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Abstract
The evaluation of image captions, looking at001
both linguistic fluency and semantic correspon-002
dence to visual contents, has witnessed a signif-003
icant effort. Still, despite advancements such as004
the CLIPScore metric, multilingual captioning005
evaluation has remained relatively unexplored.006
This work assesses the use of CLIPScore in007
multilingual captioning, evaluating different008
models in a variety of settings. To address009
the lack of multilingual test data, we consider010
two different strategies: (1) using machine-011
translated datasets with human judgements, and012
(2) re-purposing multilingual datasets that tar-013
get inference and reasoning. Our results show014
that multilingual CLIP models can perform on015
par with their English-centric counterparts on016
English benchmarks while allowing for mul-017
tilingual assessments. Performance increases018
with model finetuning and according to model019
size. Larger models, trained with more data,020
attained similar performance to more advanced021
methods that extended the original CLIPScore.022
Tests with machine-translated data show that023
multilingual CLIPScore can also maintain a024
high correlation with human judgements across025
different languages, and additional tests with026
natively multilingual and multicultural data fur-027
ther attest to the high-quality assessments.028

1 Introduction029

Computer-generated image captions are nowadays030

commonly used as descriptive annotations. The031

image captioning task has been extensively studied,032

including in multilingual settings, with many recent033

approaches combining established vision encoders034

with large language model decoders (Ramos et al.,035

2023b,a; Yang et al., 2023; Geigle et al., 2023;036

Ramos et al., 2024). The automatic evaluation of037

captions, accounting for linguistic and visual con-038

tents, has also witnessed a significant effort. Ap-039

proaches such as CLIPScore (Hessel et al., 2021)040

have been proposed to evaluate captions through co-041

sine similarity between image and text embeddings,042

leveraging large-scale pre-trained vision and lan- 043

guage models and achieving high correlations with 044

human judgments. Still, despite the many recent ad- 045

vancements, most approaches are English-centric, 046

while multilingual image captioning evaluation has 047

remained relatively unexplored. 048

This work explores the use of CLIPScore in 049

multilingual captioning, evaluating different CLIP 050

models under various settings. Given the lack of 051

available benchmarks for the evaluation of multilin- 052

gual captioning metrics, we propose two different 053

evaluation strategies: (1) using Machine Transla- 054

tion (MT) to obtain multilingual data from English- 055

centric benchmarks, and (2) re-purposing multilin- 056

gual benchmarks originally designed for the evalu- 057

ation of the semantic inference and reasoning capa- 058

bilities of vision-language models. 059

Through extensive experiments, we show that 060

multilingual CLIP models achieve comparable or 061

even better performance on English benchmarks 062

while allowing for multilingual assessments. We 063

also propose a multilingual fine-tuning strategy for 064

CLIPScore, that allows to account for linguistic and 065

cultural diversity while learning from human judge- 066

ments, resulting in further performance improve- 067

ments. Performance generally increases according 068

to model size. Larger models, trained on more data, 069

attained similar or even better performance to meth- 070

ods that extended the original CLIPScore (Sarto 071

et al., 2023; Kim et al., 2022; Hu et al., 2023; Kim 072

et al., 2023; Narins et al., 2024; Wada et al., 2024). 073

Tests with machine-translated data show that mul- 074

tilingual CLIPScore can also maintain a high cor- 075

relation with human judgements across different 076

languages, and additional tests with natively multi- 077

lingual and multicultural datafurther attest to high- 078

quality of assessments across languages. 079

Our primary contributions include 1 a compre- 080

hensive evaluation of existing models on English- 081

centric and multilingual benchmarks, assessing cor- 082

relation to human judgements; 2 an extension of 083
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English-centric benchmarks to multiple languages,084

incorporating human evaluations and diverse lin-085

guistic phenomena while preserving the original086

benchmarks’ quality; 3 an adaptation of existing087

multilingual and multicultural datasets for caption-088

ing evaluation; 4 a finetuning strategy that ac-089

counts for linguistic and cultural diversity as well090

as alignment with human judgements, leading to091

multilingual CLIPSCore models that outperform092

previous work across several benchmarks1.093

2 Related Work094

Conventional image captioning evaluation has095

relied on reference-based assessments, where096

machine-generated captions are compared against097

human-generated ones (i.e., the references).098

Frequently used metrics such as BLEU or099

CIDEr (Vedantam et al., 2015) rely on lexical100

matches, and hence may fail to capture finer nu-101

ances and semantic overlaps in rich captions. A102

recent shift in the evaluation paradigm involves103

the use of learned vision-and-language models to104

enable evaluation through reference-free metrics.105

The CLIPScore metric (Hessel et al., 2021) was106

one of the first proposals for evaluating image cap-107

tions that departed from the traditional metrics.108

Grounded in a vision-and-language encoder, specif-109

ically the original Contrastive Language-Image Pre-110

training (CLIP) model (Radford et al., 2021), this111

strategy employs a modified cosine similarity be-112

tween representations for the input image and the113

caption under evaluation. CLIPScore exhibits a114

high correlation with human judgments across vari-115

ous datasets, and despite being a reference-free met-116

ric, it even surpasses established reference-based117

metrics like BLEU and CIDEr. The authors also118

introduced a reference-augmented version named119

RefCLIPScore, which additionally uses the cosine120

similarity between candidate and reference cap-121

tions to further improve the correlation with human122

assessments. CLIPScore and RefCLIPScore are123

currently the most widely used learned metrics for124

captioning evaluation. However, many studies in125

the area still only report results using traditional126

lexical-based metrics. Some previous studies have127

also proposed the combination of CLIPScore and128

CIDEr through a simple weighted average (Qiu129

et al., 2023), arguing that this can further boost the130

correlation with human assessments.131

1The code and adapted datasets supporting our evaluation
experiments will be made publicly available upon acceptance.

PACScore (Sarto et al., 2023) extended CLIP- 132

Score by introducing a contrastive strategy that uses 133

curated data to further finetune the CLIP projection 134

layers for captioning evaluation. By augmenting 135

with generated images and paraphrased texts, PAC- 136

Score can achieve better correlations with human 137

judgements across several datasets. 138

InfoMetIC also builds on CLIP, aiming to pro- 139

vide detailed and explainable feedback in the con- 140

text of captioning evaluation (Hu et al., 2023), re- 141

porting incorrect words and unmentioned image 142

regions at a fine-grained level, while also providing 143

a text precision score, a vision recall score, and an 144

overall quality score at a coarse-grained level. In- 145

foMetIC was found to outperform CLIPScore even 146

when the latter is finetuned on captioning data. 147

Mutual Information Divergence (MID) is instead 148

a unified metric for multimodal generative mod- 149

els (Kim et al., 2022), targeting both text-to-image 150

and image-to-text tasks. The metric quantifies the 151

alignment between generated visual and textual 152

features by employing the concept of Mutual Infor- 153

mation (MI) from information theory. 154

Some recent studies have noted that metrics like 155

CLIPScore can lack rating granularity, arguing the 156

need for better benchmark datasets for assessing 157

image captioning evaluation metrics (Ahmadi and 158

Agrawal, 2023). Datasets like VICR (Narins et al., 159

2024) or Polaris (Wada et al., 2024) have recently 160

been proposed, relying on more rigorous proce- 161

dures for collecting human ratings, although still 162

focusing only on the English language. Together 163

with the proposal of the new datasets, the authors 164

also showed that models trained specifically for 165

image captioning evaluation can slightly outper- 166

form CLIPScore. We corroborate these findings, 167

proposing a finetuned version of CLIPScore that 168

outperforms other variants. 169

One previous study has specifically looked into 170

multilingual image captioning evaluation (Kim 171

et al., 2023), proposing a method based on fine- 172

tuning the text encoder of CLIP with a language- 173

agnostic method to distinguish the perturbed text 174

from the original text. The authors have also devel- 175

oped a novel dataset to evaluate multilingual image 176

captioning metrics, but unfortunately, this dataset 177

is not yet publicly available. 178

3 Multilingual CLIPScore 179

The CLIPScore metric uses an adjusted cosine sim- 180

ilarity to compare representations for the input im- 181
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age and the caption being assessed, as originally182

