

000 001 002 003 004 005 RADAR-GUIDED POLYNOMIAL FITTING FOR METRIC 006 DEPTH ESTIMATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 We propose POLAR, a novel radar-guided depth estimation method that introduces
028 polynomial fitting to efficiently transform scaleless depth predictions from pre-
029 trained monocular depth estimation (MDE) models into metric depth maps. Unlike
030 existing approaches that rely on complex architectures or expensive sensors, our
031 method is grounded in a fundamental insight: although MDE models often infer
032 reasonable local depth structure within each object or local region, they may mis-
033 align these regions relative to one another, making a linear scale and shift (affine)
034 transformation insufficient given three or more of these regions. To address this
035 limitation, we use polynomial coefficients predicted from cheap, ubiquitous radar
036 data to adaptively adjust depth predictions non-uniformly across depth ranges. In
037 this way, POLAR generalizes beyond affine transformations and is able to correct
038 such misalignments by introducing inflection points. Importantly, our polynomial
039 fitting framework preserves structural consistency through a novel training objec-
040 tive that enforces local monotonicity via first-derivative regularization. POLAR
041 achieves state-of-the-art performance across three datasets, outperforming exist-
042 ing methods by an average of 24.9% in MAE and 33.2% in RMSE, while also
043 achieving state-of-the-art efficiency in terms of latency and computational cost.
044

1 INTRODUCTION

045 Metric 3D reconstruction is critical for spatial tasks such as self-driving (Maier et al., 2012; Gupta
046 et al., 2021), where it is necessary for one to perceive the structure of the 3D environment in order
047 to navigate. In many such systems, multiple sensors—including cameras, lidar, and radar—provide
048 complementary information about the 3D scene. While lidar sensors offer dense and precise point
049 clouds, they are expensive and not widely available (Raj et al., 2020). In contrast, radar sensors,
050 particularly millimeter wave (mmWave) radars (Iizuka et al., 2003), return only about a hundred
051 points per frame and are noisier (Han et al., 2023). Yet, they offer key advantages: they are far more
052 cost-effective and energy-efficient, robust to challenging environmental conditions, and ubiquitously
053 equipped on modern vehicles (Eichelberger & McCatt, 2016).

054 Unless camera baselines are known, images offer scaleless reconstruction. However, they are high-
055 dimensional and sensitive to variations in illumination, object appearance, orientation, and camera
056 viewpoint. Training robust models that can generalize across these factors often demands large-scale
057 datasets, which are costly to collect. As a result, leveraging pretrained monocular depth estimation
058 (MDE) foundation models (Ranftl et al., 2021; Yang et al., 2024; Bochkovskii et al., 2024; Piccinelli
059 et al., 2025) emerges as a practical alternative. However, as monocular 3D reconstruction is inherently
060 ill-posed, they typically infer scaleless relative depth, or depth that lacks the fidelity needed for
061 applications demanding accurate metric-scale reconstruction, such as mapping and navigation.

062 Existing approaches (Yin et al., 2023; Viola et al., 2024; Hu et al., 2024; Zeng et al., 2025; Ding
063 et al., 2025; Yu et al., 2025) attempt to transform these MDE predictions into accurate metric depth
064 maps using a global affine (scale-and-shift) transformation. This class of methods assumes that the
065 reconstruction is off by a single scaling factor across the entire scene. While effective in estimating
066 ordinal relationships within local regions, where MDE predictions typically exhibit reasonable
067 local (object-level) reconstructions, such linear corrections fail when multiple objects are placed at
068 incorrect depths relative to each other. Specifically, once an MDE model places three or more objects
069 at incorrect relative depths, no simple scale-and-shift can reconcile this misalignment (Fig. 1).

054 In this work, we challenge the common assumption
 055 that scale ambiguity in MDE is only up
 056 to an unknown global scale and shift. Instead,
 057 we propose to incorporate higher-order correc-
 058 tions through a polynomial transformation that
 059 allows for stretching and compressing at dif-
 060 ferent depth levels, enabling more flexible non-
 061 uniform adjustments. Our approach, POLAR,
 062 transforms the predictions of pretrained MDE
 063 models by (i) learning prototypical patterns in
 064 the configuration of radar points, (ii) estab-
 065 lishing spatial correspondences between radar and
 066 MDE features to encode a unified multi-sensor
 067 scene representation, and (iii) predicting poly-
 068 nomial coefficients that adaptively fit scaleless
 069 depth into metric depth. This polynomial ex-
 070 pansion introduces additional degrees of freedom
 071 (i.e., multiple inflection points) that can better
 072 correct non-uniform variations and cross-region mis-
 073 alignments. While one may adjust every prediction
 074 (pixel) of an MDE model (Li et al., 2024a),
 075 the number of degrees of freedom is the total
 076 number of pixels. Given radar point clouds of a few
 077 hundred points (many orders less than the number of pixels), this becomes an ill-posed problem. On
 078 the other hand, the number of degrees of freedom in polynomial expansion is limited to the number
 079 of polynomial terms, which we empirically found to be close to the cardinality of radar point clouds,
 080 allowing our solution to be better posed and more regular. To our knowledge, no prior work has
 081 explored polynomial fitting for adapting predictions of pretrained foundation models.

082 However, learning such a flexible transformation is challenging because higher-order polynomials
 083 introduce a vast function space with many free parameters. Unlike a simple linear fit that relies on
 084 only scale and bias terms, polynomial fitting allows for numerous inflection points and nonlinearities.
 085 This expressiveness can inadvertently lead to harmful non-monotonic transformations—where the
 086 relative depth orderings of points are incorrectly reversed—if not properly constrained. We address
 087 this by introducing a regularization term that enforces the predicted metric depth with respect to the
 088 input MDE depth to remain approximately monotonically increasing. This ensures that incremental
 089 changes in the input depth result in proportional changes in the predicted depth within local regions
 090 where MDE reconstructs structure up to a relative scale. In essence, this regularizer encourages a
 091 *piecewise* monotonic transformation, mitigating unstable oscillations that can arise from overfitting
 092 high-degree polynomials while still enabling necessary corrections for cross-region misalignments.

093 **Our contributions:** We propose (1) POLAR, a novel POLynomial fitting method that leverages
 094 complementary radAR guidance to transform scaleless monocular depth into accurate metric depth.
 095 Our approach (2) introduces a fundamental insight: using polynomial coefficients predicted from a
 096 learned multimodal representation to enable non-uniform corrections. We present (3) a principled
 097 geometric formulation, where polynomial transformations introduce inflection points that can correct
 098 misalignments between local areas that an affine transformation cannot. We design (4) a novel training
 099 objective that encourages monotonicity through first-derivative as regularization, preserving local
 100 ordinality while allowing cross-region adjustments. Finally, (5) extensive experiments demonstrate
 101 that POLAR achieves the state of the art in both performance and efficiency, outperforming existing
 102 methods by an average of 29.1% and simultaneously delivering real-time processing of over 40 fps.

2 RELATED WORK

103 **Monocular Depth Estimation.** With recent advances in the scalability of neural networks (Dosovit-
 104 skiy et al., 2021; Caron et al., 2021), monocular depth estimation (MDE) models can infer scaleless
 105 relative depth from a single image across diverse, unseen domains (Ranftl et al., 2020; Yang et al.,
 106 2024; Piccinelli et al., 2025; Bochkovskii et al., 2024), benefiting from large-scale datasets. Recent
 107 works seek to enhance MDE by leveraging auxiliary image signals, such as structure and motion
 108 priors from segmentation (Hoyer et al., 2023; Bian et al., 2019), uncertainty estimation (Poggi
 109 et al., 2020), optical flow (Zhao et al., 2020), and visual odometry (Song et al., 2023), to improve
 110 relative depth estimation. However, monocular *metric* depth estimation inherently suffers from scale

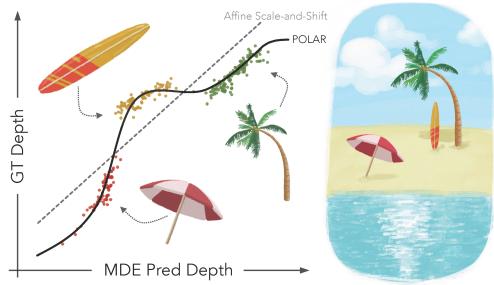


Figure 1: If an MDE model predicts incorrect relative depths between *three or more objects*, an affine scale-and-shift (dashed) cannot resolve this misalignment. POLAR (solid) overcomes this limitation by learning an N -th-order polynomial fit with up to $N - 2$ inflection points.

correct non-uniform variations and cross-region misalignments. While one may adjust every prediction (pixel) of an MDE model (Li et al., 2024a), the number of degrees of freedom is the total number of pixels. Given radar point clouds of a few hundred points (many orders less than the number of pixels), this becomes an ill-posed problem. On the other hand, the number of degrees of freedom in polynomial expansion is limited to the number of polynomial terms, which we empirically found to be close to the cardinality of radar point clouds, allowing our solution to be better posed and more regular. To our knowledge, no prior work has explored polynomial fitting for adapting predictions of pretrained foundation models.

However, learning such a flexible transformation is challenging because higher-order polynomials introduce a vast function space with many free parameters. Unlike a simple linear fit that relies on only scale and bias terms, polynomial fitting allows for numerous inflection points and nonlinearities. This expressiveness can inadvertently lead to harmful non-monotonic transformations—where the relative depth orderings of points are incorrectly reversed—if not properly constrained. We address this by introducing a regularization term that enforces the predicted metric depth with respect to the input MDE depth to remain approximately monotonically increasing. This ensures that incremental changes in the input depth result in proportional changes in the predicted depth within local regions where MDE reconstructs structure up to a relative scale. In essence, this regularizer encourages a *piecewise* monotonic transformation, mitigating unstable oscillations that can arise from overfitting high-degree polynomials while still enabling necessary corrections for cross-region misalignments.

Our contributions: We propose (1) POLAR, a novel POLynomial fitting method that leverages complementary radAR guidance to transform scaleless monocular depth into accurate metric depth. Our approach (2) introduces a fundamental insight: using polynomial coefficients predicted from a learned multimodal representation to enable non-uniform corrections. We present (3) a principled geometric formulation, where polynomial transformations introduce inflection points that can correct misalignments between local areas that an affine transformation cannot. We design (4) a novel training objective that encourages monotonicity through first-derivative as regularization, preserving local ordinality while allowing cross-region adjustments. Finally, (5) extensive experiments demonstrate that POLAR achieves the state of the art in both performance and efficiency, outperforming existing methods by an average of 29.1% and simultaneously delivering real-time processing of over 40 fps.

