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ABSTRACT

Randomized Controlled Trials are one of the pillars of science; nevertheless, they
rely on hand-crafted hypotheses and expensive analysis. Such constraints prevent
causal effect estimation at scale, potentially anchoring on popular yet incomplete
hypotheses. We propose to discover the unknown effects of a treatment directly
from data. For this, we turn unstructured data from a trial into meaningful
representations via pretrained foundation models and interpret them via a sparse
autoencoder. However, discovering significant causal effects at the neural level
is not trivial due to multiple-testing issues and effects entanglement. To address
these challenges, we introduce Neural Effect Search, a novel recursive procedure
solving both issues by progressive stratification. After assessing the robustness
of our algorithm on semi-synthetic experiments, we showcase, in the context of
experimental ecology, the first successful unsupervised causal effect identification

on a real-world scientific trial.
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Figure 1: Pipeline for Exploratory Causal Inference: (i) Collect data from a Randomized Controlled
Trial, (ii) Extract representations via a Foundation Model and Sparse Autoencoder, (iii) Apply Neu-
ral Effect Search, and (iv) domain experts interpret the causal findings.

1 INTRODUCTION

In science, data has been historically collected to answer specific questions (Popper, 2005). In this
rational view, scientists formulate a hypothesis, often as a causal association, and collect data to
falsify it. For example, an experimental ecologist may suspect that exposure to some substance may
affect how ants behave, or more in general, “a treatment T has a causal effect on an outcome Y.
They then perform a controlled experiment, administering 7" or a placebo to a number of individuals
and check whether there is a significant difference in the correlation between the treatment
assignment and the outcome. While this paradigm has dominated science for centuries, modern
science started embracing the creation of atlases: vast, comprehensive maps of natural phenomena,
collected for general purposes. Today, we have planetary-scale maps of life genomes (Chikhi
et al., 2024), sequencing of 33 different types of cancer (Weinstein et al., 2013), imaging of cells
under thousands of perturbations (Sypetkowski et al., [2023)) to name a few. Different than the
classical paradigm, these datasets call for an empiricist view, starting with exploratory data-driven
investigations. The new challenge is that the immense size of these datasets prohibits scientists
from just “looking at the data and finding out what is interesting”. Even beyond atlases, consider
the specific example of experimental ecology, where fine-grained social interactions between many
individuals are critical to understanding the spread of disease (Finn et al., 2019). Clearly, this can
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be dramatically accelerated with computer vision, using the predictions of a model as input for
causal inference pipelines (Cade1 et al., 2025). Still, scientists need to decide what to annotate
a priori before they can meaningfully look at and understand the data. This introduces a biasing
effect, known as the “Matthew effect” (Merton, |1968) or informally as “rich-get-richer”: scientists
are biased by prior successful investigations, e.g., behaviors that they have already studied.

In this paper, we characterize differences and synergies between the classical rationalist view and
the emerging empiricist one and propose a method to identify statistically interesting outcomes
in exploratory experiments, formally grounding it with the language of statistical causality, see
Figure [II We formulate this problem as analyzing a randomized controlled trial, where one or
multiple treatments are administered randomly and the effect is measured indirectly, e.g., via
imaging or other raw observations. Instead of scientists formulating only a priori hypotheses
on the effect, label some data, and train a model to extend labels to the whole dataset (i.e., the
rationalist view (Cadei et al., |2024; 2025))), we propose to train sparse autoencoders (SAEs) on the
representation of foundation models in a purely empiricist view. With these, we identify several
statistically significant differences across the treated and control groups with proper corrections,
and present them to the scientists for interpretation. The main challenge is that, if the SAE is not
perfectly disentangled (Elhage et al., 2022), any neuron minimally entangled with the effect can
be found as statistically significant by vanilla statistical tests, which makes the interpretation very
difficult. Instead, we propose a novel recursive stratification technique to iteratively correct the
correlation between entangled neurons one effect after the other.

Looking at the data before formulating a hypothesis, we overcome the Matthew effect, enriching
the rationalist view in a data-driven way. We propose to work with pretrained foundation models,
training SAEs directly on the target experimental data. This is important because pretrained foun-
dation models can be biased as well, which is problematic for drawing scientific conclusions (Cadei
et al., 2024). Instead of committing to a single hypothesis, our approach is to look for multiple
hypotheses with proper statistical corrections in a semantically expressive latent space. While some
may be due to model biases or finite sample spurious correlations, scientists can judge and interpret
them a posteriori. This is in stark contrast with existing approaches in causality like “causal feature
learning” (Chalupka et al.,|2017), which only commits to a single hypothesis on pixel correlations.
Our contributions are:

» Using the formalism of statistical causality, we theoretically differentiate the problems of ratio-
nalist and empiricist approaches to causal inference, highlighting their different strengths.

* We propose a purely empiricist methodology building on foundation models and sparse autoen-
coders. We characterize the statistical challenges in multiple hypothesis testing to discover treat-
ment effect with neural representations in our paradox of exploratory causal inference. Then, we
propose an iterative hypothesis testing procedure that avoids such challenges.

* We showcase in both semi-synthetic (real images but synthetic causal relations) and a real-world
trial in experimental ecology that our approach is capable of disentangling and discovering the
treatment effect in an experiment. To the best of our knowledge, this is the first successful applica-
tion of sparse autoencoders to causal inference, which we also test in a real-world scientific dataset.

2 TREATMENT EFFECT ESTIMATION IN RANDOMIZED CONTROLLED TRIALS

Notation. In the paper, we refer to random variables as capital letters and their realizations as
lowercase letters. Matrices are referred to as upper-case, boldface letters.

Causal Inference. The central goal of causal inference is to quantify the effects that an intervention
on a treatment variable has on other variables (often called effect or outcome variables), see Figure
(left). For simplicity, we consider binary treatments 7' = {0, 1} (e.g., taking a drug or a placebo),
and an outcome variable Y € {0,1}" (e.g., whether the conditions of a sick patient improve). While
continuous extensions would be interesting, we focus on discrete outcomes since continuous con-
cepts in SAEs are less well understood. Our goal is to estimate the Average Treatment Effect (ATE):

r=E[Y(T=1)-Y(T =0), (1)

where Y/(T' = 1) (or Y(1) for short) and Y (0) denote the potential outcomes under treatment
and control (Rubin, |1974), equivalently Y'|do(T) = 1 and Y|do(T) = 0 according to Pearl’s
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Figure 2: Exemplary graphical models for randomized controlled trials (i.e., no edge from W to
T). In Causal Inference (left), both 7" and Y are observed, and W does not influence 1" as we
are assuming a randomized controlled trial. In Prediction-Powered Causal Inference (center),
Y is not observed directly but is known and can be partially labeled. The missing Y is predicted
by a neural network from high-dimensional X that is trained either on the same trials if labels
are available (Cadei et al., 2024) or on other trials with the same label space (Cadei et al.l [2025).
In Exploratory Causal Inference (right), Y is unknown and unobserved and is discovered by a
neural network from high-dimensional X in a purely data-driven way.

do-calculus (Pearl, |2009). This is challenging to estimate, because, in practice, only one of the two
can be observed (fundamental problem of causal inference (Holland, [1986))): for any individual,
we can only observe the outcome of whatever treatment they received and not the other. This
problem is mitigated in the sciences by performing, whenever possible, a Randomized Controlled
Trial (RCT). By randomly assigning the treatment, i.e., 7' has no causes, this prevents spurious
correlation between the treatment and any other cause W € R? of the outcome (no confounders),
allowing to statistically identify the ATE with the associational difference:

T=E[Y |T=1—-E[Y|T=0), (2)

under standard causal assumptions (Rubinl |1986) of consistency (observing T' = ¢, then Y = Y (¢)),
and no interference across individuals (i.e., all individuals are independent samples from the popula-
tion, and the treatment assignment to the individual ¢ does not affect individual j). It follows that the
difference between the treated and control groups’ sample means is already an unbiased estimator
of the ATE. Nonetheless, more sophisticated estimators such as Augmented Inverse Propensity
Weighting (AIPW (Robins et al.|[1994)) can achieve lower variance and thus greater efficiency.

