as follows:

« 7*(als)
As| < ——|E  sgra—n, | Eocisr e s | ——— — 1
|As| < 1—~ SNdjqﬁﬂl N { (Atg+(1=A)7*)(-]s) |:71'5(a|5) H
7(als) ”
—E # -\ an Y ) (s N —1
SNdjqﬁJr(l V7 (s) [ (pF+(1=2)(]s) |:7T[3(a|8)
a(l—X m™*(als (als
S % ‘E Ndﬁ"‘ﬁJr(l*)\)W*( ) |:Ea~7r*(| |: ( | ):| Ea~fr('|8) |:A ( | ) :|:|
vl g s slals p(als)

)
a(l—X) AgH(1=\)7 Aig ) 7(als)
R 0= O )] B |20 1]
a(l—A) (7*(als) + 7 (a]s)) |7 (als) — 7 (als)|
< ﬁESNd};"ﬁJr(l—/\)w*(s) l; fr/g(a|5) ]

a(l—X) N +(1-A\)7 A+ (1—A)m* 7(als)
+ i Z‘dMB-i-( ) (8)_dMﬂ+( ) (8)‘]anﬂ(‘s) {_1

7(als)

a(l=X) m*(als) + 7 (a|s) . .
§ 7Es~d;\\;5+(l_Mﬂ*(s) Z W za: ‘77 (a‘s) -7 (a‘s)‘

1—7 -

=£(7)(s)

ay(l=X) #(als) A .
WES AP ) Eans(1s) { 5(als) - 1} ; T(als) —m (G|S)‘1 5
< 2a(1-X)

E,_ oo [ (0.0 (60 6)+ T Bavio [ 2 1] ).

I e s(als)
where the last inequality follows from the definition of £ (7#) and Lemma
Therefore, by integrating the bound of Ay, Ay, Az and Ay, we have that:
Tn (5) = Jaq (Vi + (1= 0 7)
2)\Rmax
(1 —)°
n 20(1 — A)
1-— vy s~dj\;lrﬂ+(17)\)7T

cs JHA w*
+ P ESNd*jﬁHl—/\)*r*(s) [ | ‘ <)‘ + (1 - >‘) \/Earwﬂ*( |S)
M

1—v N (s)

CfPE VAL ™ (als)
Ty 5 [N G |00 7 Gl |

This completes the proof of Theorem 3] |

ES dMBHl ) [dTV (W*,ﬁﬁ) (s)}

o |ir ) (st o) + ﬁEM( o { e

7a(

+

23



Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS AND PARAMETER SETUP

In this appendix, we first briefly introduce the calculation of normalized scores in the D4RL bench-
mark. We then describe our implementation and experimental details.

C.1 D4RL BENCHMARKS
D4RL provides a metric, the normalized score, which represents a normalized undiscounted average
return, to evaluate the performance of offline RL algorithms. It is calculated as follows:

average return - return of the random policy 100

Normalized score = - :
return of the expert policy - return of the random policy

Note that O represents the performance of a random policy, and 100 represents the performance of
an expert policy. In D4RL, if the task is in the same environment, different types of datasets share
the same reference minimum and maximum scores. We summarize the reference score for each
environment in Table@ For AntMaze, we set the number of episodes to 100 and evaluate the number
of times the goal is reached. If the ant successfully reaches the goal location, it is rewarded with 1.0,
indicating a successful episode. Conversely, if the ant fails to reach the goal, it receives a reward of
0.0, reflecting an unsuccessful attempt.

Table 2: The referenced min and max scores for the MuJoCo, Adroit and AntMaze datasets in D4RL.

Domain  Task Reference Min Score  Reference Max Score
MuJoCo  Halfcheetah -280.18 12135.0
MuJoCo  Hopper -20.27 32343
MuJoCo  Walker2d 1.63 4592.3
Adroit Pen 96.26 3076.83
Adroit Door -56.51 2880.57
Adroit Hammer -274.86 12794.13
Adroit Relocate -6.43 4233.88
AntMaze Umaze / Medium / Large 0.0 1.0

C.2 BASELINES

C.2.1 OFFLINE BASELINES

To generate the results reported in Tables |1} we conduct experiments on MuJoCo “-v2”, Adroit
“-v0”, and Antmaze “-v0” datasets. We adopt behavior cloning (BC), several canonical offline RL
algorithms (TD3+BC (Fujimoto & Gu,[2021), CQL (Kumar et al.,2020), and IQL (Kostrikov et al.,
2022))), and more recent extensions of CQL (MCQ (Lyu et al., [2022), MISA (Ma et al., [2023)),
CSVE (Chen et al.} |[2023), and EPQ (Yeom et al., 2024)). For a fair comparison, we evaluate all
algorithms using results after 1M gradient steps. Thus, certain algorithms must be reproduced for all
datasets, while for some datasets, several algorithms with missing values must also be reproduced.

