
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FORMALIZING AUDITS OF ML MODELS AS A
SEQUENTIAL DECISION-MAKING PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Auditing is a governance mechanism for evaluating ML models to identify and
mitigate potential risks. This process is critical, as undetected issues in models,
such as incorrect predictions or inappropriate feature use, can lead to adverse
consequences. In this work, we focus on application audits, which aim to detect
errors in domain-specific ML applications. Application audits are important as they
assess the risks posed by ML models to guide mitigation. Currently, application
audits are predominantly manual, relying on domain experts to identify model
errors by inspecting predictions and their explanations, which limits the scalability
of audits. To complement human auditors, we explore algorithmic approaches
to application auditing and formalize the auditing task as a sequential decision-
making problem. We propose SAFAAI, a novel conceptual framework for auditing,
inspired by principles of situational awareness, to formally define the objectives of
application audit problem. Building on this foundation, we introduce RLAuditor, a
reinforcement learning method for automating application audits of ML models.
We validate our approach on multiple ML models and datasets, both with and
without human auditors, demonstrating its effectiveness in facilitating audits across
different contexts. To our knowledge, this work is the first to formalize application
audits for ML models as a sequential decision-making problem, informing the
design of future automated and human-AI collaborative auditing approaches.

1 INTRODUCTION

Auditing is a governance mechanism that evaluates machine learning (ML) models by analyzing
their outcomes or simulating user interactions to identify, assess, and mitigate potential risks and
harms (Mökander et al., 2023; Lam et al., 2024; Raji & Buolamwini, 2019). Auditing ML models is
crucial for ensuring their reliability and safety, particularly in high-stakes applications (Kelly et al.,
2019; Zhang et al., 2020). For instance, in embodied AI systems like autonomous vehicles, perceptual
errors caused by ML models can lead to accidents and, in severe cases, loss of life (Cummings, 2021;
2023; Cummings & Bauchwitz, 2024). In healthcare, errors in ML-based diagnostic models can lead
to misdiagnoses or inappropriate treatments, potentially endangering patient safety (Sheliemina et al.,
2024; Yu et al., 2024). Regulatory frameworks such as the European AI Act mandate audits and
testing to identify vulnerabilities, biases, and unintended behaviors in ML models. To formalize the
concept of ML model auditing, Mökander et al. (2023) propose a three-layered framework consisting
of governance audits, model audits, and application audits. While the first two types are designed to
be conducted by model technology providers, i.e. the organizations developing ML models, the third
focuses on downstream applications and must be conducted within domain-specific contexts.

In this paper, we focus on this third type, known as application audits. Adapting the taxonomy of
Mökander et al. (2023) for general ML models, application audits can be defined as: “impact-oriented
assessment of the risks posed by products and services built on top of pre-trained ML models.”
Application auditing need to be conducted by end-users or application developers who rely on
end-user ML tools to build and evaluate customized applications by fine-tuning general-purpose ML
models. Unlike large organizations that develop the pre-trained ML model, these users may have
limited computational resources and may lack dedicated teams for model auditing. Moreover, appli-
cation audits must be conducted routinely to address evolving requirements within specific domains.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Auditing
Dataset

Audit
Report

Human
Auditor

ML Model

Figure 1: Application audits help iden-
tify problematic model behaviors in domain-
specific ML applications.

End-users currently rely on manual processes to
conduct application audits. Figure 1 illustrates a
typical approach to application auditing. A human
expert queries the model using an auditing dataset,
observing its behavior, including decisions and expla-
nations for the test samples. Alongside data samples,
model explanations aid the audit process by revealing
feature use and supporting the assessment of model
behavior (Yadav et al.; Balayn et al., 2022); their use-
fulness is also validated in our human user study. The
auditors identify erroneous samples and then iteratively select additional test samples from the dataset
to further probe the model. The selection of test samples is guided by intuition to maximize the
detection of problematic model behaviors. Identified behaviors are then categorized based on factors
such as severity and error type, culminating in an audit report.1 The entirely manual nature of the
auditing process limits scalability, hinders the discovery of problematic model behaviors, and leads to
inefficient use of domain experts’ time. Therefore, more research is needed on automated auditing
methods that complement existing manual approaches to better utilize domain experts’ time
and identify problematic model behaviors. Ideally, such methods should provide a general-purpose
solution that can be adapted to domain-specific applications.

To achieve this, our first contribution is the formalization of selecting informative test samples as
a sequential decision-making problem. Our insight is that this process is inherently sequential in
nature. Auditors typically start by evaluating model predictions and explanations on a few exploratory
instances to understand the model’s performance and reasoning. They then use this knowledge to
strategically select subsequent instances to reveal informative behavior. As familiarity grows, auditors
become more effective at identifying errors, continuously balancing exploration (learning the model)
and exploitation (using that knowledge to detect mistakes).

Our second contribution is to address the gap in automating the auditing process by proposing
a structured conceptual framework, SAFAAI. It formally defines urgent, underexplored research
challenges in application audits by introducing three levels of audit goals, analogous to the three
levels of situational awareness (Endsley, 1995; Sanneman & Shah, 2022). These levels help define
concrete optimization objectives for mathematical modeling of the application auditing problem.

Building on the first two contributions, our third contribution is the use of reinforcement learning
(RL) as an algorithmic solution to support auditing. To mathematically formalize this sequential
process, we model the auditing process as a Markov decision process (MDP) by designing the state
(knowledge about the model) and the action (selection of subsequent test samples). We explore various
choices of MDP state representations, including those involving model explanations, following the
strategies used by human experts (Yadav et al.; Balayn et al., 2022). Our sequential decision-making
model, combined with an off-the-shelf RL algorithm, culminates in RLAuditor: an auditing agent to
select test samples (actions) based on the current knowledge of the model (state).

0 100 200 300

Step

0.01

0.02

0.03

0.04

S
ta

te
L

ea
rn

in
g

E
rr

or

0

10

20

30

Id
en

ti
fie

d
E

rr
or

N
u

m
b

er

Figure 2: Application auditing is a proce-
dure for acquiring accurate knowledge of the
model (blue) to identify errors (orange).

In both numerical and human subject experiments, we
observe that RLAuditor enables efficient discovery
of model errors, while effectively balancing the trade-
off between exploration and exploitation. Figure 2
illustrates this exploration–exploitation process dur-
ing auditing, showing training curves for RLAuditor
in a domain-specific context. Similar to human audi-
tors, the RL agent first explores the model behavior
on test samples to learn a better state representation.
As the state representation becomes more accurate,
the RL agent then exploits its knowledge of the model
error to identify an increasing number of model er-
rors. Through experiments on multiple ML models,
including one trained on medical imaging dataset,
we demonstrate the effectiveness of this RL-based
approach in facilitating both automated and human-AI collaborative auditing of ML models.

1A practical instance of this manual auditing process is detailed in Section 5.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Research on auditing ML models has grown in response to the need for responsible AI deploy-
ment (Mökander et al., 2023; 2022). Existing methods can be grouped into two categories: facilitating
human audits and automating the audit process. Model explanations play a key role in both, revealing
feature use and supporting assessment of model behavior (Yadav et al.; Balayn et al., 2022).

Facilitating Manual Audits. Tools in this category often provide application-specific interfaces
for exploring model behaviors (Balayn et al., 2022; Wexler et al., 2019; Ren et al., 2016; Zhang
et al., 2018). For example, the What-If Tool (Wexler et al., 2019) is a model-agnostic interactive
visualization tool for analyzing ML models. Another approach leverages generative models to
expand auditing datasets, with humans reviewing and curating the most relevant test cases (Ribeiro &
Lundberg, 2022; Rastogi et al., 2023; van Breugel et al., 2024). While useful, these approaches rely
on human effort, limiting scalability.

Automated Audits. Our work aligns with the automated methods which aim to detect undesirable
behaviors without heavy human involvement (Kang et al., 2018; Ma et al., 2018; Singla et al.,
2021; Lourenço et al., 2019). Examples include assertion-based detection for specific tasks (Kang
et al., 2018) or probabilistic models for ranking potentially erroneous labels in autonomous vehicle
datasets (Kang et al., 2022). Existing approaches are largely domain-specific, whereas our method
targets general applicability across diverse models and datasets.

Role of Model Explanations. Explanations support audits in both manual and automated settings.
User studies demonstrate their effectiveness in manual audits (Balayn et al., 2022; Yadav et al.),
while automated approaches such as XAudit (Yadav et al.) uses explanations to reconstruct models
and ensure the inclusion of relevant features. However, XAudit is limited to simple models, such as
linear regression. In contrast, our work utilizes explanations to audit more complex models, including
CNNs for image classification. A more comprehensive review of related work is in Appendix A.

3 FORMALIZATION AND ALGORITHMIC SOLUTION

This section formalizes the auditing task as a sequential decision-making problem and presents our
algorithmic solution. First, we introduce SAFAAI, a novel conceptual framework that formally
defines the objectives of the application audit problem. Building on this foundation, we design an
MDP model to develop RLAuditor: an RL agent that automates the selection of test samples during
application audits of ML models.

3.1 SAFAAI: SITUATIONAL AWARENESS FRAMEWORK FOR APPLICATION AUDITS OF AI

Situational Awareness (SA) refers to the comprehension of environmental conditions, including
relevant system parameters, and has been extensively studied in human factors literature, particularly
in the context of human-automation teams working in complex environments (Endsley, 1988).

Level 1

Perception

Level 2

Comprehension

Level 3

Projection

Model input

and output:

Identifying

incorrect

predictions

Model feature:

Identifying the

unintended

features

New scenarios:

Identifying the

behaviors for

new scenarios

✓

✗

Figure 3: Illustration of SAFAAI.

Observing that application audits require the auditor to
have situational awareness of the model (the system)
within its application context (the environment reflect-
ing deployment on an application-specific dataset), we
build on the general SA framework to introduce the Sit-
uational Awareness Framework for Application Audits
of AI (SAFAAI).2

Definition 3.1 (Situational Awareness Framework for
Application Audits of AI). In the context of application
auditing, situational awareness of an ML modelM :
X → Y is defined as the detection of ML modelM
errors in the auditing dataset D, the comprehension of
incorrect reasoning processes of the ML model, and
the projection of model errors in future application-specific contexts that may not be present in the
auditing dataset. SAFAAI includes three levels of situational awareness, as shown in Figure 3.