108 ambiguity, as estimating absolute depth from a single image is an ill-posed problem. Even MDE
 109 models trained with metric depth supervision often struggle to generalize to unseen domains with high
 110 fidelity (Viola et al., 2024). One way to address this limitation is to incorporate range-sensing modalities
 111 such as lidar (Jaritz et al., 2018; Ezhov et al., 2024), radar (Singh et al., 2023), or visual-inertial
 112 odometry (Wong et al., 2020).

113 **Image-Guided Depth Completion.** Most often studied in the context of lidar-camera depth es-
 114 timation, image-guided depth completion leverages the strengths of each modality: images offer
 115 dense visual context and structural priors, while lidar points provide absolute metric scale to resolve
 116 depth ambiguity. Fusion strategies for these modalities include early fusion, where feature maps
 117 are concatenated at initial layers (Ma & Karaman, 2018; Ma et al., 2018), late fusion, where inputs
 118 are processed by independent branches (Yan et al., 2021; Rim et al., 2025), and multi-scale fusion,
 119 which captures both local details and global scene structure (Li et al., 2020). U-Net-like architectures
 120 have been widely used for coarse-to-fine depth completion (Hu et al., 2021; Lin et al., 2022), with
 121 improvements from deformable convolutions (Park et al., 2020; Xu et al., 2020), and attention
 122 mechanisms (Rho et al., 2022; Zhang et al., 2023).

123 **Radar-Camera Depth Estimation.** While lidar-based depth estimation methods achieve high
 124 accuracy due to their dense and precise measurements, their widespread adoption is limited by high
 125 costs, power consumption, and sensitivity to environmental conditions (Raj et al., 2020). In contrast,
 126 radar provides a cost-effective alternative (Hunt et al., 2024), offering robustness in adverse conditions
 127 such as low light, fog, and rain—where both cameras and lidar often struggle (Paek et al., 2022;
 128 Srivastav & Mandal, 2023). The ubiquity of radar sensors (Eichelberger & McCartt, 2016) in existing
 129 automotive and robotic platforms further supports their integration into depth estimation pipelines.
 130 Leveraging radar for metric depth estimation not only reduces costs but also enhances the robustness
 131 and scalability of perception systems, making it an attractive choice for real-world deployment.

132 Despite these advantages, methods that fuse image and radar inputs for depth estimation must address
 133 the sparsity and elevation ambiguity (Singh et al., 2023) of radar point clouds. (Lin et al., 2020)
 134 uses a two-stage late fusion approach that first produces a coarse depth map and performs outlier
 135 rejection, then predicts the final depth map. (Long et al., 2021) leverages Doppler velocity and
 136 optical flow to associate radar points with image pixels. (Lo & Vandewalle, 2021) refines radar depth
 137 using height-extension of radar points to address elevation ambiguity. (Singh et al., 2023) introduces
 138 RadarNet, which uses radar-pixel correspondence scores as well as confidence scores to generate a
 139 semi-dense depth map, which is then used to predict the final dense depth map using gated fusion.
 140 (Li et al., 2024b) mitigates distribution artifacts using sparse supervision, while (Sun et al., 2024)
 141 employs a two-stage confidence-driven approach. GET-UP (Sun et al., 2025) uses attention-enhanced
 142 graph neural networks to capture both 2D and 3D features from radar data and leverages point
 143 cloud upsampling to refine radar features. Like our method, RadarCam-Depth (Li et al., 2024a) and
 144 TacoDepth (Wang et al., 2025) also begin with an initial MDE prediction, but refine it and decode
 145 dense depth directly from fused features, rather than employing a learned scene-fitting approach.

146 Existing methods operate within the paradigm of completion or direct decoding of fused features, and
 147 they often rely on multi-stage training and explicit radar-pixel association learning, increasing model
 148 complexity and computational overhead. In contrast, POLAR employs a streamlined yet powerful
 149 architecture that directly predicts polynomial coefficients from radar and MDE features, enabling
 150 accurate and efficient fitting of scaleless depth to metric scale. It bypasses the need for multi-stage
 151 systems that learn explicit correspondences while enabling flexible scene-adaptive depth corrections.

152 3 METHOD FORMULATION

153 We aim to reconstruct a 3D scene from an RGB image $I \in \mathbb{R}^{H \times W \times 3}$ and a synchronized radar
 154 point cloud $C \in \mathbb{R}^{N_C \times 3}$ by fitting a scaleless depth map from a pretrained MDE foundation
 155 model to a metric depth map. Our method leverages MDE to seed scaleless depth predictions and
 156 estimates metric depth through polynomial fitting guided by cross-modal features that encode spatial
 157 correspondences between the 3D radar points and the dense scaleless depth predictions.

158 As MDE models are trained on millions of images, they are robust to typical visual nuisance
 159 variability, spanning from illumination changes and object appearances to viewpoint shifts. To
 160 circumvent the need to collect many large-scale synchronized radar-camera datasets, we begin with a

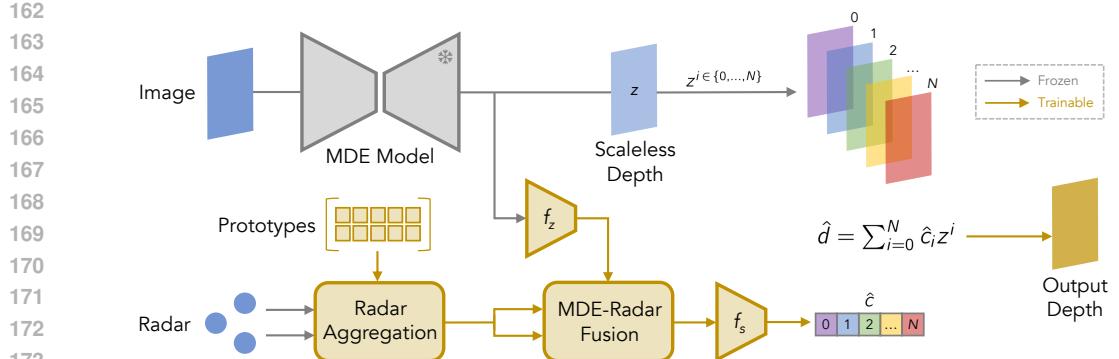


Figure 2: **Method Overview.** POLAR transforms scaleless MDE predictions into metric depth using polynomial fitting guided by radar features. Learnable prototypes extract patterns in the configurations of radar point clouds and are used to aggregate spatially-informed radar features. The geometry-aware MDE features are fused with the radar features via a learnable soft-correspondence module to yield a unified scene representation that is used to predict polynomial coefficients for fitting. This enables non-uniform corrections that improve accuracy beyond affine transformations.

frozen pretrained MDE model M , which serves as a learned geometric prior, to infer a scaleless depth map $z \in \mathbb{R}_+^{H \times W}$ from the image. We then encode the point cloud C and the scaleless depth map z separately. Through a fusion process that captures correspondences between them, we predict $N + 1$ polynomial coefficients $\{\hat{c}_0, \hat{c}_1, \dots, \hat{c}_N\}$ that are used to transform z into a metric depth map \hat{d} .

3.1 MOTIVATION

Existing methods (Zeng et al., 2025; Ding et al., 2025; Yu et al., 2025; Viola et al., 2024; Hu et al., 2024; Yin et al., 2023) refine MDE predictions by applying simple scale-and-shift transformations. However, this approach lacks the complexity needed to correct non-uniform variations from ground truth across different depths. A practical illustration of this shortcoming arises when multiple objects or local regions appear in the same scene: MDE may accurately infer the reconstruction within each object region, yet place them at incorrect relative depths with respect to each other. Such cross-region misalignments cannot be corrected by a single global scaling factor (see Fig. 1). This violates the assumption that the MDE reconstruction is up to an unknown global scale and shift.

To address this, our *polynomial fitting* approach exponentiates the MDE prediction to higher powers and learns coefficients that transform it into a metric depth map via summation. Lower-order coefficients (including scale and shift) capture the global scene layout, while higher-order coefficients focus on local depth adjustments, correcting cross-object misalignments and fine-grained MDE errors.

An intuitive understanding of polynomial fitting can be drawn from the geometric perspective of depth transformations. An affine (scale-and-shift) operation, mathematically represented as $\hat{a}z + \hat{b}$, uniformly stretches or compresses the entire reconstruction by the same factor across all depth levels. While effective for coarse global corrections, such an affine transformation has zero *inflection points*, limiting its flexibility to address cross-region misalignments in relative depth predictions. In contrast, the total degree of our polynomial fitting method determines the maximum number of potential inflection points, where the curvature of the depth transformation can change. For a polynomial $f(z) = \sum_{i=0}^N \hat{c}_i z^i$, an *inflection point* z^* occurs if

$$f''(z^*) = \sum_{i=2}^N i(i-1) \hat{c}_i (z^*)^{i-2} = 0, \quad (1)$$

indicating where the second derivative changes sign. By learning inflection points, we can model transition regions in the curvature of the MDE error, allowing necessary non-uniform corrections.

3.2 REPRESENTATION LEARNING AND FUSION

Radar Processing. We begin with a radar point cloud $C \in \mathbb{R}^{N_C \times 3}$, where each of the N_C points is represented by its (x, y, z) coordinates in three-dimensional camera space. Radar point clouds, while

216 noisy and sparse, provide metric depth measurements. We concatenate a sinusoidal 3D positional
 217 embedding $\phi_{3D}(x, y, z)$ to C , and feed the resulting representation into a multilayer perceptron
 218 (MLP) ψ_r , producing radar features $F_r \in \mathbb{R}^{N_C \times c_r}$, where c_r is the feature dimension.

219 **Radar Aggregation.** To facilitate effective radar feature aggregation, we introduce a set of learnable
 220 prototypes $P \in \mathbb{R}^{N_P \times c_r}$, where these N_P prototypes capture diverse spatial and geometric properties
 221 present in the radar point cloud. Each prototype learns to focus on specific patterns in the configuration
 222 of radar points, making them highly expressive and adaptable across varying scenes. Unlike existing
 223 works (Singh et al., 2023; Li et al., 2024a) that directly encode and pool radar points—making them
 224 more susceptible to nuisances like multipath propagation—our learnable prototypes identify and
 225 match meaningful patterns within the point cloud. This allows for selective feature aggregation that
 226 mitigates the impact of outliers, resulting in more robust depth predictions.