MuJoCo Locomotion Tasks. We take the results for TD3+BC (Table 9 in [Fujimoto & Gu| (2021)),
MCQ (Table 1 in|Lyu et al.| (2022))), and CSVE (Table 1 in|Chen et al.|(2023)) as reported in their
original papers. Since the reported scores in the CQL paper are based on ”-v0” datasets, and the
scores for BC are needed, we take the scores for BC and CQL from Table 1 in|Lyu et al.[(2022). Since
the IQL and MISA papers do not report performance on the Random and Expert datasets, we take the
results for IQL from Table 1 in|Lyu et al.|(2022)) and for MISA from Table 1 in|Yeom et al.|(2024).
For the Medium, Medium-Replay, and Medium-Expert datasets, we directly take the results of IQL
(Table 1 in|Kostrikov et al.[(2022)) and MISA (Table 2 in|Ma et al.|(2023))) from their original papers.
Since the EPQ paper reports scores after 3M gradient steps, we run the official implementation of
EPQ on all datasets for 1M gradient steps, available at https://github.com/hyeon1996/EPQ.

Adroit Manipulation Tasks. We take the results for CQL (Table 2 in [Kumar et al.[(2020)), IQL
(Table 1 in|Kostrikov et al.[(2022)), MCQ (Table 9 in Lyu et al.|(2022)), MISA (Table 2 in|Ma et al.

24


https://github.com/hyeon1996/EPQ

Under review as a conference paper at ICLR 2026

(2023))), and CSVE (Table 2 in|Chen et al.| (2023)) as reported in their original papers. Since the
scores for BC are needed, we take the scores for BC from Table 2 in | Kumar et al.| (2020). Since
the TD3+BC papers do not report performance on Adroit tasks, we take the results for TD3+BC
from Table 1 in|Yeom et al.|(2024). Since the EPQ paper reports scores after 0.3M gradient steps,
we run the official implementation of EPQ on all Adroit datasets for 1M gradient steps, available
at https://github.com/hyeon1996/EPQ.

AntMaze Navigation Tasks. We take the results for TD3+BC (Table 8 in [Fujimoto & Gu/(2021)),
CQL (Table 2 in|Kumar et al.| (2020)), IQL (Table 1 in|Kostrikov et al.| (2022))), and MISA (Table 2
inMa et al.|(2023)) as reported in their original papers. Since the scores for BC are needed, we take the
scores for BC from Table 2 in Kumar et al.|(2020). Since the MCQ papers do not report performance
on AntMaze tasks, we take the results for MCQ from Table 1 in|Yeom et al.[(2024). Although a
repository (https://github.com/2023 AnnonymousAuthor/csve)) appears to be the code for the paper, it
does not provide parameters for the AntMaze dataset, preventing us from conducting experiments.
Since the EPQ paper reports scores after 3M gradient steps, we run the official implementation of
EPQ on all AntMaze datasets for 1M gradient steps, available at https://github.com/hyeon1996/EPQ.

C.2.2 OFFLINE-TO-ONLINE BASELINES

To generate the performance curve reported in Figure[3] we conduct experiments on MuJoCo “-v2”
datasets. We adopt canonical offline-to-online RL algorithms (AWAC (Nair et al., 2020) and Cal-
QL (Nakamoto et al., [2023))), offline RL algorithms that achieve high performance in online RL
(IQL (Kostrikov et al.| [2022) and SPOT (Wu et al.| [2022)), and CQL (Kumar et al., 2020) (offline) to
SAC (online). For a fair comparison, we evaluate all algorithms using results after 0.25M gradient
steps for offline settings and 0.3M gradient steps for online settings. We run the implementations
of the five algorithms based on the CORL (Tarasov et al.l [2024b) GitHub repository, available
at https://github.com/tinkoff-ai/CORL!.

