
HPO-RL-Bench: A Zero-Cost Benchmark for HPO in 1

Reinforcement Learning 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Despite the undeniable importance of optimizing the hyperparameters of RL algorithms, 5

existing state-of-the-art Hyperparameter Optimization (HPO) techniques are not frequently 6

utilized by RL researchers. To catalyze HPO research in RL, we present a new large-scale 7

benchmark that includes pre-computed reward curve evaluations of hyperparameter con- 8

figurations for six established RL algorithms (PPO, DDPG, A2C, SAC, TD3, DQN) on 22 9

environments (Atari, Mujoco, Control), repeated for multiple seeds. We exhaustively com- 10

puted the reward curves of all possible combinations of hyperparameters for the considered 11

hyperparameter spaces for each RL algorithm in each environment. As a result, our bench- 12

mark permits zero-cost experiments for deploying and comparing new HPO methods. In 13

addition, the benchmark offers a set of integrated HPO methods, enabling plug-and-play 14

tuning of the hyperparameters of new RL algorithms, while pre-computed evaluations 15

allow a zero-cost comparison of a new RL algorithm against the tuned RL baselines in our 16

benchmark. 17

1 Introduction 18

Reinforcement Learning (RL) applications have made headlines in the past decade, with break- 19

throughs in a variety of domains such as game playing [see, e.g., 41, 55, 9, 44], robotics [3] or 20

real-world tasks [6, 16]. These demonstrations of the capabilities of RL algorithms have fuelled 21

a surge of interest in the research community. In spite of achieving impressive results, RL re- 22

mains highly sensitive to hyperparameter configurations and implementation details [31, 21, 4, 29]. 23

Bundled together with a typically high cost of hyperparameter optimization (HPO) experiments, 24

this makes manual tuning of RL agents highly error-prone, tedious and requires heaps of expert 25

knowledge. 26

To catalyze research in the field of HPO for RL we introduce HPO-RL-Bench, the first zero- 27

cost HPO benchmark which contains pre-computed reward curves for six popular model-free RL 28

algorithms across 22 environments (illustrated in Figure 1). We consider three distinct classes of 29

environments from OpenAI Gym [12], Atari [7], Classic Control, and MuJoCo [57] and focus on 30

six popular RL algorithms: PPO [53], DDPG [36], A2C [40], SAC [27], TD3 [25], and DQN [41]. 31

We evaluate hundreds of distinct hyperparameter configurations for each RL algorithm and each 32

environment, repeated for 10 seeds. Overall, our benchmark incorporates ca. 200𝐾 training runs. 33

Furthermore, the benchmark offers a set of 7 HPO techniques, which have been evaluated in all 34

environments for all methods. 35

We believe the benchmark provides unique properties for HPO researchers but also for the RL 36

community: 37

• An HPO researcher can evaluate a novel HPO technique on 6 hyperparameter spaces and 22 38

environments, and compare it to 7 HPO baselines, with zero costs. 39

• An RL researcher working on a new algorithm can compare against 6 baseline RL algorithms in 40

22 environments, with zero costs. Additionally, they can tune the hyper-parameters of the new 41

RL algorithm with a few lines of code using the 7 provided HPO methods. 42

Submitted to AutoML 2024 © 2024 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Figure 1: HPO-RL-Bench offers exhaustively pre-computed reward curves for hyperparameters of RL

algorithms, as well as pre-evaluated results of HPO techniques.

Furthermore, as dynamic adaptation plays an important role in deep RL [47, 42], for a subset 43

of algorithms and environments, we evaluate 729 schedules of hyperparameters with distinct 44

switching points on a subset of considered environments, which allows us to give a head-to-head 45

comparison between online and gray-box HPO methods. 46

To the best of our knowledge, we are the first to provide a zero-cost HPO benchmark for 47

model-free RL algorithms. 48

2 Related Work 49

Reproducibility of RL. Comparison and reproducibility of RL experiments remain difficult. The 50

sensitivity of RL algorithms to hyperparameters [31, 28] is exacerbated by implementation details 51

that can strongly influence their performance [21, 4, 29]. Further, the cost of typical RL experiments 52

causes studies to often only compare performances on a handful of trials, which is most often not 53

sufficient for a clear comparison [1]. Our pre-computed learning curves provide a set of baselines 54

against which RL practitioners can easily and fairly compare their RL algorithms but also study 55

HPO methods. 56

HPO and Zero-Cost Benchmarks. Tabular benchmarks have been proposed for other important 57

problems in the (Auto)ML community where evaluations are expensive. For example, in the field of 58

neural architecture search [NAS; 20], evaluating the performance of deep learning architectures 59

can quickly become very resource intensive. Thus, to make novel NAS methods easily and cheaply 60

comparable and reproducible, tabular benchmarks [60, 61, 17, 54, 39] have become an important 61

tool for NAS research [38] and allowed rapid development of NAS methods. Similarly, tabular 62

benchmarks play important roles in the fields of HPO [11] and gray-box optimization [34, 33], see, 63

e.g., HPO-B [48] and HPOBench [18]. While RL is similarly or potentially even more expensive to 64

train and evaluate, to the best of our knowledge, any tabular benchmarks on which HPO for RL 65

could be studied have not yet been proposed. 66

HPO for RL. While there are various parts of the RL pipeline that could be automated, e.g., the choice 67

of algorithm or environment components, in this work we focus on hyperparameter optimization 68

2

(HPO) for RL.
1
One of the best-understood and studied hyperparameters of RL is the discounting 69

factor 𝛾 . For example, it is known that smaller values of 𝛾 lead to faster convergence but might 70

result in myopic policies [10]. Increasing the discounting value over time can drastically speed 71

up learning [23]. François-Lavet et al. [23] showed that simultaneously decreasing the learning 72

rate while increasing 𝛾 can improve learning speeds even further. Still, for most algorithms and 73

their hyperparameters, it is not clear or understood whether they are best adapted during training 74

or whether they should stay fixed [47], and how they influence the learning dynamics in general. 75

A recent work however by Mohan et al. [42] however demonstrated that the hyperparameter 76

landscapes of RL agents changes over time, giving evidence that dynamic tuning is likely needed 77

for RL. Thus, it is common for RL practitioners to use some default configuration without exploring 78

different types of HPO methods. To alleviate users from having to manually tune their RL agent, 79

various HPO methods for RL have been proposed [see, e.g., 32, 14, 52, 46, 43, 24, 5]. Further, Eimer 80

et al. [19] showed that RL hyperparameter landscapes appear smooth, thus automated HPOmethods 81

are capable of producing better-performing RL agents than hyperparameter sweeps or grid searches. 82

Still, HPO methods have not yet found widespread adoption by the RL community. 83

Benchmarks for RL. There exists a plethora of benchmarks to evaluate RL algorithms [see, e.g., 84

57, 7, 12, 15, 51, 45]. However, these are designed with RL inmind, not HPO for RL. Such benchmarks 85

provide environments for the agents to interact with and collect training examples. This makes 86

them prohibitive for use in HPO experiments as any RL agent being optimized will still have 87

to compute expensive training updates. Our proposed benchmark differs from RL benchmarks 88

in providing precomputed reward curves of already trained agents for specific hyperparameter 89

configurations. As a result, both RL and HPO researchers can benefit from HPO-RL-Bench. 90

3 Benchmark Description 91

The benchmark comprises recorded episodic reward-curves for five commonly used RL algorithms 92

PPO [53], A2C [40], DDPG [36], SAC [27], and TD3 [25] on 22 environments (see Figure 7 in 93

Appendix A). For each algorithm, we consider the static configuration space listed in Table 1. 94

Furthermore, for the Classic Control and MuJoCo environments, we consider extended versions of 95

the static configuration search spaces of PPO and A2C, by adding architectural hyperparameters. 96

We list the extended configuration spaces in Table 2 of Appendix C.1. For PPO, SAC, and TD3, we 97

additionally consider a dynamic search space in which hyperparameters can change at discrete 98

time-steps while the agent is training (highlighted in blue text in Table 1). Our HPO-RL-Bench 99

contains the recorded evaluation episodic reward-curves for all training runs of each agent with all 100

possible combinations of hyperparameters in the chosen configuration spaces. 101

The considered OpenAI Gym [12] environments consist of 15 Atari [7] games, 4 Classic Control 102

problems, and 3 MuJoCo [57] tasks. Most environments have a discrete action space. Only the 103

Classic Control task Pendulum and the MuJoCo environments Ant, Hopper and Humanoid have 104

continuous action spaces. All 15 Atari games have image-based state representations, whereas 105

the Classic Control and MuJoCo environments have vector-based state representations. Most 106

environments have dense reward signals, only the games Bowling, Enduro, Pong, Skiing and Tennis 107

have mostly sparse reward signals. We computed episodic reward curves with static configurations 108

on all environments. For the dynamic configuration schedules, we used only the Classic Control 109

tasks and the Enduro game. 110

3.1 Data Collection 111

For the RL algorithms, we used the implementations from stable-baselines3 [50]. To be able to 112

provide uncertainty estimates, we ran each configuration (schedule) for ten seeds on a compute 113

1
For a comprehensive survey on HPO in RL we refer to Parker-Holder et al. [47].

3

Table 1: Configuration spaces of the considered RL algorithms. Blue bold faced entries show the

subset considered for the dynamic variant.