227 Next, learnable prototypes are matched to the most relevant radar features for a given input. We
 228 treat the prototypes as centroids and perform soft clustering over the radar features. Each radar point
 229 is softly assigned to prototypes according to feature similarity, and the corresponding values are
 230 aggregated to yield a global scene-descriptive representation F_R :

$$232 D_{ij} = \|P_j - \Phi_r(F_r)_i\|^2, \quad F_R = \text{softmax}(-D / \tau) \Psi_r(F_r), \quad (2)$$

233 where Φ_r, Ψ_r are MLPs that project the radar features F_r , the matrix $D \in \mathbb{R}^{N_P \times N_C}$ contains the
 234 pairwise squared distances between prototypes $\{P_j\}_{j=1}^{N_P}$ and projected radar features $\{\Phi_r(F_r)_i\}_{i=1}^{N_C}$,
 235 and τ denotes temperature. This clustering-based formulation enables prototypes to capture recurring
 236 spatial and geometric patterns in radar point clouds. Comparatively, applying lidar depth completion
 237 methods, which densify a sparse projection of points using surrounding context, to a radar point cloud
 238 results in poor performance (see Sec. E). This is because radar measurements are orders of magnitude
 239 sparser than lidar and are much noisier, especially when lacking sufficient antenna elements, e.g.,
 240 elevation ambiguity, or range resolution (Singh et al., 2023).

241 **MDE-Radar Fusion.** The scaleless depth map $z \in \mathbb{R}_+^{H \times W}$ from the MDE model is encoded with
 242 a learnable depth encoder f_z , producing depth features $Z \in \mathbb{R}^{(H \times W) \times c_z}$. These features inherit
 243 invariants learned through large-scale MDE training—such as robustness to color variations, illumi-
 244 nation changes, and diverse object poses—and therefore primarily encode object-level properties.
 245 Since variations in the shape of objects and their geometry are generally more stable across scenes
 246 than photometric appearance, the resulting depth features provide a more reliable geometric context
 247 for fusion with radar features. This allows radar point configurations to be matched to consistently
 248 observed shapes and surfaces, rather than to pixel-wise color intensities that can vary arbitrarily with
 249 lighting and viewpoint. To this end, we learn soft spatial correspondences between the depth features
 250 Z and the radar features F_R to construct a unified scene representation S that fuses the structural
 251 information encoded in the MDE predictions with the metric cues provided by the radar features:

$$253 S = \text{softmax} \left(\frac{(Z + E) \times (\Phi_R(F_R))^T}{\sqrt{c_r}} \right) \Psi_R(F_R), \quad (3)$$

255 where $E \in \mathbb{R}^{(H \times W) \times c_z}$ is a learned 2D positional embedding, and Φ_R, Ψ_R are MLPs that project
 256 the aggregated radar features F_R . c_z is set equal to c_r to align the depth and radar features within a
 257 common embedding space, facilitating cross-modal fusion, and S is reshaped to be in $\mathbb{R}^{H \times W \times c_s}$.

259 **Predicting Coefficients.** The fused representation S is passed through a shallow convolutional neural
 260 network (CNN) f_s followed by a global average pooling (GAP) layer to yield $\bar{S} = \text{GAP}(f_s(S))$,
 261 which is a c_s -dimensional feature vector. The GAP layer aggregates spatial information from the
 262 entire scene, ensuring that \bar{S} captures global context. This final scene representation \bar{S} is then fed
 263 into an MLP ψ_s , which predicts the $N + 1$ polynomial coefficients as a vector \hat{c} :

$$265 \hat{c} = \psi_s(\bar{S}) \in \mathbb{R}^{N+1}. \quad (4)$$

266 These coefficients allow the model to adaptively refine the initial depth predictions from the MDE
 267 model, with each coefficient adjusting depth at different scales and granularities. Lower-order
 268 terms capture broad scene structure, while higher-order terms enable fine-grained and cross-region
 269 corrections, resulting in a high-fidelity metric-scale depth map.

270 3.3 POLYNOMIAL FITTING
271

272 Given a scaleless depth map $z \in \mathbb{R}_+^{H \times W}$ predicted by the MDE foundation model, our goal is to
273 transform it into a metric depth map $\hat{d} \in \mathbb{R}_+^{H \times W}$ using the polynomial coefficients $\{\hat{c}_0, \hat{c}_1, \dots, \hat{c}_N\}$
274 predicted by our network (Sec. 3.2). Formally, we express the final depth map \hat{d} as:
275

$$276 \hat{d}(x, y) = \sum_{i=0}^N \hat{c}_i \cdot z(x, y)^i, \quad \forall (x, y) \in H \times W. \quad (5)$$

279 This polynomial formulation applies
280 the learned coefficients to successive
281 powers of the scaleless depth map, en-
282 abling complex, non-linear transforma-
283 tions that surpass the limitations of
284 affine transformations. Each pixel’s final
285 depth is thus computed by summing
286 multiple weighted terms, where each
287 term corresponds to a different poly-
288 nomial order of the initial depth prediction.

289 This is in contrast to directly mapping to
290 a metric-scale depth map (Singh et al.,
291 2023; Li et al., 2024a), where the de-
292 grees of freedom comprise every pre-
293 dicted pixel. Each corresponding point
294 and pixel prediction can be viewed as
295 a constraint or equation in our esti-
296 mation system. As the radar point cloud
297 ($\sim 10^2$ points) only occupies a small
298 subset of the image space ($\sim 10^6$ pixels),
299 the solution is underdetermined and
300 often irregular (see Fig. 4). Conversely,
301 a simple linear fit (only two degrees of
302 freedom) with inconsistent MDE pre-
303 dictions and noisy radar points leads to an
304 overdetermined system (see Tab. 5). POLAR
305 offers the middle ground: By a flexible choice of
306 polynomial degree, we can appropriately tune and select the complexity of the function, i.e., degrees
307 of freedom, that leads to a better fit between MDE predictions and radar points.

308 In terms of overhead, compared to predicting two coefficients (scale and shift) for an affine trans-
309 formation, predicting $N + 1$ coefficients for polynomial fitting introduces a negligible increase
310 in computational cost (< 0.01% more FLOPs): the final MLP outputs an $(N + 1)$ -dimensional
311 vector instead of a two-dimensional vector, and the final depth map is computed through parallelized
312 exponentiation and multiplication operations (see Sec. B for the complete derivation).

313 **Geometric Intuition.** Applying polynomial fitting to the scaleless depth map is best viewed as a
314 flexible, depth-dependent correction mechanism. In contrast to a single scale-and-shift operation,
315 which uniformly adjusts the entire depth field by a single global factor, polynomial transformations
316 introduce multiple degrees of freedom—higher-order terms enable correction of misalignments in
317 relative depth between objects and local regions.

318 By introducing polynomial terms, our method enables depth adjustments that vary according to
319 the initial depth estimates z . Lower-order coefficients $(\hat{c}_0, \hat{c}_1, \dots)$ establish a broad global scale,
320 providing a metric basis for the initially scaleless z . Higher-order coefficients $(\dots, \hat{c}_{N-1}, \hat{c}_N)$
321 introduce both low-frequency corrections, e.g., resolving cross-object misalignments (Fig. 1), as well
322 as high-frequency corrections, e.g., sharpening fine object boundaries (Fig. 4, Image C).

323 The concept of inflection points provides an intuitive understanding of this approach. Each additional
324 polynomial order introduces more potential inflection points, allowing the depth transformation
325 to shift curvature where needed. This flexibility enables “stretching” or “compressing” different
326 depth levels: areas already near their correct metric depth receive minimal adjustment, while regions

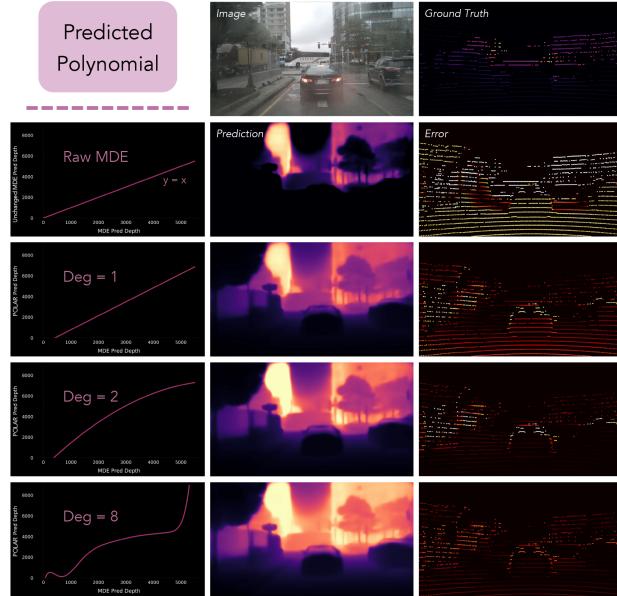


Figure 3: POLAR leverages spatial information from radar points to predict higher-degree polynomial transformations that can correct non-affine errors in MDE predictions.

324 Table 1: **Quantitative results** on the nuScenes, ZJU-4DRadarCam (ZJU), and View-of-Delft test sets
 325 evaluated with various maximum evaluation distances.

327 328 329 330 331 332	333 334 335 336 337	338 339 340 341 342	343 344 345 346 347	nuScenes		ZJU		View-of-Delft	
				MAE	RMSE	MAE	RMSE	MAE	RMSE
329 330 331 332 333 334	335 336 337 338 339 340	341 342 343 344 345 346	347 348 349 350 351 352	RadarNet	[CVPR '23]	1727.7	3746.8	1430.5	3250.8
				SparseBeatsDense	[ECCV '24]	1524.5	3567.3	1424.4	3267.5
				GET-UP	[WACV '25]	1241.0	2857.0	1483.9	3220.5
				RadarCam-Depth	[ICRA '24]	1286.1	2964.3	1067.5	2817.4
				TacoDepth	[CVPR '25]	1046.8	2487.5	930.2	2477.3
				POLAR (Ours)		1014.4	2475.7	578.0	1108.6
335 336 337 338 339 340	341 342 343 344 345 346	347 348 349 350 351 352	347 348 349 350 351 352	RadarNet	[CVPR '23]	2073.2	4590.7	1543.8	3655.3
				SparseBeatsDense	[ECCV '24]	1822.9	4303.6	1520.0	3593.4
				GET-UP	[WACV '25]	1541.0	3657.0	1651.5	3711.7
				RadarCam-Depth	[ICRA '24]	1587.9	3662.5	1157.0	3117.7
				TacoDepth	[CVPR '25]	1347.1	3152.8	983.1	2779.6
				POLAR (Ours)		1286.1	2947.3	603.7	1154.9
338 339 340 341 342 343	344 345 346 347 348 349	349 350 351 352 353 354	350 351 352 353 354 355	RadarNet	[CVPR '23]	2179.3	4898.7	1578.4	3804.2
				SparseBeatsDense	[ECCV '24]	1927.0	4609.6	1548.4	3708.1
				GET-UP	[WACV '25]	1632.0	3932.0	1699.7	3882.6
				RadarCam-Depth	[ICRA '24]	1689.7	3948.0	1183.5	3229.0
				TacoDepth	[CVPR '25]	1492.4	3324.8	1032.5	2850.3
				POLAR (Ours)		1407.8	3193.5	629.6	1171.3

suffering larger errors (e.g., due to misalignment with other regions) undergo more substantial correction. Higher-order terms magnify small (i.e., high-frequency) discrepancies in the initial MDE predictions, making them more apparent to the model and easier to correct. In this way, the degree of the polynomial, selected as a hyperparameter, governs the capacity of our model to apply non-uniform corrections across the scene.