2Coincidentally, SAFAAI means cleanliness or clarity in Hindi. An apt reflection of our framework’s goal:
to provide auditors with clarity about an ML model’s behavior in its application-specific context.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. Perception (Level 1): Identification of any incorrect model predictions in the auditing dataset.
Mathematically, this translates to the detection of the subset C ⊂ D of input instances x in the
dataset D for which the model’s predictionM(x) ̸= y differ from the ground truth y ∈ Y .

2. Comprehension (Level 2): Comprehension of any incorrect reasoning processes of the model.
Level 2 errors target potential feature misuse, such as prohibited features or invalid combinations.
These may not always cause incorrect predictions (Level 1), but must still be detected due to
their potential harm. Mathematically, given a feature set F , we formulate this as an auditor
comprehending the features F ′

y ⊆ F used by the model to predict output y, and assessing whether
they align with the auditor-intended features Fy ⊆ F .

3. Projection (Level 3): Detection of any incorrect model predictions in the set of all application-
specific model inputs X , including novel tasks that are not present in the auditing dataset. Analo-
gous to the original SA framework, this third level requires the auditor to project model behavior
onto new tasks (unseen scenarios).

Given the potentially vast input space X and, consequently, the auditing dataset D, manually
identifying every instance of unintended model behavior is often impractical and resource-intensive
in real-world applications. This requirement for an actionable and practical auditing framework
leads us to define and address the Efficient Application Auditing Problem, which aims to identify the
maximum number of relevant examples of model errors given limited auditing resources. Since our
work is the first attempt at formalizing application auditing, we will only focus on the first two levels
in the following sections and leave the exploration of the third level for future research.

Definition 3.2 (Efficient Application Auditing Problem). Efficient application auditing is defined as
the problem of selecting K input instances, denoted by the set C ′, that maximally overlap with the
set of inputs on which the model makes errors. Formally, this translates to selecting C ′ ⊆ D such
that |C ′| = K and |C ′ ∩ C| is maximized.

3.2 RLAUDITOR: APPLICATION AUDITING USING REINFORCEMENT LEARNING

We now introduce RLAuditor, an agent for solving the Efficient Application Auditing problem.
First, inspired by how humans audit ML models, we frame auditing as a sequential decision-making
problem and model it as an MDP. Next, we solve the designed MDP using RL to obtain RLAuditor’s
auditing policy. A detailed explanation is provided in Appendix B.

Auditing as a Markov Decision Process. Given a black-box ML modelM : X → Y and auditing
dataset D, the goal of the Efficient Application Auditing problem is to select a set C ′ ⊆ D of model
input instances such that |C ′| = K and |C ′∩C| is maximized. Furthermore, based on the observation
that human auditors often rely on model explanations to understand model reasoning, we assume
access to model explanations for a given input-output pair in the form of feature attribution scores.

Formally, consider the modelM (accompanied by an explanation algorithm) that maps an input
data point x ∈ X to a predicted class label ŷ ∈ Y and an explanation e ∈ E , where e is a feature
attribution vector. For simplicity, we overload ŷ to refer to the full logits of the model’s output. The
sequential decision-making problem then translates to learning a policy π for selecting the (m+1)-th
element xm+1 of the set C ′, given the model behavior on the elements selected thus far (x1, . . . , xm).

To enable tractable policy computation using reinforcement learning, we approximate the policy
as a Markovian policy π(· | s), where s denotes a suitable Markovian statistic derived from the
problem inputs and the previously selected elements (x1, . . . , xm) of C. Correspondingly, we frame
the sequential decision-making process as an MDP. Learning effective policies in this setting hinges
on the design of the state representation s ∈ S, followed by the appropriate specification of the
remaining elements of the MDP tuple (S,A, T,R). In the remainder of this section, we describe the
design choices for each component of the MDP, along with a reinforcement learning-based approach
to compute its policy.

State Space s ∈ S. To ensure effective auditing, the state s should represent the auditor’s knowl-
edge of the model, based on its performance and explanations on previously selected test cases
(x1, . . . , xm). At the same time, to enable tractable policy learning, the state s should be both
compact and Markovian. Designing such a state is non-trivial. In this work, we explore several
potential state features and evaluate their relative advantages through ablation studies. Based on the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

results of these studies (presented in Section 4.2), we adopt a state representation for RLAuditor that
includes a summary of: (i) the model’s prediction performance across classes, and (ii) the features
used by the model, which can be reflected by feature attribution scores. Concretely, we selected
s = [ϕclass, ϕexplanation], where ϕclass ∈ RN×N is the matrix for class prediction information, N is
the number of classes; and ϕexplanation ∈ RN×d represents the transform matrix from features and
classes, and d is the dimension of the feature embeddings. Concretely, for ϕclass we use the prediction
logits for each viewed sample as the knowledge representation for the classifier. Each row of the
matrix ϕclass ∈ RN×N corresponds to a predicted class, and the entry at position (i, j), denoted as
ϕclass(i, j), represents the averaged logits of the classifier for class j among the samples predicted as
class i. Formally, ϕclass(i, j) is defined as:

ϕclass(i, j) =
1

|Ui|
∑

xk∈Ui

ŷij ,

where Ui is the set of all past samples predicted as class i, and ŷij is the logit output of the classifier
for class j given the input sample xk. This representation captures the confidence distribution of
the classifier across all classes for samples predicted to belong to a specific class. Similarly, we
define the matrix ϕexplanation ∈ RN×d, where each row corresponds to a specific predicted class, and
each entry captures the average feature embeddings for that class. Specifically, the entry at position
(i, k), denoted as ϕexplanation(i, k), represents the average embedding of feature k among all samples
predicted as class i. Formally, we define:

ϕexplanation(i, k) =
1

|Ui|
∑

xj∈Ui

ψk(xj , ej),

where ψk(xj , ej) denotes the feature embedding of dimension k for the sample xj given ej . To
construct ψk(xj , ej), we utilize the ej as a mask over the input data and extract the corresponding
feature embeddings. These embeddings are then averaged to construct ϕexplanation, allowing us to
capture class-specific feature representations.

Action a ∈ A. The action a = x simply corresponds to selecting the next element x = xm+1 of C ′.
Thus, the Markovian policy π(a | s) aims to learn how to select the next element of C ′ based on the
current information about class predictions and explanations encoded in s.

Transition Model T (s′|s, a). The transition function defines how the state is updated based on the
current state and the selected action. To compute the next state, we first query the modelM on the
most recently selected input x = a, obtaining the corresponding model prediction ŷ and explanation
e. Next, given the tuple [x, ŷ, e], we define the transition for each state feature in the updated state
s′ = [ϕ′class, ϕ

′
explanation] via the following deterministic functions:

ϕ
′

class(i) =
1

|Ui|+ 1
(|Ui| · ϕclass(i) + ŷ) ,

ϕ
′

explanation(i) =
1

|Ui|+ 1
(|Ui| · ϕexplanation(i) + ψ(x, e)) .

Reward Model R(s, a). To leverage RL, a well-designed reward function is essential. Following
the guideline that the “reward signal is your way of communicating to the agent what you want
achieved, not how you want it achieved” (Sutton, 2018), we design a reward function that encourages
the algorithm to select inputs where the model exhibits errors. Intuitively, the reward function
informs the auditor whether the selected action successfully leads to the discovery of model errors.
Mathematically, the reward function assigns a score of 1 to selected model inputs that reveal errors
(as defined by SAFAAI), and a score of 0 to those that do not. During training, assessing whether the
model makes an error requires human in the loop to judge model outputs and provide this reward
signal. These annotations, or human inputs, are required only during the training phase. During
deployment of RLAuditor, no annotations are needed, enabling a fully automated auditing process.

Auditing Policy π. Lastly, given the MDP model of the auditing process (S,A, T,R), we employ
a widely used RL algorithm, Deep Q-Network (DQN), to learn the auditing policy for sequentially
selecting the elements of C ′ (Mnih et al., 2015). To learn this policy, we provide an auditing dataset
denoted as Dtrain ⊆ X . We evaluate its performance on a test set Dtest ⊆ X . Further implementation
details for the training paradigm of RLAuditor are provided in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Class 0
Class 1
Class 2
Class 3
Class 4

PCA Component 1

PC
A

 C
om

po
ne

nt
 2

(a) (b) (c)

Premise: A little boy in a gray
and white striped sweater and
tan pants is playing on a piece of

playground equipment.

Hypothesis: A boy is on a

playground.

(d)

Figure 4: Example of used datasets. (a) SynTab: PCA analysis of class features. (b) SynImg, (c)
VinDr-CXR and (d) e-SNIL: Input x and its e (highlighted in colors).

Rand. CNN AL Ours
0

10

20

30

S
co

re

3.5

11.4

5.0

21.5

28.0

9.0

29.6

SynTab

Rand. CNN AL Ours
0

200

400

188.8

238.8

386.0

193.0

320.0
336.8

458.3

SynImg

Rand. CNN AL Ours
0

250

500

750

61.8
360.4

438.5 67.0
490.0

163.1

885.5

VinDr-CXR

Rand. CNN AL Ours
0

10

20

30

8.6

14.0
13.2

23.6
12.0

28.0

17.0

27.3

e-SNLI

Figure 5: Auditing results for two levels of errors on fours datasets. Bar represents the number
of identified Level 2 errors. The total number of identified errors in both levels is listed above bars.

4 EXPERIMENTS

We now compare our RLAuditor’s performance against baselines in discovering Level 1 and Level 2
errors defined in SAFAAI (Section 4.1). We use four datasets for evaluation, including two synthetic
datasets SynTab and SynImg, and two real-world datasets VinDr-CXR (Nguyen et al., 2020) and
e-SNIL (Camburu et al., 2018). SynTab contains tabular data, while SynImg and VinDr-CXR are
image datasets, and e-SNIL consists of textual input. Figure 4 lists example of each dataset. Then,
we focus on the design choices (Section 4.2) of our algorithm, and the performance under limited
supervision (Section 4.3). Detailed experiment implementation can be found in Appendix C.

4.1 COMPARISON

We compare the overall performance of our proposed method with several baselines for both Level 1
and Level 2 tasks. The baselines used are as follows:

• Random: During testing, the exploration rate is set to 1.0, i.e., the next action is selected randomly.
• DNN: This baseline trains a deep neural network with the same architecture as the DQN, but in

a supervised manner. Instead of taking the state as input, it processes information from a single
data sample xi, where the input consists of the logits of the classifier for the predicted class ŷi, and
its feature embeddings from extracted by applying its explanation as a mask over the input data
ψ(xi, ei), paralleling the state design s.