C.3 CPQL IMPLEMENTATION DETAILS

Table 3: Hyperparameters setup for CPQL

Hyperparameter Value
Optimizer Adam (Kingmal2014)
Critic learning rate 3e-4
Actor learning rate le-4
Batch size 256
SAC hyperparameters  Discount factor 0.99 / MuJoCo and Antmaze
0.90 / Adroit
Target update rate 5e-3
Target entropy -1 - Action Dimension
Entropy in Q-target False
Critic hidden dim 256
Critic hidden layers 3/ MuJoCo and Adroit
5/ AntMaze
Architecture Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor hidden layers ReLU
Lagrange True / AntMaze
False / MuJoCo and Adroit
conservatism parameter {0.1,0.5,1.0,3.0,5.0,7.0,10.0}
Lagrange gap 0.8 / AntMaze
CPQL hyperparameters  Pre-training steps 0
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10
Trajectory Length 5
A {0.0,0.1,0.3,0.5,0.7,0.9,0.95,0.99}

25


https://github.com/hyeon1996/EPQ
https://github.com/2023AnnonymousAuthor/csve
https://github.com/hyeon1996/EPQ
https://github.com/tinkoff-ai/CORL

Under review as a conference paper at ICLR 2026

We set the trajectory length n = 5 for CPQL to cap the length of the partial trajectories. Across
all of our experiments, we tune the conservatism parameter o and A from the following potential
values with grid search: « € {0.1,0.5,1,3,5,7,10} and A € {0,0.1,0.3,0.5,0.7,0.9,0.95,0.99}.
In offline-to-online RL, we set the conservatism parameter « to either 1 or 5. We extend our
experiments to include « values lower than the previously typical choices of 5 and 10 used in CQL.
We optimize the learned policy following the standard SAC (Haarnoja et al., 2018)) approach. We run
the CPQL implementation based on the CORL (Tarasov et al., 2024b) GitHub repository, available
at https://github.com/tinkoff-ai/CORL. The hyperparameter setup for CPQL, including the default
SAC configuration, is detailed in Table[3] We summarize the hyperparameters used for running the
MuJoCo, Adroit, and AntMaze tasks in Table ] We plot the performance of CPQL in Figure [5|using
the best parameters from Tables

Table 4: Detailed hyperparameters of CPQL, where we conduct experiments on MuJoCo-Gym
(“v2”) and Adroit and AntMaze (“v0”) datasets.

Task conservatism parameter «  PQL parameter A
halfcheetah-random 0.1 0.3
halfcheetah-medium 0.1 0.0
halfcheetah-medium-replay 0.1 0.3
halfcheetah-medium-expert 10.0 0.1
halfcheetah-expert 3.0 0.0
hopper-random 0.1 0.0
hopper-medium 0.1 0.7
hopper-medium-replay 0.5 0.1
hopper-medium-expert 5.0 0.1
hopper-expert 10.0 0.9
walker2d-random 0.5 0.9
walker2d-medium 1.0 0.5
walker2d-medium-replay 1.0 0.7
walker2d-medium-expert 1.0 0.95
walker2d-expert 1.0 0.99
pen-human 10.0 0.5
door-human 5.0 0.7
hammer-human 7.0 0.9
relocate-human 1.0 0.9
pen-cloned 1.0 0.5
door-cloned 3.0 0.1
hammer-cloned 5.0 0.7
relocate-cloned 10.0 0.1
antmaze-umaze 7.0 0.1
antmaze-diverse 5.0 0.9
antmaze-medium-play 10.0 0.3
antmaze-medium-diverse 5.0 0.1
antmaze-large-play 10.0 0.1
antmaze-large-diverse 5.0 0.0

26


https://github.com/tinkoff-ai/CORL

Under review as a conference paper at ICLR 2026

1404
1405
1406 — CQL —— CPQL (A=0.1) —— CPQL(A=0.3) —— CPQL(A=0.5) —— CPQL(A=0.7) —— CPQL (A=0.9)
1407 Halfcheetah-random-v2 Hopper-random-v2 Walker2d-random-v2
1408 = J [

1409
1410
1411
1412
1413
1414
1415 ’ " . " . . 9
1416 ' '

1417

1418 ¢
1419
1420
1421
1422
1423 20
1424 3
1425
1426
1427
1428 50
1429
1430
1431
1432
1433

0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

1435 Halfcheetah-medium-expert-v2 - Hopper-medium-expert-v2 - - ium- -
1436

1437
1438
1439
1440
1441
1442
1443

1444 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
16 les 1e6

Normalized Score

Halfcheetah-medium-v2

Normalized Score

00 02 04 06 08 10 00 02 04 06 08 10
1e6 1e6

Hopper-medium-replay-v2 Walker2d-medium-replay-v2
— - - 100 _

Normalized Score

Normalized Score

1445 Halfcheetah-expert-v2 Hopper-expert-v2 Walker2d-expert-v2
1446 5 Z ;
1447 w0
1448
1449
1450
1451
1452

1453 °

1 454 0.0 0.2 _I()_Idmeste:fs 08 llﬂee 0.0 0.2 _IO—.idmeste:JES 0.8 lie 0.0 0.2 -F'Idmeste:)ss 08 11056
1455