The sign of the predicted polynomial coefficients furthers our interpretation. Positive coefficients for higher-order terms push depth values outward while negative ones pull them inward, effectively expanding or contracting selected depth intervals to correct local errors. In doing so, these coefficients shape the curvature of the polynomial, dictating where and how inflection points arise. For instance, if the model consistently overestimates distant objects, a negative high-order coefficient can compress that region, whereas a positive coefficient might be learned to correct underestimations. By treating coefficient signs as dynamic anchors for curvature changes, the polynomial fitting framework provides an interpretable mechanism (e.g., Fig. 3) for refining scaleless depth into high-fidelity metric depth.

3.4 LOSS FUNCTION

We employ a loss function comprising three terms, each weighted by its λ , to guide the learning of the polynomial coefficients and ensure accurate depth estimation. Our loss is defined as:

$$\mathcal{L} = \lambda_{L_1} \|\hat{d} - d_{\text{gt}}\|_1 + \lambda_{L_2} \|\hat{d} - d_{\text{gt}}\|_2^2 + \lambda_{\text{mono}} \left\| \mathbf{1}_{H \times W} - \frac{d\hat{d}}{dz} \right\|_1, \quad (6)$$

where $d_{\text{gt}} \in \mathbb{R}_+^{H \times W}$ is the ground truth metric depth map, $\hat{d} \in \mathbb{R}_+^{H \times W}$ is our predicted metric depth, and $z \in \mathbb{R}_+^{H \times W}$ is the scaleless depth map predicted by the MDE model.

The first two terms, L_1 and L_2 losses, ensure that our predicted depth map \hat{d} closely matches the ground truth d_{gt} by penalizing discrepancies. The L_1 term is less sensitive to outliers and thus promotes robustness, while the L_2 term penalizes larger errors more significantly.

The novel component of our objective lies in the third term, which constrains the first derivative of the predicted depth \hat{d} w.r.t the input scaleless depth z (Eq. 7) to remain near that of $\hat{d} = z$.

$$\frac{d\hat{d}}{dz}(x, y) = \sum_{i=1}^N i \hat{c}_i z(x, y)^{i-1}. \quad (7)$$

This regularization enforces that our polynomial fitting function remains approximately monotonically increasing, akin to isotonic regression (Barlow et al., 1972). Generally, within an object or local

Figure 4: **Qualitative results** on nuScenes. GET-UP and RadarCam-Depth (RC-D) fail to reconstruct entire regions, yielding objects with large depth errors. Raw MDE yields reasonable relative reconstructions but suffers from incorrect global scale and cross-object misalignments. POLAR leverages polynomial fitting to recover a global scale and correct these misalignments. See Fig. 5 for colorbars.

region, a pixel with a higher initial scaleless depth value should not be assigned a lower final metric depth value compared to a pixel with a lower initial scaleless depth. The preservation of ordinal relationships is an inductive bias grounded in the assumption that the MDE model provides a reasonably accurate estimation of intra-object relative depth.

Polynomial fitting introduces a large function space, with expressiveness growing with degree N , which can significantly and detrimentally disrupt local monotonic depth ordering if unconstrained. Our regularization term addresses this by preserving local depth ordinality while still allowing corrections of cross-object misalignments. This constraint prevents overfitting of nonlinear transformations to noisy radar data, spurious correlations, and outliers, thereby avoiding the oscillatory behavior that is a known challenge with fitting higher-degree polynomials (Bishop, 2006).

4 EXPERIMENTS

Baseline Methods. We consider five recent radar-camera depth estimation baselines: RadarNet (Singh et al., 2023), SparseBeatsDense (Li et al., 2024b), GET-UP (Sun et al., 2025), RadarCam-Depth (Li et al., 2024a), and TacoDepth (Wang et al., 2025). Notably, both RadarCam-Depth and TacoDepth also take scaleless MDE predictions as input, together with radar points, to predict metric depth.

Datasets. We evaluate all methods on the nuScenes, ZJU-4DRadarCam (ZJU), and View-of-Delft (VoD) datasets (see Sec. C for more details) using the MAE and RMSE metrics with maximum evaluation distances of 50, 70, and 80 meters, following established conventions in the literature.

4.1 MAIN RESULTS

Compared to baselines, POLAR reduces MAE by 4.4% and RMSE by 3.7% on nuScenes, 38.5% and 57.5% on ZJU, and 31.8% and 38.5% on VoD, achieving SOTA results for all datasets (Tab. 1).

We qualitatively compare POLAR against baseline methods on the challenging nuScenes dataset, providing a visual demonstration of its improved depth estimation performance (Fig. 4). POLAR more accurately predicts metric scale and exhibits fewer global misalignments. Furthermore, it is able to extrapolate depth predictions of object surfaces from learned photometric priors, an ability inherited from the backbone MDE model (e.g., UniDepth) trained on large-scale datasets. Our polynomial fitting approach then non-uniformly corrects depth discrepancies across the scene, leading to significant performance improvement over initial MDE predictions. Introducing multiple degrees of freedom enables POLAR to correct misalignments of objects relative to each other, improving accuracy by correcting consistent over- or under-estimations in local regions. For instance, the raw MDE prediction for Image C incorrectly places the bus stop roof at around the same depth as the

more distant tree branches, as highlighted on the right. Additionally, MDE does not accurately infer the boundary between the curb and asphalt, again placing both at erroneously similar depths. With a learned polynomial transformation, POLAR corrects these misalignments with depth-dependent adjustments, accurately separating the curb from the asphalt and placing the bus stop roof and tree branch at their correct depths.

While RadarCam-Depth also utilizes an MDE backbone, its complex processing of raw MDE predictions can be seen to distort initially correct depth structure. As shown in the top-left highlighted region of Image C, the tree trunk and attached fern are incorrectly placed at different depths despite the initial MDE predictions correctly positioning them at similar depths. Furthermore, overfitting to specific regions within a scene—particularly those with denser ground truth—may reduce overall error relative to the MDE model but can lead to unintended geometric artifacts. This can result in the omission of entire structures in the predicted depth map, such as the highlighted building on the left of Image A and the construction crane arms in Image B. GET-UP also struggles to accurately infer depth structure, resulting in the omission of objects across all three samples: the highlighted building in Image A, the crane arms in Image B, and foreground tree branches in Image C.

As the polynomial degree—selected as a hyperparameter—increases, the maximum possible number of inflection points also grows, giving POLAR greater expressive power to correct misalignments between the many scene elements in Fig. 3, including cars, trucks, trees, buildings, and traffic lights. This is reflected in the successively improved error maps. See Sec. A for quantitative evaluations.

4.2 COMPUTATIONAL EFFICIENCY

Table 2: Training times (minutes per epoch) on nuScenes using an NVIDIA A6000 GPU.

Method	Train Time / Epoch
Lin (Lin et al., 2020)	89.25
RadarNet (Singh et al., 2023)	101.50
SparseBeatsDense (Li et al., 2024b)	63.96
GET-UP (Sun et al., 2025)	249.57
RadarCam-Depth (Li et al., 2024a)	86.38
POLAR (Ours)	33.16

Table 3: Inference time in milliseconds (ms) and computational cost (GFLOPs) on nuScenes.

Method	Inference Time	GFLOPs
Lin (Lin et al., 2020)	129.96	550.43
SparseBeatsDense (Li et al., 2024b)	97.47	532.74
GET-UP (Sun et al., 2025)	445.45	630.99
RadarCam-Depth (Li et al., 2024a)	315.64	619.02
TacoDepth (Wang et al., 2025)	29.30	139.87
POLAR (Ours)	24.81	89.70

POLAR achieves state-of-the-art training time, inference time (ms), and computational overhead (GFLOPs) compared to all baseline methods, while also achieving state-of-the-art accuracy. Tab. 2 shows that POLAR has the lowest training time per epoch among all methods, requiring 33.16 minutes per epoch on nuScenes. This efficiency stems from our streamlined design, which avoids multi-stage processing and explicit radar-camera association learning, both of which contribute to longer training times in methods such as RadarCam-Depth and GET-UP.

Tab. 3 highlights POLAR’s state-of-the-art inference speed, requiring just 24.81 ms per frame—a reduction of 15.3% compared to the previous state-of-the-art TacoDepth and 92.1% compared to RadarCam-Depth. This corresponds to 40.3 fps, enabling real-time depth perception. Furthermore, POLAR achieves this inference speed with a lower computational overhead of 89.70 GFLOPs—a 39.5% reduction relative to TacoDepth and an 85.5% reduction relative to RadarCam-Depth. Taken together, these results establish POLAR as not only the most accurate radar-camera depth estimation method, but also the most practical for real-time deployment where latency is critical.

5 DISCUSSION

Limitations. POLAR requires tuning the polynomial degree as a hyperparameter (Sec. A), which may vary across datasets. Additionally, while our novel first-derivative regularization mitigates oscillatory behavior from high-degree polynomials, further constraints could enhance stability.

Summary. We are the first to formulate radar-camera depth estimation as a scene-fitting problem, leveraging high-degree polynomials to transform MDE predictions into accurate metric depth. Our principled and efficient approach demonstrates that a fundamental insight—shifting from affine scale-and-shift to flexible polynomial transformations—outperforms computationally heavier methods.