Algo. Hyperaram. Values

PPO

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
clip 0.1, 0.2, 0.3

A2C

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

DQN

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

𝜖 0.1, 0.2, 0.3

DDPG

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

𝜏 0.001, 0.005, 0.01

n_layers 1, 2, 3

n_units 32, 64, 128, 256

SAC

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
𝜏 0.001, 0.005, 0.01

n_layers 1, 2, 3

n_units 32, 64, 128, 256

TD3

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0
𝜏 0.001, 0.005, 0.01

n_layers 1, 2, 3

n_units 32, 64, 128, 256

cluster using RTX 2080 GPUs. We trained all agents for 10
6
steps on each environment and evaluated 114

the performance for 10 episodes every 10
4
steps. The total cost of creating the benchmark amounts 115

to 274 320 GPU hours, or 31.3 GPU years of computational resources. We believe that, as is the case 116

with tabular NAS benchmarks, this compute cost will be more than amortized by the benchmark’s 117

many potential uses. 118

When training PPO, SAC, and TD3 with configuration schedules, to avoid a combinatorial 119

explosion,
2
we limited the configuration space to two hyperparameters with three values each and 120

used two discrete switching points after 3 · 105 and 6 · 105 training steps elapsed. This gives rise to 121

a configuration space of (32)3 = 729 distinct configuration schedules, all of which were evaluated 122

on five environments for five seeds each. Further details are provided in Appendix B. 123

3.2 API for HPO-RL-Bench 1.0 124

To ease the benchmark’s accessibility, we provide an API which is freely accessible at https:// 125

anon-github.automl.cc/r/HPO-RL-Bench-BCCF. Once the data is downloaded, a few lines of code 126

suffice to query the metrics of a hyperparameter configuration for a given environment-search space 127

2
The original PPO configuration space with a single switch would already have required (6 ·6 ·3)2 = 11 664 evaluations

and with two switching points (6 · 6 · 3)3 = 1 259 712 evaluations. Similarly, in the pruned space, a third switch would

already result in (32)4 = 6 561 schedules.

4

https://anon-github.automl.cc/r/HPO-RL-Bench-BCCF
https://anon-github.automl.cc/r/HPO-RL-Bench-BCCF
https://anon-github.automl.cc/r/HPO-RL-Bench-BCCF

combination. An example of doing this when optimizing with random search is given in Listing 1 in 128

the Appendix. It is possible to query any hyperparameter configuration for all the listed algorithms 129

in Table 1 and environments in Figure 7. Also, the user can query the dynamic or static spaces by 130

modifying the respective attribute in the benchmark object (benchmark.static = True/False). When 131

querying a dynamic configuration, the user must provide the list of hyperparameter values that are 132

used in the schedule, where switches are possible at 300k and 600k training steps (see Listing 2 in 133

the Appendix). In our GitHub repository, we provide further examples on advanced ways to query 134

the API to avoid creating an object for every environment/search-space combination. Moreover, 135

we provide examples of how to couple its functionality with HPO optimizers. 136

4 Experiments 137

In this section, we demonstrate the usefulness of our benchmark by addressing understudied 138

problems in the (Auto)RL community. We begin by studying the hyperparameter importance in 139

the covered configuration spaces before providing a comprehensive comparison of existing HPO 140

methods in optimizing the hyperparameters of six popular RL algorithms. Finally, we end this 141

section by evaluating the competitiveness of our chosen configuration spaces. 142

4.1 Hyperparameter Importance for RL Agents 143

(-4
, 0

.9
5,

 0
.2

)
(-4

, 0
.9

8,
 0

.2
)

(-4
, 0

.9
9,

 0
.2

)
(-4

, 0
.9

9,
 0

.3
)

(-1
, 0

.8
, 0

.4
)

(-1
, 0

.9
5,

 0
.3

)
(-1

, 0
.8

, 0
.3

)
(-1

, 0
.9

5,
 0

.2
)

('lr', 'gamma', 'clip')

0

25

50

75

100

Ra
nk

 o
f R

ew
ar

d

PPO

(-4
, 0

.9
5)

(-4
, 0

.9
8)

(-3
, 0

.9
8)

(-4
, 0

.8
)

(-2
, 1

.0
)

(-1
, 0

.8
)

(-2
, 0

.9
8)

(-1
, 1

.0
)

('lr', 'gamma')

0

10

20

30

A2C

(-5
, 0

.9
, 0

.0
05

)
(-5

, 0
.9

5,
 0

.0
00

1)
(-4

, 0
.9

9,
 0

.0
05

)
(-4

, 0
.9

, 0
.0

00
1)

(-1
, 0

.9
8,

 0
.0

01
)

(-2
, 0

.9
5,

 0
.0

00
1)

(-1
, 0

.8
, 0

.0
00

1)
(-2

, 0
.8

, 0
.0

00
1)

('lr', 'gamma', 'tau')

0

25

50

75

100
DDPG

(-3
, 0

.9
9,

 0
.0

05
)

(-4
, 0

.9
9,

 0
.0

05
)

(-4
, 0

.9
9,

 0
.0

01
)

(-3
, 0

.9
8,

 0
.0

01
)

(-1
, 1

.0
, 0

.0
05

)
(-1

, 0
.9

, 0
.0

05
)

(-1
, 0

.9
5,

 0
.0

01
)

(-1
, 0

.9
9,

 0
.0

00
1)

('lr', 'gamma', 'tau')

0

25

50

75

100
SAC

(-4
, 0

.9
9,

 0
.0

01
)

(-4
, 0

.9
8,

 0
.0

05
)

(-4
, 1

.0
, 0

.0
01

)
(-4

, 0
.9

9,
 0

.0
05

)
(-1

, 0
.8

, 0
.0

05
)

(-1
, 0

.8
, 0

.0
01

)
(-2

, 0
.9

5,
 0

.0
01

)
(-1

, 0
.9

5,
 0

.0
01

)

('lr', 'gamma', 'tau')

0

25

50

75

100
TD3

Figure 2: Average rank of the final reward across environments (four best and worst configurations).

The illustrations depict: red line=median, green dots=outliers, colored box=inter-quantile

range(IQR) from the first quantile(Q1) to the third quantile(Q3) of the data, whiskers=extended

IQR by 1.5x.

To determine the importance of hyperparameters for the considered RL algorithms, we address 144

the following questions. i) Which static hyperparameter configurations result in the best final 145

episodic evaluation reward for each considered algorithm? ii) Which hyperparameters are more 146

important, i.e. have a higher influence on the final episodic evaluation reward? 147

To answer the first question we compute the average rank based on the final evaluation return 148

of all considered static configurations per environment and for each configuration space separately. 149

Based on these averages, we select the four best and worst configurations in each configuration 150

space. Figure 2 depicts the results as a box plot, where lower ranks indicate better final rewards. We 151

present the results for the DQN search space in Figure 18a in the Appendix. Generally, on average, 152

lower learning rates result in better final rewards than configurations with high learning rates. 153

Further, our results indicate that PPO and A2C configurations are less robust than those of SAC, 154

TD3, DDPG and DQN, as generally poorly-performing configurations can in some environments 155

result in very good final rewards and vice versa. Contrary to practitioners’ hopes, there exists no 156

silver bullet hyperparameter configuration that is optimal in the vast majority of the environments. 157

The take-home message is that optimal hyperparameters are environment-specific and must be 158

carefully tuned. 159

5

To answer the second question we make use of the fANOVA hyperparameter importance 160

method [30], which aims to quantify how strongly the change in a hyperparameter value influences 161

the observed final episodic evaluation reward. fANOVA attributes higher importance to those 162

hyperparameters that have a stronger influence on the final return. In Figure 3 we compute the 163

average rank over all environments. We present the results for the DQN search space in Figure 18b 164

in the Appendix. Our results confirm that the learning rate is instrumental in achieving optimal 165

performance for the considered algorithms. Furthermore, 𝛾 is very influential in the case of SAC, 166

TD3 and DQN. We include a more detailed analysis of the full configuration spaces including the 167

architectural hyperparameters in Appendix C.2. 168

lr gamma clip
1.0

1.5

2.0

2.5

3.0

Ra
nk

 o
f I

m
po

rta
nc

e

PPO

lr gamma
1.00

1.25

1.50

1.75

2.00
A2C

lr gamma tau
Hyperparameters

1.0

1.5

2.0

2.5

3.0
DDPG

lr gamma tau
1.0

1.5

2.0

2.5

3.0
SAC

lr gamma tau
1.0

1.5

2.0

2.5

3.0
TD3

Figure 3: Hyperparameter importance per search space (red diamond=mean, red line=median, green

dots=outliers, colored box=inter-quantile range(IQR) from the first quantile(Q1) to the third

quantile(Q3) of the data, whiskers=extended IQR by 1.5x.).