1456 Figure 5: Performance of CPQL in MuJoCo locomotion tasks.

1457

Normalized Score

27



Under review as a conference paper at ICLR 2026

C.4 RUNNING TIME

We compare the computational cost of CQL and CPQL, which use a single-step operator and a
multi-step operator, respectively. We run such a comparison based on the Hopper-Medium-v2 dataset
with a single GeForce RTX 3090 GPU. We measure the average runtime per epoch (1K training steps)
except for the evaluation step. The results are reported in Table 5] We observe that CQL and CPQL
have average runtimes of 40.6 and 42.4 seconds, respectively. The runtime difference between the
two algorithms is minimal, but as shown in Table[T} we observe significant performance differences.

Table 5: Computational costs of CQL and CPQL.

Epoch runtime (s) CQL CPQL
1,000 gradient steps 40.6  42.4

Compared to two recent conservative value estimation algorithms, MCQ (Lyu et al., |2022) and
EPQ (Yeom et al., [2024)), CPQL not only outperforms diverse tasks but also has a lower runtime.
According to Table 3 in|Yeom et al.[(2024), the reported runtimes using a single NVIDIA RTX A5000
GPU are as follows: CQL (43.1 seconds), MCQ (58.1 seconds), and EPQ (54.8 seconds). For a fair
comparison, we compute the ratio that indicates how much the training time increases in Table[6] We
confirm that CPQL is the most efficient compared to other algorithms.

Table 6: Epoch runtime-increase relative to CQL.

Ratio of epoch runtime (%) CPQL MCQ EPQ
Epoch time growth 4.4 348  27.1

Additionally, MCQ and EPQ require more training time because they rely on autoencoder-based OOD
action estimation (Lyu et al., [2022) and additional penalty adaptation factors (Yeom et al., [2024),
respectively. Therefore, CPQL achieves superior performance with significantly lower computational
cost, outperforming MCQ and EPQ while requiring less training time by avoiding autoencoder-based
OOD action estimation and additional penalty adaptation factors.

28



Under review as a conference paper at ICLR 2026

:2:2 D COMPARISON WITH OTHER MULTI-STEP OPERATORS

1514

1515

1516 a0
1517 M
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533 i il il il il il
1534 Halfcheetah-medium-replay-v2 -
1535 5 R EE R—
1536
1537
1538
1539
1540
1541 10
1542

1543 : : w

1544 Halfcheetah-medium-expert-v2 Hopper-medium-expert-v2
1545 v
1546
1547
1548
1549
1550 20
1551

1552 ’
1553

1554 w0
1555
1556
1557
1558
1559
1560 B
1561 o

1 562 0.0 02 0.4 06 0.8 10 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 10
Timesteps 1e6 Timesteps 1e6 Timesteps 1e6

—— CPQL (ours) —— CQLw/N-step —— CQL w/Retrace —— CQL w/ Tree-backup

Halfcheetah-random-v2 Hopper-random-v2 Walker2d-random-v2

Normalized Score

100

Normalized Score

00 02 04 06 08 10
1e6

Walker2d-medium-replay-v2

Normalized Score

Normalized Score
s

Normalized Score

1563

1564 Figure 6: Comparison of CPQL (our) with CQL using alternative multi-step operators (Uncorrected
1565 N-step, Retrace, and Tree-backup) on MuJoCo locomotion tasks from D4RL.

29



Under review as a conference paper at ICLR 2026

Table 7: Computational costs of CQL (baseline), CPQL (our), Uncorrected N-step, Retrace, and
Tree-backup on the Hopper-medium-v2. We report the runtime per 1,000 gradient steps (in seconds).
For Retrace, the additional cost + « accounts for the extra time required to estimate the behavior
policy, typically using behavior cloning. CPQL’s computational cost is comparable to the single-step
operator, with only a marginal increase in runtime.

Epoch runtime (s) \ CQL (baseline) CPQL (ours) CQL w/N-step CQL w/ Retrace CQL w/ Tree-backup
1,000 gradient steps | 40.6 42.4 41.3 43.0+ « 43.0

E COMPARISON WITH PQL

In this section, we address the following question:
How does CPQL compare to a method that purely uses PQL, without the conservatism penalty?