• AL (Active Learning): Active learning is used to select unlabeled samples for human review and
labeling to improve model performance. In our comparison, we compare our method in selection
with the query strategy Expected Gradient Length (EGL) in AL as given in (Settles, 2009). We
selected EGL because EGL is based on model gradients, making it relevant for auditing settings:
It helps search for errors that lead to incorrect predictions (Level 1 error) and use wrong features
(Level 2) by using information about the network’s internal representations. Therefore, EGL serves
as a well-motivated and strong baseline for evaluating our algorithm’s effectiveness.

To assess the performance, we measure the number of identified errors within a given K-step. K is
set to 50, 500, 1000 and 50 on the SynTab, SynImg, VinDr-CXR, and e-SNIL, respectively. Note
that these Ks are smaller than the number of all errors existing in the test set, i.e., K is the upper
bound for the errors detected in this experiment. We ensure that each sample is counted only once.
For Level 2 errors, which we report them separately, we count only errors that exclusively belong to
Level 2, ensuring no overlap with Level 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

φconficlass φconfuclass
φstaticclass

[φc, φe]
0

10

20

30

S
co

re
25.0

28.2
25.8

29.6

State Design Study

Figure 6: Comparison of different state de-
signs. Light gray bars represent states without
ϕexplanation.

0% 33% 67% 100%
0

10

20

30

S
co

re

25.6
23.5

21.4 20.4
3.3

4.4

6.5
7.0

Learning with Limited Supervision
Overall score Score in B

Figure 7: Comparison of scores when training
with p% (p ∈ [0, 33, 67, 100]) of the labels
for error type B.

Figure 5 presents a comparison of our method with baselines on fours datasets. Our RLAuditor
outperforms the baselines on the first three datasets and achieves competitive results on e-SNLI
compared to AL. Notably, it surpasses AL in detecting Level 2 errors significantly, which are more
complex. Our method consistently outperforms the supervised baseline, demonstrating the superiority
of our RL-based approach. This also supports our argument that formulating the problem as a
sequential decision-making task is more appropriate, and that RL is a suitable solution.

4.2 STATE DESIGN

In this section, we study the different state designs s in our RLAuditor algorithm. The intuition of the
state is the information obtained from the viewed samples. Based on this information, an action a
will be taken. Therefore, the representation of the information from past samples is essential.

We first study the effectiveness of the component ϕclass and its design proposed in Section 3.2, which
we refer to “prediction confidence scores” denoted as ϕconfi

class(i, j), with the other two designs:

• Prediction confusion scores: ϕclass has the same dimension as the previous design, but we use the
format of confusion matrix of all previously seen samples as the knowledge representation for the
classifier. Each row corresponds to the ground truth class, each column represents the predicted
class, and the entry at position (i, j) represents the number of samples with ground truth class i
that were predicted as class j. Formally, ϕconfu

class (i, j) is defined as:

ϕconfu
class (i, j) = |{xk ∈ U | yk = i and ŷk = j}|,

where U is the set of all previously viewed samples, yk is the ground truth label of sample xk, and
ŷk is the predicted label of sample xk by the classifier.

• Static states: The two options above update s after viewing one sample, i.e., U is dynamic. In
this setting, we use the static state representation, which is a fixed representation. Similar to the
prediction confidence representation, ϕstatic

class (i, j) is defined as:

ϕstatic
class (i, j) =

1

|Di|
∑

xk∈Di

ŷij ,

where Di = {xk ∈ D | ŷk = i} is the set of all test samples predicted as class i. Since D is fixed,
the state remains static throughout the evaluation process.

Figure 6 shows the test scores using different state representations on SynTab in gray bars. Specifi-
cally, ϕconfu

class achieves the best result. However, ϕconfu
class requires the ground-truth class labels for xk,

which are not available in real-world scenarios. ϕstatic
class and ϕconfi

class achieve competitive results, but relies
on access to the full test set, which is impractical during deployment as new data comes. Considering
these practical constraints, we select ϕconfi

class as the final design choice for our algorithm.

We then study the effectiveness of ϕexplanation in the state representation. Our final model is denoted
as [ϕc, ϕe]. As shown in Figure 6, with the explanation information (ϕe), our agent learns to detect
errors most effectively, highlighting the importance of using model explanations.

4.3 LEARNING WITH LIMITED SUPERVISION

In this section, we aim to evaluate the performance of RLAuditor with limited training data for a
specific error type (e.g., errors from a particular class, B). In this context, learning with limited

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

A
cc

u
ra

cy

0.52 ± 0.37
0.74 ± 0.25

p = 0.066

(a)

0.0

0.5

1.0

C
on

se
n

su
s

0.68 ± 0.270.74 ± 0.22

p = 0.465

(b)

0.0

0.2

0.4

S
em

an
ti

c
si

m
ila

ri
ty

0.31 ± 0.06

0.42 ± 0.04

p = 0.016

(c)

0

1

2

3

4

N
u

m
b

er
of

is
su

es

0.57 ± 1.13

2.14 ± 1.57

p = 0.042

(d)

Figure 8: Human user study analysis among two groups: Control-; Experimental group.
(a) Accuracy in identifying misclassifications. (b) Consensus in identifying misclassifications. (c)
Participants’ report similarity. (c) Number of issues identified in the model report.

supervision refers to identifying errors from B with no or partial access to the annotated errors in B.
We highlight this setting, because it is labor-intensive in practice to collect human annotations for
model errors. We use SynTab for evaluation. During training, we annotate p% of the class B (B is
randomly selected) and leave the remainder unannotated, with p ∈ [0, 33, 67, 100]. The results are
listed in Figure 7. We report the total number of discovered errors across all error types (all classes)
in gray bars, and the scores for the class B in orange bars. We can see that with all the samples
in B are labeled (p = 100) during training, the number of the identified error for B is the highest.
However, without labeled errors in B results in the highest total scores. This is because the algorithm
finds it easier to learn when there are fewer error types. This experiment demonstrates that even with
partially labeled data for an error type, our model can learn to detect it, highlighting its potential for
efficient learning. More experimental results and detailed analysis can be found in Appendix D.

5 EVALUATION WITH HUMAN AUDITORS

One key challenge that RLAuditor aims to address is the scalability of practical audits. Effective
auditing requires human-AI collaboration, as humans cannot scale alone and AI auditors need human
judgment for accurate error labeling and learning domain knowledge. Thus, to inform future human-
AI collaborative approaches to application auditing, we also conducted a human subject study to
examine two research questions: R1. What strategies do human auditors use? R2. Can the samples
selected by RLAuditor help humans better understand the model’s behavior and errors?

Specifically, we implemented an auditing user interface (UI) that enables the study of interactions
between human auditors and the RLAuditor. The dataset used for this task is a user intent dataset
“Snips” (Coucke et al., 2018), which contains queries (short sentences) categorized into 7 intents. We
finetuned a small pre-trained BERT variant model (Bhargava et al., 2021) to classify user intents,
and this was the model to be audited. We adopted a between-subject design in which one group of
participants was exposed to the RLAuditor-suggested samples (experimental group), while the other
group was not (control group). N = 12 participants were recruited through institutional email lists
and have experience in evaluating and debugging ML models. Both groups include PhD students in
computer science, making them well-qualified for the ML audit task. The participants were randomly
and evenly assigned to two groups, and compensated $10 for their participation. Participants were
tasked with summarizing model errors in an audit report, which included a set of question targeting
Level 1 and Level 2 model errors. More details of the human user study can be found in Appendix E.

F1: RLAuditor helps humans generate more accurate audit reports. To assess the quality of the
reports, we studied how participants identified different types of model errors. Participants in the
experimental group were more likely to summarize misclassifications (Level 1 errors) and identify
issues related to the model’s feature usage (Level 2 errors). For each class, we asked participants
to specify which other class(es) the model most frequently confused it with. Figure 8a presents the
accuracy of misclassification identification (Level 1 errors), based on the ground-truth confusion
matrix. The experimental group demonstrates higher accuracy. Figure 8b shows the pairwise Jaccard
similarity within each group for the misclassification identification. The high consensus scores in
both groups indicate strong agreement among participants on the identified errors. This suggests that
the UI design influences the behavior of human auditors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Regarding participants’ analyses of model features, we observe that participants reported more
similarly when using RLAuditor, as reflected in the report semantic similarity scores shown in
Figure 8c. Participants summarized their observations on which features used by the model have
issues or need improvement. With the help of RLAuditor, the experimental group demonstrated
deeper reasoning and identified more issues (averagely two problems per class per user) related to the
model’s feature usage (Level 2 errors), as shown in Figure 8d.

F2: RLAuditor helps humans complete audits in less time. Participants were instructed to
complete the task within 30 minutes but were allowed additional time if needed. We recorded
the time each participant took to complete the task and analyzed the content of their reports. The
average completion time for the control group was 37m55s± 6m45s, while the experimental group
completed the task in 32m26s ± 4m38s. The reduced time required by the experimental group
highlights the effectiveness of the selected samples, as participants spent less time searching through
the dataset. Notably, the efficiency gains are expected to become more as the dataset size increases.
We also asked participants to rate how helpful they found the agent’s suggestions in this audit task.
The participants in the experimental group gave an average score of 5.75± 0.5 on a 7-point Likert
scale, where 1 indicates “extremely useless” and 7 indicates “extremely helpful”.

F3: Human auditors rely on model explanations for audits. In the participants’ reported strategies,
a common pattern emerged from both groups: 75% percent of participants reported relying on
model explanations (highlighted tokens) and summarizing insights by analyzing misclassification
explanations. 17% indicated they studied both correct and incorrect classifications in their audits.
This aligns with prior work that addresses the usefulness of explanations in audit tasks (Yadav
et al.; Balayn et al., 2022). It also validates the design of our RLAuditor, which incorporates model
explanations to reflect human auditing strategies.

Based on findings F1 and F2, we address research question R2: RLAuditor can assist humans in
audits. The improvement comes from the agent clearly grouping problematic samples and presenting
them. This allows humans to compare examples and better understand incorrect predictions or
misused features. F3 addresses R1, and it verifies that model explanations play an important role in
application audits. More detailed analysis of the human user study can be found in Appendix E.

6 CONCLUSION

As ML models are deployed in real-world and safety-critical domains, auditing is essential to ensure
their safe and responsible operation. In this work, we focus on application audits, which are important
for assessing ML models but require domain-specific knowledge from diverse stakeholders and
currently lack scalability. We formalize application audits as a sequential decision-making problem
and introduce SAFAAI to guide the design of automated auditing algorithms. To our knowledge, this
is the first work to model auditing as an MDP. We solve the MDP with an agent called RLAuditor
that leverages RL and XAI methods to examine model behavior. We evaluate our proposed method
across multiple datasets with various data modalities. Experiments demonstrate the effectiveness
of our formalization and RL-based solution. This work provides a new way to address the auditing
problem and support human auditors in human–AI collaboration for ML application audits.