4.2 HPO for RL 169

To demonstrate how HPO methods for RL or other AutoRL approaches could leverage our novel 170

benchmark we provide a comprehensive comparison of existing HPO methods and evaluate their 171

usefulness for RL. To this end we evaluate the following baselines: 172

Random Search (RS) is a simple and standard HPO baseline. It selects hyperparameter configu- 173

rations uniformly at random in the given search space. 174

Bayesian optimization with Gaussian Proccesses [GP; 56] is another standard HPO baseline. 175

This baseline uses GPs as the surrogate model in standard black-box Bayesian optimization. We 176

used the implementation in GPytorch [26] with a Matern 5/2 kernel. 177

SMAC4MF [SMAC; 37] implements a variant of the gray-box optimizer BOHB [22] which 178

combines Hyperband [35] with Bayesian optimization [BO; 56]. The Hyperband component 179

allows to quickly discard under-performing configurations on smaller budgets (i.e., few epochs or 180

number of training samples), whereas the BO component identifies well-performing regions of 181

hyperparameters from which to sample. SMAC4MF differs from the original BOHB by fitting a 182

Random Forest for the BO component. 183

DyHPO [59] is a gray-box method that uses a deep kernel [58] with a convolutional neural 184

network that embeds the reward curves and incorporates budget information in its acquisition 185

function. This allows DyHPO to dynamically decide with which budget the next configuration 186

should be evaluated. 187

Optuna [2] is a popular hyperparameter optimization framework. Following Raffin [49], who 188

used it to tune hyperparameters of stable-baselines3, we used Optuna with TPE [8] as a surrogate. 189

Population Based Training [PBT; 32] is an evolutionary method for HPO that allows to 190

dynamically change hyperparameters during training. PBT maintains a population of RL agents. 191

Every 𝑁 steps (a user-defined value) the worst members in the population are replaced with the 192

best ones. Simultaneously the hyperparameters of these replaced agents are perturbed to explore if 193

new hyperparameter values might improve the performance further. To work well, PBT typically 194

requires large populations between 40 and 80 members. 195

Population based bandits [PB2; 46] extends the PBT framework and replaces the random 196

hyperparameter perturbations with predictions from a time-varying Gaussian process. This change 197

enables PB2 to perform a more informed search over hyperparameters. As a consequence, PB2 198

6

typically requires drastically fewer members (i.e., only 4 to 8) in the population compared to its 199

predecessor PBT. 200

Setup. On the static benchmark, for the PPO and A2C search spaces defined in Table 1, we 201

evaluated RS, GP, Optuna, SMAC, and DyHPO for a budget of 10 full training runs for each 202

algorithm-environment-seed triple (i.e. 10
7
training steps). For the DDPG, TD3, and SAC static 203

search spaces, as well as the extended versions of the PPO and A2C search spaces we evaluated the 204

aforementioned baselines for a budget of 50 full training runs for each algorithm-environment-seed 205

triple. Initially, RS, GP, Optuna, SMAC, and DyHPO start the search with the same 4 hyperpa- 206

rameter configurations sampled uniformly at random. As PBT and PB2 are designed to optimize 207

hyperparameters dynamically, we evaluate them on the dynamic version of our benchmark. We 208

denote these results with the labels D-PBT, and D-PB2. Additionally, we evaluated PBT and PB2 209

by actually training the suggested configurations using the same pipeline as the one we used for 210

HPO-RL-Bench. We used the same search space as the one indicated in Table 1. We ran all versions 211

of the population-based baselines (i.e. PBT, PB2, D-PBT, D-PB2) with a population size of 8. For 212

all baselines, we report the average rank of the evaluated methods across environments (lower 213

is better). We group environments into Atari, Mujoco, and Control following the description of 214

Section 3, and present group-aggregated results. Additional results on a per-environment basis are 215

included in Appendix C. 216

0.5 1.0 1.5 2.0 2.5
Wallclock Time (s) 1e4

1

2

3

4

5

Av
er

ag
e

Ra
nk

ATARI

0.2 0.4 0.6 0.8 1.0 1.2
Wallclock Time (s) 1e4

1

2

3

4

CONTROL

0.2 0.4 0.6 0.8 1.0
Wallclock Time (s) 1e4

1

2

3

4

5

MUJOCO

RS GP Optuna SMAC DyHPO PBT PB2

Figure 4: Average Ranks of the performance of the baselines for the PPO configuration space.

Results. In all configuration spaces, we observe that the online HPO methods PBT and PB2 perform 217

well in the beginning, but given enough time, RS, GP, Optuna, SMAC, and DyHPO find static 218

hyperparameter configurations that outperform their schedules (see Figures 4 and 5a). Generally, 219

PBT and PB2 perform similarly to each other. On the smaller configuration space for A2C (see 220

Figure 8 in Appendix C) PBT outperforms PB2 on average in the MuJoCo and Classic Control 221

environments, whereas PB2 outperforms PBT on Atari environments. For the PPO configuration 222

spaces, PB2 clearly outperforms PBT in the Classic Control environments. In conclusion, PBT and 223

PB2 are efficient in terms of discovering configurations under limited budgets, but on the A2C 224

search space (see Figure 8 in Appendix C) even naive Random Search outperforms them when 225

more than about 3 hours of HPO time per environment is available. Such findings indicate that the 226

community needs novel HPO methods that both converge quickly given a low HPO budget, but 227

also remain competitive when more computing time is available. 228

Moreover, the results indicate that SMAC and DyHPO, the gray-box HPO baselines in our 229

collection, are amongst the best-performing methods across time steps. 230

Additionally, we show the performance of the baselines on extended versions of the PPO and 231

A2C static search spaces for the MuJoCo environments in Figure 5b. Table 2 in Appendix C.1 232

includes a detailed description of these search spaces. As it is not trivial for PBT and PB2 to optimize 233

architectural hyperparameters, we only compare RS, GP, Optuna, SMAC, and DyHPO. DyHPO and 234

SMAC outperform the black-box optimization methods. We show the performance of the baselines 235

7

0.5 1.0 1.5 2.0
Wallclock Time (s) 1e4

2

3

4

5

6

Av
er

ag
e

Ra
nk

RS
GP
Optuna

SMAC
DyHPO
PBT

PB2
D-PBT
D-PB2

(a) PPO search space on dynamic

benchmark.

0.5 1.0
Wallclock Time (s) 1e5

1

2

3

4

5

Av
er

ag
e

Ra
nk

PPO

0.5 1.0
Wallclock Time (s) 1e5

1

2

3

4

5
A2C

RS GP Optuna SMAC DyHPO

(b) Extended search spaces of PPO and A2C on MuJoCo.

Figure 5: Average Ranks of the performance of the baselines for: 5a optimizing PPO on the dynamic

benchmark, and 5b the extended versions of the PPO and A2C search spaces on the MuJoCo

environments.

on the DDPG, TD3, SAC and DQN search spaces in Figures 9, 10, and 11 as well as the extended 236

versions of the PPO and A2C static search spaces for the Classic Control environments in Figure 13 237

in Appendix C. 238

4.3 Validating the Usefulness of the Considered Configuration Space 239

In the design of the configuration space for HPO-RL-Bench we put the focus on a small set of 240

hyperparameters. To demonstrate that tuning the hyperparameters in this small space yields strong 241

performance, we provide additional experiments for the static as well as the dynamic search spaces. 242

The authors of stable-baselines3 provide tuned hyperparameters in the popular RL-Zoo frame- 243

work [49]. These tuned configurations are obtained by running Optuna [2] on a large configuration 244

space containing 9 to 13 hyperparameters (out of which 2 to 3 are searched in a continuous range, 245

depending on the RL algorithm).
3
For example, the RL-Zoo3 PPO configuration space considers a 246

total of 12 hyperparameters, out of which 3 (including the learning rate) are searched in a continu- 247

ous space. The considered hyperparameter values for the discounting factor 𝛾 and the clip range 248

largely overlap with our configuration space. 249

123

2.8000RL Zoo
1.8583HPO-RL-Bench Optuna

1.3417
HPO-RL-Bench Oracle

(a) PPO

123

2.3879RL Zoo
1.8966HPO-RL-Bench Optuna

1.7155
HPO-RL-Bench Oracle

(b) A2C

Figure 6: Critical Difference diagram for final evaluation return of hyperparameter configurations

suggested by RL-Zoo, those optimized by Optuna on the HPO-RL-Bench search space, as

well as the best-performing hyperparameter configuration in HPO-RL-Bench.