486 ETHICS STATEMENT
487488 As our work focuses on depth estimation, we do not anticipate any direct ethical concerns regarding
489 the proposed method. However, as with any data-driven approach, the model may be biased towards
490 performing well on data distributions similar to those seen during training and may underperform in
491 out-of-distribution or underrepresented scenarios.
492493 REPRODUCIBILITY STATEMENT
494495 Our methodology is fully described in Sec. 3, and the evaluation metrics and implementation details
496 we use are provided in Sec. F. We plan to release code for full reproducibility. In Sec. H, we provide
497 a proof by construction that demonstrates the limitations of global scale and shift alignment in
498 monocular depth estimation.
499500 REFERENCES
501502 Richard E. Barlow, David J. Bartholomew, J. Martin Bremner, and H. D. Brunk. *Statistical Inference
503 Under Order Restrictions: The Theory and Application of Isotonic Regression*. John Wiley & Sons,
504 New York, 1972. ISBN 978-0-471-07238-5.505 Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adaptive
506 bins. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
507 4009–4018, 2021.508 Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, and
509 Ian Reid. Unsupervised scale-consistent depth and ego-motion learning from monocular video.
510 *Advances in neural information processing systems*, 32, 2019.512 Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer, New York, 2006.
513 ISBN 978-0-387-31073-2.514 Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R.
515 Richter, and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second, 2024.
516 URL <https://arxiv.org/abs/2410.02073>.518 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
519 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
520 autonomous driving. *arXiv preprint arXiv:1903.11027*, 2019.521 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
522 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
523 IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.524 Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
525 transformer adapter for dense predictions. *arXiv preprint arXiv:2205.08534*, 2022.527 Yaqing Ding, Václav Vávra, Viktor Kocur, Jian Yang, Torsten Sattler, and Zuzana Kukelova. Fixing
528 the scale and shift in monocular depth for camera pose estimation. *arXiv preprint arXiv:2501.07742*,
529 2025.530 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
531 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
532 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference
533 on Learning Representations*, 2021.534 Angela H Eichelberger and Anne T McCartt. Toyota drivers’ experiences with dynamic radar cruise
535 control, pre-collision system, and lane-keeping assist. *Journal of safety research*, 56:67–73, 2016.
536537 Vadim Ezhov, Hyoungseob Park, Zhaoyang Zhang, Rishi Upadhyay, Howard Zhang, Chethan Chinder
538 Chandrappa, Achuta Kadambi, Yunhao Ba, Julie Dorsey, and Alex Wong. All-day depth completion.
539 In *2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. IEEE,
2024.

540 Abhishek Gupta, Alagan Anpalagan, Ling Guan, and Ahmed Shaharyar Khwaja. Deep learn-
 541 ing for object detection and scene perception in self-driving cars: Survey, challenges, and
 542 open issues. *Array*, 10:100057, 2021. ISSN 2590-0056. doi: <https://doi.org/10.1016/j.array.2021.100057>. URL <https://www.sciencedirect.com/science/article/pii/S2590005621000059>.

543
 544
 545 Zeyu Han, Jiahao Wang, Zikun Xu, Shuocheng Yang, Lei He, Shaobing Xu, Jianqiang Wang,
 546 and Keqiang Li. 4d millimeter-wave radar in autonomous driving: A survey. *arXiv preprint*
 547 *arXiv:2306.04242*, 2023.

548
 549 Lukas Hoyer, Dengxin Dai, Qin Wang, Yuhua Chen, and Luc Van Gool. Improving semi-supervised
 550 and domain-adaptive semantic segmentation with self-supervised depth estimation. *International*
 551 *Journal of Computer Vision*, pp. 1–27, 2023.

552
 553 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 554 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

555
 556 Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong. Penet: Towards precise
 557 and efficient image guided depth completion. *2021 IEEE International Conference on Robotics*
 558 *and Automation (ICRA)*, pp. 13656–13662, 2021. URL <https://api.semanticscholar.org/CorpusID:232076523>.

559
 560 Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying
 561 Shan. Depthcrafter: Generating consistent long depth sequences for open-world videos. *arXiv*
 562 *preprint arXiv:2409.02095*, 2024.

563
 564 David Hunt, Shaocheng Luo, Amir Khazraei, Xiao Zhang, Spencer Hallyburton, Tingjun Chen,
 565 and Miroslav Pajic. Radcloud: Real-time high-resolution point cloud generation using low-cost
 566 radars for aerial and ground vehicles. In *2024 IEEE International Conference on Robotics and*
 567 *Automation (ICRA)*, pp. 12269–12275. IEEE, 2024.

568
 569 Hideo Iizuka, Toshiaki Watanabe, Kazuo Sato, and Kunitoshi Nishikawa. Millimeter-wave microstrip
 570 array antenna for automotive radars. *IEICE transactions on communications*, 86(9):2728–2738,
 2003.

571
 572 Maximilian Jaritz, Raoul De Charette, Etienne Wirbel, Xavier Perrotton, and Fawzi Nashashibi.
 573 Sparse and dense data with cnns: Depth completion and semantic segmentation. In *2018 Interna-*
574 tional Conference on 3D Vision (3DV), pp. 52–60. IEEE, 2018.

575
 576 Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong Suh. From big to small: Multi-scale
 577 local planar guidance for monocular depth estimation. *arXiv preprint arXiv:1907.10326*, 2019.

578
 579 Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Shenghao Zhang, and Chong Zhang. A multi-
 580 scale guided cascade hourglass network for depth completion. In *2020 IEEE Winter Conference*
 581 *on Applications of Computer Vision (WACV)*, pp. 32–40, 2020. doi: 10.1109/WACV45572.2020.
 9093407.

582
 583 Han Li, Yukai Ma, Yaqing Gu, Kewei Hu, Yong Liu, and Xingxing Zuo. Radarcam-depth: Radar-
 584 camera fusion for depth estimation with learned metric scale. In *2024 IEEE International Confer-*
585 ence on Robotics and Automation (ICRA), pp. 10665–10672. IEEE, 2024a.

586
 587 Huadong Li, Minhao Jing, Wang Jin, Shichao Dong, Jiajun Liang, Haoqiang Fan, and Renhe Ji.
 588 Sparse beats dense: Rethinking supervision in radar-camera depth completion. In *European*
589 Conference on Computer Vision, pp. 127–143. Springer, 2024b.

590
 591 Juan-Ting Lin, Dengxin Dai, and Luc Van Gool. Depth estimation from monocular images and sparse
 592 radar data. In *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
 593 pp. 10233–10240. IEEE, 2020.

594
 595 Yuan Qin, Lin, Tao Cheng, Qianglong Zhong, Wending Zhou, and Huanhuan Yang. Dynamic spatial
 596 propagation network for depth completion. In *AAAI Conference on Artificial Intelligence*, 2022.
 597 URL <https://api.semanticscholar.org/CorpusID:247011865>.

594 Chen-Chou Lo and Patrick Vandewalle. Depth estimation from monocular images and sparse
 595 radar using deep ordinal regression network. In *2021 IEEE International Conference on Image*
 596 *Processing (ICIP)*, pp. 3343–3347. IEEE, 2021.

597

598 Yunfei Long, Daniel Morris, Xiaoming Liu, Marcos Castro, Punarjay Chakravarty, and Praveen
 599 Narayanan. Full-velocity radar returns by radar-camera fusion. In *Proceedings of the IEEE/CVF*
 600 *International Conference on Computer Vision*, pp. 16198–16207, 2021.

601 Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction from sparse depth samples
 602 and a single image. In *2018 IEEE International Conference on Robotics and Automation (ICRA)*,
 603 pp. 4796–4803, 2018. doi: 10.1109/ICRA.2018.8460184.

604 Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman. Self-supervised sparse-to-
 605 dense: Self-supervised depth completion from lidar and monocular camera. *2019 International*
 606 *Conference on Robotics and Automation (ICRA)*, pp. 3288–3295, 2018. URL <https://api.semanticscholar.org/CorpusID:49557268>.

607

608 Daniel Maier, Armin Hornung, and Maren Bennewitz. Real-time navigation in 3d environments
 609 based on depth camera data. In *2012 12th IEEE-RAS International Conference on Humanoid*
 610 *Robots (Humanoids 2012)*, pp. 692–697. IEEE, 2012.

611

612 Dong-Hee Paek, Seung-Hyun Kong, and Kevin Tirta Wijaya. K-radar: 4d radar object detection for
 613 autonomous driving in various weather conditions. *Advances in Neural Information Processing*
 614 *Systems*, 35:3819–3829, 2022.

615

616 Andras Palffy, Ewoud Pool, Srimannarayana Baratam, Julian F. P. Kooij, and Dariu M. Gavrila.
 617 Multi-class road user detection with 3+1d radar in the view-of-delft dataset. *IEEE Robotics and*
 618 *Automation Letters*, 7(2):4961–4968, 2022. doi: 10.1109/LRA.2022.3147324.

619

620 Jinsun Park, Kyungdon Joo, Zhe Hu, Chi Liu, and In So Kweon. Non-local spatial propagation
 621 network for depth completion. In *European Conference on Computer Vision*, 2020. URL <https://api.semanticscholar.org/CorpusID:220647181>.

622

623 Vaishakh Patil, Christos Sakaridis, Alexander Liniger, and Luc Van Gool. P3depth: Monocular
 624 depth estimation with a piecewise planarity prior. In *Proceedings of the IEEE/CVF Conference on*
 625 *Computer Vision and Pattern Recognition*, pp. 1610–1621, 2022.

626

627 Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mattia Segu, Siyuan Li, Wim Abbeloos, and
 628 Luc Van Gool. UniDepthV2: Universal monocular metric depth estimation made simpler, 2025.
 629 URL <https://arxiv.org/abs/2502.20110>.

630

631 Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. On the uncertainty of self-
 632 supervised monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer*
 633 *Vision and Pattern Recognition*, pp. 3227–3237, 2020.

634

635 Thinal Raj, Fazida Hanim Hashim, Aqilah Baseri Huddin, Mohd Faisal Ibrahim, and Aini Hussain.
 636 A survey on lidar scanning mechanisms. *Electronics*, 9(5):741, 2020.

637

638 René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards
 639 robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE*
 640 *transactions on pattern analysis and machine intelligence*, 44(3):1623–1637, 2020.

641

642 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 643 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 644 2021.

645

646 Kyeongha Rho, Jinsung Ha, and Youngjung Kim. Guideformer: Transformers for image guided
 647 depth completion. *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 648 (CVPR), pp. 6240–6249, 2022. URL <https://api.semanticscholar.org/CorpusID:250647821>.