described by Hessel et al. (2021). In our work, we183

adopted the original formulation. A more detailed184

explanation of the CLIPScore and RefCLIPScore185

metrics can be found in Appendix A.186

To boost performance, we propose a strategy187

to finetune multilingual CLIP models in a setting188

that considers both linguistic and cultural diversity,189

while accounting for human preference alignment.190

Two distinct datasets were used for finetuning.191

The first, CrossModal-3600, focuses on multilin-192

gual and multicultural imagery (Thapliyal et al.,193

2022), whereas the second, VICR, comprises En-194

glish image-caption pairs that are evaluated by hu-195

mans (Narins et al., 2024) and we machine trans-196

lated to different languages following a strict trans-197

lation scheme to help maintain quality. We also198

combined different losses, tailored to the specific199

characteristics of each dataset.200

In more detail, to enhance the model’s ability201

to process multilingual and multicultural instances,202

we finetuned it on both datasets using the origi-203

nal CLIP contrastive loss, which can be formally204

described as follows:205

LC = − 1
2N

∑N
i=1

[
log esi,i/τ∑N

j=1 e
si,j/τ

+ log esi,i/τ∑N
j=1 e

sj,i/τ

]
, (1)206

where N is the number of image-text pairs in a207

batch, si,j is the similarity score between the i-208

th image and the j-th text description, and τ is209

a temperature parameter that scales the similarity210

scores and helps in controlling the concentration211

level of the distribution.212

For the second dataset, to improve the alignment213

of CLIPScores with human ratings, we also con-214

sider a Pearson correlation loss:215

LP = 1− (x−x)T (y−y)
||(x−x)||·||(y−y)|| , (2)216

where x is the vector of CLIPScores values, y is a217

vector with the human rating scores, and x and y218

are the respective average values.219

Considering that both loss functions can bene-220

fit from larger batch sizes, we sample instances221

for training alternating between each task, with-222

out mixing instances from the different datasets223

in the same batch and applying the respective loss224

functions. We accumulate gradients for two steps225

before updating the network, effectively combining226

both loss effects while leveraging the benefits of227

larger batches, i.e., L ∼ LC + LP .228

4 Experimental Evaluation 229

This section presents the datasets, the experimental 230

setup, and the results for different CLIP models, 231

considering English, multilingual, and multicul- 232

tural scenarios for image captioning evaluation. 233

4.1 Datasets 234

For the assessment of human judgment correlations, 235

experiments were conducted using the following 236

well-established English-only datasets containing 237

one or more human quality assessments for each 238

image-caption pair. 239

• Expert (Flickr8K-Expert) contains 5, 664 240

pairs (Hodosh et al., 2013). 241

• Crowdflower (Flickr8K-CF) contains 47, 830 242

pairs (Hodosh et al., 2013). 243

• Composite contains 13, 146 pairs (Aditya 244

et al., 2015). 245

• VICR contains 10, 175; 2, 310; and 3, 161 246

pairs respectively in training, validation and 247

test splits (Narins et al., 2024). 248

To evaluate the robustness of our models 249

to different linguistic phenomena, we used the 250

VALSE(Parcalabescu et al., 2021) dataset, which 251

contains 6, 704 correct image-caption pairs, plus 252

their respective foil caption versions. 253

Comparing multilingual versus monolingual 254

models on English data provides a limited overview 255

of model performance. However, high-quality mul- 256

tilingual resources with curated data featuring hu- 257

man assessments of caption quality are scarce (or 258

even unavailable), hindering multilingual evalua- 259

tion. To mitigate this limitation, we proposed a 260

translation scheme leveraging large machine trans- 261

lation models (Fan et al., 2021; Alves et al., 2024; 262

Liu et al., 2020), combined with language and 263

translation quality estimation models(Rei et al., 264

2022), to automatically translate English captions 265

for which we already have human assessments, 266

preserving the highest translation quality possible. 267

With high-quality translations, human judgments 268

should be valid across the different target languages. 269

This strategy is further detailed in Appendix C. 270

Our language selection is in line with recent ma- 271

chine translation studies (Alves et al., 2024), cover- 272

ing high-resource languages (i.e., English, French, 273

German, Spanish, and Chinese) and also mid- (i.e., 274

Portuguese, Italian, and Russian) to low-resource 275

languages (i.e., Dutch and Korean). We machine- 276

translated both the VICR and VALSE datasets into 277

nine languages using this technique. 278
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In addition, to further expand our multilingual279

evaluation, we used naturally multilingual and mul-280

ticultural datasets, i.e., XVNLI (Bugliarello et al.,281

2022) and MaRVL (Liu et al., 2021), re-purposing282

them for the evaluation of image captioning metrics.283

The original datasets feature differences in terms of284

language composition, and we thus also expanded285

the XVNLI dataset by translating its data from286

English into the languages present in the MaRVL287

dataset. We chose not to further extend MaRVL to288

other languages because the dataset features image-289

caption pairs that focus on culturally specific con-290

cepts in association with the target languages.291

4.2 Evaluation Metrics292

We evaluate the different models using correla-293

tion with human judgements, and also with clas-294

sification tasks. Regarding the correlation exper-295

iments, we measure performance using three dif-296

ferent correlation coefficients, namely Spearman ρ297

and Kendall τ with variations b and c. The correla-298

tion metrics are formally defined in Appendix B.299

For the multilingual/multicultural experiments,300

we measure performance under the assumption that301

a caption entailed by an image should reflect a302

higher CLIPScore than a contradiction/foil caption.303

4.3 Experiments and Results304

This section presents experimental results for the305

different models and evaluation datasets, establish-306

ing a comparison with previously reported results307

and contributing to the multi-linguistic exploration308

of existing models and datasets. We also performed309

a qualitative study focusing on image-caption pairs310

that feature concepts that could be associated with311

cultural bias, which is reported in Appendix F.312

4.3.1 Correlation Assessment on English Data313

Table 1 displays the correlation results between314

CLIPScore values and human ratings, across the315

four English datasets and considering existing and316

publicly available English-only and multilingual317

CLIP models. The results show that the CLIPScore318

estimates can improve significantly with larger319

CLIP models trained with more data.320

Comparing results against the performance of321

the original CLIPScore computed with a ViT-B/32322

vision encoder, we can observe substantial im-323

provements. Apple’s ViT-H/14 model with 378px324

resolution achieves the highest correlation results325

among the English models, although the multilin-326

gual model of the same size from LAION is the327

second best-performing alternative (even outper- 328

forming the English-only model on the Compos- 329

ite dataset). The largest multilingual CLIP model, 330

trained on approximately 5 billion instances, also 331

outperforms the similarly sized English-only model 332

trained with approximately 2 billion instances, per- 333

haps indicating that exposure to diverse language 334

data can enable CLIPScore values to better corre- 335

late with human judgements. Overall, the findings 336

support the argument that CLIPScore with a mul- 337

tilingual model can maintain, or even improve the 338

performance, over an English-only model. 339

In turn, Table 2 compares recent studies propos- 340

ing other metrics against the best performing 341

English-only and multilingual CLIPScore models2. 342

We considered different evaluation settings, assess- 343

ing results (a) without references, (b) using refer- 344

ences, and (c) combining CIDER with RefCLIP- 345

Score when using references (Qiu et al., 2023). 346

Results confirm that the original CLIPScore out- 347

performs standard captioning metrics in all evalu- 348

ated datasets, such as BLEU or CIDEr. The correla- 349

tions consistently improve with RefCLIPScore, but 350

the combination of RefCLIPScore with CIDEr only 351

improved the smaller CLIP model (by previously 352

published results from Qiu et al. (2023)), instead 353

decreasing the performance in the cases involving 354

the other CLIPScore variants. 355

The multilingual model competes head-to-head 356

with the best English-only models, outperform- 357

ing the previously published results for almost all 358

the metrics, whether human references are consid- 359

ered or not. This competitive performance in both 360

reference-free and reference-aided settings further 361

solidifies the potential of multilingual CLIPScore. 362

Lastly, it is also interesting to note that our fine- 363

tuned model outperformed the original multilin- 364

gual LAION ViT-H model, and also Apple’s best 365

model across all CLIPScore variants, on both the 366

VICR and Expert datasets, even without using ref- 367

erences. The version of our model that uses ref- 368

erences achieved the best performance for these 369

datasets, surpassing even specialized architectures 370

such as VICR, InfoMetIC, and RefPACScore. 371

4.3.2 Correlation on Multilingual Data 372

We used the VICR multilingual variants to analyse 373

the human ruman ratings, considering the best per- 374

2Note that we computed all the correlation scores for the
CLIPScore variants and traditional image caption metrics
based on lexical matches, whereas the results for other more
recent metrics are taken from the corresponding publications.
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VICR Expert CrowdFlower Composite
τb τc ρ τb τc ρ τb τc ρ τb τc ρ

E
ng

lis
h

openai/clip-vit-base-patch32 60.7 67.1 76.9 51.1 51.5 63.1 34.4 17.8 42.4 50.6 51.4 67.9
apple/DFN5B-CLIP-ViT-H-14-378 67.4 74.4 83.1 56.3 56.6 68.4 38.5 19.9 47.1 55.0 55.9 72.8
apple/DFN5B-CLIP-ViT-H-14 66.5 73.5 82.4 55.6 56.0 67.7 38.2 19.7 46.8 54.5 55.3 72.3
apple/DFN2B-CLIP-ViT-L-14 65.8 72.6 81.6 55.5 55.6 67.5 37.1 19.2 45.6 53.6 54.3 71.3
laion/CLIP-ViT-g-14-laion2B-s12B-b42K 66.4 73.0 82.0 55.3 55.1 66.9 37.1 19.1 45.5 54.9 55.7 72.7
laion/CLIP-ViT-H-14-laion2B-s32B-b79K 66.4 73.1 82.1 54.9 54.9 66.7 37.2 19.2 45.6 53.6 54.4 71.2
laion/CLIP-ViT-L-14-laion2B-s32B-b82K 65.9 72.6 81.7 54.4 54.5 66.3 36.7 18.9 45.1 53.6 54.4 71.3
BAAI/AltCLIP 65.1 71.9 81.1 54.1 54.4 66.2 36.2 18.7 44.6 53.8 54.6 71.6
openai/clip-vit-large-patch14-336 62.0 68.5 78.1 52.6 53.0 64.6 35.4 18.3 43.7 52.8 53.6 70.3
openai/clip-vit-large-patch14 62.3 68.9 78.5 52.6 53.0 64.6 35.2 18.2 43.4 52.5 53.3 70.0

