
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RADAR-GUIDED POLYNOMIAL FITTING FOR METRIC
DEPTH ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose POLAR, a novel radar-guided depth estimation method that introduces
polynomial fitting to efficiently transform scaleless depth predictions from pre-
trained monocular depth estimation (MDE) models into metric depth maps. Unlike
existing approaches that rely on complex architectures or expensive sensors, our
method is grounded in a fundamental insight: although MDE models often infer
reasonable local depth structure within each object or local region, they may mis-
align these regions relative to one another, making a linear scale and shift (affine)
transformation insufficient given three or more of these regions. To address this
limitation, we use polynomial coefficients predicted from cheap, ubiquitous radar
data to adaptively adjust depth predictions non-uniformly across depth ranges. In
this way, POLAR generalizes beyond affine transformations and is able to correct
such misalignments by introducing inflection points. Importantly, our polynomial
fitting framework preserves structural consistency through a novel training objec-
tive that enforces local monotonicity via first-derivative regularization. POLAR
achieves state-of-the-art performance across three datasets, outperforming exist-
ing methods by an average of 24.9% in MAE and 33.2% in RMSE, while also
achieving state-of-the-art efficiency in terms of latency and computational cost.

1 INTRODUCTION

Metric 3D reconstruction is critical for spatial tasks such as self-driving (Maier et al., 2012; Gupta
et al., 2021), where it is necessary for one to perceive the structure of the 3D environment in order
to navigate. In many such systems, multiple sensors—including cameras, lidar, and radar—provide
complementary information about the 3D scene. While lidar sensors offer dense and precise point
clouds, they are expensive and not widely available (Raj et al., 2020). In contrast, radar sensors,
particularly millimeter wave (mmWave) radars (Iizuka et al., 2003), return only about a hundred
points per frame and are noisier (Han et al., 2023). Yet, they offer key advantages: they are far more
cost-effective and energy-efficient, robust to challenging environmental conditions, and ubiquitously
equipped on modern vehicles (Eichelberger & McCartt, 2016).

Unless camera baselines are known, images offer scaleless reconstruction. However, they are high-
dimensional and sensitive to variations in illumination, object appearance, orientation, and camera
viewpoint. Training robust models that can generalize across these factors often demands large-scale
datasets, which are costly to collect. As a result, leveraging pretrained monocular depth estimation
(MDE) foundation models (Ranftl et al., 2021; Yang et al., 2024; Bochkovskii et al., 2024; Piccinelli
et al., 2025) emerges as a practical alternative. However, as monocular 3D reconstruction is inherently
ill-posed, they typically infer scaleless relative depth, or depth that lacks the fidelity needed for
applications demanding accurate metric-scale reconstruction, such as mapping and navigation.

Existing approaches (Yin et al., 2023; Viola et al., 2024; Hu et al., 2024; Zeng et al., 2025; Ding
et al., 2025; Yu et al., 2025) attempt to transform these MDE predictions into accurate metric depth
maps using a global affine (scale-and-shift) transformation. This class of methods assumes that the
reconstruction is off by a single scaling factor across the entire scene. While effective in estimating
ordinal relationships within local regions, where MDE predictions typically exhibit reasonable
local (object-level) reconstructions, such linear corrections fail when multiple objects are placed at
incorrect depths relative to each other. Specifically, once an MDE model places three or more objects
at incorrect relative depths, no simple scale-and-shift can reconcile this misalignment (Fig. 1).
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Figure 1: If an MDE model predicts incorrect rel-
ative depths between three or more objects, an
affine scale-and-shift (dashed) cannot resolve this
misalignment. POLAR (solid) overcomes this lim-
itation by learning an N ’th-order polynomial fit
with up to N − 2 inflection points.

In this work, we challenge the common assump-
tion that scale ambiguity in MDE is only up
to an unknown global scale and shift. Instead,
we propose to incorporate higher-order correc-
tions through a polynomial transformation that
allows for stretching and compressing at dif-
ferent depth levels, enabling more flexible non-
uniform adjustments. Our approach, POLAR,
transforms the predictions of pretrained MDE
models by (i) learning prototypical patterns in
the configuration of radar points, (ii) establish-
ing spatial correspondences between radar and
MDE features to encode a unified multi-sensor
scene representation, and (iii) predicting poly-
nomial coefficients that adaptively fit scaleless
depth into metric depth. This polynomial expan-
sion introduces additional degrees of freedom
(i.e., multiple inflection points) that can better correct non-uniform variations and cross-region mis-
alignments. While one may adjust every prediction (pixel) of an MDE model (Li et al., 2024a),
the number of degrees of freedom is the total number of pixels. Given radar point clouds of a few
hundred points (many orders less than the number of pixels), this becomes an ill-posed problem. On
the other hand, the number of degrees of freedom in polynomial expansion is limited to the number
of polynomial terms, which we empirically found to be close to the cardinality of radar point clouds,
allowing our solution to be better posed and more regular. To our knowledge, no prior work has
explored polynomial fitting for adapting predictions of pretrained foundation models.

However, learning such a flexible transformation is challenging because higher-order polynomials
introduce a vast function space with many free parameters. Unlike a simple linear fit that relies on
only scale and bias terms, polynomial fitting allows for numerous inflection points and nonlinearities.
This expressiveness can inadvertently lead to harmful non-monotonic transformations—where the
relative depth orderings of points are incorrectly reversed—if not properly constrained. We address
this by introducing a regularization term that enforces the predicted metric depth with respect to the
input MDE depth to remain approximately monotonically increasing. This ensures that incremental
changes in the input depth result in proportional changes in the predicted depth within local regions
where MDE reconstructs structure up to a relative scale. In essence, this regularizer encourages a
piecewise monotonic transformation, mitigating unstable oscillations that can arise from overfitting
high-degree polynomials while still enabling necessary corrections for cross-region misalignments.

Our contributions: We propose (1) POLAR, a novel POLynomial fitting method that leverages
complementary radAR guidance to transform scaleless monocular depth into accurate metric depth.
Our approach (2) introduces a fundamental insight: using polynomial coefficients predicted from a
learned multimodal representation to enable non-uniform corrections. We present (3) a principled
geometric formulation, where polynomial transformations introduce inflection points that can correct
misalignments between local areas that an affine transformation cannot. We design (4) a novel training
objective that encourages monotonicity through first-derivative as regularization, preserving local
ordinality while allowing cross-region adjustments. Finally, (5) extensive experiments demonstrate
that POLAR achieves the state of the art in both performance and efficiency, outperforming existing
methods by an average of 29.1% and simultaneously delivering real-time processing of over 40 fps.