To showcase that our configuration space is competitive, we take the hyperparameter tuning 250

setup of RL-Zoo and apply it to our chosen configuration space, i.e., we run Optuna on our 251

configuration space. We compare the performance of the found hyperparameter configurations 252

against those determined on the original RL-Zoo configuration space and our benchmark’s oracle 253

(i.e., the best configuration for each environment). We create rankings of these comparisons for each 254

of the RL algorithms and show the results in the critical difference diagrams of Figure 6 (for DDPG, 255

SAC, TD3, and DQN see Figure 12 in Appendix C). The position along the x-axis presents the ranking 256

of the final evaluation reward of the best-found configurations averaged over all environments and 257

3
We refer to the RL-Zoo github for the full configuration spaces https://github.com/DLR-RM/rl-baselines3-

zoo/blob/master/rl_zoo3/hyperparams_opt.py

8

https://github.com/DLR-RM/rl-baselines3-zoo/blob/acdfc933cecd269d11dac2abf0c7a8c77698f160/rl_zoo3/hyperparams_opt.py
https://github.com/DLR-RM/rl-baselines3-zoo/blob/acdfc933cecd269d11dac2abf0c7a8c77698f160/rl_zoo3/hyperparams_opt.py

seeds. Thick horizontal lines indicate that there is no statistically significant difference between 258

the rankings of the methods linked, according to the Wilcoxon-Rank test. It is clear that, while 259

Optuna is capable of finding well-performing configurations in all considered configuration spaces, 260

there is still room for improvement when comparing the performance to an oracle. Further, Optuna 261

produced much better-performing configurations on our smaller configuration spaces than on the 262

large RL-Zoo spaces (with a statistically significant difference for all search spaces). Interestingly, 263

in the DDPG search space, tuning with Optuna on our configuration space resulted in highly 264

performing configurations that could close the gap to the oracle such that the resulting ranking was 265

not statistically significant. These results show that our chosen configuration space is meaningful 266

and provides ample opportunity to study hyperparameter optimization methods on static search 267

spaces. 268

Additionally, to get a better understanding of the dynamic configuration spaces and to facilitate 269

a comparison between gray-box and online HPO methods on larger hyperparameter spaces, we 270

compare to PBT and PB2 results for real (not precomputed) runs on the full configuration spaces. 271

These results are denoted with the labels PBT and PB2, respectively whereas the D-PBT and D- 272

PB2 results indicate the performance of PBT and PB2 on the subspace we evaluated exhaustively. 273

Following Parker-Holder et al. [46], we used a population of 8 members for both PBT and PB2 for 274

these experiments. 275

Figures 4 and 5a show that running PBT and PB2 on our benchmark yields very similar results to 276

running the default PBT/PB2 implementations, therefore validating the correctness of the dynamic 277

benchmark. Overall, our experimental results demonstrated that tuning the hyperparameters of RL 278

algorithms is an open challenge and we believe this benchmark will be the de facto experimental 279

protocol for innovating on more efficient HPO methods for RL, which would enable practitioners 280

to deploy RL in an off-the-shelf manner on new environments. 281

5 Conclusion 282

We presented the first tabular HPO benchmark for RL. Our tabular benchmark drastically reduces 283

the computational requirements for evaluating novel HPO methods in RL and, in turn, dramatically 284

lowers the barrier to entry into this field of study. HPO-RL-Bench consists of evaluation episodic 285

reward curves for six commonly used RL methods across a diverse set of 22 environments. In 286

particular, counter to commonly provided tabular HPO benchmarks, our benchmarks allow studying 287

configuration schedules through distinct switching points. We demonstrated the value of our 288

benchmark to the HPO & RL communities by using it to evaluate commonly used HPO methods. 289

Lastly, we showed how our benchmark can provide insights to RL practitioners about the influence 290

of hyperparameters on an agent’s performance and provides pre-computed baselines. We believe 291

that our benchmark opens the door for the study of novel HPO methods and will help similarly 292

advance the field as tabular benchmarks helped advance research in neural architecture search. 293

6 Broader Impact Statement 294

By providing pre-computed evaluations of hyperparameter configurations for six RL algorithms 295

across diverse environments, HPO-RL-Bench addresses the underutilization of HPO techniques 296

in RL research. This benchmark democratizes HPO research by enabling zero-cost experiments, 297

fostering innovation, and accelerating progress in the field. Integration of various HPO methods 298

streamlines model development and promotes transparency and reproducibility in RL research. 299

However, there is a risk that HPOmethods may become overfitted to our benchmark, compromising 300

their generalization to markedly different environments. This limitation, inherent to any HPO 301

benchmark, underscores that the results and insights derived from our benchmark should be 302

interpreted as specific to the set of environments it encompasses. 303

9

References 304

[1] Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. G. (2021). Deep 305

reinforcement learning at the edge of the statistical precipice. 306

[2] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation 307

hyperparameter optimization framework. In Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, 308

E., and Karypis, G., editors, Proceedings of the 25th ACM SIGKDD International Conference on 309

Knowledge Discovery & Data Mining, KDD’19, pages 2623–2631. ACM Press. 310

[3] Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J., Petron, A., 311

Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., and 312

Zaremba, W. (2020). Learning dexterous in-hand manipulation. International Journal of Robotics 313

Research, 39(1). 314

[4] Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, 315

L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., and Bachem, O. (2021). What matters for 316

on-policy deep actor-critic methods? a large-scale study. In Proceedings of the International 317

Conference on Learning Representations (ICLR’21). Published online: iclr.cc. 318

[5] Awad, N., Mallik, N., and Hutter, F. (2021). DEHB: Evolutionary hyberband for scalable, 319

robust and efficient hyperparameter optimization. In Zhou, Z., editor, Proceedings of the 30th 320

International Joint Conference on Artificial Intelligence, IJCAI’21, pages 2147–2153. ijcai.org. 321

[6] Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra, S., Ponda, S. S., 322

and Wang, Z. (2020). Autonomous navigation of stratospheric balloons using reinforcement 323

learning. Nature, 588(7836):77–82. 324

[7] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning envi- 325

ronment: An evaluation platform for general agents. Journal Artificial Intelligence Research, 326

47:253–279. 327

[8] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter 328

optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, 329

Proceedings of the 24th International Conference on Advances in Neural Information Processing 330

Systems (NeurIPS’11), pages 2546–2554. Curran Associates. 331

[9] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fis- 332

cher, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M., 333

de Oliveira Pinto, H. P., Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., 334

Tang, J., Wolski, F., and Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning. 335

arXiv:1912.06680 [cs.LG], abs/1912.06680. 336

[10] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming, volume 3 of Opti- 337

mization and neural computation series. Athena Scientific. 338

[11] Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., 339

Becker, M., Boulesteix, A., Deng, D., and Lindauer, M. (2021). Hyperparameter optimization: 340

Foundations, algorithms, best practices and open challenges. arXiv:2107.05847 [stat.ML]. 341

[12] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. 342

(2016a). OpenAI gym. arXiv:1606.01540 [cs.LG]. 343

[13] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. 344

(2016b). Openai gym. 345

10

iclr.cc

[14] Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., and de Freitas, N. 346

(2018). Bayesian optimization in alphago. arXiv:1812.06855 [cs.LG]. 347

[15] Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2019). Leveraging procedural generation to 348

benchmark reinforcement learning. arXiv:1912.01588 [cs.LG]. 349

[16] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, 350

R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., 351

Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter, 352

O., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., and 353

Riedmiller, M. (2022). Magnetic control of tokamak plasmas through deep reinforcement learning. 354

Nature, 602(7897):414–419. 355

[17] Dong, X. and Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible neural 356

architecture search. In Proceedings of the International Conference on Learning Representations 357

(ICLR’20). Published online: iclr.cc. 358

[18] Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, 359

M., and Hutter, F. (2021). HPOBench: A collection of reproducible multi-fidelity benchmark 360

problems for HPO. In Vanschoren, J., Yeung, S., and Xenochristou, M., editors, Proceedings of the 361

Neural Information Processing Systems Track on Datasets and Benchmarks. Curran Associates. 362

[19] Eimer, T., Lindauer, M., and Raileanu, R. (2023). Hyperparameters in reinforcement learning 363

and how to tune them. 364

[20] Elsken, T., Metzen, J., and Hutter, F. (2019). Neural architecture search: A survey. Journal of 365

Machine Learning Research, 20(55):1–21. 366

[21] Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. (2020). 367

Implementation matters in deep RL: A case study on PPO and TRPO. In Proceedings of the 368

International Conference on Learning Representations (ICLR’20). Published online: iclr.cc. 369

[22] Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparameter 370

optimization at scale. In Dy, J. and Krause, A., editors, Proceedings of the 35th International 371

Conference on Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine 372

Learning Research. 373

[23] François-Lavet, V., Fonteneau, R., and Ernst, D. (2015). How to discount deep reinforcement 374

learning: Towards new dynamic strategies. arXiv:1512.02011 [cs.LG]. 375

[24] Franke, J., Köhler, G., Biedenkapp, A., and Hutter, F. (2021). Sample-efficient automated deep 376

reinforcement learning. In International Conference on Learning Representations (ICLR). 377