Limitations and Future Work. Our work also motivates several directions for future work on
auditing ML models, an important problem for AI safety. First, experimental results demonstrate
that our RLAuditor can successfully automate parts of application auditing and complement human
auditors but on traditional ML models. As foundation models are widely deployed in real-world
applications, developing effective methods for auditing them becomes important. Since both SAFAAI
and RLAuditor are model-agnostic by design, we believe that the insights developed in this work
are directly relevant to the auditing of large foundation models. Nonetheless, achieving scalability
will require further research into the design of expressive yet tractable state representations. Second,
the RLAuditor focused on the first two levels of SAFAAI but not Level 3, which requires handling
variability across tasks. To address this, in future work, we plan to extend the state representation
with a meta-learning–inspired component to better capture task transitions. Lastly, our formalization
should be viewed as one of several approaches to auditing, expanding the toolkit for ML auditing
and providing a foundation to guide future research in this area. We emphasize the need for a deeper
investigation into human-AI collaborative approaches to auditing. Auditing is a task that benefits
from the complementary strengths of humans and AI in ensuring the responsible use of ML models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethical Statement In this work, we attempt to put human users at the center of human-AI collab-
oration, with the aim of designing an algorithm that can be efficient for facilitating humans in ML
application audits. To safeguard user privacy and user rights, we have received approval from the
university IRB. We believe that only when AI becomes more accessible, acceptable, and usable, can
we realize its full potential to empower the world around us.

Reproducibility Statement We have made every effort to ensure the reproducibility of our work.
The paper provides detailed descriptions of the proposed algorithm in Section 3.2, with additional
implementation details, hyperparameters, and experimental setups included in Appendix B. Full
description of the datasets and experimental implementation details are presented in Appendix C. We
also provide an anonymous link to the source code: https://anonymous.4open.science/
r/RLAuditor-F0F6/README.md

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. On the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049, 2018.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Agathe Balayn, Natasa Rikalo, Christoph Lofi, Jie Yang, and Alessandro Bozzon. How can explain-
ability methods be used to support bug identification in computer vision models? In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–16, 2022.

Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers. Generalization in nli: Ways (not) to go
beyond simple heuristics, 2021.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Lluı́s Màrquez, Chris Callison-Burch, and Jian Su
(eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi:
10.18653/v1/D15-1075. URL https://aclanthology.org/D15-1075.

Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-
snli: Natural language inference with natural language explanations. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 31, pp. 9539–9549.
Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8163-e-snli-natural-language-inference-with-natural-language-explanations.
pdf.

Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay, and Devi Parikh.
Do explanations make vqa models more predictable to a human? In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 1036–1042, 2018.

Michael Chromik, Malin Eiband, Felicitas Buchner, Adrian Krüger, and Andreas Butz. I think i
get your point, ai! the illusion of explanatory depth in explainable ai. In Proceedings of the 26th
International Conference on Intelligent User Interfaces, pp. 307–317, 2021.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips voice plat-
form: an embedded spoken language understanding system for private-by-design voice interfaces.
arXiv preprint arXiv:1805.10190, 2018.

Mary Cummings. Rethinking the maturity of artificial intelligence in safety-critical settings. AI
Magazine, 42(1):6–15, 2021.

Mary L Cummings and Ben Bauchwitz. Unreliable pedestrian detection and driver alerting in
intelligent vehicles. IEEE Transactions on Intelligent Vehicles, 2024.

ML Cummings. What self-driving cars tell us about ai risks. IEEE Spectrum, 2023.

10

https://anonymous.4open.science/r/RLAuditor-F0F6/README.md
https://anonymous.4open.science/r/RLAuditor-F0F6/README.md
https://aclanthology.org/D15-1075
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Engin Durmaz and M Borahan Tümer. Intelligent software debugging: A reinforcement learning
approach for detecting the shortest crashing scenarios. Expert Systems with Applications, 198:
116722, 2022.

Mica R Endsley. Design and evaluation for situation awareness enhancement. In Proceedings of the
Human Factors Society annual meeting, volume 32, pp. 97–101. Sage Publications Sage CA: Los
Angeles, CA, 1988.

Mica R Endsley. Toward a theory of situation awareness in dynamic systems. Human factors, 37(1):
32–64, 1995.

Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. Model assertions for debugging
machine learning. In NeurIPS MLSys Workshop, volume 3, 2018.

Daniel Kang, Nikos Arechiga, Sudeep Pillai, Peter D Bailis, and Matei Zaharia. Finding label and
model errors in perception data with learned observation assertions. In Proceedings of the 2022
international conference on management of data, pp. 496–505, 2022.

Gopinath Kathiresan. Adaptive test optimization: Using reinforcement learning to improve software
testing strategies. Well Testing Journal, 33(S2):715–732, 2024.

Christopher J Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg Corrado, and Dominic King.
Key challenges for delivering clinical impact with artificial intelligence. BMC medicine, 17:1–9,
2019.

Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. Adaptive rest api testing with reinforcement
learning. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 446–458. IEEE, 2023.

Khoa Lam, Benjamin Lange, Borhane Blili-Hamelin, Jovana Davidovic, Shea Brown, and Ali Hasan.
A framework for assurance audits of algorithmic systems. In Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Transparency, pp. 1078–1092, 2024.

Cindy Kaiying Lin and Steven J. Jackson. From bias to repair: Error as a site of collaboration and
negotiation in applied data science work. Proc. ACM Hum.-Comput. Interact., April 2023. doi:
10.1145/3579607.

Raoni Lourenço, Juliana Freire, and Dennis Shasha. Debugging machine learning pipelines. In
Proceedings of the 3rd International workshop on data management for end-to-end machine
learning, pp. 1–10, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. Mode: automated
neural network model debugging via state differential analysis and input selection. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 175–186, 2018.

Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian Lum. Algorithmic
fairness: Choices, assumptions, and definitions. Annual review of statistics and its application, 8
(1):141–163, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

11

http://arxiv.org/abs/1810.04805

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jakob Mökander, Maria Axente, Federico Casolari, and Luciano Floridi. Conformity assessments
and post-market monitoring: a guide to the role of auditing in the proposed european ai regulation.
Minds and Machines, 32(2):241–268, 2022.

Jakob Mökander, Jonas Schuett, Hannah Rose Kirk, and Luciano Floridi. Auditing large language
models: a three-layered approach. AI and Ethics, pp. 1–31, 2023.

Duc Nguyen, DungNB, Ha Q. Nguyen, Julia Elliott, NguyenThanhNhan, and Phil Culliton. Vin-
bigdata chest x-ray abnormalities detection. https://kaggle.com/competitions/
vinbigdata-chest-xray-abnormalities-detection, 2020. Kaggle.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investigating the impact of
publicly naming biased performance results of commercial ai products. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pp. 429–435, 2019.

Charvi Rastogi, Marco Tulio Ribeiro, Nicholas King, Harsha Nori, and Saleema Amershi. Supporting
human-ai collaboration in auditing LLMs with LLMs. In Proceedings of the 2023 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 913–926, 2023.

Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D Williams. Squares: Supporting
interactive performance analysis for multiclass classifiers. IEEE transactions on visualization and
computer graphics, 23(1):61–70, 2016.

Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of nlp models. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3253–3267, 2022.

Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards human-centered explainable ai: A
survey of user studies for model explanations. IEEE transactions on pattern analysis and machine
intelligence, 46(4):2104–2122, 2023.

Lindsay Sanneman and Julie A Shah. The situation awareness framework for explainable ai (safe-ai)
and human factors considerations for xai systems. International Journal of Human–Computer
Interaction, 38(18-20):1772–1788, 2022.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Burr Settles. Active learning literature survey. 2009.

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. Advances in neural
information processing systems, 20, 2007.

Nataliia Sheliemina et al. The use of artificial intelligence in medical diagnostics: Opportunities,
prospects and risks. Health Economics and Management Review, 5(2):104–124, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures
of deep networks via robust feature extraction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12853–12862, 2021.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Wannita Takerngsaksiri, Rujikorn Charakorn, Chakkrit Tantithamthavorn, and Yuan-Fang Li. Pytester:
Deep reinforcement learning for text-to-testcase generation. Journal of Systems and Software, 224:
112381, 2025.

12

https://kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection
https://kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Boris van Breugel, Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Can you rely on
your model evaluation? improving model evaluation with synthetic test data. Advances in Neural
Information Processing Systems, 36, 2024.

Yunlong Wang, Priyadarshini Venkatesh, and Brian Y Lim. Interpretable directed diversity: Leverag-
ing model explanations for iterative crowd ideation. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, pp. 1–28, 2022.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas, and Jimbo
Wilson. The what-if tool: Interactive probing of machine learning models. IEEE transactions on
visualization and computer graphics, 26(1):56–65, 2019.

Chhavi Yadav, Michal Moshkovitz, and Kamalika Chaudhuri. Xaudit: A learning-theoretic look at
auditing with explanations. Transactions on Machine Learning Research.

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in neural
information processing systems, 33:20554–20565, 2020.

Feiyang Yu, Alex Moehring, Oishi Banerjee, Tobias Salz, Nikhil Agarwal, and Pranav Rajpurkar.
Heterogeneity and predictors of the effects of ai assistance on radiologists. Nature Medicine, 30
(3):837–849, 2024.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. Manifold: A model-agnostic
framework for interpretation and diagnosis of machine learning models. IEEE transactions on
visualization and computer graphics, 25(1):364–373, 2018.

Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey, landscapes
and horizons. IEEE Transactions on Software Engineering, 48(1):1–36, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Related Work 14

A.1 Methods for Auditing ML Models . 14

A.2 Layered Audit Frameworks . 15

A.3 Reinforcement Learning (RL) . 16

B Implementation Details for RLAuditor 16

B.1 RLAuditor: Formalizing Efficient Auditing as an MDP 16

B.2 Implementation Details for Figure 2 . 17

B.3 Training Algorithm for RLAuditor . 17

B.4 Implementation Details . 18

C Implementation Details for Experiments 18

C.1 Datasets . 18

C.2 Audited ML Model . 22

C.3 Baselines . 22

D More Experimental Results 23

D.1 Full Results of Comparison . 23

D.2 Extension to Regression Tasks . 23

D.4 Training Efficiency . 25

E Evaluation with Human Auditors 25

E.1 Implementation Details . 25

E.2 User Study Procedure . 27

E.3 Participant Demographics . 27

E.4 Guiding Questions for Auditing . 27

E.5 Objective Questions . 27

E.6 Extended Analysis . 28

F Computational Infrastructure Details 29

G Statement on LLM Usage 29

A RELATED WORK

A.1 METHODS FOR AUDITING ML MODELS

Recognizing the urgent need for the safe and responsible deployment of AI systems (Mökander
et al., 2023; 2022), there is growing research focused on facilitating audits of ML models. Existing
solutions can be broadly categorized as: (1) those designed to assist humans in performing audits
and (2) those aimed at automating the auditing process. At the end of this section, we also discuss
how model explanations can support and enhance the auditing process. Model audits are important
not only for uncovering and fixing bugs in ML applications, but also for revealing hidden structures

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

of collaboration and advocating for a reshaping of existing practices in ML science (Lin & Jackson,
2023).