2 RELATED WORK

Monocular Depth Estimation. With recent advances in the scalability of neural networks (Dosovit-
skiy et al., 2021; Caron et al., 2021), monocular depth estimation (MDE) models can infer scaleless
relative depth from a single image across diverse, unseen domains (Ranftl et al., 2020; Yang et al.,
2024; Piccinelli et al., 2025; Bochkovskii et al., 2024), benefiting from large-scale datasets. Recent
works seek to enhance MDE by leveraging auxiliary image signals, such as structure and motion
priors from segmentation (Hoyer et al., 2023; Bian et al., 2019), uncertainty estimation (Poggi
et al., 2020), optical flow (Zhao et al., 2020), and visual odometry (Song et al., 2023), to improve
relative depth estimation. However, monocular metric depth estimation inherently suffers from scale
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ambiguity, as estimating absolute depth from a single image is an ill-posed problem. Even MDE
models trained with metric depth supervision often struggle to generalize to unseen domains with high
fidelity (Viola et al., 2024). One way to address this limitation is to incorporate range-sensing modali-
ties such as lidar (Jaritz et al., 2018; Ezhov et al., 2024), radar (Singh et al., 2023), or visual-inertial
odometry (Wong et al., 2020).

Image-Guided Depth Completion. Most often studied in the context of lidar-camera depth es-
timation, image-guided depth completion leverages the strengths of each modality: images offer
dense visual context and structural priors, while lidar points provide absolute metric scale to resolve
depth ambiguity. Fusion strategies for these modalities include early fusion, where feature maps
are concatenated at initial layers (Ma & Karaman, 2018; Ma et al., 2018), late fusion, where inputs
are processed by independent branches (Yan et al., 2021; Rim et al., 2025), and multi-scale fusion,
which captures both local details and global scene structure (Li et al., 2020). U-Net-like architectures
have been widely used for coarse-to-fine depth completion (Hu et al., 2021; Lin et al., 2022), with
improvements from deformable convolutions (Park et al., 2020; Xu et al., 2020), and attention
mechanisms (Rho et al., 2022; Zhang et al., 2023).

Radar-Camera Depth Estimation. While lidar-based depth estimation methods achieve high
accuracy due to their dense and precise measurements, their widespread adoption is limited by high
costs, power consumption, and sensitivity to environmental conditions (Raj et al., 2020). In contrast,
radar provides a cost-effective alternative (Hunt et al., 2024), offering robustness in adverse conditions
such as low light, fog, and rain—where both cameras and lidar often struggle (Paek et al., 2022;
Srivastav & Mandal, 2023). The ubiquity of radar sensors (Eichelberger & McCartt, 2016) in existing
automotive and robotic platforms further supports their integration into depth estimation pipelines.
Leveraging radar for metric depth estimation not only reduces costs but also enhances the robustness
and scalability of perception systems, making it an attractive choice for real-world deployment.

Despite these advantages, methods that fuse image and radar inputs for depth estimation must address
the sparsity and elevation ambiguity (Singh et al., 2023) of radar point clouds. (Lin et al., 2020)
uses a two-stage late fusion approach that first produces a coarse depth map and performs outlier
rejection, then predicts the final depth map. (Long et al., 2021) leverages Doppler velocity and
optical flow to associate radar points with image pixels. (Lo & Vandewalle, 2021) refines radar depth
using height-extension of radar points to address elevation ambiguity. (Singh et al., 2023) introduces
RadarNet, which uses radar-pixel correspondence scores as well as confidence scores to generate a
semi-dense depth map, which is then used to predict the final dense depth map using gated fusion.
(Li et al., 2024b) mitigates distribution artifacts using sparse supervision, while (Sun et al., 2024)
employs a two-stage confidence-driven approach. GET-UP (Sun et al., 2025) uses attention-enhanced
graph neural networks to capture both 2D and 3D features from radar data and leverages point
cloud upsampling to refine radar features. Like our method, RadarCam-Depth (Li et al., 2024a) and
TacoDepth (Wang et al., 2025) also begin with an initial MDE prediction, but refine it and decode
dense depth directly from fused features, rather than employing a learned scene-fitting approach.

Existing methods operate within the paradigm of completion or direct decoding of fused features, and
they often rely on multi-stage training and explicit radar-pixel association learning, increasing model
complexity and computational overhead. In contrast, POLAR employs a streamlined yet powerful
architecture that directly predicts polynomial coefficients from radar and MDE features, enabling
accurate and efficient fitting of scaleless depth to metric scale. It bypasses the need for multi-stage
systems that learn explicit correspondences while enabling flexible scene-adaptive depth corrections.

3 METHOD FORMULATION

We aim to reconstruct a 3D scene from an RGB image I ∈ RH×W×3 and a synchronized radar
point cloud C ∈ RNC×3 by fitting a scaleless depth map from a pretrained MDE foundation
model to a metric depth map. Our method leverages MDE to seed scaleless depth predictions and
estimates metric depth through polynomial fitting guided by cross-modal features that encode spatial
correspondences between the 3D radar points and the dense scaleless depth predictions.

As MDE models are trained on millions of images, they are robust to typical visual nuisance
variability, spanning from illumination changes and object appearances to viewpoint shifts. To
circumvent the need to collect many large-scale synchronized radar-camera datasets, we begin with a
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Figure 2: Method Overview. POLAR transforms scaleless MDE predictions into metric depth using
polynomial fitting guided by radar features. Learnable prototypes extract patterns in the configurations
of radar point clouds and are used to aggregate spatially-informed radar features. The geometry-aware
MDE features are fused with the radar features via a learnable soft-correspondence module to yield a
unified scene representation that is used to predict polynomial coefficients for fitting. This enables
non-uniform corrections that improve accuracy beyond affine transformations.

frozen pretrained MDE model M , which serves as a learned geometric prior, to infer a scaleless depth
map z ∈ RH×W

+ from the image. We then encode the point cloud C and the scaleless depth map z
separately. Through a fusion process that captures correspondences between them, we predict N + 1

polynomial coefficients {ĉ0, ĉ1, · · · , ĉN} that are used to transform z into a metric depth map d̂.

3.1 MOTIVATION

Existing methods (Zeng et al., 2025; Ding et al., 2025; Yu et al., 2025; Viola et al., 2024; Hu et al.,
2024; Yin et al., 2023) refine MDE predictions by applying simple scale-and-shift transformations.
However, this approach lacks the complexity needed to correct non-uniform variations from ground
truth across different depths. A practical illustration of this shortcoming arises when multiple objects
or local regions appear in the same scene: MDE may accurately infer the reconstruction within each
object region, yet place them at incorrect relative depths with respect to each other. Such cross-region
misalignments cannot be corrected by a single global scaling factor (see Fig. 1). This violates the
assumption that the MDE reconstruction is up to an unknown global scale and shift.