[25] Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation error in 378

actor-critic methods. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Con- 379

ference on Machine Learning (ICML’18), volume 80. Proceedings of Machine Learning Research. 380

[26] Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018). Gpytorch: 381

Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Bengio, S., Wallach, 382

H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Proceedings of the 383

31st International Conference on Advances in Neural Information Processing Systems (NeurIPS’18). 384

Curran Associates. 385

11

iclr.cc
iclr.cc

[27] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum 386

entropy deep reinforcement learning with a stochastic actor. In Dy, J. and Krause, A., editors, 387

Proceedings of the 35th International Conference on Machine Learning (ICML’18), volume 80, pages 388

1861–1870. Proceedings of Machine Learning Research. 389

[28] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep 390

reinforcement learning that matters. In McIlraith, S. and Weinberger, K., editors, Proceedings of 391

the Conference on Artificial Intelligence (AAAI’18). AAAI Press. 392

[29] Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., and Wang, W. (2022). The 37 im- 393

plementation details of proximal policy optimization. In ICLR Blog Track. https://iclr-blog- 394

track.github.io/2022/03/25/ppo-implementation-details/. 395

[30] Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An efficient approach for assessing hyper- 396

parameter importance. In Xing, E. and Jebara, T., editors, Proceedings of the 31th International 397

Conference on Machine Learning, (ICML’14), pages 754–762. Omnipress. 398

[31] Islam, R., Henderson, P., Gomrokchi, M., and Precup, D. (2017). Reproducibility of benchmarked 399

deep reinforcement learning tasks for continuous control. arXiv:1708.04133 [cs.LG]. 400

[32] Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W., Donahue, J., Razavi, A., Vinyals, O., 401

Green, T., Dunning, I., Simonyan, K., Fernando, C., and Kavukcuoglu, K. (2017). Population 402

based training of neural networks. arXiv:1711.09846 [cs.LG]. 403

[33] Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identification and hyperpa- 404

rameter optimization. In Gretton, A. and Robert, C., editors, Proceedings of the Seventeenth 405

International Conference on Artificial Intelligence and Statistics (AISTATS), volume 51. Proceedings 406

of Machine Learning Research. 407

[34] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017). Fast Bayesian optimization 408

of machine learning hyperparameters on large datasets. In Singh, A. and Zhu, J., editors, 409

Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics 410

(AISTATS), volume 54. Proceedings of Machine Learning Research. 411

[35] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: 412

Bandit-based configuration evaluation for hyperparameter optimization. In Proceedings of the 413

International Conference on Learning Representations (ICLR’17). Published online: iclr.cc. 414

[36] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. 415

(2016). Continuous control with deep reinforcement learning. In Proceedings of the International 416

Conference on Learning Representations (ICLR’16). Published online: iclr.cc. 417

[37] Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, 418

T., Sass, R., and Hutter, F. (2022). SMAC3: A versatile bayesian optimization package for 419

hyperparameter optimization. Journal of Machine Learning Research (JMLR) – MLOSS, 23(54):1– 420

9. 421

[38] Lindauer, M. and Hutter, F. (2020). Best practices for scientific research on neural architecture 422

search. Journal of Machine Learning Research, 21(243):1–18. 423

[39] Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, 424

K., and Hutter, F. (2022). NAS-Bench-Suite: NAS evaluation is (now) surprisingly easy. In 425

International Conference on Learning Representations. 426

12

iclr.cc
iclr.cc

[40] Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. 427

(2016). Asynchronous methods for deep reinforcement learning. In Balcan, M. and Weinberger, 428

K., editors, Proceedings of the 33rd International Conference on Machine Learning (ICML’17), 429

volume 48, pages 1928–1937. Proceedings of Machine Learning Research. 430

[41] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Riedmiller, 431

M., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., 432

Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through deep 433

reinforcement learning. Nature, 518(7540):529–533. 434

[42] Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., and Lindauer, M. (2023). Autorl 435

hyperparameter landscapes. 436

[43] Nguyen, V., Schulze, S., and Osborne, M. A. (2020). Bayesian optimization for iterative learning. 437

In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H., editors, Proceedings of the 438

33rd International Conference on Advances in Neural Information Processing Systems (NeurIPS’20). 439

Curran Associates. 440

[44] OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., 441

Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N., Tworek, J., Welinder, P., 442

Weng, L., Yuan, Q., Zaremba, W., and Zhang, L. (2019). Solving rubik’s cube with a robot hand. 443

arXiv:1910.07113 [cs.LG]. 444

[45] Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K., Lattimore, 445

T., Szepesvari, C., Singh, S., Roy, B. V., Sutton, R., Silver, D., and Hasselt, H. V. (2020). Behaviour 446

suite for reinforcement learning. In International Conference on Learning Representations. 447

[46] Parker-Holder, J., Nguyen, V., and Roberts, S. J. (2020). Provably efficient online hyperparameter 448

optimization with population-based bandits. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, 449

M.-F., and Lin, H., editors, Proceedings of the 33rd International Conference on Advances in Neural 450

Information Processing Systems (NeurIPS’20). Curran Associates. 451

[47] Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, 452

V., Calandra, R., Faust, A., Hutter, F., and Lindauer, M. (2022). Automated reinforcement learning 453

(autorl): A survey and open problems. Journal of Artificial Intelligence Research (JAIR), 74:517– 454

568. 455

[48] Pineda-Arango, S., Jomaa, H. S., Wistuba, M., and Grabocka, J. (2021). HPO-B: A large-scale 456

reproducible benchmark for black-box HPO based on openml. volume abs/2106.06257. 457

[49] Raffin, A. (2020). Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo. 458

[50] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable- 459

baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning 460

Research, 22(268):1–8. 461

[51] Rajan, R., Diaz, J., Guttikonda, S., Ferreira, F., Biedenkapp, A., and Hutter, F. (2020). Mdp 462

playground: Controlling dimensions of hardness in reinforcement learning. arXiv:1909.07750v3 463

[cs.LG]. 464

[52] Runge, F., Stoll, D., Falkner, S., and Hutter, F. (2019). Learning to Design RNA. In Proceedings 465

of the International Conference on Learning Representations (ICLR’19). 466

[53] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy 467

optimization algorithms. arXiv:1707.06347 [cs.LG]. 468

13

https://github.com/DLR-RM/rl-baselines3-zoo

[54] Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F. (2020). NAS-bench-301 469

and the case for surrogate benchmarks for neural architecture search. arXiv:2008.09777. 470

[55] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., 471

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalch- 472

brenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, 473

D. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 474

529(7587):484–489. 475

[56] Snoek, J., Larochelle, H., and Adams, R. (2012). Practical Bayesian optimization of machine 476

learning algorithms. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors, 477

Proceedings of the 25th International Conference on Advances in Neural Information Processing 478

Systems (NeurIPS’12), pages 2960–2968. Curran Associates. 479

[57] Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. 480

In International Conference on Intelligent Robots and Systems (IROS’12), pages 5026–5033. IEEE. 481

[58] Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Deep kernel learning. In 482

Gretton, A. and Robert, C., editors, Proceedings of the Seventeenth International Conference on 483

Artificial Intelligence and Statistics (AISTATS), volume 51, pages 370–378. Proceedings of Machine 484

Learning Research. 485

[59] Wistuba, M., Kadra, A., and Grabocka, J. (2022). Dynamic and efficient gray-box hyperparam- 486

eter optimization for deep learning. 487

[60] Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). Nas-bench- 488

101: Towards reproducible neural architecture search. In International Conference on Machine 489

Learning, pages 7105–7114. PMLR. 490

[61] Zela, A., Siems, J., and Hutter, F. (2020). NAS-Bench-1Shot1: Benchmarking and dissecting 491

one-shot neural architecture search. In International Conference on Learning Representations. 492

14

Submission Checklist 493

1. For all authors. . . 494

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 495

contributions and scope? [Yes] 496

(b) Did you describe the limitations of your work? [Yes] See Appendix F 497

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6 498

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 499

https://2022.automl.cc/ethics-accessibility/ [Yes] 500

2. If you ran experiments. . . 501

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 502

benchmarks, data (sub)sets, available resources)? [Yes] 503

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 504

search spaces, hyperparameter tuning)? [Yes] See Section 3 505

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 506

for the impact of randomness in your methods or data? [Yes] 507

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 508

splits)? [Yes] 509

(e) Did you report the statistical significance of your results? [Yes] 510

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] 511

(g) Did you compare performance over time and describe how you selected the maximum 512

duration? [Yes] 513

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 514

gpus, internal cluster, or cloud provider)? [Yes] 515

(i) Did you run ablation studies to assess the impact of different components of your approach? 516