Prediction-Powered Causal Inference and the rationalist approach. Assume that Y is not
observed directly. Instead, we observe high-dimensional measurements X € X C RP of the
system, capturing the affected outcome information, i.e., H(Y|X) = 0, mixed with the other
attributes of the individual W € RY. Prior work by |Cadei et al.| (2024} |2025) showed how to train
a model on partially labeled data or similar experiments to predict factual outcomes Y from X that
approximate Y and then use them for causal inference. For simplicity, we assume that 7" is not
directly visible in X, a common practice in double-blind randomized trials (e.g., neither the patient
nor the doctor analyzing the results knows which treatment was assigned). A summary can be seen
in Figure 2] (center). To simplify the notation, we ignore that some covariates ¥ may only influence
X and not Y. If such covariates exist, we group them into W and assume the causal mechanism
from W to Y is invariant to those. For example, in the trial by Cadei et al.| (2024), ants are treated
with an invisible substance, which affects their grooming behaviors. Ecologists do not record the
behaviors directly but rather take videos of the ant interactions, which they then analyze.

Exploratory Causal Inference and the empiricist approach. The rationalist view requires
knowing what the treatment will affect a priori, which is also prone to the Matthew effect (Merton),
1968)) in exploratory experiments (hypotheses are often informed by the outcome of prior successful
trials). In this paper, we consider the setting where experiments are exploratory, which we
informally model as the scientists having no a priori knowledge of what Y may be. This is shown
in Figure [2] (right), with Y being unobserved and unknown (only measured through X). We remark
that this problem is related to causal abstraction (Rubenstein et alJ, 2017). In principle, one may
consider the pixels themselves as influenced by the treatment. We instead consider the ground
truth Y to be the coarsest possible abstraction of the effect of 7. In other words, we have that
T U WY and the mutual information (Y, X) is as small as possible (Achille and Soattol 2018}
Fumero et al., 2023). With a slight abuse of notation, we do not need to assume that such Y exists,
so r can be zero if the treatment has no effect at all. Our goal is to propose candidate effects ¥
to the scientists in a purely data-driven way, discovering significant statistics that differentiate the
treated and control populations. It is important to remark that we do not interpret these statistics as
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necessarily scientifically relevant. The reason is that, when working with high-dimensional data,
there can be many correlations. Our approach is to identify all significant statistics and leave the
interpretation to the domain experts. The empiricist view should not replace the rationalist one, but
enrich it with additional data-driven hypotheses.

3 EXPLORATORY CAUSAL INFERENCE VIA NEURAL REPRESENTATIONS

To detect treatment effects when only high—dimensional measurements X are available, we turn
these raw observations into analyzable measurements. We first pass samples x through a pretrained
foundation model (FM) (Bommasani et al.,2022)), obtaining representations h = ¢(x) € R< whose
geometry captures semantically meaningful regularities (Amir et al., [2022; |Valeriani et al., [2023)).
Throughout, we assume the FM is sufficient for the outcome information (Achille and Soatto, [2018)
(e, I(X,)Y) =1 ((b(X ), Y) ,) so working in h preserves exactly the information about the (un-
known) outcome factors Y that is present in the raw data. Under sufficiency, any arm difference that
exists in X is detectable in representation space, making h a principled surrogate for measurement.

From FM features to a measurement dictionary. While FM features are semantically structured,
individual coordinates in h need not align with human-readable concepts (Bricken et al., [2023).
We therefore reparameterize the representation into a sparse, interpretable measurement dictionary
using a sparse autoencoder (SAE) (Bricken et al., 2023 [Huben et al., 2024). Intuitively, the SAE ex-
presses each h as a sparse linear combination of atoms that behave like measurable channels; sparsity
biases solutions toward localized, approximately monosemantic features that scientists can inspect
a posteriori. Given foundation model’s features » € R?, the SAE computes a high—dimensional but
sparse code z € R and reconstructs A linearly:

z = f(h) = g(ETh+be), h = Dz, (3)

where E,D € R¥"™ are respectively the encoder, and decoder linear maps, b, € R™ is the en-
coder learnable bias, and g : R™ — R™ is the encoder nonlinearity (Bricken et al., 2023). Train-
ing minimizes a reconstruction loss with a sparsity: minp_.>o E[||h — Dz[[3] + AS(z). With
D = [di,...,d,,], each input is summarized as h ~ > #jdj, where £o(z) < d (Bricken et al.,
2023)). This turns the FM representation into a dictionary of measurable channels: each coordinate z;
serves as a putative detector of a simple attribute, with some inevitable leakage (Huben et al., | 2024)).

Monosemanticity, leakage, and entanglement. In exploratory experiments, we would like each
SAE code coordinate to behave like a single, human-readable measurement channel for a simple
outcome factor. When this happens, a scientist can read off “what changed” from the few activated
codes. In practice, however, codes often leak across factors: one neuron can respond weakly
to several distinct attributes, creating entanglement (Locatello et al., 2019). We need a minimal
language to talk about (i) the direction in code space associated with a factor and (ii) how widely
those directions spill across neurons. Let Z € R™ be SAE codes and Y = (Y3,...,Y,) the
(unknown) binary outcome factors with m > r. To define the leakage set and index, we first define
the code—mean map and the effect vector of factor Y}, respectively as:

ply) == E[Z|Y =y] e R™, vp = pu(Ye=1) — p(Y3=0) € R™, 4)
Definition 3.1 (Leakage set and index). Fix a threshold ¢ > 0. We say neuron j is activated by
factor Yy, if |(vy) ;| > €, and define the leakage set and leakage index, respectively, as
"l Ac
As = U{J |(Ul€)j|2‘€}a Pe = 7| (5)
k=1

m

When the vy are sparse and largely disjoint across coordinates, each factor “lights up” only a few
neurons, and different factors use different neurons. Large p. indicates that many neurons respond to
multiple factors (high entanglement), ruling out a monosemantic regime, whereas monosemanticity
with respect to Y implies p. ~ .

Codes as statistical measurement channels. Under FM sufficiency and an (approximately)
monosemantic SAE, it becomes natural to pose causal questions at the level of individual codes.
If the true affected outcomes Y are perfectly localized in disjoint subsets of coordinates of Z, then
one can test each coordinate for a treatment—control mean shift using a two—sample ¢—test, applying
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Bonferroni adjustment (Bonferronil [1936) to control the family—wise error rate at « regardless of
the number of tests m. This provides an idealized measurement interface: we can scan Z for treat-
ment-responsive channels and later interpret significant coordinates via the dictionary atoms d;.

A paradox: multiplicity meets entanglement. The above picture breaks down when leakage oc-
curs, as any neuron entangled with the true affected outcome will eventually be identified as sig-
nificantly activated. Intuitively, entangled neurons that are primarily assigned to other concepts
still activate differently depending on Y, so with more powerful tests (larger sample sizes or strong
causal effects), they would be deemed significant. Thereafter, classical multiplicity correction does
not rescue interpretability here, leading to the paradox of Exploratory Causal Inference:

Paradox of Exploratory Causal Inference

As the sample size n or the effect magnitude 7 grows, multiple testing, even with Bonferroni
adjustment, selects all € leakage neurons from Y in the SAE as independent and statistically
significant effects.

We formalize these two phenomena below. Let 7; denote the treatment effect on code j.

Theorem 3.1 (Significance level collapse with sample size). Suppose at least p.m neurons
have nonzero effect |7;| > € > 0. Via multiple testing, regardless of the Bonferroni adjustment,

Pri{all j € A. are rejected}} — 1 asn — oo,

and the number of rejections converges to p.m in probability.