To address this, our polynomial fitting approach exponentiates the MDE prediction to higher powers
and learns coefficients that transform it into a metric depth map via summation. Lower-order
coefficients (including scale and shift) capture the global scene layout, while higher-order coefficients
focus on local depth adjustments, correcting cross-object misalignments and fine-grained MDE errors.

An intuitive understanding of polynomial fitting can be drawn from the geometric perspective of
depth transformations. An affine (scale-and-shift) operation, mathematically represented as âz + b̂,
uniformly stretches or compresses the entire reconstruction by the same factor across all depth levels.
While effective for coarse global corrections, such an affine transformation has zero inflection points,
limiting its flexibility to address cross-region misalignments in relative depth predictions. In contrast,
the total degree of our polynomial fitting method determines the maximum number of potential
inflection points, where the curvature of the depth transformation can change. For a polynomial
f(z) =

∑N
i=0 ĉi z

i, an inflection point z∗ occurs if

f ′′(z∗) =
∑N

i=2
i(i− 1) ĉi (z

∗)i−2 = 0, (1)

indicating where the second derivative changes sign. By learning inflection points, we can model
transition regions in the curvature of the MDE error, allowing necessary non-uniform corrections.

3.2 REPRESENTATION LEARNING AND FUSION

Radar Processing. We begin with a radar point cloud C ∈ RNC×3, where each of the NC points is
represented by its (x, y, z) coordinates in three-dimensional camera space. Radar point clouds, while
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noisy and sparse, provide metric depth measurements. We concatenate a sinusoidal 3D positional
embedding ϕ3D(x, y, z) to C, and feed the resulting representation into a multilayer perceptron
(MLP) ψr, producing radar features Fr ∈ RNC×cr , where cr is the feature dimension.

Radar Aggregation. To facilitate effective radar feature aggregation, we introduce a set of learnable
prototypes P ∈ RNP×cr , where these NP prototypes capture diverse spatial and geometric properties
present in the radar point cloud. Each prototype learns to focus on specific patterns in the configuration
of radar points, making them highly expressive and adaptable across varying scenes. Unlike existing
works (Singh et al., 2023; Li et al., 2024a) that directly encode and pool radar points—making them
more susceptible to nuisances like multipath propagation—our learnable prototypes identify and
match meaningful patterns within the point cloud. This allows for selective feature aggregation that
mitigates the impact of outliers, resulting in more robust depth predictions.

Next, learnable prototypes are matched to the most relevant radar features for a given input. We
treat the prototypes as centroids and perform soft clustering over the radar features. Each radar point
is softly assigned to prototypes according to feature similarity, and the corresponding values are
aggregated to yield a global scene-descriptive representation FR:

Dij = ∥Pj − Φr(Fr)i∥2, FR = softmax(−D/ τ) Ψr(Fr), (2)

where Φr, Ψr are MLPs that project the radar features Fr, the matrix D ∈ RNP×NC contains the
pairwise squared distances between prototypes {Pj}NP

j=1 and projected radar features {Φr(Fr)i}NC
i=1,

and τ denotes temperature. This clustering-based formulation enables prototypes to capture recurring
spatial and geometric patterns in radar point clouds. Comparatively, applying lidar depth completion
methods, which densify a sparse projection of points using surrounding context, to a radar point cloud
results in poor performance (see Sec. E). This is because radar measurements are orders of magnitude
sparser than lidar and are much noisier, especially when lacking sufficient antenna elements, e.g.,
elevation ambiguity, or range resolution (Singh et al., 2023).

MDE-Radar Fusion. The scaleless depth map z ∈ RH×W
+ from the MDE model is encoded with

a learnable depth encoder fz , producing depth features Z ∈ R(H×W )×cz . These features inherit
invariants learned through large-scale MDE training—such as robustness to color variations, illumi-
nation changes, and diverse object poses—and therefore primarily encode object-level properties.
Since variations in the shape of objects and their geometry are generally more stable across scenes
than photometric appearance, the resulting depth features provide a more reliable geometric context
for fusion with radar features. This allows radar point configurations to be matched to consistently
observed shapes and surfaces, rather than to pixel-wise color intensities that can vary arbitrarily with
lighting and viewpoint. To this end, we learn soft spatial correspondences between the depth features
Z and the radar features FR to construct a unified scene representation S that fuses the structural
information encoded in the MDE predictions with the metric cues provided by the radar features:

S = softmax
(
(Z + E)× (ΦR(FR))

T

√
cr

)
ΨR(FR), (3)

where E ∈ R(H×W )×cz is a learned 2D positional embedding, and ΦR, ΨR are MLPs that project
the aggregated radar features FR. cz is set equal to cr to align the depth and radar features within a
common embedding space, facilitating cross-modal fusion, and S is reshaped to be in RH×W×cz .

Predicting Coefficients. The fused representation S is passed through a shallow convolutional neural
network (CNN) fs followed by a global average pooling (GAP) layer to yield S̄ = GAP(fs(S)),
which is a cs-dimensional feature vector. The GAP layer aggregates spatial information from the
entire scene, ensuring that S̄ captures global context. This final scene representation S̄ is then fed
into an MLP ψs, which predicts the N + 1 polynomial coefficients as a vector ĉ:

ĉ = ψs(S̄) ∈ RN+1. (4)

These coefficients allow the model to adaptively refine the initial depth predictions from the MDE
model, with each coefficient adjusting depth at different scales and granularities. Lower-order
terms capture broad scene structure, while higher-order terms enable fine-grained and cross-region
corrections, resulting in a high-fidelity metric-scale depth map.
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3.3 POLYNOMIAL FITTING

Given a scaleless depth map z ∈ RH×W
+ predicted by the MDE foundation model, our goal is to

transform it into a metric depth map d̂ ∈ RH×W
+ using the polynomial coefficients {ĉ0, ĉ1, . . . , ĉN}

predicted by our network (Sec. 3.2). Formally, we express the final depth map d̂ as:

d̂(x, y) =

N∑
i=0

ĉi · z(x, y)i, ∀(x, y) ∈ H ×W. (5)

Figure 3: POLAR leverages spatial information from radar
points to predict higher-degree polynomial transformations
that can correct non-affine errors in MDE predictions.

This polynomial formulation applies
the learned coefficients to successive
powers of the scaleless depth map, en-
abling complex, non-linear transforma-
tions that surpass the limitations of
affine transformations. Each pixel’s fi-
nal depth is thus computed by summing
multiple weighted terms, where each
term corresponds to a different polyno-
mial order of the initial depth prediction.