Facilitating Manual Audits of ML Models. In the first category, a common theme has been
the development of application-specific user interfaces to explore model behaviors (Balayn et al.,
2022; Wexler et al., 2019; Ren et al., 2016; Zhang et al., 2018). For instance, Wexler et al. (2019)
introduced the What-If Tool, a model-agnostic interactive visualization tool designed to enhance
model interpretability. Another strategy involves assisting humans in generating test cases by
expanding the auditing dataset through generative models (Ribeiro & Lundberg, 2022; Rastogi
et al., 2023; van Breugel et al., 2024). For example, Ribeiro & Lundberg (2022) propose a testing
loop where a large language model (LLM) generates test cases, and human auditors review the top
failing ones, adding valid tests to relevant topics or sub-topics to construct a comprehensive test
dataset. While these tools provide valuable insights, the reliance on humans in the loop can limit their
scalability.

Automated Audits of ML Models. Our work aligns with the second category of methods which
focus on automatically detecting undesirable model behaviors (Kang et al., 2018; Ma et al., 2018;
Singla et al., 2021; Lourenço et al., 2019). Examples of such methods include algorithms and
frameworks for identifying problematic model behaviors in specific tasks, such as improving model
accuracy through selective input sampling (Ma et al., 2018), rather than directly assisting human
auditors. Kang et al. (2018) propose using a set of assertion rules to detect errors in machine learning
outputs for object detection in videos. For example, a car should not disappear and then reappear
in consecutive video frames. These assertions can be “soft” and represented as probabilistic. This
probabilistic modeling approach is further extended to identify errors in human-provided labels and
machine learning model outputs within the autonomous vehicle domain (Kang et al., 2022), where
ensuring the accuracy of annotations is critical for safety and performance. Kang et al. (2022) propose
a system that learns priors to distinguish likely from unlikely values. The resulting probabilistic
model is then used to rank data point labels based on their likelihood of being erroneous. These
existing automated approaches have primarily targeted domain-specific applications. In contrast, our
method aims to provide a more general solution across diverse models and datasets.

Role of Model Explanations. Across both categories of methods, model explanations play a
crucial role in audits by revealing how a model utilizes features, thereby helping auditors assess
model behavior (Yadav et al.; Balayn et al., 2022). For instance, through a user study, Balayn et al.
(2022) demonstrate the utility of diverse explanations in facilitating manual audits of ML models.
In the context of automated methods, the XAudit approach (Yadav et al.) partially reconstructs a
hidden model using model explanations, ensuring the inclusion of a specific feature. However, this
method is constrained to simple models, such as linear regression models, and relies on predefined
feature sensitivity metrics. In contrast, our work aims to leverage explanations to automatically
audit more complex models and datasets, such as convolutional neural networks (CNNs) for image
analysis. In this work, we select explanation techniques (SHAP and GradCAM) that are well-
established and widely validated in the literature to ensure a reasonable level of supporting human-AI
collaboration (Chandrasekaran et al., 2018; Chromik et al., 2021; Wang et al., 2022); see Table 3
in (Rong et al., 2023).

A.2 LAYERED AUDIT FRAMEWORKS

Prior layered model audit frameworks such as Lam et al. (2024); Mökander et al. (2023) focus on
high-level, organization-wide audits, often assuming the resources of large institutions and aligning
with regulations such as NYC’s Local Law 144 (Lam et al., 2024). In contrast, there has been
comparatively less focus on application-level audits. However, these are increasingly important, as
many ML model practitioners lack the capacity for large-scale, organization-level audits. They need
practical, lightweight tools to conduct audits routinely within their specific applications.

Another line of audit frameworks focuses on defining metrics and evaluations that capture key aspects
of fairness and interpretability. For example, Mitchell et al. (2021) define fairness using equal decision
measures or causal reasoning, while (Doshi-Velez & Kim, 2017; Alvarez-Melis & Jaakkola, 2018)
introduce metrics such as robustness of interpretability to assess model explanations. However, some
measures, such as human-grounded evaluation of explanations, require manual effort and cannot

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

be fully captured by automated metrics (Doshi-Velez & Kim, 2017). These frameworks emphasize
post hoc evaluations at the dataset or model level. For instance, Mitchell et al. (2021) evaluate
social bias across the dataset, Alvarez-Melis & Jaakkola (2018) assess the robustness of all generated
explanations and Doshi-Velez & Kim (2017) emphasize human understanding of a model by viewing
some explanations. They fail to provide individual samples that human auditors may want to examine
more closely.

Compared to these previous work, our SAFAAI serves a similar purpose by providing clear definitions
that can be formulated as mathematical problems. However, our focus is on identifying individual
error samples and presenting them to users to support the auditing process. This procedure is not
mathematically modeled in prior works. The definition of “error” in our framework is general and
can be determined by users or based on existing fairness or interpretability criteria.

A.3 REINFORCEMENT LEARNING (RL)

RL is a general paradigm for solving sequential decision-making problems, including those involving
uncertainty, through trial and error. In its most general setup, an agent learns to make optimal decisions
by interacting with its environment, receiving rewards for its actions (Sutton, 2018). Through the
history of trial and error, it refines a policy to maximize cumulative rewards. RL has been widely used
in complex domains such as robotics, game playing, autonomous driving, and finance, where explicit
programming of optimal behavior is impractical (Silver et al., 2016; Arulkumaran et al., 2017). In
this work, we use RL to select the optimal next action (test case) for audits, while the development of
new RL algorithms is not the main technical focus.

Test Case Generation for Software using RL. Prior work (Takerngsaksiri et al., 2025; Durmaz &
Tümer, 2022; Kim et al., 2023; Kathiresan, 2024) has used RL to generate software test cases, which
are modeled as sequences of actions such as input tokens, API calls, or UI interactions. These input
sequences are designed to uncover bugs or test for malicious behavior in the system. For example,
Takerngsaksiri et al. (2025) use deep RL within large language models to generate executable, high-
coverage test code, while Durmaz & Tümer (2022) employ RL to generate minimal crashing input
sequences. In these works, states represent the current program or input context, actions correspond
to next steps, and rewards are based on outcomes such as code coverage or syntax validity.

In contrast, our work focuses on auditing ML models. The sequence of actions generated by our
algorithm is not to trigger a system failure, but to construct a comprehensive understanding of the
model’s erroneous behavior: Unlike software debugging, where the goal is often to generate a failing
test case, our method aims to select a representative set of test samples that reveal different facets
of the model’s failures to human auditors. Our state formulation simulates the accumulation of
knowledge about model behavior, reflecting how humans build understanding through observations.
This is a more challenging and cognitively aligned task.

B IMPLEMENTATION DETAILS FOR RLAUDITOR

B.1 RLAUDITOR: FORMALIZING EFFICIENT AUDITING AS AN MDP

We introduce RLAuditor: an automated approach to solving the Efficient Application Auditing
problem. Our design is grounded in SAFAAI and informed by observations of how humans conduct
application audits of ML models. Typically, auditors begin by evaluating model predictions and
explanations on a few exploratory instances to develop an understanding of the model’s performance
and reasoning. They then exploit this understanding to more strategically select subsequent instances
where model behavior is likely to be informative. As their familiarity with the model grows, they
become increasingly effective at identifying its errors. Throughout this process, auditors must
continuously balance exploration (i.e., learning more about the model’s reasoning) and exploitation
(i.e., using that knowledge to efficiently detect model errors). While this manual process may not
scale well, it provides key insights for designing automated auditors. First, the sequential nature
of selecting instances for model evaluation motivates formulating the auditing task as a sequential
decision-making problem. Specifically, we model this process as a Markov Decision Process (MDP),
which naturally captures the dynamics between the agent (the auditor) and the environment (the
model’s behavior), as well as the dependence on past observations. Second, the inherent exploration-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dataset

Human Auditor

ML Model

Domain Knowledge

Selection Assessment

𝑥 ො𝑦

Dataset

ML Model

RLAuditor

Domain

Knowledge

Selection Assessment

𝑥
ො𝑦

XAI
Reward

Function

Automated

Figure 9: Auditing with RLAuditor.

exploitation trade-off in auditing motivates the use of reinforcement learning to address this challenge.
Given an MDP formulation of the auditing process, we then learn a policy for sequentially selecting
the elements of set C ′ (see Definition 3.2) using RL. Figure 9 depicts the process of learning this
policy, using RL and human feedback. With model explanations, the utilization of features can be
automatically assessed, further enhancing the auditing process. When deploying RLAuditor, the gray
elements are excluded, reflecting the automated auditing process.

In practice, the expert is familiar with both the application and the model being audited, enabling
them to identify errors. When working with RLAuditor, the expert’s role goes beyond simple labeling.
They provide feedback on whether selected samples are erroneous and can offer more advanced
guidance, such as highlighting errors that RLAuditor may have overlooked. This feedback can
be incorporated as a reward signal to refine and improve RLAuditor’s performance. Moreover, in
practice, the expert is responsible for composing comprehensive reports that summarize the different
types of errors identified in the model.

B.2 IMPLEMENTATION DETAILS FOR FIGURE 2

Figure 2 illustrates the intuition behind modeling the auditing process as a sequential task, where
knowledge about the model accumulates over time and the selection of subsequent samples is guided
toward more informative errors. To validate this intuition in the implemented algorithm RLAuditor,
we plot the training curve of RLAuditor on SynTab. The state learning error is measured using the
mean squared error:

LMSE =
1

N ∗N
∑
i,j

(
ϕconfi

class(i, j)− ϕconfu
class (i, j)

)2
,

where ϕconfi
class represents the learned state, and ϕconfu

class denotes the ground-truth state, which requires the
ground-truth labels (defined in Section 4.2). Note that it is impracticable to obtain the ground-truth
state for ϕexplanation, so we omit its error estimation in s for this plot. We also plot the reward curve
over the training steps. The figure shows a clear trend: the estimation of s improves over time, and
the reward increases as the model knowledge aids error discovery. Both curves saturate after about
300 steps. This figure also shows that the selection of error samples is a sequential decision-making
process that relies on s.