[N/A] 517

3. With respect to the code used to obtain your results. . . 518

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 519

results, including all requirements (e.g., requirements.txt with explicit versions), random 520

seeds, an instructive README with installation, and execution commands (either in the 521

supplemental material or as a url)? [Yes] 522

(b) Did you include a minimal example to replicate results on a small subset of the experiments 523

or on toy data? [Yes] 524

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 525

and understand your code? [Yes] 526

(d) Did you include the raw results of running your experiments with the given code, data, and 527

instructions? [Yes] 528

(e) Did you include the code, additional data, and instructions needed to generate the figures 529

and tables in your paper based on the raw results? [Yes] 530

4. If you used existing assets (e.g., code, data, models). . . 531

15

https://2022.automl.cc/ethics-accessibility/

(a) Did you cite the creators of used assets? [Yes] 532

(b) Did you discuss whether and how consent was obtained from people whose data you’re 533

using/curating if the license requires it? [N/A] 534

(c) Did you discuss whether the data you are using/curating contains personally identifiable 535

information or offensive content? [N/A] 536

5. If you created/released new assets (e.g., code, data, models). . . 537

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes] 538

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 539

GitHub or Hugging Face)? [Yes] 540

6. If you used crowdsourcing or conducted research with human subjects. . . 541

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 542

cable? [N/A] 543

(b) Did you describe any potential participant risks, with links to Institutional Review Board 544

(irb) approvals, if applicable? [N/A] 545

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 546

on participant compensation? [N/A] 547

7. If you included theoretical results. . . 548

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 549

(b) Did you include complete proofs of all theoretical results? [N/A] 550

16

A List of Environments included in HPO-RL-Bench 551

Acrobot

DDV

CartPole

DDV

Alien

DDI

Asteroids

DDI

BankHeist

DDI

BeamRider

DDI

Bowling

SDI

Boxing

DDI

Breakout

DDI

Enduro

SDI

Ant

DCV

MountainCar

DDV

Pendulum

DCV

Pong

SDI

Phoenix

DDI

RiverRaid

DDI

SeaQuest

DDI

Skiing

SDI

Invaders

DDI

Tennis

SDI

Hopper

DCV

Humanoid

DCV

Figure 7: Considered environments with reward, action- and state-space classification. Rewards are

Dense or Sparse. Action-spaces are Discrete or Continuous and state-spaces are Image

based or Vector state-spaces. E.g., Pong has a sparse reward, a discrete action space and an

image based state-representation. For detailed descriptions of each environment we refer to

https://www.gymlibrary.dev/

B Data Format and Implementation Details 552

We store the benchmark data as a set of JSON files, separated into folders per search space and 553

environment. Every file contains the reward curves for a hyperparameter configuration (or schedule 554

in the case of the dynamic search space) in a given environment and search space. Specifically, the 555

JSON file has the following fields: i) returns_train – the reward list returned during training, ii) time- 556

stamps_train – the timestamp (in seconds) associated with the training reward, iii) timesteps_train – 557

the time step associated with the reward, iv) returns_eval – the rewards observed during evaluation 558

and its associated measurements, v) std_returns_eval – the standard deviation of the evaluation re- 559

ward, vi) timestamps_eval – the timestamp associated with the evaluation reward, vii) timesteps_eval 560

– the time step associated with the evaluation reward. 561

We use the following naming convention for all the files in the benchmark: 562

%env_name%-%search_space%_random_%hp1%_val1%hp2%_val2_%seed%seedval%eval.json, where 563

we apply bold fonts for fixed strings. For instance, a filename is: 564

BeamRider-v0_A2C_random_lr_-6_gamma_0.95_seed0_eval.json. 565

We trained each configuration and seed tuple on an environment for 10
6
steps. For every 10

4
566

steps, we evaluated the agent for 10 episodes and recorded the mean and standard deviation of the 567

obtained evaluation returns. 568

C Additional Results 569

C.1 Extended Search Spaces 570

We have extended the search spaces from Table 1 to include architectural hyperparameters for PPO 571

and A2C. The extended search spaces are given in Table 2. 572

C.2 Hyperparameter Importance for RL Agents 573

Figures 15 to 17 show the average rank of best and worst hyperparameter configurations and 574

hyperparameter importance for each search space. Figure 14 indicates a crucial insight into the 575

relative importance of various hyperparameters for PPO and A2C. Specifically, it illustrates that the 576

17

https://www.gymlibrary.dev/

from benchmark_handler import BenchmarkHandler

from optimizers.random_search import RandomSearch

search_space ="PPO"

benchmark = BenchmarkHandler(environment="Pong-v0", search_space=search_space,

return_metrics=["eval_avg_returns"], seed=0)

random_search = RandomSearch(search_space=benchmark.get_search_space(search_space),

obj_function=benchmark.get_metrics,

max_budget=99)

n_iters = 100

best_conf, best_score = random_search.suggest(n_iters)

print(f"Best configuration found is {best_conf}")
print(f"Best final evaluation return is {best_score}")

Listing 1: Code snippet for querying HPO-RL-Bench when tuning PPO with Random Search

from benchmark_handler import BenchmarkHandler

bench = BenchmarkHandler(environment="Enduro-v0", seed=0,

search_space="PPO", set="static")

budget = 50

querying static configuration

config_to_query = {"lr": -6, "gamma": 0.8, "clip": 0.2}

queried_data = bench.get_metrics(config_to_query, budget=budget)

print(f'Return at budget {budget}: {queried_data["eval_avg_returns"][-1]}')

querying dynamic configuration

bench.set = "dynamic"

config_to_query = {"lr": [-3, -4], "gamma": [0.98, 0.99], "clip": [0.2, 0.2]}

queried_data = bench.get_metrics(config_to_query, budget=budget)

print(f'Return at budget {budget}: {queried_data["eval_avg_returns"][-1]}')

Listing 2: Code snippet for querying HPO-RL-Bench 1.0

number of layers, a hyperparameter determining the number of hidden layers for the architecture 577

of the RL algorithms, has a significant impact on their performance. In the A2C search space, the 578

number of layers outranks gamma on average, suggesting that the model architecture can influence 579

results more than some traditional hyperparameters. Likewise, in the PPO algorithm, the number 580

of layers hyperparameter is ranked better than the clipping range on average. Furthermore, in 581

the DQN algorithm, the number of layers and number of units hyperparameters are ranked better 582

than the epsilon on average. This finding underlines the importance of not only tuning traditional 583

hyperparameters but also carefully considering the architecture of the RL algorithms for achieving 584

optimal performance. 585

C.3 Performance Profiles for HPO-RL-Bench 586

We show performance profiles of the data included in HPO-RL-Bench for further analysis. We 587

normalize the final evaluation return of each configuration as 𝜏 =
𝑟𝑒𝑡𝑢𝑟𝑛−𝑚𝑖𝑛_𝑟𝑒𝑡𝑢𝑟𝑛

𝑚𝑎𝑥_𝑟𝑒𝑡𝑢𝑟𝑛−𝑚𝑖𝑛_𝑟𝑒𝑡𝑢𝑟𝑛
, where 588

𝑚𝑖𝑛_𝑟𝑒𝑡𝑢𝑟𝑛 represents the minimum final evaluation return, whereas𝑚𝑎𝑥_𝑟𝑒𝑡𝑢𝑟𝑛 represents the 589

maximum final evaluation return for a given environment and seed. Figures 19 and Figure 20 show 590

the performance profiles of the five RL Algorithms in HPO-RL-Bench. For each RL Algorithm, 591

the curves show the means and standard deviations of the fraction of configurations included in 592

18

1 2
Wallclock Time (s) 1e4

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
er

ag
e

Ra
nk

ATARI

0.25 0.50 0.75 1.00
Wallclock Time (s) 1e4

1

2

3

4

CONTROL

0.5 1.0 1.5
Wallclock Time (s) 1e4

1

2

3

4

5

MUJOCO

RS GP Optuna SMAC DyHPO PB2 PBT

Figure 8: Average Ranks of the performance of the baselines for the A2C configuration space.

0.5 1.0 1.5 2.0 2.5
1e4

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

ATARI

0.2 0.4 0.6 0.8 1.0
1e4

1

2

3

4

5

CONTROL

RS GP Optuna SMAC DyHPO PB2 PBT

Figure 9: Average Ranks of the performance of the baselines for the DQN configuration space.