This is in contrast to directly mapping to
a metric-scale depth map (Singh et al.,
2023; Li et al., 2024a), where the de-
grees of freedom comprise every pre-
dicted pixel. Each corresponding point
and pixel prediction can be viewed as
a constraint or equation in our estima-
tion system. As the radar point cloud
(∼ 102 points) only occupies a small
subset of the image space (∼ 106 pix-
els), the solution is underdetermined and
often irregular (see Fig. 4). Conversely,
a simple linear fit (only two degrees of
freedom) with inconsistent MDE predic-
tions and noisy radar points leads to an
overdetermined system (see Tab. 5). POLAR offers the middle ground: By a flexible choice of
polynomial degree, we can appropriately tune and select the complexity of the function, i.e., degrees
of freedom, that leads to a better fit between MDE predictions and radar points.

In terms of overhead, compared to predicting two coefficients (scale and shift) for an affine trans-
formation, predicting N + 1 coefficients for polynomial fitting introduces a negligible increase
in computational cost (< 0.01% more FLOPs): the final MLP outputs an (N + 1)-dimensional
vector instead of a two-dimensional vector, and the final depth map is computed through parallelized
exponentiation and multiplication operations (see Sec. B for the complete derivation).

Geometric Intuition. Applying polynomial fitting to the scaleless depth map is best viewed as a
flexible, depth-dependent correction mechanism. In contrast to a single scale-and-shift operation,
which uniformly adjusts the entire depth field by a single global factor, polynomial transformations
introduce multiple degrees of freedom—higher-order terms enable correction of misalignments in
relative depth between objects and local regions.

By introducing polynomial terms, our method enables depth adjustments that vary according to
the initial depth estimates z. Lower-order coefficients (ĉ0, ĉ1, · · · ) establish a broad global scale,
providing a metric basis for the initially scaleless z. Higher-order coefficients (· · · , ĉN−1, ĉN )
introduce both low-frequency corrections, e.g., resolving cross-object misalignments (Fig. 1), as well
as high-frequency corrections, e.g., sharpening fine object boundaries (Fig. 4, Image C).

The concept of inflection points provides an intuitive understanding of this approach. Each additional
polynomial order introduces more potential inflection points, allowing the depth transformation
to shift curvature where needed. This flexibility enables “stretching” or “compressing” different
depth levels: areas already near their correct metric depth receive minimal adjustment, while regions
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Table 1: Quantitative results on the nuScenes, ZJU-4DRadarCam (ZJU), and View-of-Delft test sets
evaluated with various maximum evaluation distances.

nuScenes ZJU View-of-Delft
Distance Method MAE RMSE MAE RMSE MAE RMSE

50m

RadarNet [CVPR ’23] 1727.7 3746.8 1430.5 3250.8 2944.8 6113.2
SparseBeatsDense [ECCV ’24] 1524.5 3567.3 1424.4 3267.5 2909.9 5746.4
GET-UP [WACV ’25] 1241.0 2857.0 1483.9 3220.5 2330.0 4565.0
RadarCam-Depth [ICRA ’24] 1286.1 2964.3 1067.5 2817.4 1895.1 4458.7
TacoDepth [CVPR ’25] 1046.8 2487.5 930.2 2477.3 - -
POLAR (Ours) 1014.4 2475.7 578.0 1108.6 1293.7 2420.6

70m

RadarNet [CVPR ’23] 2073.2 4590.7 1543.8 3655.3 3428.9 7331.9
SparseBeatsDense [ECCV ’24] 1822.9 4303.6 1520.0 3593.4 3408.3 6914.7
GET-UP [WACV ’25] 1541.0 3657.0 1651.5 3711.7 2758.0 5678.0
RadarCam-Depth [ICRA ’24] 1587.9 3662.5 1157.0 3117.7 2095.4 4944.6
TacoDepth [CVPR ’25] 1347.1 3152.8 983.1 2779.6 - -
POLAR (Ours) 1286.1 2947.3 603.7 1154.9 1442.9 2803.8

80m

RadarNet [CVPR ’23] 2179.3 4898.7 1578.4 3804.2 3597.0 7809.2
SparseBeatsDense [ECCV ’24] 1927.0 4609.6 1548.4 3708.1 3584.0 7375.2
GET-UP [WACV ’25] 1632.0 3932.0 1699.7 3882.6 2917.3 6145.1
RadarCam-Depth [ICRA ’24] 1689.7 3948.0 1183.5 3229.0 2227.4 5385.8
TacoDepth [CVPR ’25] 1492.4 3324.8 1032.5 2850.3 - -
POLAR (Ours) 1407.8 3193.5 629.6 1171.3 1500.1 3951.8

suffering larger errors (e.g., due to misalignment with other regions) undergo more substantial
correction. Higher-order terms magnify small (i.e., high-frequency) discrepancies in the initial MDE
predictions, making them more apparent to the model and easier to correct. In this way, the degree of
the polynomial, selected as a hyperparameter, governs the capacity of our model to apply non-uniform
corrections across the scene.

The sign of the predicted polynomial coefficients furthers our interpretation. Positive coefficients
for higher-order terms push depth values outward while negative ones pull them inward, effectively
expanding or contracting selected depth intervals to correct local errors. In doing so, these coefficients
shape the curvature of the polynomial, dictating where and how inflection points arise. For instance,
if the model consistently overestimates distant objects, a negative high-order coefficient can compress
that region, whereas a positive coefficient might be learned to correct underestimations. By treating
coefficient signs as dynamic anchors for curvature changes, the polynomial fitting framework provides
an interpretable mechanism (e.g., Fig. 3) for refining scaleless depth into high-fidelity metric depth.

3.4 LOSS FUNCTION

We employ a loss function comprising three terms, each weighted by its λ, to guide the learning of
the polynomial coefficients and ensure accurate depth estimation. Our loss is defined as:

L = λL1∥d̂− dgt∥1 + λL2
∥d̂− dgt∥22 + λmono

∥∥∥∥∥1H×W − dd̂

dz

∥∥∥∥∥
1

, (6)

where dgt ∈ RH×W
+ is the ground truth metric depth map, d̂ ∈ RH×W

+ is our predicted metric depth,
and z ∈ RH×W

+ is the scaleless depth map predicted by the MDE model.

The first two terms, L1 and L2 losses, ensure that our predicted depth map d̂ closely matches the
ground truth dgt by penalizing discrepancies. The L1 term is less sensitive to outliers and thus
promotes robustness, while the L2 term penalizes larger errors more significantly.