B.3 TRAINING ALGORITHM FOR RLAUDITOR

Algorithm for RLAuditor can be found in Algorithm 1. Our RLAuditor is adopted from Deep Q-
Learning (DQN) (Mnih et al., 2015). DQN combines Q-learning with deep neural networks (DNNs)
to enable agents to learn value-based policies directly from high-dimensional input. The algorithm
trains an agent through techniques such as experience replay and a target network. To address a
stable training outcome, Double DQN is used in Algorithm 1, which decouples action selection and
evaluation by using the target network for value estimation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 RLAuditor Training Algorithm

1: Initialize replay memory L
2: Initialize Q with weights θ
3: Initialize target Q̂ with weights θ̂ = θ
4: Set the number of episodes E
5: Set the maximum number of steps per episode T
6: for e = 1, 2, . . . , E do
7: k ← 1
8: Select a random initial state s1
9: while Goal state not reached and k ≤ T do

10: With probability ϵ select a random action ak, otherwise select ak = argmax
a

Q(st, a; θ).

11: Execute action ak and observe reward rk.
12: Set sk+1 = T (sk, ak), and store transition (sk, ak, rk, sk+1) in L.
13: Set yj = rj if episode terminates at step j+1, otherwise yj = rj+γ max

i∈Ω(ak+1)
Q̂(sk+1, ai; θ̂).

14: Perform a gradient descent step on (yj −Q(sj , aj ; θ))
2 with respect to θ.

15: Update Q̂ = Q
16: end while
17: end for

B.4 IMPLEMENTATION DETAILS

Q Architecture. The Q-network integrates state and action representations to estimate Q-values. It
consists of two sub-networks. One maps input states to a 128-dimensional latent space using fully
connected layers with ReLU activations. Actions are processed through another network with a
linear layer, and ReLU, producing 64-dimensional action features. The model expands state features
to match the number of actions, concatenates them with action features, and passes them through
an estimation network comprising multiple fully connected layers and ReLU activations. The final
output layer predicts a single Q-value per state-action pair. This architecture enables effective learning
in environments with structured action spaces, making it suitable for complex decision-making tasks.

Training Hyperparameters. The training setup includes a batch size of 128 for processing training
samples, and a replay buffer capable of holding up to 1M past experiences. The training begins after
50,000 steps, with updates occurring every four steps. The target network is updated every 1,000
steps. The learning rate is set at 0.001, with a smoothing factor of 0.95 applied for target estimation.
Moreover, an exploration factor of 0.01 is used to balance exploration and exploitation during action
selection.

C IMPLEMENTATION DETAILS FOR EXPERIMENTS

C.1 DATASETS

C.1.1 SYNTAB

We generate a tabular dataset consisting of five classes, with each class containing 1000 samples. The
dataset includes ten features, and each class is sampled from a Gaussian distribution. To introduce
Level 1 errors, we make two classes share a similar distribution by assigning them close values for
the mean µ and standard deviation σ in the Gaussian distribution. This can be observed in Figure 10,
where class 0 and 1 are overlapping. For Level 2 errors, two out of the ten features are redundant,
meaning they contain no class information. Using these two features for classification results in
a Level 2 error. We randomly split 60% for Dtrain, and the rest for Dtest. M is a trained linear
regression model, and the feature embedding weights before classification, are used as the explanation
e. Please note thatM is trained on a larger, separate dataset rather than Dtrain, where Dtrain refers
specifically to the training set used for the RL-based algorithm for simplicity. This applies to all other
datasets used in the experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Class 0
Class 1
Class 2
Class 3
Class 4

PCA Component 1

PC
A

 C
om

po
ne

nt
 2

Figure 10: PCA analysis of classes in SynTab.

C.1.2 SYNIMG

To further evaluate the performance of the proposed method on a more complex and larger dataset,
we generate a challenging image dataset consisting of 24k images, with 12k for Dtrain and Dtest each.
This dataset is inspired by Yeh et al. (2020). Each image contains up to 15 shapes, with only five of
them being relevant to the ground truth class.

Figure 11 lists the shapes that used in SynImg. We use the first five shapes (qi) in Figure 11 to
determine the five concepts (ci) in the dataset. Concretely, we define concepts using specific formulas.
The first concept calculates a binary outcome based on the formula:

c1 = ((1− q1 · q3) + q4) > 0.

The second concept computes the sum of q2 and the product of q3 and q4:

c2 = q2 + (q3 · q4).

The third concept sums two products:

c3 = (q4 · q5) + (q2 · q3).

The fourth concept uses the bitwise XOR operation between q1 and q2:

c4 = q1 ⊕ q2.

Finally, the fifth concept adds q2 and q5:

c5 = q2 + q5.

After obtaining the concepts, we encode different combinations of concepts into ten classes, i.e., each
sample is defined by a combination of the five concepts. Specifically, we use the following algorithm:
(1) It takes a list of 5-digit binary numbers representing concept combinations, and turns each binary
number into a regular number (decimal). (2) It assigns a label by dividing that number by ten and
taking the remainder. That way, all labels are between 0 and 9. Figure 12 shows examples from the
dataset, where the it demonstrates the corresponding concept and class.

On this dataset, we train a five-layer CNN as the modelM and use GradCAM (Selvaraju et al., 2017)
for the explanation e. Figure 13 show more examples. It is straightforward to obtain annotations
for Level 1 error by comparing the predictions with the ground truth labels. As for the Level 2,
since the positions of the five relevant shapes are known during dataset generation, we can assess the
correctness of the explanation e, i.e., whether the shapes corresponding to the ground-truth class are
correctly highlighted by e in the important areas based on a threshold.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 100 200

0

50

100

150

200

250

Shape 1

0 100 200

0

50

100

150

200

250

Shape 2

0 100 200

0

50

100

150

200

250

Shape 3

0 100 200

0

50

100

150

200

250

Shape 4

0 100 200

0

50

100

150

200

250

Shape 5

0 100 200

0

50

100

150

200

250

Shape 6

0 100 200

0

50

100

150

200

250

Shape 7

0 100 200

0

50

100

150

200

250

Shape 8

0 100 200

0

50

100

150

200

250

Shape 9

0 100 200

0

50

100

150

200

250

Shape 10

0 100 200

0

50

100

150

200

250

Shape 11

0 100 200

0

50

100

150

200

250

Shape 12

0 100 200

0

50

100

150

200

250

Shape 13

0 100 200

0

50

100

150

200

250

Shape 14

0 100 200

0

50

100

150

200

250

Shape 15
Figure 11: Shapes used in SynImg. The first five shapes contain class-discriminative information.

C.1.3 VINDR-CXR

To verify the performance of our methods in real-world applications, we use a medical image dataset
named VinDr-CXR (Nguyen et al., 2020). It consists of more than 100k raw X-ray images in DICOM
format, annotated for the presence of 14 types of thoracic abnormalities, with each finding localized
using a bounding box. We extract 8513 samples for Dtrain and 8654 for Dtest, ensuring each sample is
assigned an abnormality label along with its corresponding bounding box. A ResNet-50 is used as
M. Similarly to SynImg, we identify Level 2 errors using Grad-CAM (Selvaraju et al., 2017) as
the explanation e. A Level 2 error is determined based on whether the top-K attribution scores in e
achieve an Intersection over Union (IoU) with the bounding box exceeding a preset threshold.

In the real-world deployment of ML models in medical applications, Level 1 and Level 2 audits are
critical for both patients and medical professionals. Level 1 is essential for patient safety, as incorrect
predictions can lead to misdiagnoses. Level 2, on the other hand, is important for doctors, who must
assess the accuracy of the model’s decisions and determine whether to trust them. We use this dataset
to demonstrate the practical application of our proposed SAFAAI and RLAuditor.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 100 200
Concept [1. 1. 1. 0. 1.]

0

100

200

Class 9

0 100 200
Concept [1. 1. 1. 0. 1.]

0

100

200

Class 9

0 100 200
Concept [1. 0. 0. 1. 1.]

0

100

200

Class 9

0 100 200
Concept [0. 1. 1. 0. 1.]

0

100

200

Class 3

0 100 200
Concept [1. 0. 0. 0. 0.]

0

100

200

Class 6

0 100 200
Concept [1. 1. 1. 0. 1.]

0

100

200

Class 9

Figure 12: Examples from SynImg. Class and the concept labels are listed.

(a) (b) (c)

Figure 13: SynImg: Image x and its explanation e.

C.1.4 E-SNIL

The e-SNLI (Explainable Stanford Natural Language Inference) dataset (Camburu et al., 2018) builds
on the original SNLI dataset (Bowman et al., 2015) to help make AI models easier to understand. A
sample in the SNIL dataset contains a pair of sentences that is labeled as entailment (one follows from
the other), contradiction (they disagree), or neutral (no clear connection). e-SNIL adds human-written
explanations for why the pair has such a relationship and also highlights the words that are important

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Dataset Val Test
SynTab 0.87 0.86
SynImg 0.83 0.82

VinDr-CXR 0.72 0.70
e-SNIL 0.89 0.88

Table 1: Accuracies of the trained modelM used in experiments for audits.

for the decision (also annotated by humans). This makes AI systems more transparent and reliable.
There are 9842 samples in Dtrain and Dtest each.

On this dataset, we finetune a pretrained BERT model (Devlin et al., 2018) as M, and use
SHAP (Lundberg & Lee, 2017) as e. To obtain Level 1 error labels, we annotate the samples
that are misclassified. For Level 2 error annotation, we first normalize the SHAP values within each
sample and retain only the tokens with importance scores above 0.5. Next, we create a separate set of
tokens from the human-highlighted words provided in the dataset. If the IoU between these two sets
is below a predefined threshold, the sample is labeled as a Level 2 error.

C.2 AUDITED ML MODEL

Table 1 lists the accuracies of the modelM used in audits. Please note that the model is trained with
a separate training dataset, which is different from the Dtrain used for training the RLAuditor. The
size of the training set is 2k, 36k, 40.7k and 55k for SynTab, SynImg, VinDr-CXR, and e-SNIL,
respectively (which is the original training set from the dataset). The validation set is in fact the
Dtrain for training the RLAuditor, while the test set is Dtest.