Proof sketch. For each j, the t—statistic is asymptotically normal with noncentrality \; = \/n7; /0.
The Bonferroni cutoff, which determines the significance of 7;, grows like v/2log m; this cutoff
is dominated by the growth in expectation of 7; (y/n as n — o0). Hence, any j with 7; # 0 is
eventually rejected. Without Bonferroni correction, the significance cutoff is constant.

Theorem 3.2 (Significance collapse with effect magnitude). Fix n < oo and let Tj(s) = s7;
with s > 0. Via multiple testing, regardless of the Bonferroni adjustment,

Pr [{allj € A, are rejected}| — 1 ass— oo,

and the number of rejections converges to p.m in probability.

Proof sketch. The noncentrality \;(s) = y/n s7y;/o grows linearly in s, while the cutoff, even with
Bonferroni correction, is fixed for fixed m, n; every ~y; # 0 is eventually rejected. O

Numerical illustration. Let 7' ~ Bernoulli(1/2), Y | T =t ~ N/(7t,1) (single effect), and
Z = [Za,Zp] € R™ where Z4 =Y (a “true” channel) and Zp | Y =y ~ N(0.0lylm, Im)
(entangled channels). As shown in Figure[3|for 10 seeds, increasing either n or 7 leads Bonferroni to
flag essentially all weakly entangled Zp coordinates as significant, despite their negligible semantic
relevance. This motivates the disentangling, stratified testing procedure introduced next (Section ).
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Figure 3: The Paradox of Exploratory Causal Inference: Increasing the power of the test (n and
T), the effect on any entangled code becomes significant, regardless of the interpretation.



Under review as a conference paper at ICLR 2026

4 NEURAL EFFECT SEARCH

To mitigate the multi-test significance collapse with entangled representation, we propose a novel
causally principled algorithm that disentangles the leaked effects by recursive stratification.

Algorithm 1 Neural Effect Search (NES)
1: function NEURALEFFECTSEARCH(T, Z, o, S = @)

2 m<—#{j:j¢s} > number of hypotheses to test
3: for each neuron j ¢ S do

4: (7j,p;) < NEURALEFFECTTEST(T, Z, j, S) >pj tests Hy: 75, =0
5: end for

6: R+ {j ¢ s:p; <a/m},ordered by |7;| (desc) > Bonferroni adjustment
7: if R = @ then

8: return S

9: else

10: return NEURALEFFECTSEARCH(T, Z, o, S URy7)

11: end if

12: end function

NEURALEFFECTTEST (Algorithm[I)) is a procedure for multi-hypothesis testing on all the neurons
J, by arm-wise residual stratification over the already retrieved effects S. See full description in
Appendix[B] The key idea is that if we test all neurons simultaneously, Bonferroni cannot distinguish
whether a neuron carries its own causal effect or merely leaks information about another concept.
By contrast, NES first recovers the most prominent effect, then conditions on it in subsequent tests.
Stratification ensures that once the leading effect is controlled for, spurious correlations induced
by leakage vanish, operating over the arm-wise residuals guarantees no bias leakage from other
outcome causes W, being Y a collider between W and T'.

Theorem 4.1 (Consistency of Neural Effect Search). Suppose the SAE codes Z € R™ con-
tain exactly r true causal effect directions {v1, ..., v.} for the outcome concepts Y1,...,Y,,
possibly entangled across coordinates. Then, as n — oo, the output of NES satisfies

Pr(Spt = Lede}) = 1.

where each j, is a coordinate aligned with a distinct causal effect vector vy.

Proof Sketch. At the first iteration, entanglement makes many neurons appear significant, but the
one most aligned with some v;, maximizes |7;| in expectation and is consistently selected under
Bonferroni as n — oo. Residual stratification then regresses out this effect arm by arm, so that (i)
leakage of vy, into other coordinates vanishes in expectation, and (ii) collider bias from other causes
W is blocked. Consequently, the remaining test statistics are centered at zero. Inductively, each
round peels away one true direction until all r are recovered, at which point no further neurons show
nonzero effect and the recursion halts. Thus Pr(Sgng = {j1,-.-,J4r}) — 1 and E[|Sgpu|]] = 7. O

Discussion. NES recovers the 7 effect concepts in probability and terminates, in sharp contrast with
the paradox described earlier. While standard multi-hypothesis tests collapse with increasing power,
i.e., n and 7, proposing all entangled neurons with Y as significant effects, NES avoids this pitfall
by recursively stratifying. Each iteration removes the spurious signal caused by leakage and collider
bias, so that only the direct causal direction remains detectable. In this sense, NES does not merely
test for effects: it disentangles the representation, peeling away one true causal factor at a time until
the entire effect subspace is recovered. Thus, NES can be interpreted both as a multiple-testing
correction method robust to entanglement and as a principled effect disentanglement algorithm.

5 RELATED WORKS

Interpretable Heterogeneous Treatment Effect Estimation. A closely related line of work is the
empirical discovery of treatment effect heterogeneity across covariates 11/. Methods such as causal
trees, forests, and decision rules ensembles (Athey and Imbens| 2016} [Athey et al.,[2019; Bargagli-
Stoffi et al.l [2020) identify subpopulations with different responses, recognizing that pointwise es-
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timation of the Conditional Average Treatment Effect (CATE) is almost impossible to test, and still
difficult and risky to interpret. Since W is lower-dimensional, interpretability of these partitions or
rules is crucial, and the field has developed around making this empirical exploration scientifically
meaningful. Our work is analogous in spirit: instead of asking who is affected (heterogeneity over
W), we ask what is affected (discovering affected outcomes Y') when the outcome space itself is
high-dimensional and initially unknown.

Causal abstractions and representations. In the line of work of causal abstractions, Visual Causal
Feature Learning (VCFL, |Chalupka et al., 2014) was introduced to discover interventions in data
rather than outcomes. In scientific trials, however, treatments are fixed by design, and the chal-
lenge is to recover their effects from complex outcome measurements. Causal Feature Learning
(CFL, (Chalupka et al.l |2017) extends this to outcome clustering by grouping micro- to macro-
variables using equivalence classes of P(X | do(T)). This requires density estimation in high-
dimensional spaces, which is generally infeasible. While clustering other metrics may be possible,
causal feature learning commits to a single grouping rule, while we find all statistically significant
ones. Another line of work tackles the discovery of causal variables from high-dimensional obser-
vations (Scholkopf et al.|[2021)). Closest in spirit to our setting are interventional approaches (Varici
et al.| 2023} 2024; Zhang et al., 2023} |Yao et al., |2025), which, even with all the necessary extra
assumptions, would only offer identification results for the experimental settings ¥ and not the out-
come (i.e., the component invariant to the intervention (Yao et al., 2025)). Therefore, they can not
be applied to exploratory causal inference because they cannot discover outcome variables.

Scientific discovery via SAEs. A related line of work uses SAEs to decompose polysemantic hidden
representations in foundation models into more monosemantic units that align with single concepts
(Bricken et al., 2023} [Templeton et al., [2024; [Huben et al.l 2024; Papadimitriou et al., |2025).
Although SAEs were initially proposed as an interpretability tool (Bricken et al., 2023)), a growing
body of negative results, including spurious interpretability on random networks (Heap et al.,|2025)),
failures to isolate atomic concepts (Leask et al., 2025; (Chanin et al., [2025), and limited downstream
benefits (Wu et al.| 2025)), casts doubt on whether SAE features faithfully reflect underlying mech-
anisms rather than post-hoc artifacts. Despite these interpretability concerns, recent work shows
that SAEs can still be useful for generating scientific hypotheses from high-dimensional data (Peng
et al.| [2025). For example, HypotheSAEs (Movva et al., [2025) leverage SAEs to surface human-
understandable patterns correlated with target outcomes (e.g., engagement levels), which researchers
can then treat as hypotheses for follow-up study. Our setting is related but distinct: whereas these
approaches focus on correlations and do not provide statistical procedures to test the significance of
the unsupervised discoveries, we target causal effects and develop inference to assess which high-
dimensional outcomes Y are affected, offering principled support for exploratory causal claims.