The novel component of our objective lies in the third term, which constrains the first derivative of
the predicted depth d̂ w.r.t the input scaleless depth z (Eq. 7) to remain near that of d̂ = z.

dd̂

dz
(x, y) =

N∑
i=1

i ĉi z(x, y)
i−1. (7)

This regularization enforces that our polynomial fitting function remains approximately monotonically
increasing, akin to isotonic regression (Barlow et al., 1972). Generally, within an object or local
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Image C Ground Truth

Sample

MDE

GET-UP

RC-D

Ours

Image A Ground Truth Image B Ground Truth

Prediction ErrorError Prediction ErrorPrediction

Figure 4: Qualitative results on nuScenes. GET-UP and RadarCam-Depth (RC-D) fail to reconstruct
entire regions, yielding objects with large depth errors. Raw MDE yields reasonable relative recon-
structions but suffers from incorrect global scale and cross-object misalignments. POLAR leverages
polynomial fitting to recover a global scale and correct these misalignments. See Fig. 5 for colorbars.

region, a pixel with a higher initial scaleless depth value should not be assigned a lower final
metric depth value compared to a pixel with a lower initial scaleless depth. The preservation of
ordinal relationships is an inductive bias grounded in the assumption that the MDE model provides a
reasonably accurate estimation of intra-object relative depth.

Polynomial fitting introduces a large function space, with expressiveness growing with degree N ,
which can significantly and detrimentally disrupt local monotonic depth ordering if unconstrained.
Our regularization term addresses this by preserving local depth ordinality while still allowing correc-
tions of cross-object misalignments. This constraint prevents overfitting of nonlinear transformations
to noisy radar data, spurious correlations, and outliers, thereby avoiding the oscillatory behavior that
is a known challenge with fitting higher-degree polynomials (Bishop, 2006).

4 EXPERIMENTS

Baseline Methods. We consider five recent radar-camera depth estimation baselines: RadarNet (Singh
et al., 2023), SparseBeatsDense (Li et al., 2024b), GET-UP (Sun et al., 2025), RadarCam-Depth (Li
et al., 2024a), and TacoDepth (Wang et al., 2025). Notably, both RadarCam-Depth and TacoDepth
also take scaleless MDE predictions as input, together with radar points, to predict metric depth.

Datasets. We evaluate all methods on the nuScenes, ZJU-4DRadarCam (ZJU), and View-of-Delft
(VoD) datasets (see Sec. C for more details) using the MAE and RMSE metrics with maximum
evaluation distances of 50, 70, and 80 meters, following established conventions in the literature.

4.1 MAIN RESULTS

Compared to baselines, POLAR reduces MAE by 4.4% and RMSE by 3.7% on nuScenes, 38.5% and
57.5% on ZJU, and 31.8% and 38.5% on VoD, achieving SOTA results for all datasets (Tab. 1).

We qualitatively compare POLAR against baseline methods on the challenging nuScenes dataset,
providing a visual demonstration of its improved depth estimation performance (Fig. 4). POLAR
more accurately predicts metric scale and exhibits fewer global misalignments. Furthermore, it is
able to extrapolate depth predictions of object surfaces from learned photometric priors, an ability
inherited from the backbone MDE model (e.g., UniDepth) trained on large-scale datasets. Our
polynomial fitting approach then non-uniformly corrects depth discrepancies across the scene, leading
to significant performance improvement over initial MDE predictions. Introducing multiple degrees
of freedom enables POLAR to correct misalignments of objects relative to each other, improving
accuracy by correcting consistent over- or under-estimations in local regions. For instance, the raw
MDE prediction for Image C incorrectly places the bus stop roof at around the same depth as the
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more distant tree branches, as highlighted on the right. Additionally, MDE does not accurately infer
the boundary between the curb and asphalt, again placing both at erroneously similar depths. With
a learned polynomial transformation, POLAR corrects these misalignments with depth-dependent
adjustments, accurately separating the curb from the asphalt and placing the bus stop roof and tree
branch at their correct depths.

While RadarCam-Depth also utilizes an MDE backbone, its complex processing of raw MDE
predictions can be seen to distort initially correct depth structure. As shown in the top-left highlighted
region of Image C, the tree trunk and attached fern are incorrectly placed at different depths despite
the initial MDE predictions correctly positioning them at similar depths. Furthermore, overfitting to
specific regions within a scene—particularly those with denser ground truth—may reduce overall
error relative to the MDE model but can lead to unintended geometric artifacts. This can result in the
omission of entire structures in the predicted depth map, such as the highlighted building on the left
of Image A and the construction crane arms in Image B. GET-UP also struggles to accurately infer
depth structure, resulting in the omission of objects across all three samples: the highlighted building
in Image A, the crane arms in Image B, and foreground tree branches in Image C.

As the polynomial degree—selected as a hyperparameter—increases, the maximum possible number
of inflection points also grows, giving POLAR greater expressive power to correct misalignments
between the many scene elements in Fig. 3, including cars, trucks, trees, buildings, and traffic lights.
This is reflected in the successively improved error maps. See Sec. A for quantitative evaluations.

4.2 COMPUTATIONAL EFFICIENCY

Table 2: Training times (minutes per epoch)
on nuScenes using an NVIDIA A6000 GPU.

Method Train Time / Epoch

Lin (Lin et al., 2020) 89.25
RadarNet (Singh et al., 2023) 101.50
SparseBeatsDense (Li et al., 2024b) 63.96
GET-UP (Sun et al., 2025) 249.57
RadarCam-Depth (Li et al., 2024a) 86.38
POLAR (Ours) 33.16

Table 3: Inference time in milliseconds (ms) and
computational cost (GFLOPs) on nuScenes.

Method Inference Time GFLOPs

Lin (Lin et al., 2020) 129.96 550.43
SparseBeatsDense (Li et al., 2024b) 97.47 532.74
GET-UP (Sun et al., 2025) 445.45 630.99
RadarCam-Depth (Li et al., 2024a) 315.64 619.02
TacoDepth (Wang et al., 2025) 29.30 139.87
POLAR (Ours) 24.81 89.70

POLAR achieves state-of-the-art training time, inference time (ms), and computational overhead
(GFLOPs) compared to all baseline methods, while also achieving state-of-the-art accuracy. Tab. 2
shows that POLAR has the lowest training time per epoch among all methods, requiring 33.16
minutes per epoch on nuScenes. This efficiency stems from our streamlined design, which avoids
multi-stage processing and explicit radar-camera association learning, both of which contribute to
longer training times in methods such as RadarCam-Depth and GET-UP.

Tab. 3 highlights POLAR’s state-of-the-art inference speed, requiring just 24.81 ms per frame—a
reduction of 15.3% compared to the previous state-of-the-art TacoDepth and 92.1% compared to
RadarCam-Depth. This corresponds to 40.3 fps, enabling real-time depth perception. Furthermore,
POLAR achieves this inference speed with a lower computational overhead of 89.70 GFLOPs—a
39.5% reduction relative to TacoDepth and an 85.5% reduction relative to RadarCam-Depth. Taken
together, these results establish POLAR as not only the most accurate radar-camera depth estimation
method, but also the most practical for real-time deployment where latency is critical.