M
ul

til
in

gu
al

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k 67.6 73.0 82.4 57.4 54.3 67.3 38.2 19.4 46.2 55.5 56.2 73.2
BAAI/AltCLIP-m18 66.6 73.4 82.3 54.8 55.0 66.8 37.1 19.2 45.6 55.2 56.0 73.0
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 64.6 71.3 80.6 54.6 54.8 66.7 36.0 18.6 44.3 52.1 52.9 69.6
BAAI/AltCLIP-m9 64.2 70.9 80.3 54.1 54.4 66.2 36.4 18.8 44.8 53.9 54.6 71.6
laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k 63.3 69.8 79.3 52.7 52.8 64.5 35.2 18.2 43.3 49.9 50.6 67.1
M-CLIP/XLM-Roberta-Large-Vit-L-14 62.2 68.7 78.4 53.0 53.4 65.0 35.4 18.3 43.7 52.9 53.6 70.4
M-CLIP/XLM-Roberta-Large-Vit-B-32 60.5 66.9 76.7 51.8 52.2 63.9 34.4 17.8 42.4 50.7 51.4 67.9
sentence-transformers/clip-ViT-B-32-multilingual-v1 60.3 66.7 76.6 51.5 51.8 63.6 33.3 17.2 41.1 48.9 49.6 65.9

Table 1: Correlation between CLIPScore values and human rankings, considering a set of different English (top
rows) and multilingual (bottom rows) CLIP models.

VICR Expert CrowdFlower Composite

τb τc ρ τb τc ρ τb τc ρ τb τc ρ

R
el

at
ed

W
or

k

BLEU1 57.9 63.7 74.0 32.2 32.3 40.4 17.9 9.3 22.3 45.8 46.2 63.0
BLEU4 54.8 60.4 70.5 30.6 30.8 38.7 16.9 8.7 21.0 46.4 46.9 63.7
CIDEr 63.1 69.8 79.3 43.6 43.9 54.3 24.6 12.0 29.3 48.1 48.8 65.0

CLIPScore 60.7 67.1 76.9 51.1 51.5 63.1 34.4 17.8 42.4 50.6 51.3 67.9
RefCLIPScore 66.3 73.3 82.2 52.0 52.4 63.7 36.4 18.8 44.7 56.8 57.6 74.7
CLIP+CIDEr 66.8 73.8 82.6 53.1 53.4 65.3 33.9 17.5 41.8 54.3 55.1 72.2

MID (Kim et al., 2022) – – – – 54.9 – 37.3 – – – – –

InfoMetIC (Hu et al., 2023) – – – – 54.2 – 36.3 – – – 59.2 –
InfoMetIC+ (Hu et al., 2023) – – – – 55.5 – 36.6 – – – 59.3 –

PR-MCS (Kim et al., 2023) – – – – 50.6 65.6 – – – – – –

VICR (Narins et al., 2024) – 75.8 – – 53.1 – – – – – – –

PACScore (Sarto et al., 2023) – – – 53.9 54.3 – 36.0 18.6 – 51.5 55.7 –
RefPACScore (Sarto et al., 2023) – – – 55.5 55.9 – 37.6 19.5 – 53.0 57.3 –

C
L

IP
Sc

or
e

va
ri

an
ts

English CLIPScore 67.4 74.4 83.1 56.3 56.6 68.4 38.5 19.9 47.1 55.1 55.9 72.8
English RefCLIPScore 68.3 75.4 83.8 56.8 57.1 68.9 38.6 19.9 47.3 56.4 57.2 74.0
English CLIP+CIDEr 67.6 74.8 83.3 56.0 56.4 68.5 35.6 18.4 43.8 53.9 54.7 71.7

Multilingual CLIPScore 67.6 73.0 82.4 57.4 54.3 67.3 38.2 19.4 46.2 55.5 56.2 73.2
Multilingual RefCLIPScore 69.1 74.6 83.6 58.1 55.0 67.9 38.8 19.7 46.9 57.3 58.1 75.0
Multilingual CLIP+CIDEr 67.6 74.7 83.4 55.5 55.9 67.8 36.3 18.8 44.7 55.6 56.4 73.5

Finetuned CLIPScore 68.7 75.4 84.1 59.8 57.1 70.2 37.8 19.3 45.9 47.4 48.0 64.7
Finetuned RefCLIPScore 69.7 76.5 84.8 60.2 57.5 70.6 37.6 19.1 45.6 53.3 54.0 70.8
Finetuned CLIP+CIDEr 68.5 75.8 84.2 57.3 57.7 70.0 35.8 18.5 44.0 52.5 53.2 70.0

Table 2: Comparison between published results and our best English, multilingual and finetuned (also multilingual)
CLIPScore models, considering settings (a) without human references, (b) using human references, and (c)
combining CIDEr with CLIPScore when using human references.

forming multilingual model in English-only data,375

and also our finetuned model version.376

Table 3 displays the correlation between multilin-377

gual CLIPScore values and human ratings, across378

the different languages. We observe that our fine-379

tuned version achieves a better correlation with hu-380

man judgments in both the reference and reference-381

free settings, across all evaluated languages and for382

all correlation metrics. The finetuned CLIPScore is383

strongly correlated with human preferences in high-384

resource languages (i.e., English, French, German,385

Spanish, and Chinese), and it also exhibits excel- 386

lent performance in medium- and low-resource lan- 387

guages. We achieve average correlations of 67.9, 388

74.6, and 83.5, respectively with the τb, τc, and 389

Spearman ρ metrics in the reference-free setting, 390

and an average correlation of 68.9, 75.7, and 84.3, 391

respectively with the τb, τc, and Spearman ρ us- 392

ing references. An additional table is provided in 393

Appendix G regarding different loss variants for 394

model finetuning, and with different model sizes. 395

The findings in the appendix support the idea that 396
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Without Finetuning With Finetuning

CIDEr Multilingual CLIPScore Multilingual RefCLIPScore Finetuned Multilingual CLIPScore Finetuned Multilingual RefCLIPScore

τb τc ρ τb τc ρ τb τc ρ τb τc ρ τb τc ρ

English 63.1 69.8 79.3 67.6 73.0 82.4 69.1 74.6 83.6 68.7 75.4 84.1 69.7 76.5 84.8
German 58.3 64.4 74.4 66.1 72.3 81.5 68.0 74.4 83.2 68.0 74.8 83.6 69.1 75.9 84.4
French 60.0 66.4 76.3 65.9 71.8 81.3 67.6 73.6 82.7 68.0 74.7 83.6 69.1 75.9 84.4
Spanish 61.3 67.8 77.6 66.3 72.7 81.8 66.3 72.7 81.8 67.8 74.5 83.5 68.9 75.7 84.3
Chinese 58.5 64.6 74.6 65.0 71.4 80.8 66.7 73.2 82.3 67.4 74.0 83.1 68.5 75.2 83.9
Portuguese 61.3 67.8 77.6 66.1 72.2 81.6 67.8 74.1 83.0 67.9 74.6 83.5 69.0 75.8 84.3
Italian 60.7 67.1 77.0 65.8 72.1 81.4 67.5 74.0 82.9 67.9 74.6 83.5 68.9 75.7 84.3
Russian 54.0 59.6 69.4 65.0 71.4 80.7 66.7 73.3 82.2 67.6 74.2 83.2 68.8 75.6 84.2
Korean 58.1 64.3 74.1 64.3 70.5 80.0 66.3 72.7 81.8 67.4 74.1 83.1 68.3 75.0 83.8
Dutch 58.1 64.2 74.2 65.8 72.0 81.4 67.7 74.1 83.0 68.2 74.9 83.8 69.0 75.8 84.3
Average 59.3 65.6 75.5 65.8 71.9 81.3 67.4 73.7 82.7 67.9 74.6 83.5 68.9 75.7 84.3

Table 3: Correlation between M-CLIPScore values and human rankings, considering machine-translated versions
of the validated image caption rating dataset into 9 different languages besides the original English. The last row
presents macro-averaged correlation results across all the languages (including English).