In the main text, we focused primarily on evaluating performance across the D4RL benchmarks
(MuJoCo, AntMaze, and Adroit) in both offline and offline-to-online settings. We interpret the results
to clarify why the PQL operator is useful in offline RL and why CPQL is needed. To this end, we
evaluate CPQL and PQL on MuJoCo locomotion tasks, using the normalized return and the critic
model’s average Q-values over a batch size of samples as evaluation metrics.

Table 8: Normalized Return (Real Performance) of CPQL and PQL.

Task | Algorithm A=03 A=0.7
N . CPQL (=1) 102.6+08 102.5+0.7
opper-medium-replay | poyp 2494108 453 +27.9

. CPQL (w=1) 851455 79.4+18.6
walker2d-medium ‘ PQL 02400 -02+00

Table 9: Average Q-values (Estimated Values) of CPQL and PQL.

Task | Algorithm A=0.3 A=0.7
. CPQL(a=1)  2358+56 2222+49
hopper-medium-replay | pp 3147132 2715+ 40
- CPQL(a=1) 3354479 3326+77
walker2d-medium ‘ PQL 4x10'1 £1010 4758 £ 6.1

We observe several notable findings in Table [§|and [0] Simply applying PQL to the offline dataset
substantially mitigates one of the most important challenges in offline RL, the overestimation of
Q-values caused by distribution shift. For instance, in the hopper-medium-replay dataset, SAC reports
the normalized score of only around 3.5 (from Table 1 in CQL paper), indicating a failure to learn the
optimal policy, whereas PQL achieves significantly higher performance. Nevertheless, the distribution
shift induced by the learned policy persisted, underscoring the necessity of CPQL to address this
limitation more effectively. In the walker2d-medium dataset, PQL with A = 0.7 reduced average
Q-value overestimation compared to A = 0.3, yet this reduction did not translate into an improved
normalized return.

In contrast, CPQL combines conservative value estimation with the PQL operator, suppressing
overestimation while incorporating long-horizon information. As a result, in both hopper-medium-
replay and walker2d-medium datasets, CPQL achieves much more stable and higher returns than
PQL, demonstrating that the synergistic integration of conservatism and the multi-step operator plays
a critical role in improving offline RL performance.

30



Under review as a conference paper at ICLR 2026

F CUSTOMIZED OFFLINE DATASETS

From the D4RL datasets, it is difficult to determine the exact behavior policy, which makes it
challenging to precisely measure the role of A. To address this issues, we constructed customized
offline datasets in the Halfcheetah and Walker2d environment. Using SAC, we collected 200K
samples with the policy obtained at the point where the normalized score reached 20. We continued
training until the normalized score reached 100, designating this policy as the optimal policy. Based
on these setups, we conducted several ablation studies to better understand the effects of CPQL and
A

F.1 CoMPARISON OF CQL, PQL, AND CPQL

Table 10: Normalized Return (Real Performance) and Average Q-values (Estimated Values) for the
customized dataset of Walker2d.

Walker2d \ Behavior Policy (mg)  Optimal Policy (7*) CQL -
Normalized Return 20 100 459 4+9.5 -
Average Q-values ~ 192.74 ~ 267.76 759+£54 -
Walker2d ‘ PQL (A =0.3) PQL(A=0.79 CPQL(A=0.3) CPQL(\=0.7)
Normalized Return -0.5+0.0 0.1 £0.1 63.5 £8.9 81.3 4.5
Average Q-values 4x10'0 £2.3%x10° 438.7 £ 20.1 129.6 +5.9 1743 £ 8.2

In Table[I0] we set the conservatism parameter c to 5.0 for both CQL and CPQL. Comparing CQL
and PQL, CQL produces relatively low average Q-values due to the conservatism term, achieving a
performance of around 45.9. In contrast, PQL with A = 0.3 suffers from the typical overestimation
problem in offline RL, but as A increased to 0.7, its average Q-value decreased to around 438.7. It
shows the migration of the over-conservatism effect with the PQL operator. However, PQL still failed
to learn the optimal policy, because the learned policy still suffers a large distribution shift, leading to
high Q-values.

By adding the conservatism term to PQL, CPQL alleviates this issue and outperforms CQL in terms of
performance. This improvement occurs because, under the same conservatism parameter, CPQL has
mildly conservative Q-values. This aligns with the theoretical insights in Theorems Furthermore,
we observe that as )\ increased, PQL’s average Q-values approached those of the behavior policy,
whereas CPQL’s average Q-values approached those of the optimal policy.

F.2 COMPARISON OF CPQL AND OTHER MULTI-STEP OPERATORS

Multi-step operators without a conservatism term are expected to fail to learn a policy that approaches
the optimal policy. Thus, we add the conservatism term with o = 1.0 for all algorithms.