5 DISCUSSION

Limitations. POLAR requires tuning the polynomial degree as a hyperparameter (Sec. A), which
may vary across datasets. Additionally, while our novel first-derivative regularization mitigates
oscillatory behavior from high-degree polynomials, further constraints could enhance stability.

Summary. We are the first to formulate radar-camera depth estimation as a scene-fitting problem,
leveraging high-degree polynomials to transform MDE predictions into accurate metric depth. Our
principled and efficient approach demonstrates that a fundamental insight—shifting from affine scale-
and-shift to flexible polynomial transformations—outperforms computationally heavier methods.
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ETHICS STATEMENT

As our work focuses on depth estimation, we do not anticipate any direct ethical concerns regarding
the proposed method. However, as with any data-driven approach, the model may be biased towards
performing well on data distributions similar to those seen during training and may underperform in
out-of-distribution or underrepresented scenarios.

REPRODUCIBILITY STATEMENT

Our methodology is fully described in Sec. 3, and the evaluation metrics and implementation details
we use are provided in Sec. F. We plan to release code for full reproducibility. In Sec. H, we provide
a proof by construction that demonstrates the limitations of global scale and shift alignment in
monocular depth estimation.
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APPENDIX

A COMPARATIVE STUDIES

Table 4: MDE backbone comparative studies
on nuScenes.

nuScenes
Method MAE RMSE

DPT (Ranftl et al., 2021) 5188.2 6884.5
Depth Anything (Yang et al., 2024) 2404.9 4851.1
Depth Pro (Bochkovskii et al., 2024) 3835.0 6600.3
UniDepth (Piccinelli et al., 2025) 2129.8 4887.7

RadarCam-Depth w/ DPT 1689.7 3948.0
RadarCam-Depth w/ Depth Anything 1953.6 5107.8
RadarCam-Depth w/ Depth Pro 3417.1 6462.0
RadarCam-Depth w/ UniDepth 1872.0 4321.2

POLAR w/ DPT 1525.6 3745.0
POLAR w/ Depth Anything 1515.1 3719.4
POLAR w/ Depth Pro 1627.7 4143.9
POLAR w/ UniDepth 1407.8 3193.5

MDE Models. We evaluate POLAR using four
monocular depth estimation (MDE) backbones:
DPT (Ranftl et al., 2021), Depth Anything (Yang
et al., 2024), Depth Pro (Bochkovskii et al., 2024),
and UniDepth (Piccinelli et al., 2025). DPT and
Depth Anything infer scaleless inverse depth, and
while Depth Pro and UniDepth output metric
depth, their raw predictions exhibit significant de-
viation from metric ground truth (see raw MDE
performance in Tabs. 4, 9, 10), and thus we pro-
cess them the same way as scaleless depth.

Tab. 4 compares raw MDE performance to
their performance when used as backbones for
RadarCam-Depth and POLAR. Raw MDE pre-
dictions show large errors due to scale ambigu-
ity, while RadarCam-Depth provides moderate im-
provements. In contrast, POLAR consistently reduces error across all backbones, demonstrating the
effectiveness of polynomial fitting. For DPT and Depth Anything, outputs are first inverted when used
as a backbone, and are further median-scaled for the reported raw results. Among all configurations,
POLAR w/ UniDepth achieves the best performance, improving over raw UniDepth predictions by
51.2% and over RadarCam-Depth w/ UniDepth by 37.8%.

Table 5: Sensitivity study of polynomial degree,
selected as a hyperparameter.

nuScenes ZJU
Polynomial Degree MAE RMSE MAE RMSE

1 (Scale + Shift) 2156.8 4491.3 1078.2 2405.5
2 1715.2 3840.6 901.0 1822.7
4 1482.7 3510.1 791.2 1516.4
6 1466.9 3496.0 670.3 1297.9
8 1407.8 3193.5 629.6 1171.3

10 1463.7 3494.5 643.3 1184.5

Table 6: Ablation studies of architecture and
loss components.

nuScenes VoD
Ablated Component MAE RMSE MAE RMSE

learnable prototypes 1615.5 3629.0 1619.3 4162.7
cross-modality att. 2238.8 4817.4 2147.9 4926.1
monotonicity loss 1921.1 4399.5 1924.5 4660.3
pos. embeddings 1454.1 3488.9 1500.1 3951.8

no ablations 1407.8 3193.5 629.6 1171.3

Polynomial Degree. Tab. 5 quantifies the performance gains achieved with higher-degree polyno-
mials, with degree 8 outperforming lower degrees. At degree 10, performance degrades slightly,
potentially due to excessive flexibility resulting in detrimental oscillations.

Figure 5: To quantify absolute improvement in our
qualitative results, we provide the colorbars that
were used in all examples in Figs. 3, 4, 6, and 7.

Ablations. We evaluate the impact of key com-
ponents of POLAR in Tab. 6. Replacing learn-
able prototypes with self-attention on the radar
point features degrades performance, demon-
strating that prototypes capture relevant patterns
within radar point configurations. Removing
cross-modality fusion results in the largest per-
formance drop, highlighting the necessity of leveraging correspondences between MDE and radar
features. Removing the monotonicity loss term also reduces performance, suggesting that depth
ordering regularization is crucial for stable polynomial fitting.

B MORE ON COMPUTATIONAL EFFICIENCY

Incremental increase in computation for each additional polynomial degree. Adding a k + 1-th
polynomial term requires minimal computational overhead. For an MDE prediction of shape (H,W ),
the additional cost consists of three components: predicting another coefficient via the linear layer
of (1 × 64 × 2 FLOPs), computing the (k + 1)-th power from pre-computed k-th exponentiation
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Figure 6: Additional qualitative comparison on VoD. POLAR more accurately predicts metric scale,
and exhibits fewer global misalignments and geometric artifacts in comparison to other methods.
Polynomial fitting, allowing POLAR to non-uniformly scale distinct local regions, results in notable
improvements in metric depth estimation over initial MDE predictions. This is apparent in all MDE
error maps: though object depth geometry is reasonable, actual metric depth values tend to be
inaccurate. GET-UP, while marginally improving metric depth estimation relative to MDE, presents
substantial errors in depth structure. For instance, the presence of geometric artifacts or omission of
objects or regions entirely can be seen through the following highlighted examples: loss of motorcycle
body and visor in Image A, front portion of biker (right) and bike wheel (far-left) in Image B, top of
motorcyclist in Image C, and street sign in Image D. RadarCam-Depth (RC-D) similarly exhibits
geometric artifacts, present in the sign pole, motorcycle, and fence post in Image A, biker and bicycle
wheel in Image B, roof overhang and motorcyclist in Image C, and fence posts and pedestrians
in Image D. In contrast, POLAR extrapolates correct structure from photometric priors while also
demonstrating clear improvements in metric depth fidelity compared to all other baselines.