C.3 BASELINES

Active Learning. Our paper includes baselines based on active learning methods. Specifically, we
adopt the Expected Gradient Length (EGL) (Settles et al., 2007) and compute it as follows:

xEGL = argmax
x

K∑
i

fθ(ŷi | x) ∥∇ lθ(L ∪ ⟨x, ŷi⟩)∥, (1)

where fθ(·) denotes the trained user model in our case with parameters θ. To include e in the input,
we use the explanation e as the weighted mask in the same manner as proposed to construct the
feature embeddings ψ(xj , ej) for the state s in Section 3.2. L is the objective function for the model
training, which is the cross-entropy loss. Let ∇ lθ(L) be the gradient of the objective function with
respect to θ. The Euclidean norm of the objective function, ∥∇ lθ(L)∥ should be nearly zero since
the model converged in the last round of training (Settles et al., 2007). Therefore, xEGL can be
simplified as:

xEGL = argmax
x

K∑
i

fθ(ŷi | x) ∥∇ lθ(⟨x, ŷi⟩)∥. (2)

Running the EGL on all samples on the test set Dtest and select the top-K samples with the highest
expected gradient values. Note that if the oracle labels yi are available, they are used in the EGL
computation. However, in practical auditing scenarios, oracle labels are typically unavailable, so we
instead rely on the predicted labels.

DNN. We utilize the deep neural network from the DQN algorithm (i.e., the target network) as
described in Algorithm 1. Specifically, the DNN is trained on the same dataset Dtrain, assigning a
score to each state-action pair analogous to a reward signal. It is optimized using mean squared error
loss with the reward R(s, a) from the training set as the target. To ensure a fair comparison with the
RL-based agent, we adopt the same training hyperparameters, setting the learning rate to 0.001 and
the number of epochs to 200. After training, the DNN is evaluated on the Dtest.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

SynTab SynImg VinDr-CXR e-SNLI Housing Prices
Level 1 & 2 Level 2 Level 1 & 2 Level 2 Level 1 & 2 Level 2 Level 1 & 2 Level 2 Level 1 & 2 Level 2

Random 11.4± 2.3 3.5± 1.8 238.8± 10.9 188.8± 11.0 360.4± 13.9 61.8± 5.6 14.0± 2.4 8.6± 2.2 27.5± 15.3 1.6± 0.5
DNN 21.5± 2.3 5.0± 0.3 386.0± 3.7 0.0 438.5± 5.5 0.0 23.6± 2.5 13.2± 1.4 33.1± 3.3 11.0± 1.5
AL 28.0± 0 1.0± 0 320.0± 0 193.0± 0 490.0± 0 67.0± 0 28.0± 0 12.0± 0 — —

W/o learned states 28.9± 1.5 6.4± 1.5 431.9± 11.9 328.8± 18.4 876.7± 6.4 152.3± 8.8 24.8± 0.7 16.0± 0.6 35.6± 4.1 15.3± 1.7
W/o expl 26.7± 2.2 5.4± 1.1 388.3± 4.2 210.2± 9.0 873.7± 7.6 160.2± 19.5 23.4± 0.6 14.6± 0.5 33.8± 2.7 15.2± 2.1

Ours 29.6± 1.3 9.0± 0.8 458.3± 3.2 336.8± 2.7 885.5± 7.2 163.1± 6.8 27.3± 0.9 17.0± 0.9 37.2± 4.7 17.0± 1.6

Table 2: Comparison of auditing results for two levels of errors across four datasets. Each dataset’s
K is set to the same number for all methods. The number of identified errors is listed.

D MORE EXPERIMENTAL RESULTS

In this section, we present additional quantitative results.

D.1 FULL RESULTS OF COMPARISON

First, we report the complete results, including the mean and standard deviation on five independent
runs, as shown in Table 2. The results for the first four datasets in Table 2 complement those presented
in Figure 5 of the main paper.

We also include the two additional baselines compared to Figure 5:

• W/o learned states: This baseline does not utilize the states learned from the training set (assuming
that the training and test sets share a similar data distribution), but initializes the state to zeros at
the start of testing.

• W/o expl: This baseline does not include ϕexplanation in the state s, although it still contains the
labels for Level 2 errors during training.

It is worth noting that when the explanation features are not in the states, the detection of Level 2
errors is worse compared to our method. Moreover, if learned states are not used during testing,
performance declines but the RL algorithm can still learn knowledge from the observed samples.

D.2 EXTENSION TO REGRESSION TASKS

Section 4 mainly discusses RLAuditor performance on classification tasks. However, our algorithm
can be extended to regression tasks with two main adaptations in: (1) constructing s and (2) designing
the reward R(s, a). In the original formulation, s is defined based on class information, which is
not available in regression tasks. To address this, we manually partition the samples into N bins
according to their predicted values. Once N is fixed, each sample can be assigned to a bin i, viewing
it as a class. To obtain ϕbin, we get the feature embeddings before the regression prediction, and thus

ϕbin(i, k) =
1

|Ui|
∑

xj∈Ui

ψk(xj),

where ψk(xj) denotes the feature embedding of dimension k for the sample xj . On the other hand,
the information for ϕexplanation is constructed from the explanations e as

ϕexplanation(i) =
1

|Ui|
∑

xj∈Ui

ej ,

where ej denotes the explanation for sample xj . In this setting, we use ej directly as features rather
than as a mask. This is because masking could distort the regression prediction, and explanations in
regression tasks do not have spatial structure. Therefore, they can be averaged across each dimension.

To design the reward for regression tasks, we first compute the absolute prediction error for each
sample as

errorj = |ŷj − yj |,
where ŷj is the model prediction and yj is the ground-truth label. To emphasize larger errors, we
introduce an exponent parameter α > 1 and define the reward as

Rj = (errorj)α.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

In this formulation, α controls the degree to which large errors are penalized. α > 1 amplifies the
contribution of larger errors. We set α = 2.5. This design encourages the algorithm to prioritize sam-
ples where the model performs poorly, focusing learning on selecting samples with high uncertainty
and predictive error.

Dataset and Audited ML Model. We use California House Price dataset (Pace & Barry, 1997). It
includes property attributes, geographic information, and sale prices, and is used to analyze factors
affecting home values and to build models for predicting future house prices. The dataset contains
20,640 samples, which are split into 12,384 for training, 4,128 for validation, and 4,128 for testing.
The training set is used to fit a Random Forest regression model, which is the model to be audited.
The model is configured with 200 estimators, no maximum depth restriction, and parallel processing
to improve efficiency. The trained model achieves a test RMSE of 0.509 and an R2 score of 0.811,
indicating strong predictive performance on unseen data. When constructing the states for RLAuditor,
the data is divided into bins based on quantiles, meaning each bin contains roughly the same number
of values rather than equal numerical ranges. This ensures that the distribution is represented evenly
across all bins, even if the data is skewed. We set N to 500. In practice, we found that a smaller N
results in overly coarse categorization, which can reduce performance. We compute SHAP values to
provide explanations. The level 1 error is estimated using R as described earlier. For the level 2 error,
we label the top-10 most extreme feature importance scores for each feature as incorrect.

During training RLAuditor, the validation set is used, and the performance of the trained algorithm
is evaluated on the test set. Table 2 lists the results of detected number errors within K = 50 steps.
Note that AL requires gradient computations, which are not applicable to Random Forest models.
Thus, this comparison is omitted from the table. Our algorithm continues to outperform the other
methods, demonstrating that our algorithm also generalizes to regression tasks.

50 100 150
Episodes

0

5

10

Te
st

R
ew

ar
ds

State Design Study (K=30)

φ con f i
class

φ con f u
class

φ static
class

(a) K = 30

50 100 150
Episodes

0

10

Te
st

R
ew

ar
ds

State Design Study (K=40)

φ con f i
class

φ con f u
class

φ static
class

(b) K = 40

50 100 150
Episodes

0

10

20
Te

st
R

ew
ar

ds

State Design Study (K=50)

φ con f i
class

φ con f u
class

φ static
class

(c) K = 50

Figure 14: Comparison of test rewards when training with different state designs. The average test
rewards over 15 episodes are shown. Three values of K (number of selection attempts) are evaluated
to the effect of the state design.

50 100 150 200
Episodes

0

1

2

3

4

5

6

Te
st

R
ew

ar
ds

Test Generalizability (K=10)

All error types
Tested error type

0%
33%

67%
100%

(a) K = 10

50 100 150 200
Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Te
st

R
ew

ar
ds

Test Generalizability (K=30)

All error types
Tested error type

0%
33%

67%
100%

(b) K = 30

50 100 150 200
Episodes

0

5

10

15

20

25

Te
st

R
ew

ar
ds

Test Generalizability (K=50)

All error types
Tested error type

0%
33%

67%
100%

(c) K = 50

Figure 15: Comparison of test rewards when training with p% (p ∈ [0, 33, 67, 100]) of error type B.
The average test rewards over 15 episodes are shown. Three values of K are used.

D.3 EXTENDED FIGURES

Figure 14 provides extended figures for Figure 6 in Section 4.2. We evaluate the performance under
various values of K, and we can see that ϕconfu

class consistently achieves the best results across all three
settings. However, ϕstatic

class performs comparably whenK = 30 or 50. Despite their strong performance,
both settings have limitations in real-world applications. In contrast, while ϕconfi

class is inferior due to

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

limited access to additional knowledge, its performance only marginally decreases, demonstrating
the robustness and quality of this design.

In Figure 15, more results on running with p% errors type B are shown. We use K = 30 and 50.
From the result, we observe that with all the samples in Y ′ are labeled (p = 100) during training, the
number of the identified error for Y ′ (represented by the purple dotted line) is the highest among the
three different values of K. As fewer in Y ′ are labeled, fewer errors are discovered. For example,
in Figure 15c, the number of identified errors decreases as fewer samples are labeled. However, the
best overall number of identified errors depends on the value of K. For instance, when K = 50,
the setting with no labeled errors in Y ′ results in the highest total test reward, outperforming the
setting where all samples in Y ′ are labeled, as shown in Figure 15c. This is because it is easier for
the algorithm to learn from a single error type.

Our RLAuditor on SynTab fails in scenarios when there is a nuance in the prediction distribution
between two classes with fewer samples for the agent to learn from (e.g., class 4 and class 3, as shown
in Figure 10), this can present a challenge for the agent. One potential failure case that our current
method cannot detect involves using incorrect features that are not among the top-k most important
features. Since the algorithm focuses on the top-k features, it may ignore these “non-dominant”
features, which could lead to problems in safety-critical applications where certain features are strictly
“forbidden.” However, the reward function can be adjusted to address the concern.