Table 11: Normalized Return (Real Performance) and Average Q-values (Estimated Values) for the
customized dataset of Halfcheetah.

Halfcheetah \ CPQL CQL w/Nstep CQL w/Retrace CQL w/ Tree-backup
Normalized Return 39.6 + 2.6 31.0£2.8 39.5 + 2.8 344 £ 3.1
Average Q-values 213.7 £ 10.1 127.6 £5.2 212.4 +10.5 130.5 7.6

In Table [[T, CPQL and CQL with Retrace achieved the highest performance (39.6 and 39.5),
maintaining relatively high average Q-values, 213, which indicates a milder conservatism. In contrast,
CQL with n-step returns and Tree-backup showed lower returns (31.0 and 34.4) and substantially
lower average Q-values, suggesting stronger conservatism. In this case, the n-step return prevents
the agent from exploring OOD actions. Tree-backup, on the other hand, was developed for discrete
action spaces, and in continuous spaces it leads to very unstable updates due to the numerical scale of
In.

31



Under review as a conference paper at ICLR 2026

In the above case of an offline dataset collected from a single policy, as in the previous experiments,
estimating the behavior policy is relatively straightforward. This explains why Retrace achieved
performance comparable to CPQL. However, an open question is whether Retrace would still perform
well when the offline dataset is generated by multiple behavior policies. To investigate this, we
collected four datasets in Walker2d with normalized scores of 20, 60, and 100, containing 200K,
120K, and 80K samples (ratio 5 : 3 : 2), resulting in a total of 400K samples for training. We add the
conservatism term with o = 5.0 for all algorithms.

Table 12: Normalized Return (Real Performance) for a toy example of the mixture dataset of
Walker2d.

Halfcheetah \ CPQL CQL w/ Retrace
Normalized Return \ 98.6 + 3.5 87.8 £22.8

CPQL outperforms CQL with Retrace, indicating that CPQL has more robust performance for datasets
collected from multiple behavior policies. This trend is consistent with the results observed on the
DARL random and medium-replay datasets

G ADDITIONAL BASELINES

G.1 OFFLINE RL

We evaluate our method on MuJoCo locomotion tasks in offline settings, comparing it against Q-
value uncertainty approaches for conservative estimation (ensemble-based: EDAC (An et al., [2021)),
PBRL (Bai et al., 2021)); non-ensemble: UWAC (Wu et al.l |2021), QDQ (Zhang et al., 2024)) as
well as trajectory-based methods (DT (Chen et al., 2021), TT (Janner et al., 2021))). Comparison
to additional single-step baselines in effectively regulating OOD actions (X-QL (Garg et al., 2023)),
SQL, EQL (Xu et al.} 2023)), and InAC (Xiao et al.,[2023))).

Table 13: Results for MuJoCo locomotion tasks. * indicates methods trained with 3M gradient steps
as reported in original papers. All other methods are trained with 1M gradient steps. Bold numbers
are the scores within 2% of the highest in each environment.

Task EDAC* PBRL UWAC QDQ DT TT | CPQL (ours)
halfcheetah-random 28.4 11.0 23 - - - 38.8 + 1.0
hopper-random 25.3 26.8 2.7 - - - 315+ 0.5
walker2d-random 16.6 8.1 2.0 - - - 21.2 + 0.7
halfcheetah-medium-v2 65.9 58.2 42.2 74.1 42.6 46.9 66.6 £ 0.9
hopper-medium-v2 101.6 81.6 50.9 99.0 67.6 61.1 99.7 £ 2.0
walker2d-medium-v2 92.5 90.3 75.4 86.9 74.0 79.0 90.0 £ 1.5
halfcheetah-medium-replay-v2 61.3 49.5 35.9 63.7 36.6 41.9 60.3 £ 0.8
hopper-medium-replay-v2 101.0  100.7 253 1024 82.7 91.5 | 103.0 + 0.6
walker2d-medium-replay-v2 87.1 86.2 23.6 93.2 66.6 82.6 97.4 + 4.0
halfcheetah-medium-expert-v2 106.3 93.6 42.7 99.3 86.8 95.0 953 £0.6
hopper-medium-expert-v2 110.7 1112 449 1135 107.6 1100 | 111.3+1.2
walker2d-medium-expert-v2 1147 1098 96.5 1159 108.1 1019 | 1125+£05
halfcheetah-expert-v2 106.8 96.2 92.9 - - - 98.0£1.6
hopper-expert-v2 110.1 1104 110.5 - - - 112.0 £ 0.6
walker2d-expert-v2 115.1  108.8 108.4 - - - 1125+ 04