(H ×W multiplications), and incorporating this term into the final depth prediction (2×H ×W
operations for multiplication by the coefficient and addition). For nuScenes, where each image
has shape (900, 1600), each additional polynomial term incurs an additional computational cost of
0.0043 GFLOPs, which is a 0.0048% increase.

C DATASET DETAILS

The nuScenes dataset (Caesar et al., 2019) contains 1,000 scenes, each lasting 20 seconds, collected
from a vehicle equipped with Velodyne HDL32E lidar, Continental ARS 408-21 Radar, Basler
acA1600-60gc camera with 900×1600, and Advanced Navigation Spatial IMU sensors around
Singapore and Boston. This data collection process resulted in 40,000 synchronized keyframes. Each
frame has an average of 97 radar point measurements. Additionally, the dataset includes 877,993
3D bounding box annotations about 23 object classes, and is organized with a train-test split of 850
scenes for training and validation, and 150 for testing.
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The ZJU-4DRadarCam (ZJU) dataset (Li et al., 2024a) provides lidar, Radar, and camera data,
collected through the same method as the nuScenes dataset around Hangzhou, China. The dataset
is enhanced with high-density lidar and 4D radar data, utilizing the RoboSense M1 lidar sensor
and Oculii’s EAGLE 4D radar sensor. Additionally, the vehicle is outfitted with RealSense D455
cameras. The dataset includes a total of 33,409 synchronized keyframes, divided into 29,312 frames
for training and validation, and 4,097 frames for testing. Each frame has an average of 465 radar
point measurements. The original camera resolution was 720×1280 but was cropped to 300×1280
because of the limited presence of reprojected lidar points.

The View-of-Delft (VoD) dataset (Palffy et al., 2022) uses similar methods to provide lidar, Radar, and
camera data around the city of Delft in the Netherlands. The vehicle was equipped with a Velodyne
HDL-64 S3 LIDAR, ZF FRGen 21 3+1D Radar, a stereo camera with 1216×1936 resolution, an RTK
GPS, IMU, and wheel odometry. It contains 8,693 frames of synchronized and calibrated keyframes
along with 123,106 3D bounding box annotations about 13 road user classes. Each frame has an
average of 276 radar point measurements. Similar to the ZJU dataset, the camera resolution was
cropped to 608×1936 because of the limited presence of reprojected lidar points.

D FULL NUSCENES BENCHMARK

We present the full set of quantitative results on the nuScenes dataset in Tab. 7. This table includes
additional baseline methods that were omitted from the main text for brevity, providing a compre-
hensive comparison of POLAR against all known existing radar-camera depth estimation methods.
As shown, POLAR consistently outperforms all competing methods across all maximum distance
thresholds (50m, 70m, and 80m), achieving the lowest mean absolute error (MAE) and root mean
squared error (RMSE).

E COMPARISON TO DEPTH COMPLETION

One potential idea for radar-camera depth estimation is to apply lidar-camera depth completion
methods designed to densify sparse depth maps using surrounding context. One such method,
BPNet (Tang et al., 2024) achieves state-of-the-art performance on the KITTI depth completion
benchmark by leveraging bilateral propagation. However, when applied to radar-camera depth
estimation, BPNet performs poorly, as shown in Tab. 7. POLAR outperforms BPNet by 57.9% in
MAE and 44.2% in RMSE on nuScenes, highlighting the limitations of directly applying lidar depth
completion methods to radar data. The key reason for this underperformance lies in the fundamental
differences between lidar and radar point clouds. Unlike lidar, radar measurements are orders of
magnitude sparser and significantly noisier due to factors such as limited antenna elements, elevation
ambiguity (see Fig. 7), and lower range resolution (Singh et al., 2023). Lidar depth completion
methods assume a relatively dense and structured input (Xia et al., 2023), leveraging local spatial
continuity to propagate depth estimates effectively. In contrast, radar points are too sparse for such
methods to infer meaningful local depth relationships, leading to poor depth reconstruction when
attempting direct densification.

Table 8: Error metrics for depth estimation.
These metrics compute the error between pre-
dicted depth d̂(x) and ground truth depth d(x).

Metric Definition

MAE ↓ 1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|

RMSE ↓
(

1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|2

)1/2

In addition, we compare against Non-Local Spa-
tial Propagation Network (NLSPN) (Park et al.,
2020), which achieves near state-of-the-art per-
formance on the KITTI depth completion bench-
mark by refining sparse lidar depth with an it-
erative non-local spatial propagation procedure.
NLSPN predicts an initial depth map along with
pixel-wise confidences, then refines it by estimat-
ing non-local neighbors and their corresponding
affinities to selectively propagate depth informa-
tion. Unlike other approaches that rely on fixed local neighbors, NLSPN adaptively determines
relevant non-local neighbors, improving depth completion accuracy, especially near depth boundaries.
However, again, when applied to radar-camera depth estimation, NLSPN performs poorly, as shown
in Tab. 7. POLAR outperforms NLSPN by 59.8% in MAE and 55.4% in RMSE on nuScenes.
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Table 7: Full quantitative results (mm) on the nuScenes benchmark.

nuScenes
Distance Method MAE RMSE

50m

NLSPN (Park et al., 2020) 2790.0 5813.4
BPNet (Tang et al., 2024) 2407.0 4438.0
RC-PDA (Long et al., 2021) 2225.0 4156.5
RC-PDA-HG (Long et al., 2021) 2210.0 4234.0
BTS (Lee et al., 2019) 1937.0 3885.0
DORN (Lo & Vandewalle, 2021) 1926.6 4124.8
RadarNet (Singh et al., 2023) 1727.7 3746.8
CaFNet (Sun et al., 2024) 1674.0 3674.0
Lin (Lin et al., 2020) 1598.2 3790.1
SparseBeatsDense (Li et al., 2024b) 1524.5 3567.3
RadarCam-Depth (Li et al., 2024a) 1286.1 2964.3
GET-UP (Sun et al., 2025) 1241.0 2857.0
TacoDepth (Wang et al., 2025) 1046.8 2487.5
POLAR (Ours) 1014.4 2475.7

70m

NLSPN (Park et al., 2020) 3140.0 6580.6
RC-PDA (Long et al., 2021) 3326.1 6700.6
RC-PDA-HG (Long et al., 2021) 3485.6 7002.9
BTS (Lee et al., 2019) 2346.0 4811.0
DORN (Lo & Vandewalle, 2021) 2170.0 4532.0
RadarNet (Singh et al., 2023) 2073.2 4590.7
CaFNet (Sun et al., 2024) 2010.0 4493.0
Lin (Lin et al., 2020) 1897.8 4558.7
SparseBeatsDense (Li et al., 2024b) 1822.9 4303.6
RadarCam-Depth (Li et al., 2024a) 1587.9 3662.5
GET-UP (Sun et al., 2025) 1541.0 3657.0
TacoDepth (Wang et al., 2025) 1347.1 3152.8
POLAR (Ours) 1286.1 2947.3