HPO-RL-Bench that have a normalization score 𝜏 at least as big as the values in the x-axis. The 593

means and standard deviations are calculated across the seeds available in our benchmark. 594

This analysis allows us to get insights into the tunability of the considered agents on our 595

chosen configuration space and also how RL algorithms compare to each other. On the MuJoCo 596

environments, for example, all agents can be tuned to reach high performances. However, on our 597

chosen configuration space, DDPG and TD3 are easier to tune, as they have a larger number of 598

configurations that can achieve a high score compared to SAC, A2C, and PPO. In the classic control 599

environments however (with the extended search space), PPO and A2C are very easy to tune as 600

a large fraction of the configuration space results in a very good performance. SAC, TD3, and 601

DDPG can only be tuned to achieve a maximal normalized score of around 0.8, with only very few 602

configurations capable of achieving this score (see Figure 20) 603

C.4 Rank Plots per Environment 604

Figures 21 and 22 show the average rank of each evaluated HPO method on the individual environ- 605

ments. 606

D HPO-RL-Bench Reward Curves 607

In this section we have plotted the reward curves in HPO-RL-Bench. Figures 23- 27 show the 608

reward curves for the PPO, A2C, DDPG, SAC, and TD3 search spaces, respectively. 609

19

0.5 1.0 1.5 2.0 2.5
Wallclock Time (s) 1e5

1

2

3

4

5
Av

er
ag

e
Ra

nk

DDPG

0.5 1.0 1.5 2.0 2.5
Wallclock Time (s) 1e5

1

2

3

4

5
TD3

1 2 3 4 5
Wallclock Time (s) 1e5

1

2

3

4

5

SAC

RS GP Optuna SMAC DyHPO

Figure 10: Average Ranks of the performance of the baselines for the DDPG, TD3, and SAC search

spaces.

1 2
Wallclock Time (s) 1e5

1

2

3

4

5

Av
er

ag
e

Ra
nk

DDPG

1 2
Wallclock Time (s) 1e5

1

2

3

4

5
TD3

2 4
Wallclock Time (s) 1e5

1

2

3

4

5
SAC

RS GP Optuna SMAC DyHPO

Figure 11: Average Ranks of the performance of the baselines for the DDPG, TD3, and SAC search

spaces for the MuJoCo environments.

Table 2: Extended configuration spaces of PPO and A2C.

Algo. Hyperaram. Values

PPO

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

clip 0.1, 0.2, 0.3

n_layers 1, 2, 3

n_units 32, 64, 128, 256

A2C

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

n_layers 1, 2, 3

n_units 32, 64, 128, 256

DQN

lr (log
10
) −6,−5,−4,−3,−2,−1

𝛾 0.8, 0.9, 0.95, 0.98, 0.99, 1.0

𝜖 0.1, 0.2, 0.3

n_layers 1, 2, 3

n_units 32, 64, 128, 256

20

123

2.7778RL Zoo
1.8333HPO-RL-Bench Optuna

1.3889
HPO-RL-Bench Oracle

(a) DDPG

123

3.0000RL Zoo
1.6111HPO-RL-Bench Optuna

1.3889
HPO-RL-Bench Oracle

(b) TD3

123

3.0000RL Zoo
1.7222HPO-RL-Bench Optuna

1.2778
HPO-RL-Bench Oracle

(c) SAC

123

2.3879RL Zoo
1.8966HPO-RL-Bench Optuna

1.7155
HPO-RL-Bench Oracle

(d) DQN

Figure 12: Critical Difference diagram for final evaluation return of hyperparameter configurations

suggested by RL-Zoo, those optimized by Optuna on the HPO-RL-Bench search space, as

well as the best-performing hyperparameter configuration in HPO-RL-Bench.

2 4 6 8
Wallclock Time (s) 1e4

1

2

3

4

Av
er

ag
e

Ra
nk

PPO

2 4 6 8
Wallclock Time (s) 1e4

1

2

3

4

A2C

RS GP Optuna SMAC DyHPO

Figure 13: Average Ranks of the performance of the baselines for the extended versions of the PPO

and A2C search spaces on the Classic Control environments.

E License 610

We provide HPO-RL-Bench 1.0 under an MIT License. OpenAI Gym [13] and Stable-Baselines3 [50] 611

are also offered under an MIT License. 612

F Limitations and Future Work 613

HPO-RL-Bench provides data that allows for the evaluation of black-box HPO, grey-box HPO, as 614

well as online HPO methods. However, we only focus on model-free RL algorithms as our search 615

spaces. This limitation can be lifted by extending the benchmark by increasing the number of search 616

spaces. Further, by its tabular nature, HPO-RL-Bench covers exactly the evaluated configuration 617

lr

ga
m

m
a

cli
p

n_
la

ye
rs

n_
un

its

2

4

Ra
nk

 o
f I

m
po

rta
nc

e PPO

lr

ga
m

m
a

n_
la

ye
rs

n_
un

its

1

2

3

4
A2C

Figure 14: Hyperparameter importance for the extended versions of the PPO and A2C search

spaces (red diamond=mean, red line=median, green dots=outliers, colored box=inter-

quantile range(IQR) from the first quantile(Q1) to the third quantile(Q3) of the data,

whiskers=extended IQR by 1.5x.).

21

lr

ga
m

m
a

ta
u

n_
la

ye
rs

n_
un

its

2

4

Ra
nk

 o
f I

m
po

rta
nc

e DDPG

lr

ga
m

m
a

ta
u

n_
la

ye
rs

n_
un

its

2

4

TD3

Figure 15: Hyperparameter importance per search space for DDPG and TD3(red diamond=mean, red

line=median, green dots=outliers, colored box=inter-quantile range(IQR) from the first

quantile(Q1) to the third quantile(Q3) of the data, whiskers=extended IQR by 1.5x.).

(-5
, 0

.9
8,

 0
.0

05
, 3

, 1
28

)
(-4

, 0
.9

, 0
.0

05
, 1

, 6
4)

(-4
, 0

.9
8,

 0
.0

01
, 1

, 1
28

)
(-4

, 1
.0

, 0
.0

01
, 1

, 6
4)

(-2
, 0

.9
8,

 0
.0

00
1,

 3
, 3

2)
(-2

, 0
.9

8,
 0

.0
01

, 3
, 6

4)
(-2

, 0
.9

9,
 0

.0
00

1,
 2

, 3
2)

(-2
, 1

.0
, 0

.0
05

, 2
, 6

4)

0

250

500

750

1000

Ra
nk

 o
f R

ew
ar

d

DDPG

(-4
, 0

.9
8,

 0
.0

05
, 3

, 1
28

)
(-5

, 0
.9

8,
 0

.0
05

, 2
, 6

4)
(-5

, 0
.9

8,
 0

.0
05

, 2
, 1

28
)

(-5
, 0

.9
9,

 0
.0

05
, 3

, 6
4)

(-2
, 0

.9
8,

 0
.0

05
, 3

, 1
28

)
(-2

, 0
.9

9,
 0

.0
05

, 3
, 1

28
)

(-2
, 1

.0
, 0

.0
01

, 3
, 6

4)
(-2

, 0
.8

, 0
.0

01
, 2

, 1
28

)0

250

500

750

TD3

Figure 16: Average rank of the final reward across environments for TD3 and DDPG (four best and

worst configurations). The illustration depicts: red diamond=mean, red line=median, green

dots=outliers, colored box=inter-quantile range(IQR) from the first quantile(Q1) to the third

quantile(Q3) of the data, whiskers=extended IQR by 1.5x.

22

(-4
, 0

.9
9,

 0
.1

, 2
, 3

2)
(-4

, 0
.9

9,
 0

.1
, 3

, 2
56

)
(-4

, 0
.9

9,
 0

.1
, 3

, 1
28

)
(-4

, 0
.9

8,
 0

.2
, 1

, 3
2)

(-1
, 0

.8
, 0

.2
, 2

, 3
2)

(-1
, 1

.0
, 0

.1
, 2

, 1
28

)
(-1

, 0
.8

, 0
.1

, 2
, 3

2)
(-1

, 0
.8

, 0
.1

, 1
, 3

2)

0

500

1000

Ra
nk

 o
f R

ew
ar

d

PPO

(-4
, 0

.9
8,

 1
, 3

2)
(-4

, 0
.9

8,
 1

, 1
28

)
(-6

, 0
.9

8,
 1

, 6
4)

(-4
, 0

.9
5,

 2
, 3

2)
(-1

, 0
.9

9,
 3

, 6
4)

(-2
, 0

.9
9,

 3
, 3

2)
(-2

, 0
.8

, 3
, 1

28
)

(-1
, 0

.9
9,

 2
, 3

2)

0

100

200

300
A2C

Figure 17: Average rank of the final reward across environments for the extended search spaces of PPO

and A2C (four best and worst configurations). The illustration depicts: red diamond=mean,

red line=median, green dots=outliers, colored box=inter-quantile range(IQR) from the first

quantile(Q1) to the third quantile(Q3) of the data, whiskers=extended IQR by 1.5x.

spaces but does not allow reasoning about algorithmic behavior outside the covered space. Still, 618

HPO-RL-Bench lays the foundation for the principled study of AutoRL and in particular HPO 619

for RL. In future work, similar to trends in benchmarking for NAS [see, e.g., 39], we plan to use 620

surrogate models to cover larger configuration spaces while keeping the positive aspects of a tabular 621

benchmark. 622

23

(-3
, 0

.9
8,

 0
.2

, 3
, 6

4)
(-3

, 0
.9

9,
 0

.2
, 1

, 1
28

)
(-3

, 0
.9

5,
 0

.3
, 3

, 1
28

)
(-4

, 0
.9

8,
 0

.2
, 2

, 6
4)

(-1
, 0

.9
5,

 0
.1

, 1
, 1

28
)

(-1
, 0

.9
5,

 0
.1

, 2
, 3

2)
(-1

, 0
.9

, 0
.2

, 2
, 3

2)
(-1

, 1
.0

, 0
.3

, 3
, 1

28
)0

200

400

600

800

Ra
nk

 o
f R

ew
ar

d

DQN

(a) Average rank of the final reward across

environments for the search space of DQN

(four best and worst configurations). The

illustration depicts: red diamond=mean, red

line=median, green dots=outliers, colored

box=inter-quantile range(IQR) from the first

quantile(Q1) to the third quantile(Q3) of the

data, whiskers=extended IQR by 1.5x.

lr

ga
m

m
a

ep
sil

on

n_
la

ye
rs

n_
un

its

2

4

Ra
nk

 o
f I

m
po

rta
nc

e DQN

(b) Hyperparameter importance for DQN.