smaller models can have higher human judgment397

correlation gains using our finetuning strategy, com-398

pared to the respective original models.399

In an ideal scenario, i.e. assuming perfect ma-400

chine translation results and that CLIP performs401

equally well across the languages, the correlations402

between CLIPScore values across the different lan-403

guages would be equal one, signifying a perfect404

alignment. To explore deviations from this be-405

haviour, we can use heatmaps to visually represent406

the interrelationships between CLIPScore values407

across languages. In Figure 1, we plot the Pearson408

correlations between the best multilingual CLIP-409

Score and our finetuned version for different lan-410

guages, considering either (a) the complete set of411

original/translated instances from the VICR dataset,412

(b) the subset of instances with COMETKiwi (Rei413

et al., 2022) translation quality scores below the414

25th percentile value for each language, and (c)415

the subset of instances with COMETKiwi scores416

above the 75th percentile value for each language.417

Looking at the left plot in Figure 1, which fea-418

tures the Pearson correlations when considering419

the entire VICR dataset, we observe consistently420

high values across all languages. As expected, the421

plots confirm that the CLIPScore correlations do422

depend on the quality of the translated captions,423

and that the most significant differences occur pri-424

marily in languages using non-Latin scripts. In425

turn, the upper diagonal of the second and third426

plots contains the correlations when considering427

only high-quality translations, corresponding to428

slightly higher values compared with the values of429

their respective lower diagonal. We also observe430

a significant improvement across the correlation431

between the languages when using our finetuned432

CLIPScore version. Although this improvement433

is somewhat expected, since the finetuned model 434

saw "in distribution" data, it may also be an indica- 435

tion of the quality of our multilingual data during 436

training, thus supporting the fact that our transla- 437

tion strategy maintains the quality of the data in the 438

different languages. 439

4.3.3 Multilingual Classification 440

This section explores the robustness of the multi- 441

lingual CLIPScore assessments through different 442

types of classification tasks. Inspired by previous 443

work (Hessel et al., 2021; Sarto et al., 2023) which 444

assessed accuracy in English-only benchmarks, our 445

goal is to delve deeper into the nuanced realm of 446

multilingual and multicultural understanding. 447

Robustness to linguistic phenomena: One of 448

our experiments used machine translated versions 449

of the VALSE dataset, explicitly designed to eval- 450

uate the robustness to particular phenomena, such 451

as inconsistencies in numeric quantities or spatial 452

relations (Parcalabescu et al., 2021). VALSE specif- 453

ically comprises seven tests that encompass a range 454

of linguistic structures. In each test, a model is 455

presented with a visual input and is tasked with dis- 456

tinguishing genuine captions from altered versions 457

(i.e., foils), where a word or phrase has been mod- 458

ified to exhibit a specific linguistic phenomenon. 459

Additional information about the dataset is pro- 460

vided in Appendix D. Table 4 displays the aver- 461

age performance across different language variants, 462

considering that the CLIPScore values regarding 463

the true captions should be higher than the ones 464

related to the corresponding foils. A more detailed 465

breakdown of the performance across the different 466

tasks within VALSE is available in Appendix G. 467

The results show that our finetuned model deliv- 468

ers the highest average performance across nearly 469
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EN PT ES FR DE NL IT KO ZH RU

EN

PT

ES

FR

DE

NL

IT

KO

ZH

RU

Or
ig

in
al

1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99

0.97 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99

0.96 0.98 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99

0.97 0.97 0.97 1.00 0.99 0.99 0.99 0.98 0.99 0.99

0.97 0.97 0.97 0.97 1.00 0.99 0.99 0.98 0.99 0.99

0.97 0.97 0.97 0.97 0.98 1.00 0.99 0.98 0.99 0.99

0.96 0.97 0.98 0.97 0.97 0.97 1.00 0.98 0.99 0.99

0.94 0.95 0.95 0.94 0.95 0.95 0.95 1.00 0.98 0.98

0.95 0.95 0.96 0.95 0.96 0.95 0.96 0.94 1.00 0.99

0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.95 1.00

Finetuned

EN PT ES FR DE NL IT KO ZH RU

EN

PT

ES

FR

DE

NL

IT

KO

ZH

RU

1.00 0.97 0.96 0.96 0.96 0.96 0.95 0.94 0.97 0.95

0.94 1.00 0.98 0.96 0.98 0.97 0.97 0.95 0.97 0.97

0.93 0.95 1.00 0.97 0.98 0.97 0.98 0.96 0.98 0.97

0.94 0.95 0.95 1.00 0.98 0.97 0.96 0.94 0.97 0.96

0.95 0.95 0.94 0.96 1.00 0.98 0.97 0.96 0.97 0.97

0.95 0.95 0.95 0.95 0.96 1.00 0.96 0.95 0.97 0.96

0.94 0.96 0.96 0.94 0.95 0.96 1.00 0.95 0.96 0.97

0.93 0.93 0.93 0.92 0.93 0.94 0.93 1.00 0.96 0.96

0.88 0.92 0.92 0.91 0.91 0.90 0.91 0.89 1.00 0.97

0.89 0.94 0.92 0.91 0.92 0.92 0.92 0.90 0.92 1.00

Original

EN PT ES FR DE NL IT KO ZH RU

EN

PT

ES

FR

DE

NL

IT

KO

ZH

RU

1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99

0.98 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99

0.97 0.98 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.99

0.98 0.99 0.98 1.00 1.00 1.00 0.99 0.99 0.99 0.99

0.98 0.98 0.98 0.98 1.00 1.00 0.99 0.99 1.00 0.99

0.99 0.98 0.98 0.98 0.99 1.00 1.00 0.99 1.00 0.99

0.97 0.98 0.98 0.98 0.98 0.98 1.00 0.99 0.99 0.99

0.97 0.97 0.98 0.97 0.98 0.98 0.98 1.00 0.99 0.99

0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.95 1.00 0.99

0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.97 1.00

Finetuned

0.90

0.92

0.94

0.96

0.98

1.00

Figure 1: Pearson correlation scores between different languages, for the best multilingual CLIPScore model and
our finetuned version. The first heatmap considers the complete set of instances from the VICR dataset, reporting
results for both the original and finetuned model versions (lower/upper diagonal values). The second and third
heatmaps consider the subset of instances with COMETKiwi scores below/above the 25th/75th percentile value
for each language (lower/upper diagonal values) for the best performing multilingual CLIPScore model and our
finetuned model version, respectfully.

all languages for both model size variants. Com-470

pared to the models reported in the original VALSE471

dataset paper, our finetuned model was only outper-472

formed by the multi-task ViLBERT 12-in-1 model473

proposed by Lu et al. (2020).474

Classification of multicultural instances: We475

also used naturally multilingual datasets (i.e.,476

XVNLI and MaRVL) to assess the multilingual and477

multicultural capabilities of CLIPScore models.478

Each instance in the XVNLI dataset contains an479

image-caption pair and a categorical label associ-480

ated with the relationship between the pair. This481

label can be either (a) contradiction, (b) neutral, or482

(c) entailment. Based on these labels, we defined483

three multilingual classification experiments un-484

der this scenario, leveraging concordant/discordant485

instances as illustrated in Figure 2:486

Experiment 1: This setting only considers con-487

tradiction and entailment instances, under the as-488

sumption that the order of the CLIPScore values489

should match the order of the labels.490

Experiment 2: In a more challenging scenario,491

we can consider a larger set of duplets and the492

ordering between the three possible labels.493

Experiment 3: In this case, we also consider494

the three possible labels, but we now assess triples495

of instances A, B, and C from the dataset, sharing496

the same image. We only assume a correct classifi-497

cation when we achieve a perfect match between498

the order of the labels and the CLIPScore values.499

In the case of the MaRVL dataset, each instance500

consists of a caption, a pair of images, and a501

Boolean label with the value true when the caption502

accurately matches the images and false when the503

caption is incorrect (e.g. because its contents only504

Caption A
(Entailment)

Caption C
(Contradition)

Caption A
(Entailment)

Caption C
(Contradition)

Caption B
(Neutral)

ACC1: CLIPS(I,A) > CLIPS(I,C) CLIPS(I,A) > CLIPS(I,B)
CLIPS(I,B) > CLIPS(I,C)
CLIPS(I,A) > CLIPS(I,C)

ACC2:

ACC3: CLIPS(I,A) > CLIPS(I,B) > CLIPS(I,C)

Figure 2: The three different XVNLI multilingual clas-
sification experiments, where accuracy is defined with
basis on comparisons between CLIPSCore values.

describe at maximum one of the images instead of 505

both). The data can be analyzed considering four 506

instances simultaneously, sharing the same caption 507

but featuring distinct pairs of images. 508

Experiment 1: We consider the scenario where 509

the CLIPScore for the image that best aligns with 510

the caption should be higher than the CLIPScore 511

for the image that least aligns with the caption. 512

Experiment 2: In a more challenging scenario, 513

we consider sets of four instances sharing the same 514

caption and decide on a correct classification only if 515

all best-aligning captions have a CLIPScore higher 516

than all the least aligning captions. 517

A more detailed explanation for both the XVNLI 518

and MaRVL experiments is given in Appendix E. 519

Table 5 contains the results for the two multi- 520

lingual classification tasks. In the XVNLI exper- 521

iments, as expected, we notice a consistent trend 522

where results for Experiment 3 are worse than those 523

for Experiment 2, which in turn are worse than 524

those for Experiment 1. The performance is gen- 525

erally high in Experiments 1 and 2, for all the lan- 526

guages except Swahili and Tamil. The lower perfor- 527
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Proposed Models VALSE Models

Finetuning method English German French Spanish Chinese Portuguese Italian Russian Korean Dutch Model English

Both 69.7 67.3 67.5 67.9 66.9 69.0 66.0 67.1 60.6 66.2 CLIP 64.0

Pearson 69.2 67.2 66.8 67.4 67.3 67.2 66.0 65.0 59.4 65.8 LXMERT 59.6

Contrastive 68.4 65.0 65.5 65.7 65.6 66.4 64.6 64.8 59.2 63.7 ViLBERT 46.4

None 67.6 64.8 64.2 65.6 64.0 65.4 64.4 63.4 58.4 62.5 12-in-1 75.1

Table 4: Average accuracy scores for the different classification tasks present in the VALSE dataset and its
multilingual variants, considering different CLIP models.