649

650 Patrick Rim, Hyoungseob Park, S Gangopadhyay, Ziyao Zeng, Younjoon Chung, and Alex
 651 Wong. Protodepth: Unsupervised continual depth completion with prototypes. *arXiv preprint*
 652 *arXiv:2503.12745*, 2025.

648 Akash Deep Singh, Yunhao Ba, Ankur Sarker, Howard Zhang, Achuta Kadambi, Stefano Soatto,
 649 Mani Srivastava, and Alex Wong. Depth estimation from camera image and mmwave radar point
 650 cloud. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 651 pp. 9275–9285, 2023.

652 Minsoo Song, Seokjae Lim, and Wonjun Kim. Monocular depth estimation using laplacian pyramid-
 653 based depth residuals. *IEEE transactions on circuits and systems for video technology*, 31(11):
 654 4381–4393, 2021.

655 Xiaogang Song, Haoyue Hu, Li Liang, Weiwei Shi, Guo Xie, Xiaofeng Lu, and Xinhong Hei.
 656 Unsupervised monocular estimation of depth and visual odometry using attention and depth-pose
 657 consistency loss. *IEEE Transactions on Multimedia*, 2023.

658 Arvind Srivastav and Soumyajit Mandal. Radars for autonomous driving: A review of deep learning
 659 methods and challenges. *IEEE Access*, 11:97147–97168, 2023.

660 Huawei Sun, Hao Feng, Julius Ott, Lorenzo Servadei, and Robert Wille. Cafnet: A confidence-driven
 661 framework for radar camera depth estimation. In *2024 IEEE/RSJ International Conference on*
 662 *Intelligent Robots and Systems (IROS)*, pp. 2734–2740. IEEE, 2024.

663 Huawei Sun, Zixu Wang, Hao Feng, Julius Ott, Lorenzo Servadei, and Robert Wille. Get-up:
 664 Geometric-aware depth estimation with radar points upsampling. In *Proceedings of the Winter*
 665 *Conference on Applications of Computer Vision (WACV)*, pp. 1850–1860, February 2025.

666 Jie Tang, Fei-Peng Tian, Boshi An, Jian Li, and Ping Tan. Bilateral propagation network for
 667 depth completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 668 *Recognition*, pp. 9763–9772, 2024.

669 Massimiliano Viola, Kevin Qu, Nando Metzger, Bingxin Ke, Alexander Becker, Konrad Schindler,
 670 and Anton Obukhov. Marigold-dc: Zero-shot monocular depth completion with guided diffusion.
 671 *arXiv preprint arXiv:2412.13389*, 2024.

672 Tsun-Hsuan Wang, Fu-En Wang, Juan-Ting Lin, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. Plug-
 673 and-play: Improve depth estimation via sparse data propagation. *arXiv preprint arXiv:1812.08350*,
 674 2018.

675 Yiran Wang, Jiaqi Li, Chaoyi Hong, Ruibo Li, Liusheng Sun, Xiao Song, Zhe Wang, Zhiguo Cao, and
 676 Guosheng Lin. Tacodepth: Towards efficient radar-camera depth estimation with one-stage fusion.
 677 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 10523–10533,
 678 2025.

679 Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto. Unsupervised depth completion from
 680 visual inertial odometry. *IEEE Robotics and Automation Letters*, 5(2):1899–1906, 2020.

681 Chao Xia, Chenfeng Xu, Patrick Rim, Mingyu Ding, Nanning Zheng, Kurt Keutzer, Masayoshi
 682 Tomizuka, and Wei Zhan. Quadric representations for lidar odometry, mapping and localization.
 683 *IEEE Robotics and Automation Letters*, 8(8):5023–5030, 2023.

684 Zheyuan Xu, Hongche Yin, and Jian Yao. Deformable spatial propagation networks for depth
 685 completion. *2020 IEEE International Conference on Image Processing (ICIP)*, pp. 913–917, 2020.
 686 URL <https://api.semanticscholar.org/CorpusID:220404355>.

687 Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Baobei Xu, Jun Li, and Jian Yang. Rignet:
 688 Repetitive image guided network for depth completion. In *European Conference on Computer*
 689 *Vision*, 2021. URL <https://api.semanticscholar.org/CorpusID:236493380>.

690 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 691 Zhao. Depth anything v2. *Advances in Neural Information Processing Systems*, 37:21875–21911,
 692 2024.

693 Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua
 694 Shen. Metric3d: Towards zero-shot metric 3d prediction from a single image. In *Proceedings of*
 695 *the IEEE/CVF International Conference on Computer Vision*, pp. 9043–9053, 2023.

702 Yifan Yu, Shaohui Liu, Rémi Pautrat, Marc Pollefeys, and Viktor Larsson. Relative pose estimation
703 through affine corrections of monocular depth priors. *arXiv preprint arXiv:2501.05446*, 2025.
704

705 Ziyao Zeng, Yangchao Wu, Hyoungseob Park, Daniel Wang, Fengyu Yang, Stefano Soatto, Dong
706 Lao, Byung-Woo Hong, and Alex Wong. Rsa: Resolving scale ambiguities in monocular depth
707 estimators through language descriptions. *Advances in neural information processing systems*, 37:
708 112684–112705, 2025.

709 Youmin Zhang, Xianda Guo, Matteo Poggi, Zheng Zhu, Guan Huang, and Stefano Mattoccia. Com-
710 pletionformer: Depth completion with convolutions and vision transformers. In *2023 IEEE/CVF*
711 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18527–18536, 2023. doi:
712 10.1109/CVPR52729.2023.01777.

713 Wang Zhao, Shaohui Liu, Yezhi Shu, and Yong-Jin Liu. Towards better generalization: Joint depth-
714 pose learning without posenet. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
715 *and Pattern Recognition*, pp. 9151–9161, 2020.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A COMPARATIVE STUDIES

MDE Models. We evaluate POLAR using four monocular depth estimation (MDE) backbones: DPT (Ranftl et al., 2021), Depth Anything (Yang et al., 2024), Depth Pro (Bochkovskii et al., 2024), and UniDepth (Piccinelli et al., 2025). DPT and Depth Anything infer scaleless inverse depth, and while Depth Pro and UniDepth output metric depth, their raw predictions exhibit significant deviation from metric ground truth (see raw MDE performance in Tabs. 4, 9, 10), and thus we process them the same way as scaleless depth.

Tab. 4 compares raw MDE performance to their performance when used as backbones for RadarCam-Depth and POLAR. Raw MDE predictions show large errors due to scale ambiguity, while RadarCam-Depth provides moderate improvements. In contrast, POLAR consistently reduces error across all backbones, demonstrating the effectiveness of polynomial fitting. For DPT and Depth Anything, outputs are first inverted when used as a backbone, and are further median-scaled for the reported raw results. Among all configurations, POLAR w/ UniDepth achieves the best performance, improving over raw UniDepth predictions by 51.2% and over RadarCam-Depth w/ UniDepth by 37.8%.

Table 5: **Sensitivity study** of polynomial degree, selected as a hyperparameter.

Polynomial Degree	nuScenes		ZJU	
	MAE	RMSE	MAE	RMSE
1 (Scale + Shift)	2156.8	4491.3	1078.2	2405.5
2	1715.2	3840.6	901.0	1822.7
4	1482.7	3510.1	791.2	1516.4
6	1466.9	3496.0	670.3	1297.9
8	1407.8	3193.5	629.6	1171.3
10	1463.7	3494.5	643.3	1184.5

Polynomial Degree. Tab. 5 quantifies the performance gains achieved with higher-degree polynomials, with degree 8 outperforming lower degrees. At degree 10, performance degrades slightly, potentially due to excessive flexibility resulting in detrimental oscillations.

Ablations. We evaluate the impact of key components of POLAR in Tab. 6. Replacing learnable prototypes with self-attention on the radar point features degrades performance, demonstrating that prototypes capture relevant patterns within radar point configurations. Removing cross-modality fusion results in the largest performance drop, highlighting the necessity of leveraging correspondences between MDE and radar features. Removing the monotonicity loss term also reduces performance, suggesting that depth ordering regularization is crucial for stable polynomial fitting.

B MORE ON COMPUTATIONAL EFFICIENCY

Incremental increase in computation for each additional polynomial degree. Adding a $k + 1$ -th polynomial term requires minimal computational overhead. For an MDE prediction of shape (H, W) , the additional cost consists of three components: predicting another coefficient via the linear layer of $(1 \times 64 \times 2)$ FLOPs), computing the $(k + 1)$ -th power from pre-computed k -th exponentiation

Table 4: **MDE backbone** comparative studies on nuScenes.

Method	nuScenes	
	MAE	RMSE
DPT (Ranftl et al., 2021)	5188.2	6884.5
Depth Anything (Yang et al., 2024)	2404.9	4851.1
Depth Pro (Bochkovskii et al., 2024)	3835.0	6600.3
UniDepth (Piccinelli et al., 2025)	2129.8	4887.7
RadarCam-Depth w/ DPT	1689.7	3948.0
RadarCam-Depth w/ Depth Anything	1953.6	5107.8
RadarCam-Depth w/ Depth Pro	3417.1	6462.0
RadarCam-Depth w/ UniDepth	1872.0	4321.2
POLAR w/ DPT	1525.6	3745.0
POLAR w/ Depth Anything	<u>1515.1</u>	<u>3719.4</u>
POLAR w/ Depth Pro	<u>1627.7</u>	<u>4143.9</u>
POLAR w/ UniDepth	1407.8	3193.5

Table 6: **Ablation studies** of architecture and loss components.

Ablated Component	nuScenes		VoD	
	MAE	RMSE	MAE	RMSE
learnable prototypes	1615.5	3629.0	1619.3	4162.7
cross-modality att.	2238.8	4817.4	2147.9	4926.1
monotonicity loss	1921.1	4399.5	1924.5	4660.3
pos. embeddings	1454.1	3488.9	1500.1	3951.8
no ablations	1407.8	3193.5	629.6	1171.3

Figure 5: To quantify absolute improvement in our qualitative results, we provide the colorbars that were used in all examples in Figs. 3, 4, 6, and 7.