D.4 TRAINING EFFICIENCY

In this section, we discuss the efficiency of the training of our RLAuditor. First, we elaborate the
convergence of the training. Convergence means that the agent achieves a stable performance after
training several epochs. From the learning curves in Figure 15 and Figure 14, we see that our
model achieves a relatively stable score after 200 epochs. To evaluate its convergence, we report
the performance of our trained agent by (1) averaging results over multiple consecutive episodes
(15 episodes) and (2) plotting the reward curves in our experimental results. Furthermore, we
utilize techniques such as Double Q-Learning, and an epsilon-greedy strategy during training, which
generally enhance the convergence of the agent. The converged training curve suggests that our
reward design is sufficient to effectively guide learning.

Once the agent is trained, the inference process is highly efficient, as it only requires a simple
feedforward pass through a DNN, given that we are using DQN. Specifically, we measured the
training time on the SynTab dataset, where our method took approximately times longer (519s)
compared to the supervised learning (SL) method (136s). However, the inference times for both
methods are comparable, as both require a feedforward pass through the NN to compute the sample
score (or label). Moreover, training efficiency is reflected in limited supervision, as analyzed in
Section 4.3. With limited labeled data for error type B, our method still achieves reasonable
performance in detecting errors.

E EVALUATION WITH HUMAN AUDITORS

We developed a user interface to enable the study of interactions between human experts and the
proposed RLAuditor. The user study aims to address the following two research questions:

• R1: Can the samples selected by RLAuditor help users better understand the model’s
behavior and errors?

• R2: What strategies do human experts employ during audits?

In this section, we will introduce implementation details, including the model and the dataset used,
followed by the user study details such as the procedure and the participant demographics, and
additional analysis of the user study.

E.1 IMPLEMENTATION DETAILS

Dataset and ML model. The Snips dataset serves as a benchmark for intent classification and
slot-filling in spoken language understanding (Coucke et al., 2018). It includes crowdsourced queries

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

covering seven distinct intents, including ”PlayMusic,” ”BookRestaurant,” and ”GetWeather.” The
dataset is commonly used to assess natural language understanding models. It consists of 13.1k queries
for training and 1.4k for testing. We finetuned a small pre-trained BERT variant model (Bhargava
et al., 2021) using the training set as our model to be auditedM. The explanation e is computed by
the SHAP algorithm. We then use the subset from the test set as Dtrain to train our RLAuditor. To
ensure the study was comprehensible for participants, we limited the audit dataset to 200 samples
drawn from the test set. The trained model’s accuracy on the test set is 89.5%.

Figure 16: UI for the control group.

Figure 17: UI for the experimental group.

UI. Figure 16 and Figure 17 demonstrate the UI interface for each group. In this user interface,
we provide three filtering techniques to assist users in exploring the data. First, samples can be
categorized based on the class predicted by the modelM; this option is available in the top-left
corner under the label “Find by AI Class”. The second feature, “Find Similar Texts”, allows users
to investigate the model’s behavior on inputs similar to a specific entry. By entering the index of a
sentence, the system returns a list of texts ranked by cosine similarity between the queried sentence
with the other test samples. he third function enables users to search for entries containing a specific
keyword, offering a direct way to examine how the model handles certain terms or topics.

For each test sample, the user interface displays the original text, a visual explanation highlighting
important words based on SHAP values, the model-assigned label, and the human-annotated (ground
truth) label.

The key difference is that the experimental group was presented with samples recommended by our
RLAuditor, which were highlighted and positioned at the top of the table.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.2 USER STUDY PROCEDURE

This user study is approved by the IRB (Institutional Review Board). We recruited 14 participants
from the university, all with backgrounds in engineering and general machine learning. Two of these
participants conducted a pilot study to assess the clarity of the experiment procedure and evaluate the
time constraints involved. The final procedure for the user study is as follows:

• Participants read the task description and receive an explanatory introduction of the UI to
get familiar with the UI.

• Participants start to formulate their report with the help of the questions proposed.

• Participants answer the objective questions of model behaviors.

After the analysis task of the application audits, participants were asked to fill out a questionnaire
about their experience interacting with the UI.

The whole session takes 40 minutes and each participant received a $10 gift card as compensation.
We conducted a between-group human experiment study. 6 participants in the control group did not
receive the AI-suggested samples, while 6 participants in the experimental group did.

E.3 PARTICIPANT DEMOGRAPHICS

All participants were recruited via an institutional mailing list. Each has experience in evaluating
and debugging machine learning (ML) models in applied settings and holds at least a bachelor’s
degree in computer science. The cohort includes PhD students, PhD candidates, and one postdoctoral
researcher, making them well-qualified to perform this challenging task.

In the control group, there are two females and four males, with a mean age of 27.8± 4.2 years and
an average of 5.3±1.2 years of experience in ML. On a 5-point scale, they rated their familiarity with
evaluating ML models at an average of 4.2± 0.7. The experimental group comprises five males and
one female, with a mean age of 27.2± 2.2 years and an average of 5.6± 2.6 years of ML experience.
Their self-reported familiarity score averages 3.6± 1.1.

E.4 GUIDING QUESTIONS FOR AUDITING

For each of the seven intent classes, we use the following questions to guide participants to formulate
their audit report:

Misclassification Pattern

• Which other class(es) does the Model most frequently confuse with this class? (Multi-select
problem)

• Why do you think these misclassifications occur? (Briefly explain why. With examples if
possible.)

Feature Attribution

• Which features (e.g., specific words or phrases) does the Model rely on most when classifying
this intent? (Give keywords.)

• Are these features appropriate and meaningful for this intent, or are they mislead-
ing/problematic? (Explain your judgment.)

They answer these questions for all seven classes in the dataset.

E.5 OBJECTIVE QUESTIONS

At the end of the study, we also distributed a questionnaire to gather participants’ feedback on their
experience. The responses were used as follows:

1. How easy or difficult did you find the Model Auditing task? (1-Very Easy, 7-Very Difficult)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2. What aspects of the Model Auditing task did you find challenging, if any?
3. How did you conduct the Model Auditing task? (e.g., your strategy, functionality of the

Auditing UI you found useful)
4. What additional information do you think you need for the Model Auditing task? (e.g.,

information about the dataset, potential features of the Auditing UI)
5. Do you think AI algorithms could assist you in this model auditing task? (Yes, No, or

Unsure.)
6. Please share any additional comments or feedback about the task or study.

The second last question is designed for the experimental group.

E.6 EXTENDED ANALYSIS

Analysis of reports. When studying the model features observed by participants, the experimental
group tended to agree on more meaningful and relevant features, as illustrated in Figure 19. For
instance, for the class Search Screening Event, the experimental group referenced both verbs and
nouns—such as “find,” “want,” “see,” and “would like”, as the control group focused more on nouns
indicating screen programs. In another example Rate Book shown in Figure 18, both groups selected
the words “rate” or “give” as the most important tokens, while the experimental group also pointed
out the words “stars” or “ points”, which are also highly relevant to rating.

Control group Experimental group

Figure 18: Word cloud in the model explanations used by the model for the class “Rate Book”.

Control group Experimental group

Figure 19: Word cloud in the model explanations used by the model for the class “Search screening
event”.

Analysis of objective questions. For the 1. objective question, the control group gives a score
of 3.8± 1.7, while the experimental group gives a score of 3.0± 1.4. The difference between the
groups was not statistically significant, with a p-value is 0.5. However, it shows that the participants
with the assistant of RLAuditor rate the auditing task as easier than the control group.

For the second question, participants expressed various challenges. For example, one from the control
group noted, “It was challenging to answer questions for specific categories without having reviewed
the rest of the categories.” A holistic and comprehensive view is essential for auditing. However,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

obtaining such an overview becomes increasingly impractical for humans as the dataset size grows, as
another participant from the control group stated “Checking all the classes for all possible mistakes.”
We believe that human-AI collaboration is a promising way to solve this issue. Furthermore, two
participants in the experimental group claimed that identifying features used by the model is difficult.

Regarding the 4. question, it is worth noting that one participant in the control group requested a
“better filter/ranking mechanism.” This suggests that human auditors also appreciate some form of
pre-filtering, which can be effectively provided by an algorithm. This feedback further supports the
usefulness of our proposed algorithm. One participant in the experimental group suggested including
the model’s confidence alongside the AI-suggested errors. Moreover, the importance scores for each
token in the explanations were also noted as useful. The feature allowing users to view samples
by predicted class was utilized by all participants, while the other functions were rarely used. This
suggests that for future auditing UI design providing a clear and well-organized view including
classification statistics is critical.

In the general feedback on our study (last question), two participants agreed that more samples should
be displayed, preferably on a full page. This suggests that human auditors benefit from reviewing a
larger number of examples at once to gain a comprehensive understanding of the model’s behavior.

F COMPUTATIONAL INFRASTRUCTURE DETAILS

All experiments in this paper are conducted on the device given in Table 3.

Table 3: Computational infrastructure details.

Device Attribute Value
Computing infrastructure GPU

GPU model NVIDIA A40
GPU number 1

CUDA version 12.3

G STATEMENT ON LLM USAGE

Large Language Models (LLMs) were only used for minor grammar and language polishing. No part
of the research ideation, experimental design, or manuscript content was generated or influenced by
LLMs. The authors retain full responsibility for the scientific content and quality of the paper.

29

	Introduction
	Related Work
	Formalization and Algorithmic Solution
	SAFAAI: Situational Awareness Framework for Application Audits of AI
	RLAuditor: Application Auditing using Reinforcement Learning

	Experiments
	Comparison
	State Design
	Learning with Limited Supervision

	Evaluation with Human Auditors
	Conclusion
	Appendix
	Related Work
	Methods for Auditing ML Models
	Layered Audit Frameworks
	Reinforcement Learning (RL)

	Implementation Details for RLAuditor
	RLAuditor: Formalizing Efficient Auditing as an MDP
	Implementation Details for fig:state-reward
	Training Algorithm for RLAuditor
	Implementation Details

	Implementation Details for Experiments
	Datasets
	SynTab
	SynImg
	VinDr-CXR
	e-SNIL

	Audited ML Model
	Baselines

	More Experimental Results
	Full Results of Comparison
	Extension to Regression Tasks
	Extended Figures
	Training Efficiency

	Evaluation with Human Auditors
	Implementation Details
	User Study Procedure
	Participant Demographics
	Guiding Questions for Auditing
	Objective Questions
	Extended Analysis

	Computational Infrastructure Details
	Statement on LLM Usage