6 EXPERIMENTS

We validate our analyses (significance collapse paradox, and NES consistency) in two complemen-
tary settings: a semi-synthetic benchmark where ground-truth causal effects are known, and a real-
world randomized trial from experimental ecology.

6.1 SEMI-SYNTHETIC BENCHMARK

We simulated a family of RCTs {T;, W;,Y;}™ ,, relating both the individual covariates and
outcomes one-to-one with specific attributes in the CelebA (Liu et al) [2018) dataset, e.g.,
wearing_-hat and eyeglasses, and then assigned a random image X; from the dataset per-
fectly matching such attributes. Given the corresponding random sample {7}, X;}?_; we (i) trained
a SAE over the image representations encoded by SigLIP (Zhai et al. 2023)), and (ii) tested NES
for effect discovery against vanilla statistical tests (¢-test, FDR (Schweder and Spjgtvoll, |1982),
Bonferroni) and top-k effects selection. For quantitative evaluation, we first assessed SAE monose-
manticity with respect to the considered CelebA attributes (see Figure[7), and extracted the ground
truth neurons referring to Y. Then, for each effect discovery, we computed Recall, Precision, and
Intersection over Union (IoU) with respect to them. Full details about the data generating proce-
dure, training, and evaluation with additional assessment on interpretability and SAE entanglement,
together with extensive ablations on method variants, i.e., estimator and test, and hedge cases, i.e.,
no-effect, are reported in Appendix [CH{D] The main results (r = 2) are summarized in Figure 4]
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Figure 4: Semi-synthetic benchmark. Precision, Recall, and IoU of different testing procedures
across sample size N (top) and effect size 7 (bottom). NES consistently achieves the best trade-off,
avoiding the significance collapse of standard corrections.

Results. Increasing the power of the tests (increasing the sample size n or effect magnitude 7), all
the methods eventually retrieve the true significant effects, i.e., Recall — 1. However, while all
the baselines drop the Precision and corresponding IoU (Paradox of Exploratory Causal Inference),
NES is the only method that mitigates such entanglement biases. As expected, the Paradox doesn’t
emerge with very small sample (n = 30) and effect regime (7 = 0.1), and more explorative ap-
proaches, as vanilla ¢-test or top-k selection, could be preferred, at the price of potentially more
false significant hypotheses, i.e., Precision < 1. With a yellow dot, we report the performance of
each method assuming the number of affected outcomes r is known. NES still manages to find
both effects most of the time. Instead, all the baseline methods fail to reach Precision and Recall
above 0.5: they succeed in retrieving the most significant effect (equivalent to the first step in NES),
but then get confounded by the entanglement and miss the second one. While this is clearly a toy
experiment, this is undesirable. For example, if in real trials there are multiple effects with different
magnitudes (e.g., the positive effect of a drug on the health metric of interest and rare side effects)
the leakage of strong effects may prevail over the weaker ones, which would then be missed.

6.2 REAL-WORLD RANDOMIZED TRIAL FROM EXPERIMENTAL ECOLOGY

ISTANT (Cadei et al., [2024) is an ecological experiment where ants from the same colony are
randomly exposed to a treatment or a control substance and continuously filmed in triplets in a closed
environment to study the concept of Social Immunity. The biologists are interested in identifying
which latent behaviors are significantly affected by treatment. According to previous analysis, we
first encoded each frame in the trial with DINOv2 (Oquab et al.,|2023)), and then we trained a SAE
directly on the trial data. NES is then applied without Bonferroni adjustment due to the small sample
size (n = 44 videos) to discover treatment-sensitive codes, and only two neurons are returned.

Results. Figure [5] qualitatively summarizes the interpretations of such neurons, visualizing their
corresponding most and least activated clips in the dataset. In agreement with the previous analysis
on the dataset (Cadei et al.l 2024} 2025), the first neuron retrieved (code 394) represents the
grooming event, already measured as significantly affected by the treatment in any previous rational-
ist approach to the experiment, i.e., actually manually annotating and testing for it. Quantitatively,
such a neuron is exactly the most predictive neuron for grooming event (F1-score=0.398) out of all
the 4608 SAE’s codes, confirming the consistent results of our pipeline. We remark that our focus is
on the identification of the effect as statistically significant. The imperfect F1-score means that one
should not compute treatment effects directly on the neural activation, e.g., without further labeling.
The second neuron activated (code 550) represents the palette background (top right black color
mark in the top left position in the first 4 batches of videos), which strongly correlates with the treat-
ment due to the small experiment size (as discussed in the annotation bias by (Cadei et al.| (2024)).
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Biologist Judgement: grooming / Biologist Judgement: grooming / Biologist Judgement: grooming x
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Biologist Judgement: backgzound Biologist Judgement: background « Biologist Judgement: background x Biologist Judgement: background ><

e Max-Activating (Neuron 301) Non-Activating (Neuron 304) WEEEE Max-Activating (Neuron 550) WSS Non-Activating (Neuron 550)

Figure 5: Exploratory Causal Inference for Experimental Ecology. Without any knowledge of
the behaviors of interest, our procedure retrieves two significant treatment effects, i.e., grooming
and background, in agreement with previous literature.

The fact that the model also identifies the effect of the treatment on the background due to the small
sample size is a strength of the method: it is a statistically significant signal, and we want to retrieve
it in addition to the behaviors since it is present in the dataset. Domain experts can select which
signal is scientifically relevant and even use this information to improve their experimental settings.

7 CONCLUSION

In this paper, we have discussed how foundation models and SAEs can address the challenges of
exploratory causal inference, serving as learned measurement devices. A key challenge is that SAE
neurons may not map one-to-one onto high-level concepts, and even weak or mixed associations
propagate the dependency on the treatment. This means that many neurons can be activated, making
the interpretation difficult as they do not encode a single concept, and they activate more with
larger sample sizes or stronger effects. We address this issue with Neural Effect Search, a statistical
hypothesis testing procedure that iteratively controls for the biased dependency between neurons
after they have been selected. Our experiments on semi-synthetic and real-world randomized
trials are encouraging: our method uncovers both scientifically relevant effects and, when present,
interpretable associations like background effects due to finite samples that experts can readily
dismiss. Overall, we view this work as a first step toward Al-driven efficiency gains in exploratory
data science, where foundation models can “look at massive amounts of data first” and then domain
experts can identify which patterns have scientific value.

Our approach has several limitations. First, we assume that the observed variables X adequately
capture information of the unknown Y, which can be a strong assumption. At the same time, our
method enables more complex measurement processes for X, so a natural extension would be to
incorporate multi-modal data, potentially with the effect Y visible in different modalities depend-
ing on its realization. It would also be useful to extend our methodology for continuous concepts.
The biggest limitation is that we assume foundation models encode concepts linearly and that SAEs
can approximately recover them. We believe the first assumption is mild: even if current foundation
models are imperfect, future iterations are likely to improve. The second assumption is our strongest,
but could be mitigated by advances in identifiability results for SAEs. Promising early work already
exists (Cui et al.} 2023}, [Hindupur et al.,[2025)), but the identifiability theory of SAEs is not currently
as well understood as that of causal representations 2025). In our paper, we took a
more empirical and future-looking stance on improvements in SAEs, focusing on finite samples and
leveraging pretrained foundation models. Lacking identifiability then means that domain experts can
today only use our method “as a rescue system for hypotheses they may have missed”, before prop-
erly annotating the data and following the rationalist approach. We hope that our work will serve as a
practical motivation for future work on identifiability in foundation model representations and SAE.
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Appendix

A  PROOFS

A.1 SIGNIFICANCE LEVEL COLLAPSE WITH SAMPLE SIZE (THEOREM [3.1)

Theorem A.1 (Significance level collapse with sample size). Let Z € R™ be SAE codes and
T; the treatment effect on neuron j. By definition

A = {j : |Tj| > 5}7 |A5| = Pe. (6)
In multiple testing at level o, regardless of Bonferroni correction

Pr (allj € A are rejected) — 1 asn— oo, @)

and the number of rejections R,, satisfies
R, — p-m in probability. 8)

In words: as the sample size grows, all entangled neurons with the (true) affected outcomes
are declared significantly affected by the treatment, regardless of being principally related to
other concepts.