XVNLI MaRVL
Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 1 Accuracy 2

Original Finetuned Original Finetuned Original Finetuned Original Finetuned Original Finetuned
English 92.3 91.5 80.7 81.6 47.7 51.0 91.1 91.7 81.4 80.7
Indonesian 89.9 92.0 80.5 80.8 50.0 49.0 92.4 93.4 82.3 83.3
Mandarin 88.1 90.7 78.8 79.5 46.7 46.7 89.4 91.5 80.1 81.3
Swahili 67.1 66.0 60.7 60.8 24.0 22.4 85.0 85.0 65.3 65.3
Tamil 71.6 68.7 62.8 62.7 25.3 25.7 85.7 88.0 74.7 77.5
Turkish 87.8 88.1 77.9 79.7 44.1 49.7 93.5 92.9 87.0 86.0
Arabic 84.6 85.4 76.3 76.3 44.7 41.8 - - - -
French 86.7 90.5 77.9 79.9 45.4 47.7 - - - -
Spanish 86.2 87.8 77.7 78.4 46.7 45.1 - - - -
Russian 87.5 88.9 78.0 79.2 44.4 46.7 - - - -
Overall 84.2 85.0 75.1 75.9 41.9 42.6 89.5 90.4 78.5 79.0

Table 5: Accuracy for different classification tasks defined over the datasets derived from XVNLI and MaRVL.

mance in these languages can perhaps be attributed528

to a lower quality in the machine translation results,529

and to the ability of the multilingual CLIP model530

in handling text in these lower resource languages.531

However, in the MaRVL experiments where the532

instances never involve machine translation, the533

task is performed with high accuracy across all534

languages. Once again, we observe that our fine-535

tuned CLIPScore version is capable of achieving536

moderate performance gains when compared to the537

original model version, across all evaluated multi-538

cultural classification tasks.539

While the experiments with the XVNLI and540

MaRVL datasets provide interesting insights into541

the effectiveness of multilingual CLIPScore mod-542

els, they also involve several important limitations.543

For instance, considering the XVNLI experiments,544

previous studies have reported good results in mul-545

timodal inference leveraging CLIP (Song et al.,546

2022). However, the authors of SNLI-VE (Xie547

et al., 2019), from which XVNLI is derived, noted548

that good performance (i.e., an accuracy up to 67%)549

can be achieved when looking only at the informa-550

tion in the textual hypothesis, without the visual551

premise. This points to significant biases in the552

XVNLI data. In the case of the MaRVL experi-553

ments, given that the captions refer to a pair instead554

of individual images, the CLIPScore values can555

be unreliable when attempting to match images556

to textual sentences. Previous studies have noted557

that CLIP models can treat inputs as a bag-of-words558

and suffer from a concept association bias (Yamada559

et al., 2022), e.g. ignoring the missing information560

when two concepts are present in one of the in- 561

puts while the other only contains a single concept. 562

Hence, while already useful, there is room for fu- 563

ture work and analysis of the robustness of caption 564

evaluation metrics, accounting for the discussed 565

limitations. 566

5 Conclusions 567

We studied the potential of CLIPScore variants in 568

multilingual image captioning evaluation, consid- 569

ering a variety of settings and demonstrating that 570

multilingual CLIP maintains or even surpasses per- 571

formance on English benchmarks, while enabling 572

versatile multilingual assessments. 573

Performance improves with larger model sizes 574

and increased training data, aligning with the scal- 575

ability of CLIP. On English data, large multilin- 576

gual CLIP models can even outperform more ad- 577

vanced methods that extend the original CLIPScore 578

metric or involve specific training for captioning 579

evaluation. Experiments with machine-translated 580

data reveal that a finetuned version of multilingual 581

CLIPScore strongly correlates with human judg- 582

ments across languages of varying complexity, and 583

enhances the robustness of CLIP to different lin- 584

guistic phenomena across languages. Additionally, 585

assessments with natively multilingual and multi- 586

cultural datasets, specifically with data from the 587

XVNLI and MaRVL benchmarks repurposed for 588

evaluating captioning metrics, reaffirm the ability 589

of multilingual CLIPScore models to consistently 590

provide high-quality assessments in varied settings. 591
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Limitations and Ethical Considerations592

Although our work does not raise new ethical issues593

within the domain of vision-language models (e.g.,594

we conducted our experiments on public datasets,595

carefully designed for academic research and ex-596

tensively used in previous studies), there are some597

general important concerns.598

Models like CLIP are, for instance, notorious for599

their internal biases, e.g. inherited from the train-600

ing data itself. We therefore recommend caution601

in the use of the approach proposed in this paper,602

and anticipate further research into the specific is-603

sue of model biases, before relying on our work604

beyond research environments. Another important605

limitation in the work reported on this paper con-606

cerns the use of machine translated data in some607

of the evaluation experiments, which despite our608

best efforts to avoid translation errors can still lead609

to different types of biases and to the reliance on610

artificially impoverished language. The develop-611

ment of manually curated benchmarks, specifically612

designed for the assessment of multilingual met-613

rics for image captioning evaluation, is left as an614

important challenge for future work.615

We also note that we used Github Copilot3 dur-616

ing the development of our research work, and we617

used ChatGPT4 for minor verifications during the618

preparation of this manuscript.619
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A The CLIPScore Metric785