Figure 6: **Additional qualitative comparison** on VoD. POLAR more accurately predicts metric scale, and exhibits fewer global misalignments and geometric artifacts in comparison to other methods. Polynomial fitting, allowing POLAR to non-uniformly scale distinct local regions, results in notable improvements in metric depth estimation over initial MDE predictions. This is apparent in all MDE error maps: though object depth geometry is reasonable, actual metric depth values tend to be inaccurate. GET-UP, while marginally improving metric depth estimation relative to MDE, presents substantial errors in depth structure. For instance, the presence of geometric artifacts or omission of objects or regions entirely can be seen through the following highlighted examples: loss of motorcycle body and visor in Image A, front portion of biker (right) and bike wheel (far-left) in Image B, top of motorcyclist in Image C, and street sign in Image D. RadarCam-Depth (RC-D) similarly exhibits geometric artifacts, present in the sign pole, motorcycle, and fence post in Image A, biker and bicycle wheel in Image B, roof overhang and motorcyclist in Image C, and fence posts and pedestrians in Image D. In contrast, POLAR extrapolates correct structure from photometric priors while also demonstrating clear improvements in metric depth fidelity compared to all other baselines.

$(H \times W$ multiplications), and incorporating this term into the final depth prediction ($2 \times H \times W$ operations for multiplication by the coefficient and addition). For nuScenes, where each image has shape (900, 1600), each additional polynomial term incurs an additional computational cost of 0.0043 GFLOPs, which is a 0.0048% increase.

C DATASET DETAILS

The **nuScenes** dataset (Caesar et al., 2019) contains 1,000 scenes, each lasting 20 seconds, collected from a vehicle equipped with Velodyne HDL32E lidar, Continental ARS 408-21 Radar, Basler acA1600-60gc camera with 900×1600 , and Advanced Navigation Spatial IMU sensors around Singapore and Boston. This data collection process resulted in 40,000 synchronized keyframes. Each frame has an average of 97 radar point measurements. Additionally, the dataset includes 877,993 3D bounding box annotations about 23 object classes, and is organized with a train-test split of 850 scenes for training and validation, and 150 for testing.

The **ZJU-4DRadarCam** (ZJU) dataset (Li et al., 2024a) provides lidar, Radar, and camera data, collected through the same method as the nuScenes dataset around Hangzhou, China. The dataset is enhanced with high-density lidar and 4D radar data, utilizing the RoboSense M1 lidar sensor and Oculii’s EAGLE 4D radar sensor. Additionally, the vehicle is outfitted with RealSense D455 cameras. The dataset includes a total of 33,409 synchronized keyframes, divided into 29,312 frames for training and validation, and 4,097 frames for testing. Each frame has an average of 465 radar point measurements. The original camera resolution was 720×1280 but was cropped to 300×1280 because of the limited presence of reprojected lidar points.

The **View-of-Delft** (VoD) dataset (Palffy et al., 2022) uses similar methods to provide lidar, Radar, and camera data around the city of Delft in the Netherlands. The vehicle was equipped with a Velodyne HDL-64 S3 LIDAR, ZF FRGen 21 3+1D Radar, a stereo camera with 1216×1936 resolution, an RTK GPS, IMU, and wheel odometry. It contains 8,693 frames of synchronized and calibrated keyframes along with 123,106 3D bounding box annotations about 13 road user classes. Each frame has an average of 276 radar point measurements. Similar to the ZJU dataset, the camera resolution was cropped to 608×1936 because of the limited presence of reprojected lidar points.

D FULL NUSCENES BENCHMARK

We present the full set of quantitative results on the nuScenes dataset in Tab. 7. This table includes additional baseline methods that were omitted from the main text for brevity, providing a comprehensive comparison of POLAR against all known existing radar-camera depth estimation methods. As shown, POLAR consistently outperforms all competing methods across all maximum distance thresholds (50m, 70m, and 80m), achieving the lowest mean absolute error (MAE) and root mean squared error (RMSE).

E COMPARISON TO DEPTH COMPLETION

One potential idea for radar-camera depth estimation is to apply lidar-camera depth completion methods designed to densify sparse depth maps using surrounding context. One such method, BPNet (Tang et al., 2024) achieves state-of-the-art performance on the KITTI depth completion benchmark by leveraging bilateral propagation. However, when applied to radar-camera depth estimation, BPNet performs poorly, as shown in Tab. 7. POLAR outperforms BPNet by 57.9% in MAE and 44.2% in RMSE on nuScenes, highlighting the limitations of directly applying lidar depth completion methods to radar data. The key reason for this underperformance lies in the fundamental differences between lidar and radar point clouds. Unlike lidar, radar measurements are orders of magnitude sparser and significantly noisier due to factors such as limited antenna elements, elevation ambiguity (see Fig. 7), and lower range resolution (Singh et al., 2023). Lidar depth completion methods assume a relatively dense and structured input (Xia et al., 2023), leveraging local spatial continuity to propagate depth estimates effectively. In contrast, radar points are too sparse for such methods to infer meaningful local depth relationships, leading to poor depth reconstruction when attempting direct densification.

In addition, we compare against Non-Local Spatial Propagation Network (NLSPN) (Park et al., 2020), which achieves near state-of-the-art performance on the KITTI depth completion benchmark by refining sparse lidar depth with an iterative non-local spatial propagation procedure. NLSPN predicts an initial depth map along with pixel-wise confidences, then refines it by estimating non-local neighbors and their corresponding affinities to selectively propagate depth information. Unlike other approaches that rely on fixed local neighbors, NLSPN adaptively determines relevant non-local neighbors, improving depth completion accuracy, especially near depth boundaries. However, again, when applied to radar-camera depth estimation, NLSPN performs poorly, as shown in Tab. 7. POLAR outperforms NLSPN by 59.8% in MAE and 55.4% in RMSE on nuScenes.

Table 8: **Error metrics for depth estimation.** These metrics compute the error between predicted depth $\hat{d}(x)$ and ground truth depth $d(x)$.

Metric	Definition
MAE \downarrow	$\frac{1}{ \Omega } \sum_{x \in \Omega} \hat{d}(x) - d(x) $
RMSE \downarrow	$\left(\frac{1}{ \Omega } \sum_{x \in \Omega} \hat{d}(x) - d(x) ^2 \right)^{1/2}$

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Table 7: Full quantitative results (mm) on the nuScenes benchmark.

Distance	Method	nuScenes	
		MAE	RMSE
50m	NLSPN (Park et al., 2020)	2790.0	5813.4
	BPNet (Tang et al., 2024)	2407.0	4438.0
	RC-PDA (Long et al., 2021)	2225.0	4156.5
	RC-PDA-HG (Long et al., 2021)	2210.0	4234.0
	BTS (Lee et al., 2019)	1937.0	3885.0
	DORN (Lo & Vandewalle, 2021)	1926.6	4124.8
	RadarNet (Singh et al., 2023)	1727.7	3746.8
	CaFNet (Sun et al., 2024)	1674.0	3674.0
	Lin (Lin et al., 2020)	1598.2	3790.1
	SparseBeatsDense (Li et al., 2024b)	1524.5	3567.3
70m	RadarCam-Depth (Li et al., 2024a)	1286.1	2964.3
	GET-UP (Sun et al., 2025)	1241.0	2857.0
	TacoDepth (Wang et al., 2025)	1046.8	2487.5
	POLAR (Ours)	1014.4	2475.7
	NLSPN (Park et al., 2020)	3140.0	6580.6
	RC-PDA (Long et al., 2021)	3326.1	6700.6
	RC-PDA-HG (Long et al., 2021)	3485.6	7002.9
	BTS (Lee et al., 2019)	2346.0	4811.0
	DORN (Lo & Vandewalle, 2021)	2170.0	4532.0
	RadarNet (Singh et al., 2023)	2073.2	4590.7
80m	CaFNet (Sun et al., 2024)	2010.0	4493.0
	Lin (Lin et al., 2020)	1897.8	4558.7
	SparseBeatsDense (Li et al., 2024b)	1822.9	4303.6
	RadarCam-Depth (Li et al., 2024a)	1587.9	3662.5
	GET-UP (Sun et al., 2025)	1541.0	3657.0
	TacoDepth (Wang et al., 2025)	1347.1	3152.8
	POLAR (Ours)	1286.1	2947.3
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
90m	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
100m	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
110m	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
120m	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
130m	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
140m	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
150m	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
160m	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
170m	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
180m	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
190m	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
200m	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
210m	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)	2432.0	5304.0
	RadarNet (Singh et al., 2023)	2179.3	4898.7
	CaFNet (Sun et al., 2024)	2109.0	4765.0
	Lin (Lin et al., 2020)	1988.4	4841.1
	SparseBeatsDense (Li et al., 2024b)	1927.0	4609.6
	RadarCam-Depth (Li et al., 2024a)	1689.7	3948.0
220m	GET-UP (Sun et al., 2025)	1632.0	3932.0
	TacoDepth (Wang et al., 2025)	1492.4	3324.8
	POLAR (Ours)	1407.8	3193.5
	NLSPN (Park et al., 2020)	3257.7	6872.4
	RC-PDA (Long et al., 2021)	3721.0	7632.0
	RC-PDA-HG (Long et al., 2021)	3664.0	7775.0
	AdaBins (Bhat et al., 2021)	3541.0	5885.0
	P3Depth (Patil et al., 2022)	3130.0	5838.0
	LapDepth (Song et al., 2021)	2544.0	5151.0
	PnP (Wang et al., 2018)	2496.0	5578.0
230m	BTS (Lee et al., 2019)	2467.0	5125.0
	DORN (Lo & Vandewalle, 2021)		

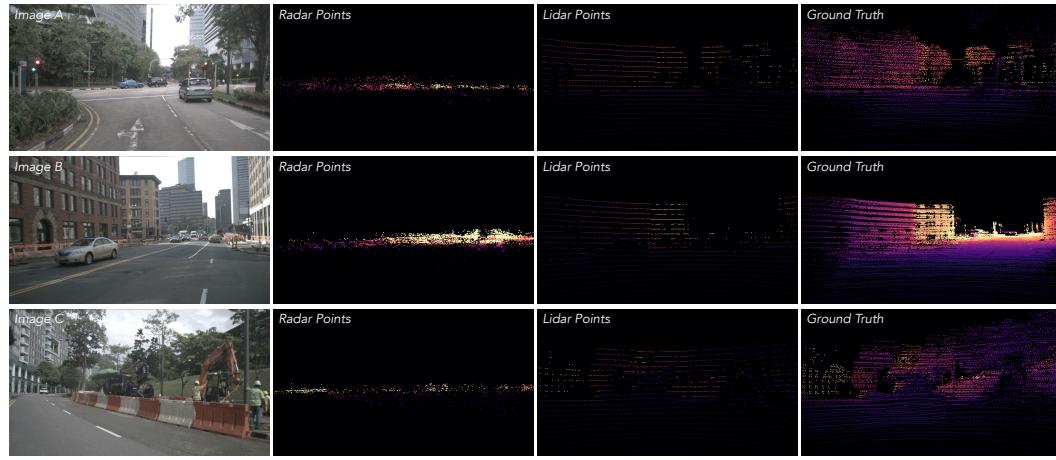


Figure 7: **nuScenes dataset visualization.** The elevation ambiguity of radar points results in erroneous projection onto the image plane that makes it challenging for depth completion methods to infer dense depth. In contrast, lidar points yield a denser, image-aligned projection, which is why accurate 3D scene reconstruction with depth completion methods is possible.