Across MuJoCo locomotion tasks, in Table[T3] CPQL consistently achieves competitive or superior
performance compared to both Q-value uncertainty methods (with and without ensembles) and
trajectory-based approaches. In particular, it matches or exceeds the strongest baselines in medium,
medium-replay, and expert datasets, demonstrating robustness across varying data qualities. Fur-
thermore, in Table when compared to recent single-step baselines designed to regulate OOD
actions, CPQL achieves the highest or near-highest scores across all benchmark settings. These results
confirm that CPQL is not only effective in addressing conservatism but also reliable in balancing
exploration and value estimation, leading to strong and stable returns across diverse offline RL tasks.

32



Under review as a conference paper at ICLR 2026

Table 14: Results for MuJoCo locomotion tasks. Bold numbers are the scores within 2% of the

highest in each environment.

Task X-QL  SQL EQL InAC | CPQL (ours)
halfcheetah-medium 48.3 48.3 47.2 48.3 66.6 = 0.9
hopper-medium 74.2 75.5 74.6 60.3 99.7 £ 2.0
walker2d-medium 84.2 84.2 83.2 82.7 90.0 £ 1.5
halfcheetah-medium-replay 452 448 44.5 443 60.3 + 0.8
hopper-medium-replay 100.7 99.7 98.1 92.1 103.0 £ 0.6
walker2d-medium-replay 82.2 81.2  76.6 69.8 974 + 4.0
halfcheetah-medium-expert 94.2 94.0 90.6 83.5 95.3 £ 0.6
hopper-medium-expert 1112 111.8 1055 93.8 | 111.3+1.2
walker2d-medium-expert 1127 110.0 1102 109.0 | 112.5+0.5
halfcheetah-expert - - - 93.6 98.0 + 1.6
hopper-expert - - - 1034 | 112.0 = 0.6
walker2d-expert - - - 1106 | 1125+ 04

G.2 OFFLINE-TO-ONLINE RL

We evaluate our method on the MuJoCo locomotion tasks and AntMaze navigation tasks after fine-
tuning with 300k online samples. We report the final normalized score average over five random
seeds, with + indicating the 95%-confidence interval.

* MuJoCo locomotion tasks: We compare CPQL (offline) to PQL (online) against several
algorithms: (i) CQL (offline) to SAC (online), (ii) PEX (Zhang et al.| 2023) that expands
the policy set during online fine-tuning using optimistic exploration (iii) RLPD (Ball et al.}
2023) that regularizes online updates using value and policy constraints from offline data,
and (iv) Cal-QL that calibrates the value-function. (see Table[T3)

* AntMaze navigation tasks: These environments are known to be extremely challenging
for standard off-policy RL algorithms like SAC, due to their sparse rewards and complex
exploration requirements. As vanilla online algorithm fails to learn successful policies in
these tasks, we compare CPQL against several algorithms, including CQL. (see Table [L6)

Table 15: Results for MuJoCo locomotion tasks in offline to online settings. Bold numbers are the
scores within 2% of the highest in each environment.

MuJoCo CQL—SAC PEX RLPD Cal-QL | CPQL—PQL
halfcheetah-random 90.3 +3.1 60.9+62 91.5+31 329+£10.1 93.8 + 6.3
hopper-random 337+£349 4854+483 9024237 17.7+£323 102.0 + 1.7
walker2d-random 38+£79 9.8+20 87.7+£175 94+£17.0 88.6 + 20.1
halfcheetah-medium 963+16 704+29 955+£19 77.0£27 96.5 £ 1.7
hopper-medium 109.3 £ 1.1 8624327 914+345 100.7=+1.0 111.5 £ 0.7
walker2d-medium 1144+£32 914+£178 121.6 £29 97.0+ 102 127.8 £ 34
halfcheetah-medium-replay 948 +19 554+63 90.1+£16 62.1+14 95.8 +£2.2
hopper-medium-replay 108.4 £ 3.4 953+£89 789+304 1014+26 112.1 £ 2.5
walker2d-medium-replay 1147 £11.1 8724169 119.0+2.6 984 +4.1 128.6 = 4.8

From the results presented in the table above, CPQL to PQL method achieves significantly better
performance compared to other baselines. Several factors contribute to this advantage. First, the
Q-function learned by PQL does not degrade at the beginning of the online phase. This is because
CPQL reduces the influence of the learned policy on Q-value estimation, resulting in more stable value
learning. Second, compared to PEX, RLPD, and Cal-QL, PQL benefits from a stronger exploration
capability, as it is guided by a well-trained Q-function obtained from CPQL.