Proof. For each neuron j, let 7; be the estimated treatment effect and ¢; its ¢-statistic. Under stan-

dard randomization, we have the asymptotic distribution
t; 5 N1, A =Yg )

oa

where o2 is the asymptotic variance of 7;.

Multiple testing with Bonferroni adjustment rejects Hoj; : 7; = 0 if [t;] > 24/(2m)> Where 24 /(2m)
is the (1 — a/(2m)) quantile of A/(0, 1). As m — oo, the threshold satisfies

Za/(2m) = V/2logm. (10)

For any j € A., we have 7; # 0, hence \; diverges at rate \/n as n — oco. Since \/n grows faster
than y/log m, it follows that

Pr(|t;] > za/2m)) — 1. (11)
Therefore, for all j € A., the null is rejected with probability tending to one, and analogously
Pr(|t;] > za2) — 1. (12)
without Bonferroni adjustment. By the union bound,
Pr (allj € A, are rejected) — 1 (13)
Hence, the number of rejections converges in probability to |A.| = p.m, proving the claim. O

A.2  SIGNIFICANCE COLLAPSE WITH EFFECT MAGNITUDE (COROLLARY [3.2)

Corollary A.1 (Significance collapse with effect magnitude). Fix a finite sample size n. Sup-
pose the treatment effects scale as

7;(s) = s7;j, j=1,...,m, (14)
where s > 0 is a scaling parameter and y; are fixed coefficients. By definition
. €
Ac=1{7 byl > Sk Al = pem. (15)
In multiple testing at level « regardless of the Bonferroni correction,

Pr (allj € A. are rejected) — 1 ass— oo, (16)
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and the number of rejections R satisfies
Rs — pem. in probability. (17)

In words: even at a fixed sample size, amplifying the effect magnitude all the entangled neu-
rons with the (true) affected outcomes are declared significantly affected by the treatment,
regardless of being principally related to other concepts.

Proof. For neuron j, the noncentrality parameter of the ¢-statistic under effect scaling s is

Ni(5) = L 7i(s) = Y sy (18)

o

If v; = 0, then A;(s) = 0 for all s and the rejection probability remains bounded by ¢/m.

If ; # 0, then \;(s) — oo linearly in s, while the Bonferroni threshold 2, /(2. is fixed (since
n, m are fixed). Therefore,

Pr(|tj| > Za/(27n)) — 1 ass— 0. (19)

Analogously, without Bonferroni + significance correction. Thus, for every j € A., the null is
eventually rejected with probability tending to one. By independence of limits,

Pr (all j € A, are rejected) — 1, (20)

and R; — p.m in probability, completing the proof. O

A.3 CONSISTENCY OF NEURAL EFFECT SEARCH (THEOREM [4.1))

Let T € {0,1} be a randomized treatment, W € R? exogenous causes, Y € R” the (unknown)
causal outcome factors, and Z € R™ SAE codes. Assume the following structural causal model:

T ~ Bernoulli(p), T 1 W, 2D
Y= fY(Ta Wa nY)a (22)
Z =VY + BW +¢, VeR™" BeR"™4, (23)

with mutually independent noises (7y, ) and finite second moments. Write the k-th column of V'
as v € R™ (the effect vectors), so

E[Z | do(T=t)] = V uy(t) + Buw, where py(t) =E[Y |do(T=t)], uw = E[W].
Define the interventional contrast on codes:

7?2 = B[Z|do(T=1)] - E[Z | do(T=0)] = V¥, ¥ :=py(1)—uy(0). (24
At round ¢, let Sy—1 C [m] be the set of already-selected neurons and let £_1 = span{vy :
some selected coordinate aligns with vy, } be the recovered effect subspace. For a candidate coordi-

nate j ¢ Se_1, the Neural Effect Test constructs arm-wise residuals by regressing Z.; on Z.s, ,
within each treatment arm:

. 2
i € argmin E[(Zj ~8"Zs, ) ‘T:t} . Rj = Z;— B} Zs, .. (25)

Neural Effect Test then tests Hy : TjR = 0, where

7 == E[R; | do(T=1)] — E[R; | do(T=0)]. (26)

The test statistic is a post-stratified difference-in-means built on discretized Rs, , (Appendix ;
Bonferroni is applied across j ¢ Sy—1 and Neural Effect Search adds the top-|7;| rejection, updating

Sy

‘We now show three facts:

i. identification of 72 via do-calculus (Proposition |A. 1)
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ii. arm-wise residualization removes leakage from already-discovered effects in expectation
(Lemmal|A.1);

iii. stratified diff-in-means over arm-wise residuals is unbiased for TJR and preserves the re-
maining (undiscovered) causal contrast (Lemmal[A.2)),

and then we use them to inductively show Neural Effect Search’s consistency.

Proposition A.1 (do-identification of code-level contrasts). Under Equations for any
(measurable) function h of Z,
E[h(Z)|do(T=t)] = E[n(Z)|T=1], 27

and in particular:
2 =E[Z | T=1]-E[Z | T=0] =V 7Y. (28)

Proof. By randomization 7' 1. W and exogeneity of noises, the post-intervention distribution
P(Z | do(T=t)) equals the observational P(Z | T=t) (Rule 2 of do-calculus, or the truncated
factorization). Thus expectations coincide. Plugging Equation 23] and taking expectations yields

Equation O

Lemma A.1 (Arm-wise residualization cancels discovered effects in expectation). Fix a round
with discovered subspace E;_1 and suppose Z follows Equation with finite covariance
matrices in each arm. Let 11, be the L?(P(- | T=t))-projection of Z; onto o(Zs,_, ), whose
coefficient is B in Equation|[25] Then

E[R; | do(T=t)] = (Id—P,) E[Z; | do(T=1)], 29)
where Py is the linear map induced by 3 Zs,_,, and hence
j

oft = (1= Py)E(Z; | do(1)] ~ (1~ Po) E[Z; | do(0)]. (30)

If the selected coordinates span E,_1 (i.e., Zs, , contains V,_1Y with Vy_1 a basis of Eo_1),

then the contribution of all v, € £,_1 cancels in TjR.