Figure 18: Hyperparameter importance analysis for the DQN search space: 18a average rank of the

final reward across environments for the search space of DQN (four best and worst configu-

rations), and 5b hyperparameter importance. The illustration depicts: red diamond=mean,

red line=median, green dots=outliers, colored box=inter-quantile range(IQR) from the first

quantile(Q1) to the third quantile(Q3) of the data, whiskers=extended IQR by 1.5x.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

wi
th

 sc
or

e

ATARI

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CONTROL

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.0

0.2

0.4

0.6

0.8

1.0
MUJOCO

PPO
A2C

DDPG
TD3

SAC

Figure 19: Performance profiles for all the configurations PPO, A2C, DDPG, TD3, and SAC on the

environments in HPO-RL-Bench. The x-axis denotes values of the normalization score 𝜏 ,

whereas the y-axis denotes the fraction of configurations that have a normalization score at

least as high as the value denoted in the x-axis.

24

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

wi
th

 sc
or

e

CONTROL

PPO
A2C

DDPG
TD3

SAC

Figure 20: Performance profiles for all the configurations of the extended search spaces of PPO, A2C,

DDPG, TD3, and SAC on the Classic Control environments in HPO-RL-Bench.

25

0.5 1.0 1.5
1e4

2

4

6
Av

er
ag

e
Ra

nk

Pong-v0

0.5 1.0 1.5
1e4

2

4

6
Alien-v0

0.5 1.0
1e4

2

4

6
BankHeist-v0

0.5 1.0 1.5
1e4

2

4

BeamRider-v0

0.5 1.0 1.5
1e4

2

4

6

Av
er

ag
e

Ra
nk

Breakout-v0

2500 5000 7500

2

4

Enduro-v0

0.5 1.0 1.5
1e4

2

4

6
Phoenix-v0

0.5 1.0 1.5
1e4

2

4

6

Seaquest-v0

0.5 1.0
1e4

2

4

6

Av
er

ag
e

Ra
nk

SpaceInvaders-v0

0.5 1.0 1.5
1e4

2

4

6
Riverraid-v0

0.5 1.0 1.5
1e4

2

4

6

Tennis-v0

0.5 1.0 1.5
1e4

0

2

4

6
Skiing-v0

1 2
1e4

2

4

6

Av
er

ag
e

Ra
nk

Boxing-v0

0.5 1.0 1.5
1e4

2

4

6

Bowling-v0

0.5 1.0
1e4

2

4

6

8 Asteroids-v0

2500 5000 7500
0

2

4

6
CartPole-v1

2000 4000 6000

2

4

6

Av
er

ag
e

Ra
nk

MountainCar-v0

2500 5000 7500
0

2

4

6

Acrobot-v1

2500 5000 7500
Wallclock Time (s)

2

4

6

Pendulum-v0

0.5 1.0 1.5
Wallclock Time (s)1e4

0

2

4

6

Ant-v2

2500 5000 7500
Wallclock Time (s)

2

4

6

Av
er

ag
e

Ra
nk

Hopper-v2

0.5 1.0
Wallclock Time (s)1e4

0

2

4

6

8
Humanoid-v2

RS GP Optuna SMAC DyHPO PB2 PBT

Figure 21: Average Ranks of the performance of the baselines the PPO search space per Environment.

26

0.5 1.0
1e4

1

2

3

4

5

Av
er

ag
e

Ra
nk

Pong-v0

0.5 1.0
1e4

2

4

6

Alien-v0

0.5 1.0
1e4

2

4

6
BankHeist-v0

0.5 1.0 1.5
1e4

2

4

6

BeamRider-v0

0.5 1.0
1e4

2

4

6

Av
er

ag
e

Ra
nk

Breakout-v0

1 2
1e4

2

4

6
Enduro-v0

0.5 1.0
1e4

2

4

6

8
Phoenix-v0

0.5 1.0
1e4

2

4

6

8 Seaquest-v0

2500 5000 7500

2

4

6

Av
er

ag
e

Ra
nk

SpaceInvaders-v0

0.5 1.0
1e4

2

4

6

Riverraid-v0

0.5 1.0 1.5
1e4

0

2

4

6
Tennis-v0

0.5 1.0
1e4

1

2

3

4

5 Skiing-v0

0.5 1.0 1.5
1e4

2

4

6

Av
er

ag
e

Ra
nk

Boxing-v0

0.5 1.0
1e4

2

4

6
Bowling-v0

0.5 1.0
1e4

0

2

4

6

Asteroids-v0

2000 4000 6000
0

2

4

6

8
CartPole-v1

2000 4000
0.950

0.975

1.000

1.025

1.050

Av
er

ag
e

Ra
nk

MountainCar-v0

2500 5000 7500
0

2

4

6

8 Acrobot-v1

2000 4000 6000 8000
Wallclock Time (s)

2

4

6

Pendulum-v0

0.5 1.0 1.5
Wallclock Time (s)1e4

2

4

6
Ant-v2

2500 5000 7500
Wallclock Time (s)

0

2

4

6

Av
er

ag
e

Ra
nk

Hopper-v2

0.5 1.0
Wallclock Time (s)1e4

2

4

6

Humanoid-v2

RS GP Optuna SMAC DyHPO PB2 PBT

Figure 22: Average Ranks of the performance of the baselines the A2C search space per Environment.

27

Timesteps

Re
wa

rd
Ant-v2

Timesteps

Hopper-v2

Timesteps

Humanoid-v2

Figure 23: Reward curves of DDPG on the environments included in HPO-RL-Bench.

Timesteps

Re
wa

rd

Ant-v2

Timesteps

Hopper-v2

Timesteps

Humanoid-v2

Figure 24: Reward curves of SAC on the environments included in HPO-RL-Bench.

Timesteps

Re
wa

rd

Ant-v2

Timesteps

Hopper-v2

Timesteps

Humanoid-v2

Figure 25: Reward curves of TD3 on the environments included in HPO-RL-Bench.

28

Re
wa

rd
Pong-v0 Alien-v0 BankHeist-v0 BeamRider-v0

Re
wa

rd

Breakout-v0 Enduro-v0 Phoenix-v0 Seaquest-v0

Re
wa

rd

SpaceInvaders-v0 Riverraid-v0 Tennis-v0 Skiing-v0

Re
wa

rd

Boxing-v0 Bowling-v0 Asteroids-v0 CartPole-v1

Re
wa

rd

MountainCar-v0 Acrobot-v1

Timesteps

Pendulum-v0

Timesteps

Ant-v2

Timesteps

Re
wa

rd

Hopper-v2

Timesteps

Humanoid-v2

Figure 26: Reward curves of PPO on the environments included in HPO-RL-Bench.

29

Re
wa

rd
Pong-v0 Alien-v0 BankHeist-v0 BeamRider-v0

Re
wa

rd

Breakout-v0 Enduro-v0 Phoenix-v0 Seaquest-v0

Re
wa

rd

SpaceInvaders-v0 Riverraid-v0 Tennis-v0 Skiing-v0

Re
wa

rd

Boxing-v0 Bowling-v0 Asteroids-v0 CartPole-v1

Re
wa

rd

MountainCar-v0 Acrobot-v1

Timesteps

Pendulum-v0

Timesteps

Ant-v2

Timesteps

Re
wa

rd

Hopper-v2

Timesteps

Humanoid-v2

Figure 27: Reward curves of A2C on the environments included in HPO-RL-Bench.

30

	Introduction
	Related Work
	Benchmark Description
	Data Collection
	API for HPO-RL-Bench 1.0

	Experiments
	Hyperparameter Importance for RL Agents
	HPO for RL
	Validating the Usefulness of the Considered Configuration Space

	Conclusion
	Broader Impact Statement
	List of Environments included in HPO-RL-Bench
	Data Format and Implementation Details
	Additional Results
	Extended Search Spaces
	Hyperparameter Importance for RL Agents
	Performance Profiles for HPO-RL-Bench
	Rank Plots per Environment

	HPO-RL-Bench Reward Curves
	License
	Limitations and Future Work