F EVALUATION METRICS AND IMPLEMENTATION DETAILS

The evaluation metrics used in our study, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), are formulated in Tab. 8. Lower values equal better performance for both MAE and RMSE. Unless specified otherwise, all reported values are in millimeters (mm). We train for 60 epochs using a cosine decay learning rate scheduler with learning rate of 5×10^{-5} , and use weighting terms $\lambda_{L_1} = 1.0$, $\lambda_{L_2} = 0.4$, $\lambda_{mono} = 0.25$ for our loss function.

G ADDITIONAL COMPARISONS

Full MDE Comparisons. For ZJU (see Tab. 9), among all configurations, POLAR w/ UniDepth achieves the best performance, improving over raw UniDepth predictions by 61.1% and over RadarCam-Depth w/ UniDepth by 54.2%. For VoD (see Tab. 10), POLAR w/ UniDepth achieves the best performance in MAE, improving over raw UniDepth predictions by 42.4% and over RadarCam-Depth w/ UniDepth by 32.7%, while POLAR w/ Depth Anything achieves the best performance in RMSE, improving over RadarCam-Depth w/ Depth Anything by 37.6% and over raw Depth Anything predictions (inverted and median scaled) by 10.4%.

Table 9: **MDE backbone** comparative studies on ZJU-4DRadarCam (ZJU).

Method	ZJU	
	MAE	RMSE
DPT (Ranftl et al., 2021)	1885.3	3326.1
Depth Anything (Yang et al., 2024)	1943.2	3469.3
Depth Pro (Bochkovskii et al., 2024)	1680.2	3144.9
UniDepth (Piccinelli et al., 2025)	1533.0	3188.4
RadarCam-Depth w/ DPT	1183.5	3229.0
RadarCam-Depth w/ Depth Anything	1724.4	3661.3
RadarCam-Depth w/ Depth Pro	1490.6	3429.5
RadarCam-Depth w/ UniDepth	1152.5	3168.6
POLAR w/ DPT	707.1	1216.9
POLAR w/ Depth Anything	657.2	1225.4
POLAR w/ Depth Pro	640.3	1174.8
POLAR w/ UniDepth	629.6	1171.3

Table 10: **MDE backbone** comparative studies on View-of-Delft.

Method	View-of-Delft	
	MAE	RMSE
DPT (Ranftl et al., 2021)	4117.9	5498.9
Depth Anything (Yang et al., 2024)	3270.5	4411.9
Depth Pro (Bochkovskii et al., 2024)	3275.9	5936.7
UniDepth (Piccinelli et al., 2025)	2605.6	5691.0
RadarCam-Depth w/ DPT	4013.5	5911.9
RadarCam-Depth w/ Depth Anything	3103.6	6328.7
RadarCam-Depth w/ Depth Pro	2843.4	6082.0
RadarCam-Depth w/ UniDepth	2227.4	5385.8
POLAR w/ DPT	1891.4	4252.6
POLAR w/ Depth Anything	1770.5	3951.8
POLAR w/ Depth Pro	1520.2	3987.2
POLAR w/ UniDepth	1500.1	3960.5

1026
 1027 **Leveraging Radar.** Tab. 13 shows that replacing radar points with learnable, dataset-specific points
 1028 worsens MAE by 28.0% and RMSE by 29.9%, demonstrating that we indeed leverage the radar inputs
 1029 effectively. As additional evidence, Tab. 11 shows that our method, evaluated zero-shot cross-dataset,
 1030 achieves comparable or better performance than baselines trained on the target datasets. Tab. 12 shows
 1031 we are more robust to reduced radar point density at inference, i.e., less performance degradation
 1032 than the baseline method RadarCam-Depth.

Table 11: Zero-shot generalization.

Method	nuScenes \rightarrow ZJU		nuScenes \rightarrow VoD	
	MAE	RMSE	MAE	RMSE
GET-UP (zero-shot)	3845.2	8469.7	4809.1	8653.9
RadarCam-Depth (zero-shot)	5435.9	9785.8	7521.5	9194.8
GET-UP (trained)	1699.7	3882.6	2917.3	6145.1
RadarCam-Depth (trained)	1183.5	3229.0	2227.4	5385.8
Ours (zero-shot)	1147.9	3109.5	2256.2	4744.2

Table 12: Reduced radar point density.

% radar kept / removed	RadarCam-Depth		Ours	
	MAE	RMSE	MAE	RMSE
25% kept / 75% removed	7969.4	10831.5	2416.4	4836.6
50% kept / 50% removed	4819.8	7077.7	1816.8	3945.7
75% kept / 25% removed	2537.3	4247.4	1575.2	3611.8
100% kept / 0% removed	1689.7	3948.0	1407.8	3193.5

1041 **Adapters.** Tab. 13 shows that recent adapter-
 1042 based finetuning methods LoRA (Hu et al., 2022)
 1043 and ViT-Adapter (Chen et al., 2022), even with a
 1044 post-hoc linear fit to projected radar points, do not
 1045 outperform us.

1046 **Regression Baselines.** Isotonic regression and
 1047 monotone spline fitting methods are natural base-
 1048 lines. Tab. 13 shows these methods for regressing
 1049 projected radar points on MDE predictions do not
 1050 outperform us. We hypothesize that this is due
 1051 to noise in radar points that can be mitigated by
 1052 learning (Sec. 3.2).

1053 Our learned polynomial fit may, in principle, intro-
 1054 duce unwanted inversions of initially correct MDE
 1055 predictions. POLAR successfully mitigates this
 1056 effect through the proposed novel first-derivative
 1057 regularization term (see Sec. 3.4 and Eqs. 6, 7),
 1058 which effectively constrains such inversions. To quantify this, we compute Kendall’s τ coefficient be-
 1059 tween predicted and ground-truth depths. Our method achieves the highest monotonicity ($\tau = 0.969$)
 1060 over regression baselines Isotonic Regression ($\tau = 0.871$), PCHIP ($\tau = 0.758$), and Cubic Hermite
 1061 Spline ($\tau = 0.736$). The raw MDE predictions do exhibit monotonicity with respect to ground truth
 1062 ($\tau = 0.957$), but our polynomial transformation increases it, indicating that we correct unwanted
 1063 inversions. To assess statistical significance, we compute Kendall’s τ over 30 bootstrap samples for
 1064 both our method and the raw MDE predictions. A two-sample t-test reveals a statistically significant
 1065 difference in mean monotonicity ($p = 0.012$).

H PROOF: LIMITATIONS OF GLOBAL SCALE AND SHIFT

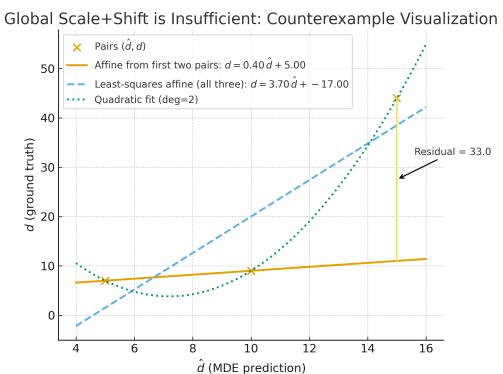
1066 As further theoretical justification, we prove by
 1067 construction that an affine scale-and-shift trans-
 1068 formation is insufficient to fit MDE predictions
 1069 to ground truth.

1070 **Proposition 1.** *There exist infinitely many sets*
 1071 *of $k \geq 3$ (MDE prediction \hat{d} , ground truth d)*
 1072 *pairs such that no global scale α and shift β*
 1073 *satisfy $d = \alpha\hat{d} + \beta$ for all k pairs simultaneously.*

1074 **Proof by Construction.** Consider the following
 1075 three (MDE prediction \hat{d} , ground truth d) pairs
 1076 from the nuScenes dataset, specifically from the

Table 13: Additional comparisons of POLAR vs. learnable dataset-specific points in place of radar points, and regression baselines.

	MAE	RMSE
Learnable Points	1860.9	4207.1
Isotonic Reg.	2895.2	4340.5
Cubic Hermite	2131.3	4588.0
PCHIP	1809.6	4054.7
LoRA	2030.6	4493.7
ViT-Adapter	1859.6	4280.0
Our Performance	1407.8	3193.5



1080 image shown in Fig. 3:

$$(\hat{d}, d) \in \{(5, 7), (10, 9), (15, 44)\}.$$

1082 Assume to the contrary that there exist $\alpha, \beta \in \mathbb{R}$ such that

$$d = \alpha\hat{d} + \beta$$

1084 holds for all pairs.

1086 From the first two pairs, we obtain:

$$7 = 5\alpha + \beta, \quad 9 = 10\alpha + \beta.$$

1089 Subtracting gives $\alpha = 0.4$ and $\beta = 5$ as the *unique* solution for these two pairs.

1090 Applying this solution to the third pair yields:

$$\alpha \cdot 15 + \beta = 0.4 \cdot 15 + 5 = 11,$$

1094 which contradicts the required equality with the ground truth value $d = 44$, since the residual error
1095 equals $44 - 11 = 33$ and not zero.

1096 Hence no global scale α and shift β exist that can satisfy all three pairs simultaneously. Moreover,
1097 scaling each pair by any nonzero constant produces infinitely many distinct 3-sets of (\hat{d}, d) pairs for
1098 which no α and β exists. Then, for any such 3-set, appending $k - 3$ arbitrary pairs yields an infinite
1099 family of k -sets ($k > 3$) that likewise admit no solution.

1100

□

1101 **Corollary 1.** *It is therefore a misconception that the scale ambiguity in MDE can be resolved solely
1102 by a global scale and shift. In contrast, any smooth relationship between \hat{d} and d can be locally
1103 approximated by a polynomial via Taylor expansion, giving our polynomial fitting formulation the
1104 theoretical capacity to approximate d as a function of \hat{d} arbitrarily well.*

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133