Proof. By definition of the arm-wise projection, E[Z; — 3, Zs, , | T=t] = E[Z; | T=t] —
B/ E[Zs, , | T=t]. By Proposition |A.1] replacing T=t with do(T=t) preserves expectations.
Subtract the two arms to get the display. If Zs, , spans £ _1, then Zs, , contains the mean-shift
components Vy_1uy (t). The linear projection P; exactly removes any mean shift lying in that span,
so the contribution of already-discovered vy, (those in £_1) is annihilated in TjR. O]

Lemma A.2 (Stratified diff-in-means on arm-wise residuals is unbiased). Let G be strata
formed by deterministic binarizations/quantizations of Rs, , computed via Equation @ De-
fine the post-stratified estimator

?]R = Z Wy (Rj,lg - Rj709)7 Wy X N1g + Nog- @D
geg

Under randomization and SUTVA, E[7f'] = [,

Proof. Because T is randomized, within each g the treated and control samples are iid draws from
P(- | G=g,do(T=1)) and P(- | G=g,do(T=0)) respectively (by Rule 2 of do-calculus, ran-
domization implies P(-|G,do(T'=t)) = P(-|G,T=t) even if G is post-treatment, provided G
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is a deterministic function of arm-wise statistics that do not mix arms). Thus E[R; 4] = E[R; |
G=g,do(T=t)] and

E[FF] = 3w, (B[R, | G=g,do(1)] — E[R; | G=g,do(0)]), (32)

with w, = Pr(G=g) in the limit of large samples under w, o n1, + ngy. Law of total expectation

gives Zg wgy E[R; | G=g,do(t)] = E[R; | do(t)], proving ]E[?JR] = TJR, 0

Proposition A.2 (One-step correctness). Suppose at round { the discovered subspace equals
Ev1. Forany j ¢ Sy,

R ~\ LY
= > (e T, (33)
kiviegEe—1
where Uy, is the residual (w.r.t. arm-wise projection) of vy, onto span{Zs,_, }. In particular,
T]R = Oifand only if Z; carries no remaining component from any undiscovered vy,. Moreover,
=R

. . R . . . . .
7, is unbiased for T;* and its t-statistic is asymptotically normal.

Proof. By Lemma|[A.1] discovered directions vanish from the do-contrast of residuals; only undis-
covered vy contribute, and only via their residual components v;. Lemma|[A.2| gives unbiasedness.
Standard Lindeberg—Feller CLT for stratified diff-in-means with finite variances yields asymptotic
normality of the ¢-statistic (the Satterthwaite df in Alg. [B]gives a finite-sample correction). O

Theorem A.2 (Consistency of Neural Effect Search). Assume Equations21}-equation23| con-
sistency, no interference, i.e., SUTVA, finite fourth moments, and that at each round the top-
\?JR| rejection is selected with Bonferroni level o/m. Suppose V has full column rank r and
every causal direction vy, has at least one coordinate j whose residual component vy, ; # 0
when earlier effects are removed. Then, as n — oo, Neural Effect Search selects one new
direction per round and stops in r rounds with probability — 1:

Pr(sﬁnal = {jh e ajr}) — 1; E“Sﬁnalu — T (34)

Proof. (Induction over rounds.) At{ = 1,74 = V1Y by Prop. Among all coordinates, at least
one j aligned with some nonzero vy, has nonzero 77 ; Bonferroni with n — oo rejects it with proba-

bility — 1 (noncentrality grows as y/n). Assume at round ¢ the subspace £, of discovered effects
is correct. By Prop. for any j ¢ Sy_1, the target contrast equals TJR =D ko ge1 (Eh> )Ty .
By the rank and nondegeneracy assumptions, there exists at least one undiscovered & and one j with
{ej, vk)T¥ # 0. Unbiasedness (Lemma and asymptotic normality then imply its test rejects
with probability — 1 under Bonferroni. Conversely, for any j orthogonal (in residual sense) to all
remaining directions, T]R = ( and the test does not reject with probability — 1. Thus, the selected
coordinate introduces a new direction, enlarging £,_;. After at most r rounds, all directions are

discovered and, by Prop. T]-R = 0 for all remaining j, so no further rejections occur. O

The arm-wise projection in Equation [25| kills two spurious sources at once: (i) it cancels leak-
age from already-discovered causal directions (Lemma[A.T)); and (ii) by projecting within arms, it
avoids opening the collider T — Y <« W (no cross-arm conditioning on Y -functions), so con-
founding through W cannot re-enter. Therefore, Neural Effect Search’s stratified estimator targets
the residual do-contrast of Z;, which equals the undiscovered causal contribution only (Prop. .
Unlike plain Bonferroni—which inflates discoveries across all entangled coordinates as n or effect
size grows—Neural Effect Search peels one causal direction per round and then stops, acting as a
principled disentanglement-by-testing procedure.
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B ALGORITHM DETAILS

Algorithm 2 Neural Effect Test (NET) with arm-wise residual stratification

1: function NEURALEFFECTTEST(T, Z, j, S)

N

27:

28:
29:

// A) Arm-wise residualize only the tested neuron j
if S = & then
setr; < Z.;  (first round: no conditioning)
else
fort € {0,1} do
regress Z.; on Z. s using only samples with T" = ¢
for each i with Tj = t: r;; + Zi; — B9 7 Z;
end for
end if

// B) Stratification from raw Z

if S = o then
put all units in a single stratum: G = {all}

else
compute pooled (ignore 7") medians/quantiles of each Z.4, s € S
assign each unit 4 to a cell g(¢) by binning Z; s via those cutpoints
drop any stratum g with ny, = 0 or ngy =0

end if

for each stratum g € G do
N1g,Nog < treated/control counts in g
H1g, Pog < treated/control means of r; in g
014,00, + treated/control variances of 7; in g
Nig +n
W,y _ lg T T0g
> on(nin + non)
end for
Tj 4 2oy Wg (Mg — Hog)
2 2
g (o
2 1g Og
V Zg w; ( + >

nlg nog

t <+ 7, V4 v
NG 2 2
vV > (wg oty/mg)” (W ody/nog)
9€9 \ max(nyy —1,1) = max(ng, — 1,1)

p+ 2-Pr(|T,] > |¢])
return (7;, p)

30: end function

> Satterthwaite df

>tests Ho : 77 = 0

The algorithm tests whether neuron j still carries a residual causal contrast after accounting for
already—discovered effects S. We first compute an arm-wise residual r; := Z; — B(TJ )T Zs, where

B,fj ) is fit using only units with 7" = ¢. Arm-wise fitting avoids pooled “bad control” on post-
treatment codes and cancels leakage from previously found directions as they manifest within each

arm.

We then form treatment-agnostic strata G by coarsening the raw Zs (e.g., medians/quantiles com-

puted pooled over T') and drop cells lacking both arms.

Within each ¢ € G we take the

treated—control mean difference of r; and aggregate with weights wg o< n14 + ngg. This is stan-
dardization (g-computation):

7= > we(Tiag —Tiog) — Y Pr(G=g)(Elr; | G,g,do(1)] ~ Elr; | G, g,do(0)]) = 7],
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so the estimator is unbiased under randomization/SUTVA. The reported variance and Satterthwaite
df are the usual stratified formulas.

C EXPERIMENTS DETAILS

C.1 CELEBA SEMI-SYNTHETIC RCTSs

Dataset. We use CelebA (Liu et al., 2018)), a face attributes dataset with > 200k images and
40 binary attributes per image || Furthermore, for implementation details, labels have been dou-
bled (we pass from Beard to Has_Beard and Has_notBeard). We follow the authors’ official
train/val/test split, and we employ the validation data for training SAEs and the test data to in-
terpret them. Attributes are treated as ground-truth binary labels. From this source, we simulate
several RCTs following the data generating process (DGP) described below, varying the sample size
(n < 200k) and treatment effect (7), reflecting realistic randomized controlled trial characteristics.

Data Generating Processes To evaluate discovery accuracy with known ground truth, we simulate
RCTs by reusing real images but stochastically sampling treatment and outcomes from CelebA
attributes:

* Treatment: T' ~ Bernoulli(0.5).

* Outcome factors: we designate two binary effects Y=(Y7,Ys2) using CelebA attributes:
Yi=Eyeglasses, Yo=Wearing_Hat.

* Exogenous Cause: W=Smiling.