We now formally describe the CLIPScore and Re-786

fCLIPScore metrics (Hessel et al., 2021), which787

in our study are assessed in multilingual image788

captioning scenarios. In brief, we have that CLIP-789

Score is based on a modified cosine similarity be-790

tween representations for the input image and the791

caption under evaluation. The image and the cap-792

tion are both passed through the respective feature793

extractors from a given CLIP model. Then, we794

compute the cosine similarity of the resultant em-795

beddings, adjusting the resulting value through a re-796

scaling operation. For an image with visual CLIP797

embedding v and a candidate caption with textual798

CLIP embedding c, a re-scaling parameter is set799

as w = 2.5 and we compute the corresponding800

CLIPScore as follows:801

CLIPScore(c, v) = w ×max(cos(c, v), 0). (3)802

To compute a corpus-level CLIPScore, e.g. for803

evaluating the overall quality of a captioning804

method over a given dataset of images, we can805

simply average over all the image-candidate pairs.806

Note that CLIPScore does not depend on the807

availability of underlying references for each of808

the images in an evaluation dataset. However, an809

extension named RefCLIPScore was also proposed,810

which additionally extracts the vector representa-811

tions R of each available reference with the CLIP812

text encoder, and computes the harmonic mean813

of the CLIPScore value from Equation 3, and the814

maximal reference cosine similarity:815

RefCLIPScore(c,R, v) =816

H-Mean(CLIPScore(c, v), (4)817

max(max
r∈R

cos(c, r), 0)).818

B The Correlation Metrics819

This appendix presents a formal definition of the820

metrics used in the correlation experiments.821

Seeing each of our evaluation datasets as sets of822

n observations with the form (ŷ1, y1), . . . , (ŷn, yn),823

for CLIPScore values ŷi and reference ratings yi,824

the Spearman correlation coefficient ρ is defined825

as the Pearson correlation between the results of826

converting the scores ŷi and yi to ranks.827

Instead of using ranks, we can also define any828

pair of observations (ŷi, yi) and (ŷj , yj), where829

i < j, as concordant (or otherwise discordant)830

if the sort order of the instances agrees (i.e. if831

either both ŷi > ŷj and yi > yj holds, or both 832

ŷi < ŷj and yi < yj). Based on pairs, the Kendall 833

τ correlation coefficient assesses the strength of 834

association between the CLIPScore values and the 835

reference ratings, with the τb variant accounting for 836

ties and being defined as: 837

τB =
nc − nd√

(n0 − n1)(n0 − n2)
, (5) 838

where nc is the number of concordant pairs, nd 839

the number of discordant pairs, n0 = n(n− 1)/2, 840

n1 =
∑

i ti(ti−1)/2, n2 =
∑

j uj(uj−1)/2, ti is 841

the number of tied values in the ith group of ties for 842

the CLIPScore, and uj is the number of tied values 843

in the jth group of ties for the reference ratings. 844

In turn, τc accounts with the fact that the underly- 845

ing scales of the scores are different for CLIPScore 846

and the reference ratings, being defined as: 847

τc =
nc − nd

n0
× n− 1

n
× m

m− 1
, (6) 848

where m is the number of values in the ranking 849

scale for the reference ratings. 850

C The Machine Translation Scheme 851

This appendix describes the translation scheme 852

that was used to machine translate the datasets 853

used in our experiments. This scheme is design 854

to mitigate low-quality translations, or hallucina- 855

tions generated by the machine translation model, 856

thus providing a reliable dataset at the end. We 857

specifically used a large (i.e., 1.2 billion parame- 858

ters) open-access multilingual machine translation 859

model named M2M100 (Fan et al., 2021), avail- 860

able on the HuggingFace5 model hub. M2M100 861

was trained on a range of high and low-resource 862

languages from different families and using differ- 863

ent scripts, achieving state-of-the-art performance 864

across a diverse set of 100 languages. 865

While machine translated data allows us to as- 866

sess multilingual captioning metrics, the results 867

will depend not only on the performance of the 868

metrics but also on the quality of the translations. 869

Low-quality translations, or hallucinations gener- 870

ated by the translation model, will impact the cap- 871

tion and break our assumption that human ratings 872

for the English data can be transferred across lan- 873

guages. To address this issue, we propose to use the 874

COMETKiwi (Rei et al., 2023) machine translation 875

quality estimation metric to control for translation 876

5https://huggingface.co/facebook/m2m100_1.2B
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quality, assessing the impact of low quality transla-877

tions on the observed results.878

We specifically began by translating the VICR879

dataset, featuring English captions with human rat-880

ings and also reference captions originally from881

the MSCOCO and Flickr8K datasets. For each882

caption, whether a candidate or a reference, we883

return 25 translations using a beam search tech-884

nique with 100 beams. Subsequently, we filtered885

the candidates with a language checker, to ensure886

proper translation into the intended language. After887

the language check, we selected for each instance888

the translation that scored higher based on a large889

COMETKiwi model6.890

D Description of the Datasets891

The following datasets were used in the tests that892

assessed correlation with human judgment.893

• Flickr8K-Expert (Hodosh et al., 2013): This894

dataset comprises 16, 992 expert human judg-895

ments for 5, 664 image-caption pairs from896

Flickr8K. Human assessors graded captions897

on a scale of 1 to 4, where 4 indicates a caption898

that accurately describes the image without er-899

rors, and 1 signifies a caption unrelated to the900

image.901

• Flickr8K-CF (Hodosh et al., 2013): This902

dataset consists of 145, 000 binary quality903

judgments collected with CrowdFlower, in-904

volving 47, 830 image-caption pairs with905

1, 000 unique Flickr8K images. Each pair re-906

ceived at least three binary judgments, and we907

use the proportion of yes annotations as the908

score for each pair.909

• Composite (Aditya et al., 2015): This dataset910

contains 13, 146 image-caption pairs taken911

from MSCOCO (2007 images), Flickr8K (997912

images), and Flickr30K (991 images). Each913

image originally had five reference captions.914

One of these references was chosen for human915

rating and subsequently removed from the ref-916

erence set that is to be used when assessing917

evaluation metrics.918

• VICR (Narins et al., 2024): The Validated919

Image Caption Rating (VICR) dataset features920

68,217 ratings, collected through a gamified921

approach, for 15,646 image-caption pairs in-922

volving 9,990 distinct images. The authors of923

6https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xxl

the dataset demonstrated that it exhibits a su- 924

perior inter-rater agreement compared to other 925

alternatives (e.g., an improvement of 19% in 926

Fleiss’ κ when compared to the agreement for 927

the Flickr8K-Expert dataset), and it features a 928

more balanced distribution across various lev- 929

els of caption quality. In our tests, we used the 930

test split of the VICR dataset, which includes 931

3,161 image-caption pairs, with 2,000 images 932

from the MSCOCO 2014 validation dataset 933

and 1,161 images from the Flickr8K dataset. 934

When using VICR to finetune CLIP models 935

with a contrastive loss, we used the original 936

image captions from MSCOCO or Flickr8K. 937

All the previous datasets are originally available 938

only for English, but we translated them to nine 939

other different languages using the approach de- 940

scribed in Appendix C. 941

For the experiments that assessed accuracy in 942

terms of distinguishing correct vs incorrect cap- 943

tions, we used the following datasets. 944

• VALSE (Parcalabescu et al., 2021): VALSE 945

is designed to test visio-linguistic grounding 946

capabilities on specific linguistic phenomena. 947

It is composed by seven tasks, each with the 948

same structure: given a visual input, a model 949

is asked to distinguish real captions from foils, 950

where a foil is constructed from a caption 951

by altering a word or phrase that realizes a 952

specific linguistic phenomenon. The tests in- 953

clude: (a) existential quantifiers, where mod- 954

els need to differentiate between examples (i) 955

where there is no entity of a certain type or 956

(ii) where one or more of these entities are 957

visible in an image; (b) plurality, where mod- 958

els need to distinguish between noun phrases 959

denoting a single entity in an image (exactly 960

one flower), versus multiple entities (some 961

flowers); (c) counting, where models needs 962

to differentiate between examples where the 963

specific number of entities in the associated 964

image is correct or incorrect, given the state- 965

ment; (d) spatial relations, where Models need 966

to distinguish between different spatial rela- 967

tions, with foils differing from the original 968

caption only by the replacement of a spatial 969

preposition; (e) actions, particularly (i) action 970

replacement and (ii) actant swaping, where 971

models need to (i) identify whether an action 972

mentioned in the text matches the action seen 973

in the image (e.g., a man shouts versus smiles 974
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at a woman), and (ii) correctly identify the par-975

ticipants of an action and the roles they play976

(e.g., is it the man who is shouting or is it the977

woman); (f) coreference, where models need978

to perform pronominal coreference resolution,979

encompassing cases where (i) the pronoun has980

a noun (phrase) antecedent and pronoun and981

(noun) phrase are both grounded in the visual982

modality (e.g., in a woman is driving a mo-983

torcycle, is she wearing a helmet?), and cases984

where (ii) the pronoun refers to a region in the985

image or even to the entire image (e.g., is this986

outside?); (g) foil-it cases, in which the foil987

minimally differs from the original caption,988

only by swapping a important noun.989

• XVNLI (Bugliarello et al., 2022): XVNLI990

is a multilingual dataset for evaluating vision-991

language inference, challenging models to pre-992

dict entailment relationships between a textual993

hypothesis and an image premise. XVNLI in-994

cludes high/mid-resource languages like Ara-995

bic, French, Spanish, Russian, and English.996

This dataset includes 1,164 instances per lan-997

guage, each featuring an image and two cap-998

tions in different languages. There are 357999

unique images in total.1000

• MaRVL (Liu et al., 2021): MaRVL fol-1001

lows a format similar to the English NLVR21002

dataset (Suhr et al., 2018) and is designed1003

as a multicultural vision-language reasoning1004

dataset, where the goal is to determine the1005

correctness of a sentence about a pair of im-1006

ages. MaRVL predominantly comprises very1007

low-resource languages: Indonesian, Chinese,1008

Swahili, Tamil, and Turkish. This dataset in-1009

cludes around one thousand instances per lan-1010

guage, each featuring two image and one cap-1011

tion. There are 1,411 unique captions in total.1012

The English content is composed by collecting1013

the reverse translations from the low-resource1014

languages into English, as provided by the1015

authors on the original GitHub7.1016

For model training, besides instances in the train-1017

ing split from the aforementioned VICR dataset,1018

we also used data from the natively multilingual1019

CrossModal-3600 dataset (i.e., XM3600, in short).1020

• XM3600 (Thapliyal et al., 2022): This is a1021

geographically-diverse set of 3600 images an-1022

7https://github.com/marvl-challenge/
marvl-code/tree/master/data

notated with human-generated reference cap- 1023

tions in 36 languages. The images were se- 1024

lected from all across the world, covering re- 1025

gions where the 36 languages are spoken, and 1026

consistently annotating captions in terms of 1027

style across all languages, while avoiding an- 1028

notation artifacts due to direct translation. 1029

E Multicultural Experiments 1030

This appendix details the datasets and experimental 1031

settings that were considered for the tests including 1032

natively multilingual and multicultural data. 1033

E.1 Settings for the XVNLI Experiments 1034

Each instance in the XVNLI dataset contains an 1035

image-caption pair and a categorical label associ- 1036

ated with the relationship between the pair. This 1037

label can be either (a) contradiction, (b) neutral, or 1038

(c) entailment. With basis on the labels, we defined 1039

three multilingual classification experiments un- 1040

der this scenario, leveraging concordant/discordant 1041

instances as illustrated in Figure 2: 1042

Experiment 1: This setting only considers in- 1043

stances with the extreme label classes (i.e., contra- 1044

diction and entailment), noting that some previous 1045

studies have pointed to the fact that SNLI-VE, from 1046

which XVNLI is derived, has some problems in 1047

the annotations for the neutral class (Kayser et al., 1048

2021). We compare pairs of instances A and B 1049

with the same image, in which the label associated 1050

with A differs from the label associated with B. 1051

When computing CLIPScore values individually 1052

for the instances A and B, the order of the CLIP- 1053

Score values should match the order of the labels 1054

(i.e., contradiction < entailment). 1055

Experiment 2: In a more challenging scenario, 1056

we can consider a larger set of instances and the 1057

ordering between the three possible labels (i.e. en- 1058

tailment > neutral > contradiction), i.e. including 1059

also the neutral class. Similarly to the previous 1060

case, by fixing an image and comparing pairs of 1061

captions associated with that image with different 1062

labels, we assess the matching of the order between 1063

the labels against the CLIPScore values. 1064

Experiment 3: In this case, we also consider 1065

the three possible labels, but we now assess triples 1066

of instances A, B, and C from the dataset, sharing 1067

the same image. We only assume a correct classifi- 1068

cation when we achieve a perfect match between 1069

the order of the labels and the CLIPScore values. 1070

13

https://github.com/marvl-challenge/marvl-code/tree/master/data
https://github.com/marvl-challenge/marvl-code/tree/master/data