33



Under review as a conference paper at ICLR 2026

Table 16: Results for AntMaze tasks in offline-to-online settings. Bold numbers are the scores within
2% of the highest in each environment.

AntMaze CQL PEX RLPD Cal-QL CPQL
antmaze-umaze 99.0 + 0.7 952420 994+1.0 90.1+134 98.2+1.0
antmaze-umaze-diverse 769 +493 3484374 992+1.2 752+435 904+3.1
antmaze-medium-play 944 £3.7 834+£29 974+1.7 95.1+78 934419
antmaze-medium-diverse 98.8 + 3.1 86.6 £6.2 98.6 1.7 963+ 60 98.2+ 1.8
antmaze-large-play 87.3+17.0 56.0+£48 93.0+31 7504182 854+63

antmaze-large-diverse 65.3 £ 35.1 604 +84 904+48 744+146 82.0x+56

In the AntMaze tasks, CPQL outperforms (or equal to) other baselines except for RLPD, with only a
slight performance gap compared to RLPD. The advantage of CPQL becomes even more pronounced
when compared to CQL. Taken together, the results from both the MuJoCo and AntMaze tasks
demonstrate that our algorithm is more robust and delivers superior overall performance.

H ADDITIONAL RELATED WORKS

Model-based Offline RL. Model-based offline RL methods build dynamics and reward models from
the offline dataset, leveraging state transitions and rewards of estimated model outputs for planning
and policy improvements. They typically achieve this by penalizing the reward function with the
error between the ground truth and estimated models (Yu et al.| 2020; Kidambi et al., [2020; [Rafailov
et al., 2021} |Lu et al.| 2021} |Kim & Ohl 2023} |Sun et al.| [2023), learning conservative Q function
within the model-based regime (Yu et al.,[2021), and training the policy and the dynamics model
adversarially (Rigter et al.;,|2022)). Algorithms that learn by planning synthetic trajectories under esti-
mated dynamics typically perform policy evaluation using a single-step approach. However, applying
CPQL in model-based offline RL settings can be particularly beneficial, similar to COMBO (Yu et al.|
2021). It enables more conservative learning of the Q-function, mitigating overestimation issues.
This suggests that CPQL has broad applicability and can enhance various aspects of model-based
reinforcement learning.

Recently, Park & Lee|(2025) considered a model-based offline RL approach, computing the target
Q-function by applying lower expectile regression to A-returns on synthetic trajectories planned from
the estimated dynamics. This method differs from ours: we take a model-free offline RL approach,
leveraging offline trajectories collected from the actual environment. Our method effectively enhances
performance by utilizing real trajectories rather than relying on synthetic trajectories, which are
subject to model estimation uncertainty. Furthermore, while they additionally employ lower expectile
regression to obtain a conservative return estimate, CPQL derives a conservative value estimate solely
by integrating the multi-step operator with a conservative estimation mechanism.

Offline Trajectory. Several works (Yue et al.| [2022; [Liu et al., 2024; Xu et al.| 2024) have attempted
to handle offline trajectories in different ways to adaptively utilize information from past observations,
where rewards have already been realized. They propose several methods, such as return-based
data rebalancing in|Yue et al.|(2022), priority assignment based on trajectory quality using average,
minimum, maximum, and quantile rewards in |Liu et al.[ (2024), as well as a least-squares-based
reward redistribution method for reward estimation in |[Xu et al.| (2024). However, these methods are
not applicable in sparse reward settings, such as AntMaze tasks, and were not empirically tested in
such environments. In contrast, we show that CPQL achieves superior performance in sparse reward
settings.

34



	Introduction
	Related Work
	Preliminaries
	Markov Decision Process
	Off-policy Operators
	Offline RL

	Conservative PQL
	Towards Offline PQL
	Theoretical Analysis
	Proposed Algorithm

	Experiments
	Results on offline and offline-to-online D4RL

	Conclusion
	Proof of Technical Lemmas for Theorems
	Proof of Theorems
	Theorem 1
	Theorem 2
	Theorem 3

	Experimental Details and Parameter Setup
	D4RL Benchmarks
	Baselines
	Offline Baselines
	Offline-to-Online Baselines

	CPQL Implementation Details
	Running Time

	Comparison with other Multi-Step Operators
	Comparison with PQL
	Customized Offline Datasets
	Comparison of CQL, PQL, and CPQL
	Comparison of CPQL and other multi-step operators

	Additional baselines
	Offline RL
	Offline-to-Online RL

	Additional Related Works