We implement a “co-effect” model in which 7 shifts both Y; and Y, with arm-specific probabilities
and W modifies only Y7:

Pr(Yy=1|T=1) = p{”, Pr(Ya=1|T=0) = p{?,

PV (=1, w=1)
v (t=1,w=0)
Pr(Yi=1|T=t,W=w) = { "}y ’
P, (t=0,w=1)
Y
péo ) (t=0,w=0)

with W ~ Bernoulli(0.5). We vary effect magnitude via an ATE grid ATE € {0,0.1,...,0.8} (9
values). Concretely, starting from a base rate 0.5, we set:

Z Z
PP =05+ 228 pi¥) =05 ALE

and analogously for Y; in the W=1 arm:

Y Y Y Y
piy) =05+ ATE 00 05 - ATE (%) — 02 4 ATE, ply) =0.2.
For each simulated unit, we draw (T, W,Y1,Y5), then assign an actual image whose CelebA at-
tributes match the realized (Y7, Y2, W).

FM features. Each image z is encoded with SigLLIP (Zhai et al.,[2023)) into a patch-level representa-
tion; we use the final-layer token features (dim d=768, 196 patches/token positions). Unless noted
otherwise, we do not use any task-specific fine-tuning.

SAE Details. We train a SAE on SigLIP features to obtain interpretable codes Z € R™ that serve
as hypotheses for treatment effect estimation. Thereafter, the details for the SAE in Table[T] Lastly,
to turn hidden representation into hypotheses, aggregate patchwise by mean pooling to a single
Z € R9216 per image. These per-image codes are the units we test in NES and baseline procedures.

Evaluation. We evaluate discoveries against concept—aligned SAE codes extracted from CelebA.
Let m=9216 be the number of codes and Z;(X) € R the activation of code j € [m] on image X;
a code is active when Z;(X) > 0. For true effect Y}, € {0,1} (here k € {1,2}) and each code j,

'It can be downloaded from flwrlabs/celeba
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Component Setting

Encoder nonlinearity Top-k with k=5 active codes
Input dimension 768

Code / decoder dimension (m) 9216

Optimizer / LR / batch Adam /5x107% /20

Epochs / grad clipping 20/1.0

Table 1: Training details for the SAE employed in semi-synthetic experiments.

we induce predictions 7)1(2) = I{Z;(X;) > 0} and compute the F1-score of {g}fi)}?zl against the

ground-truth labels {y;x }I_1; the best neuron for the concept is then

gk = arg max F1<{g]§,?}?:1, {yzk}?zl)
J€[m]

The resulting ground-truth set of affected codes is G := {g1, g2} (in general |G| = r). Each method
(NES or a baseline) returns a set of discovered codes S C [m], which we compare to G via set
metrics. Defining TP := |SN G|, FP := |S\ G|, and FN := |G \ S|, we report

Precisi TP Recall TP F1 2 Precision - Recall
recision = ——— = - —
eetsio TP + FP’ eea TP + FN’ Precision + Recall’

and the set Intersection-over-Union (IoU)

_sngl TP
- |SuG| TP+FP+FN’

IoU

C.2 ISTANT

Data and RCT. We considered the randomized controlled trial introduced by |Cade et al.| (2024).
Videos of ant triplets were collected under randomized treatment/control assignment. Throughout
our unsupervised pipeline, domain annotations from biologists were used only a posteriori for inter-
pretation/evaluation of discovered codes, never for training, as discussed in the main text.

FM features. Each frame X is encoded with DINOv2 (Oquab et al., [2023) into a patch-level
representation; we use the final-layer token features (dim d=384, 256 patches/token positions).
Unless noted otherwise, we do not use any task-specific fine-tuning.

SAE Details. We train a SAE on the DINOv2 features to obtain interpretable codes Z € R™ that
serve as hypotheses for treatment effect estimation. Thereafter, the details for the SAE are in Table[2]
Lastly, to turn hidden representation into hypotheses, we aggregate patchwise by mean pooling to
a single Z € R*6%8 per frame. These per-frame codes are the units we test in NES and baseline
procedures.

Component Setting (ISTAnt)

Encoder nonlinearity Top-K with K=20 active codes
Input dimension 384

Code / decoder dimension (m) 4608

Optimizer / LR / batch Adam/5x107% /128

Epochs / grad clipping 10/1.0

Table 2: Training details for the SAE employed on ISTAnt.

Evaluation. Evaluation follows exactly the CELEBA protocol: we score discovered codes against
ground-truth concepts via code—induced predictions and compute Precision/Recall/F1 and IoU for
the set of returned codes (with domain annotations used only for interpreting and quantifying per-
formance, not for training).
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D ADDITIONAL EXPERIMENTS

D.1 EVALUATION ON CELEBA: WHAT DOES OUR GROUND TRUTH MODEL?

We assess how well SAE codes behave as measurement channels on CELEBA by aligning individual
neurons with ground—truth attributes (see Section . For each code j, we treat the event Z; > 0
as a binary predictor and compute its Fl—score against the attribute label. The two most predictive
neurons for the two affected factors are: (i) neuron 38 for Wearing_Hat with F1 = 0.841, and
(i1) neuron 6051 for Eyeglasses with F1 = 0.748. Qualitative inspection of the top—activated
images (Figure[6)) confirms that these codes fire on the intended visual concept, supporting their use
for exploratory causal inference.

Most activated images for Neuron 38 Most activated images for Neuron 6051

B stronger activation (left panel) B stronger activation (right panel)
weaker activation (left panel) weaker activation (right panel)

Figure 6: Qualitative neurons’ interpretations. Each panel shows the 12 most—activated test
images for the most predictive neuron of each affected outcome concept (activation = highest code
value).

At the same time, the F1-score spectra over all neurons reveal a familiar pattern: a single, dominant
“monosemantic” code per concept, accompanied by a long tail of weaker yet clearly non—zero cor-
relations (Figure [7). This tail is stronger for Eyeglasses, where several neurons reach moderate
F1, indicating broader leakage/entanglement. As discussed in the main text (see Section [3)), such
low—amplitude but widespread correlations are precisely what trigger the Paradox of Exploratory
Causal Inference: with enough power, standard multi—testing will flag all of these leakage neurons
as “significant.”” Our NES counters this by retrieving the leading effect first and then recursively
stratifying on previously discovered codes, so that subsequent tests target the residual causal signal
rather than its leakage.

Wearing Hat — neuron importance Eyeglasses — neuron importance

g Y% Best neuron: 38 Y¢ Best neuron: 6051

F1 score

* modeling concept
Concept entanglement

+ modeling concept
Concept entanglement 1

00 hHHmHHH-HHWHH-ﬂHﬂmﬂﬂﬂ-ﬂmﬂﬂwﬂwﬂﬂ!'mﬂﬂ'ﬂﬂ!‘mﬂﬂ'nﬂﬂrrnnrrnnrrnnrrn nnnnnnnn HﬂH”HHHﬂHHﬂﬂHﬂﬂHWHWHWHﬂWﬂﬂmmwmmmwr

Top neurons (sorted by importance) Top neurons (sorted by importance)

Figure 7: Monosemantic peaks with entanglement tails. For each attribute, we rank SAE codes
by F1 against the CELEBA label and visualize the top performers in order.
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D.2 IN-DEPTH ANALYSIS: FULL SEMI-SYNTHETIC RESULTS

This subsection expands the quantitative picture in Figure {] by showing the more complete grid of
results across sample size and effect magnitude, for two evaluation regimes:

1. Unknown number of effects (). Each method returns its own set of significant codes at level «
or simply the Top—K. We then report Precision, Recall, and IoU against the ground—truth affected
codes (Section[C.I).

2. Known number of effects (). We assume to know the true number of effects, and we just look
at r— highest effect among each method. We again compute Precision, Recall, and IoU (namely,
we apply Top-2 selection on top of other methods).

As detailed in Appendix we vary (i) the sample size n € {30, 50, 100, 250, 500, 1000} and
(ii) the ATE magnitude 7 € {0.1,...,0.8}, holding the semi—synthetic DGP and SAE training
protocol fixed. Each cell aggregates 10 random seeds (RCT re—draws and SAE initializations).