Figure 3: Multilingual CLIPScore values for image-caption pairs featuring concepts biased to particular languages.

E.2 Settings for the MaRVL Experiments1071

In the case of the MaRVL dataset, each instance1072

consists of a caption, a pair of images, and a1073

Boolean label with the value true when the caption1074

accurately matches the images, and false when the1075

caption is incorrect (e.g., because its contents only1076

describe at maximum one of the images instead1077

of both). The data can be analyzed considering1078

four instances at a time, sharing the same caption1079

but featuring distinct pairs of images. MaRVL was1080

designed in such a way that, within these four in-1081

stances, two of them are labeled as true while the1082

remaining two are labeled as false. We consider1083

two multilingual classification experiments under1084

this scenario, defined as follows:1085

Experiment 1: We draw comparisons between1086

pairs of instances with distinct labels. For the in-1087

stance labeled as true, we compute the CLIPScore1088

values for both images associated with the caption1089

and select the maximum, obtaining the score for the1090

image that best aligns with the caption. Conversely,1091

we perform a similar computation for the instance1092

labeled as false, this time choosing the minimum1093

CLIPScore value, which results in the score for1094

the image that least aligns with the caption, pre-1095

sumably the incorrect image. The maximum CLIP-1096

Score value in an instance labeled as true should1097

be higher than the minimum CLIPScore value of1098

an instance labeled as false.1099

Experiment 2: In a more challenging scenario,1100

we consider sets of four instances sharing the same1101

caption, and decide on a correct classification only1102

if all maximum CLIPScore values of the true in-1103

stances are higher than all the minimum CLIPScore1104

values of the false instances.1105

F A Qualitative Study with Captions 1106

Featuring Cluturally Related Concepts 1107

We performed a small qualitative study on image- 1108

caption pairs that feature concepts where some lan- 1109

guages should exhibit a particular bias (e.g., codfish 1110

in the case of Portugal, paella for Spain, beer for 1111

Germany, croissant for France, ushanka for Rus- 1112

sia, and cheongsam for China). We attempted to 1113

see if the multilingual CLIPScore could distinguish 1114

between two plausible captions, where one men- 1115

tions a specific concept that should better match the 1116

image. Figure 3 shows that the multilingual CLIP- 1117

Score is indeed capable of distinguishing nuanced 1118

multicultural concepts and favouring culturally spe- 1119

cific captions over generic ones. 1120

G Additional Classification Results 1121

Table 6 presents classification results on the differ- 1122

ent tasks from the VALSE dataset, separately for 1123

each of the considered languages and comparing 1124

CLIP models of different sizes under different fine- 1125

tuning strategies (i.e., without model finetuning, 1126

considering only the contrastive loss, only the Pear- 1127

son correlation loss, or the combined loss function). 1128

The results show that the smaller CLIP model can 1129

achieve significantly higher gains from finetuning, 1130

approaching the performance of the larger CLIP 1131

model. Better results are, in general, obtained when 1132

considering the combined loss function. 1133

In turn, Table 7 presents correlation results on 1134

the VICR dataset, separately for each language 1135

and comparing the same two CLIP models under 1136

the different finetuning strategies. Results again 1137

show that the smaller CLIP model approach the 1138

performance of the larger model, with better re- 1139

sults consistently obtained when considering the 1140

combined loss function. 1141
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Model Finetuning Existence Plurality Counting Sp.Rel Action Coreference Foil-it! Avg.quantifiers number balanced sns. adv. relations repl. actant swap standard clean

E
ng

lis
h

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 81.6 76.3 68.3 75.8 66.1 66.5 86.0 62.1 46.9 42.3 95.0 69.7
Pearson 80.8 75.9 67.1 74.7 65.8 64.7 87.5 62.0 46.9 41.3 94.8 69.2
Contrastive 75.4 75.3 66.7 74.4 66.9 61.5 87.0 58.5 47.6 44.2 95.2 68.4
None 74.7 69.6 66.9 72.4 65.3 61.7 86.7 56.1 51.3 45.2 94.2 67.6

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 74.7 70.0 65.2 70.9 68.7 59.8 80.2 61.9 48.6 49.0 90.6 67.2
Pearson 80.4 68.7 64.3 71.2 63.7 55.7 80.1 58.8 49.4 52.9 89.2 66.8
Contrastive 72.3 70.7 63.5 70.7 66.6 60.2 80.6 60.5 45.5 40.4 92.0 65.7
None 70.7 64.7 62.2 67.3 63.4 56.8 81.6 53.2 52.3 56.7 89.7 65.3

G
er

m
an

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 78.8 71.7 68.4 74.6 58.5 57.2 77.6 62.1 53.0 43.3 94.9 67.3
Pearson 79.8 71.1 68.9 73.7 55.3 56.8 77.2 62.5 54.7 45.2 94.2 67.2
Contrastive 64.8 71.0 66.2 72.7 61.9 54.6 76.1 59.2 48.9 45.2 94.3 65.0
None 69.3 69.2 68.8 72.6 56.6 53.3 75.9 57.4 53.4 44.2 91.9 64.8

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 68.9 67.2 65.8 70.8 60.8 56.3 71.3 57.3 50.7 40.4 89.9 63.6
Pearson 73.1 64.3 67.4 69.4 53.5 55.5 70.5 54.6 52.5 47.1 88.2 63.3
Contrastive 60.0 68.2 63.8 68.0 62.8 57.0 72.5 59.7 46.5 47.1 90.2 63.3
None 64.8 65.5 65.7 67.1 54.0 55.7 69.4 57.4 50.3 44.2 86.2 61.8

Fr
en

ch

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 80.2 75.1 69.7 72.4 61.4 56.1 75.5 61.4 48.6 48.1 94.5 67.5
Pearson 82.2 73.4 69.0 72.8 56.9 55.9 75.8 61.3 46.6 47.1 94.0 66.8
Contrastive 69.9 73.1 66.6 70.7 63.5 55.5 73.6 57.3 49.6 46.2 94.5 65.5
None 70.7 65.7 66.0 69.4 53.8 53.3 75.9 53.6 53.8 50.0 93.4 64.2

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 70.7 67.8 66.5 68.6 60.5 53.8 71.0 60.6 54.5 42.3 89.0 64.1
Pearson 74.5 66.2 64.7 68.7 51.8 53.5 71.1 56.9 55.4 49.0 88.0 63.6
Contrastive 61.0 68.6 63.8 69.6 58.0 54.6 70.4 60.9 49.9 46.2 90.6 63.0
None 66.9 62.2 61.5 64.8 50.1 54.0 72.2 57.2 52.8 60.6 87.9 62.7

Sp
an

is
h

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 84.2 73.0 69.2 75.1 64.4 58.9 80.2 64.6 44.8 40.4 91.9 67.9
Pearson 85.1 72.3 69.6 73.2 61.2 58.3 78.9 63.6 47.0 40.4 91.2 67.4
Contrastive 74.7 72.7 66.8 73.2 65.4 56.6 78.7 61.7 41.9 38.5 92.9 65.7
None 75.8 66.5 68.2 67.2 61.8 61.3 79.0 61.5 42.9 46.2 91.1 65.6

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 82.2 66.2 65.8 67.8 60.9 53.8 72.8 61.2 46.3 40.4 88.3 64.2
Pearson 80.8 62.9 65.7 66.8 52.1 52.5 74.2 60.4 45.9 38.5 86.9 62.4
Contrastive 69.9 67.8 61.5 66.6 57.3 53.6 72.7 60.6 45.6 39.4 89.3 62.2
None 73.9 61.5 63.8 66.2 54.0 52.9 73.5 60.8 43.5 36.5 86.5 61.2

C
hi

ne
se

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 78.0 69.3 69.0 72.2 65.4 55.7 74.1 63.8 48.0 49.0 91.6 66.9
Pearson 82.0 68.5 68.3 72.2 63.4 52.7 75.2 64.7 49.2 53.8 90.8 67.3
Contrastive 69.1 69.3 68.4 70.2 66.4 53.8 73.6 59.5 48.4 50.0 92.2 65.6
None 69.1 66.4 66.8 69.3 63.0 55.1 75.9 62.2 46.3 41.3 88.3 64.0

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 76.0 63.3 62.2 67.9 62.7 50.1 71.0 59.1 48.7 49.0 86.0 63.3
Pearson 79.0 62.3 62.9 68.2 54.1 52.1 72.1 57.0 50.4 44.2 85.7 62.6
Contrastive 71.9 64.9 60.7 66.1 64.0 52.1 70.4 59.4 50.0 47.1 87.6 63.1
None 69.3 59.8 63.8 66.2 60.1 54.4 71.6 60.8 49.6 38.5 83.5 61.6

Po
rt

ug
ue

se

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 78.8 74.3 70.2 74.2 63.1 54.4 79.0 64.1 50.7 56.7 93.7 69.0
Pearson 80.4 71.0 68.0 72.1 55.9 51.8 78.5 64.5 47.2 57.7 92.7 67.2
Contrastive 68.3 72.6 65.7 71.7 62.5 53.3 76.2 60.5 50.8 54.8 93.6 66.4
None 68.5 67.6 68.3 71.2 62.1 56.1 77.2 58.3 50.6 48.1 91.9 65.4

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 75.2 69.3 68.3 67.0 50.8 76.5 59.5 54.2 54.2 51.0 89.2 66.0
Pearson 78.0 65.2 64.9 67.2 60.6 50.1 77.2 58.4 50.3 53.8 87.5 64.8
Contrastive 65.7 68.6 61.5 67.6 64.3 52.1 75.0 58.3 53.0 51.0 90.0 64.3
None 65.0 65.2 63.2 65.9 61.1 52.1 75.6 56.1 47.5 51.0 86.3 62.6

It
al

ia
n

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 77.2 72.3 68.5 75.0 57.9 56.6 77.5 64.0 43.5 39.4 93.5 66.0
Pearson 77.8 71.2 68.2 73.1 52.7 56.4 77.8 64.8 45.5 45.2 93.1 66.0
Contrastive 61.4 72.6 64.5 71.7 60.1 56.8 77.5 61.2 46.9 44.2 94.2 64.6
None 67.3 67.5 65.9 68.2 52.1 58.7 78.4 62.7 46.5 50.0 91.3 64.4

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 66.1 68.6 65.9 70.2 60.6 56.8 73.1 58.7 51.8 48.1 88.4 64.4
Pearson 73.3 66.3 65.7 69.2 51.7 55.5 72.4 58.3 52.4 48.1 87.5 63.7
Contrastive 55.6 67.6 63.0 69.3 60.9 54.8 74.2 59.9 51.8 47.1 89.7 63.1
None 65.9 63.2 63.4 64.9 56.0 58.1 73.5 63.0 53.5 51.9 87.8 63.8

R
us

si
an

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 79.2 74.4 67.6 73.3 62.4 57.0 74.8 62.7 47.9 47.1 91.3 67.1
Pearson 78.6 72.3 65.4 71.3 57.5 55.0 74.4 63.4 45.8 40.4 91.2 65.0
Contrastive 65.5 74.1 65.6 70.3 61.8 55.3 74.1 59.6 50.4 42.3 93.1 64.8
None 70.5 65.8 66.0 68.0 56.2 53.6 72.2 58.3 49.9 49.0 88.3 63.4

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 69.3 68.6 65.7 68.8 60.1 53.1 71.9 61.2 45.3 42.3 88.2 63.1
Pearson 72.5 64.3 66.8 68.2 54.6 53.3 72.5 58.5 44.8 44.2 86.1 62.3
Contrastive 60.2 70.2 62.4 66.7 58.9 53.5 71.5 61.0 46.3 44.2 89.5 62.2
None 65.1 64.5 63.9 64.9 52.5 50.7 72.5 55.7 46.3 39.4 85.2 60.1

K
or

ea
n

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 61.0 69.4 64.9 70.9 59.9 54.4 69.0 57.5 36.4 32.7 90.9 60.6
Pearson 63.2 67.1 65.3 70.9 54.4 52.9 67.9 58.4 37.4 26.0 90.0 59.4
Contrastive 48.5 69.4 63.8 68.2 61.9 52.1 69.1 55.5 35.6 35.6 91.5 59.2
None 56.4 61.1 63.9 66.8 54.4 57.4 69.1 49.2 39.3 38.5 86.3 58.4

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 59.0 63.3 63.5 67.2 58.9 52.3 64.2 60.0 35.0 40.4 85.6 59.0
Pearson 66.3 59.7 63.0 65.2 51.4 52.1 64.0 54.8 36.7 33.7 84.2 57.4
Contrastive 50.1 63.2 62.3 65.8 58.0 54.0 64.6 59.1 36.4 43.3 87.1 58.5
None 63.2 59.3 61.9 64.0 58.9 52.9 66.0 55.1 37.6 45.2 80.6 58.6

D
ut

ch

laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
Both 78.2 72.3 68.5 74.6 61.2 53.3 75.5 60.4 48.3 42.3 93.6 66.2
Pearson 79.0 70.3 66.6 72.7 56.0 53.3 75.9 61.7 49.3 46.2 93.1 65.8
Contrastive 63.8 72.2 67.6 72.8 61.9 52.9 75.0 58.3 44.6 38.5 93.6 63.7
None 64.4 66.5 62.8 67.2 49.2 55.1 75.9 59.2 46.6 47.1 92.9 62.5

laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k
Both 74.9 67.3 65.3 69.1 57.7 55.3 71.5 56.6 48.6 54.8 89.3 64.6
Pearson 75.4 64.5 65.3 69.0 49.3 53.5 71.9 54.1 46.8 52.9 88.3 62.8
Contrastive 62.0 68.0 61.6 67.4 59.6 57.9 74.1 58.5 50.1 55.8 89.7 64.1
None 63.2 60.4 64.9 67.0 47.2 52.7 72.1 58.2 44.9 49.0 86.5 60.5

Table 6: Performance of multimodal models on the multilingual VALSE benchmark according to different metrics.
sns. Counting small numbers. adv. Counting adversarial. repl. Action replacement. Sp.rel. Spatial relations.
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Multilingual CLIP ViT-B Multilingual CLIP ViT-H

Contrastive Pearson Combined Contrastive Pearson Combined

τb τc ρ τb τc ρ τb τc ρ τb τc ρ τb τc ρ τb τc ρ

ENG 65.8 72.2 81.5 66.7 73.2 82.3 67.2 73.5 82.6 68.6 75.0 83.8 64.5 70.6 80.6 68.7 75.4 84.1
GER 65.1 71.4 80.8 65.6 72.1 81.4 66.5 72.6 81.9 68.0 74.3 83.2 62.9 69.1 79.3 68.0 74.8 83.6
FRE 65.4 71.7 81.1 66.0 72.4 81.7 66.7 72.9 82.1 68.0 74.4 83.3 62.8 69.0 79.3 68.0 74.7 83.6
SPA 65.1 71.3 80.8 65.9 72.6 81.7 66.4 72.7 81.9 67.8 74.3 83.2 62.4 68.6 78.9 67.8 74.5 83.5
CHI 64.4 70.6 80.2 64.7 71.3 80.7 65.7 71.9 81.3 67.4 73.8 82.8 62.1 68.3 78.6 67.4 74.0 83.1
POR 65.2 71.5 80.9 65.7 72.1 81.4 66.5 72.7 81.9 67.9 74.3 83.2 62.7 68.9 79.2 67.9 74.6 83.5
ITA 65.0 71.3 80.7 65.6 72.2 81.4 66.3 72.6 81.8 67.9 74.3 83.2 62.5 68.7 79.0 67.9 74.6 83.5
RUS 64.6 70.8 80.3 65.1 71.6 80.9 65.9 71.9 81.4 67.4 73.8 82.8 62.7 68.9 79.2 67.6 74.2 83.2
KOR 63.8 70.0 79.6 64.3 70.8 80.2 65.1 71.2 80.7 67.3 73.7 82.7 62.1 68.3 78.6 67.4 74.1 83.1
DUT 65.2 71.4 80.8 65.8 72.4 81.6 66.6 72.8 82.0 68.1 74.5 83.4 62.9 69.1 79.3 68.2 74.9 83.8
AVG 65.0 71.2 80.7 65.5 72.1 81.3 66.2 72.5 81.8 67.8 74.2 83.2 62.8 68.9 79.2 67.9 74.6 83.5

Table 7: Correlation between CLIPScore values and human rankings, using multimodal models finetuned with
different loss functions. The last row presents macro-averaged correlation results across all the languages (including
English). Non-English results above the English baseline are shown in bold.
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