Main takeaways. Across both regimes and over the entire grid, NES maintains high Precision
and IoU while matching the best Recall of baselines. When the experiment power increases (larger
n or T), vanilla t—tests and classical multiplicity corrections (FDR/Bonferroni) exhibit the signif-
icance—collapse behavior: Recall saturates but Precision drops sharply as leakage neurons be-
come significant, driving IoU toward zero. Enforcing the correct cardinality (r known) mitigates
over—selection but does not resolve entanglement: baselines still replace a true effect with a leak-
age surrogate in later picks, keeping Precision < 0.5 in the high—power regime. In contrast, NES’s
residual stratification peels one principal effect component per round and then stops, preserving
interpretability.

1.0
0.8
g
e 0.6
o
&
A 0.4+
0.2
0.0=
NESBonferroniFDR  ¢-test  top-k NESBonferroniFDR  ¢-test  top-k NESBonferroniFDR  t-test  top-k
Methods (bars shaded by N) Methods (bars shaded by N) Methods (bars shaded by N)
Shades by N

[ N=30 3 N=50 EEE N=100 EEE N=250 EEEE N=500 HEEE N=1000

.

NESBonferroniFDR  ¢-test topk . NESBonferroniFDR  ¢-test  top-k

Precision

NESBonferroniFDR  ¢-test  top-k
Methods (bars shaded by 7) Methods (bars shaded by 7) Methods (bars shaded by 7)

Shades by 7
1 =01 (3 7=02 B3 7=03 ERA =04 EE =05 HEE =06 B =07 Bl =08

Figure 8: Full results with » unknown. Precision, Recall, and IoU for all methods when each
returns its own set of significant codes at level o= 0.05.
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Figure 9: Full results with » known (top—r selection). Precision, Recall, and IoU when every
method is forced to return exactly r codes (the true number of effects).
D.3 ABLATION I: NO CAUSAL EFFECT

We repeat the semi-synthetic evaluation of Section[D.2]but set the true ATE to zero, namely 7 = 0
factors. In this regime, a well-calibrated discovery procedure should return no significant neurons.

Ablation at ATE = 0 (top-k=10)

- NES ==
124 B Boufenroni | 3 TopK
== FOR

i i
0 --’; =+

T T
30 100

8

T T T T
500 1000 2500 5000
N

Figure 10: Zero-effect ablation . Number of discovered neurons by method when ATE is 0.

We keep the data-generating process, foundation model, SAE training, and testing grid over sample
sizes n identical to Section [D.2] changing only the interventional contrast to ATE = 0. For each
method, we record the number of discoveries per run. Across all sample sizes, NES returns an
empty set: in the first iteration, no neuron survives Bonferroni at level «/m, and the recursion
halts. Furthermore, both Bonferroni and FDR also yield essentially zero discoveries. In contrast, the
uncorrected ¢-test produces spurious positives (false discoveries), and Top-k necessarily reports k
indices by design, labeling pure noise as significant. This behavior matches our theoretical intuition:
with 7 = 0 there is no effect vector to leak into entangled coordinates, so the paradox of Sec. [3|does
not arise; procedures that control multiplicity (NES via its first-step Bonferroni gate, Bonferroni,
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and FDR) appropriately abstain, whereas selection rules that ignore multiplicity (Top-k, plain ¢-
tests) over-discover.

D.4 ABLATION II: TESTING IN NES

We compare three per-round gates inside NES (Alg.[I): Bonferroni, FDR, and ¢-test. Same setup as
Sec.[D.2} only the multiplicity rule changes while recursion and residual stratification are unchanged.
NES-Bonf. delivers the cleanest recoveries: highest precision/IoU and exact stopping at r effects
when powered; under ATE=0 it returns none (cf. Ablation [D.3). NES-t is most exploratory for
small sample size and effect magnitude but over-selects as power grows, i.e., Paradox of Exploratory
Causal Inference.

Recommendation. Prefer a multi-hypothesis testing correction, i.e., Bonferroni/FDR, when the
power of the experiment is high, while consider ¢-test for a more explorative approach in low power
regime.

0.8 U,8—/\ 0.8

= 0.6 - 0.6

2 ’: T~ - T~
0.4 0.4 0.4

7
0.2+ 0.2+ 0.2+
0.0 T T T T T T 0.0 T T T T T T 0.0 T T T T T T
30 50 100 250 500 1000 2500 5000 30 50 100 250 500 1000 2500 5000 30 50 100 250 500 1000 2500 5000
N N N
1.0 1.0 1.0
0.8 0.8
Z06 - 0.6
T 04 0.4
0.2 0.2 0.2
0.0 : . : | 0.0 : . : | 0.0 : . : |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
T T T
——— Bonferroni FDR t-test

Figure 11: Testing in NES. Bonferroni: best precision/IoU and exact stopping; FDR: higher sensi-
tivity in low power, minor over-selection; ¢-test: exploratory but prone to over-discovery as power
increases.

D.5 ABLATION III: AIPW VvS. ASSOCIATIONAL DIFFERENCE

Throughout the paper, our per-neuron hypothesis test uses the associational difference (AD), i.e., a
two-sample ¢-test on the treated—control difference in means. In randomized trials, AD is unbiased
for the ATE, but it is not semiparametrically efficient. A standard variance—reduction alternative
is Augmented Inverse Propensity Weighting (AIPW; [Robins et al., |1994), which orthogonalizes the
estimator against misspecification of either the propensity score or the outcome regression.

Setup. For each code j, let Z;; be its activation for unit 7, T; € {0,1} the treatment, and W;
observed exogenous causes. We compute the AIPW pseudo-outcome
> P - T; . 1-1T; .
Zij = paj(Wi) = fio;(Ws) + W(zij — (W) — ﬁ(mz/i)(zij — f10;(W3)), (35)
where 7(W)=Pr(T'=1 | W) (known and constant 7 = 0.5 in our RCT), and j;;(W) ~ E[Z; |
T =t, W] is a nuisance regression. The AIPW estimate of the code-level ATE is 74PV = L5 7, -

J
we test Hy : 7; = 0 via a one-sample ¢-test on {Z;; }; with robust variance.

Results. Figure [I2] compares AD vs. AIPW on the semi-synthetic benchmark across sample size
n and effect magnitude 7. In our setting—with a truly randomized treatment (7 = 0.5) and a single
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binary covariate W—AIPW yields only marginal efficiency gains: Precision/Recall/IoU curves are
essentially overlapping, with small stability improvements for AIPW at the smallest n. Crucially,
orthogonalization affects variance but does not resolve entanglement: the significance—collapse phe-
nomenon for standard multi-testing (Section[3)) persists under AIPW, and NES retains its advantage
because its benefit comes from recursive stratification (disentangling residual effects), not from how
the first-step mean contrast is estimated.

Takeaways. (i) In pure RCTs with weak, low-dimensional W, AD is competitive and simpler.
(i) AIPW can be preferred when richer exogenous information is available (higher-dimensional
W, imbalance, or mild protocol deviations), where its variance reduction can translate into earlier
detection of the leading effect; (iii) regardless of AD or AIPW, NES’s stratified recursion is the key
to avoiding over-discovery under entanglement.

Bonferroni FDR t-test top-k

77

7%

Precision Recall Precision Recall Precision Recall Precision Recall

Precision Recall Precision Recall Precision Recall Precision Recall

0.6, N=5000
e 2 2
- =3 -

1 1 1

=l

0.2

0.0~

I
Precision Recall Precision Recall Precision Recall Precision Recall

C—/AD AIPW

Figure 12: AIPW vs. AD on semi-synthetic RCTs. Precision, Recall, and IoU when replacing the
per-neuron associational difference (AD) with AIPW (Eq. @ for baselines and the first NES step.
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