80m

NLSPN (Park et al., 2020) 3257.7 6872.4
RC-PDA (Long et al., 2021) 3721.0 7632.0
RC-PDA-HG (Long et al., 2021) 3664.0 7775.0
AdaBins (Bhat et al., 2021) 3541.0 5885.0
P3Depth (Patil et al., 2022) 3130.0 5838.0
LapDepth (Song et al., 2021) 2544.0 5151.0
PnP (Wang et al., 2018) 2496.0 5578.0
BTS (Lee et al., 2019) 2467.0 5125.0
DORN (Lo & Vandewalle, 2021) 2432.0 5304.0
RadarNet (Singh et al., 2023) 2179.3 4898.7
CaFNet (Sun et al., 2024) 2109.0 4765.0
Lin (Lin et al., 2020) 1988.4 4841.1
SparseBeatsDense (Li et al., 2024b) 1927.0 4609.6
RadarCam-Depth (Li et al., 2024a) 1689.7 3948.0
GET-UP (Sun et al., 2025) 1632.0 3932.0
TacoDepth (Wang et al., 2025) 1492.4 3324.8
POLAR (Ours) 1407.8 3193.5

Instead of relying on depth completion-style densification, POLAR directly learns a transformation
function from radar to metric depth by leveraging polynomial fitting. Our method avoids the
pitfalls of propagating unreliable local depth information by refining MDE predictions with learned
polynomial coefficients, enabling flexible, scene-adaptive depth corrections that effectively capture
object relationships and global scene structure.
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Ground TruthImage A Lidar PointsRadar Points

Ground TruthImage B Lidar PointsRadar Points

Ground TruthImage C Lidar PointsRadar Points

Figure 7: nuScenes dataset visualization. The elevation ambiguity of radar points results in
erroneous projection onto the image plane that makes it challenging for depth completion methods to
infer dense depth. In contrast, lidar points yield a denser, image-aligned projection, which is why
accurate 3D scene reconstruction with depth completion methods is possible.

F EVALUATION METRICS AND IMPLEMENTATION DETAILS

The evaluation metrics used in our study, Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), are formulated in Tab. 8. Lower values equal better performance for both MAE and RMSE.
Unless specified otherwise, all reported values are in millimeters (mm). We train for 60 epochs
using a cosine decay learning rate scheduler with learning rate of 5× 10−5, and use weighting terms
λL1

= 1.0, λL2
= 0.4, λmono = 0.25 for our loss function.

G ADDITIONAL COMPARISONS

Full MDE Comparisons. For ZJU (see Tab. 9), among all configurations, POLAR w/ UniDepth
achieves the best performance, improving over raw UniDepth predictions by 61.1% and over
RadarCam-Depth w/ UniDepth by 54.2%. For VoD (see Tab. 10), POLAR w/ UniDepth achieves the
best performance in MAE, improving over raw UniDepth predictions by 42.4% and over RadarCam-
Depth w/ UniDepth by 32.7%, while POLAR w/ Depth Anything achieves the best performance in
RMSE, improving over RadarCam-Depth w/ Depth Anything by 37.6% and over raw Depth Anything
predictions (inverted and median scaled) by 10.4%.

Table 9: MDE backbone comparative studies
on ZJU-4DRadarCam (ZJU).

ZJU
Method MAE RMSE

DPT (Ranftl et al., 2021) 1885.3 3326.1
Depth Anything (Yang et al., 2024) 1943.2 3469.3
Depth Pro (Bochkovskii et al., 2024) 1680.2 3144.9
UniDepth (Piccinelli et al., 2025) 1533.0 3188.4

RadarCam-Depth w/ DPT 1183.5 3229.0
RadarCam-Depth w/ Depth Anything 1724.4 3661.3
RadarCam-Depth w/ Depth Pro 1490.6 3429.5
RadarCam-Depth w/ UniDepth 1152.5 3168.6

POLAR w/ DPT 707.1 1216.9
POLAR w/ Depth Anything 657.2 1225.4
POLAR w/ Depth Pro 640.3 1174.8
POLAR w/ UniDepth 629.6 1171.3

Table 10: MDE backbone comparative studies
on View-of-Delft.

View-of-Delft
Method MAE RMSE

DPT (Ranftl et al., 2021) 4117.9 5498.9
Depth Anything (Yang et al., 2024) 3270.5 4411.9
Depth Pro (Bochkovskii et al., 2024) 3275.9 5936.7
UniDepth (Piccinelli et al., 2025) 2605.6 5691.0

RadarCam-Depth w/ DPT 4013.5 5911.9
RadarCam-Depth w/ Depth Anything 3103.6 6328.7
RadarCam-Depth w/ Depth Pro 2843.4 6082.0
RadarCam-Depth w/ UniDepth 2227.4 5385.8

POLAR w/ DPT 1891.4 4252.6
POLAR w/ Depth Anything 1770.5 3951.8
POLAR w/ Depth Pro 1520.2 3987.2
POLAR w/ UniDepth 1500.1 3960.5
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Leveraging Radar. Tab. 13 shows that replacing radar points with learnable, dataset-specific points
worsens MAE by 28.0% and RMSE by 29.9%, demonstrating that we indeed leverage the radar inputs
effectively. As additional evidence, Tab. 11 shows that our method, evaluated zero-shot cross-dataset,
achieves comparable or better performance than baselines trained on the target datasets. Tab. 12 shows
we are more robust to reduced radar point density at inference, i.e., less performance degradation
than the baseline method RadarCam-Depth.

Table 11: Zero-shot generalization.

nuScenes→ZJU nuScenes→VoD
Method MAE RMSE MAE RMSE

GET-UP (zero-shot) 3845.2 8469.7 4809.1 8653.9
RadarCam-Depth (zero-shot) 5435.9 9785.8 7521.5 9194.8
GET-UP (trained) 1699.7 3882.6 2917.3 6145.1
RadarCam-Depth (trained) 1183.5 3229.0 2227.4 5385.8
Ours (zero-shot) 1147.9 3109.5 2256.2 4744.2

Table 12: Reduced radar point density.

RadarCam-Depth Ours
% radar kept / removed MAE RMSE MAE RMSE

25% kept / 75% removed 7969.4 10831.5 2416.4 4836.6
50% kept / 50% removed 4819.8 7077.7 1816.8 3945.7
75% kept / 25% removed 2537.3 4247.4 1575.2 3611.8
100% kept / 0% removed 1689.7 3948.0 1407.8 3193.5

Table 13: Additional comparisons of POLAR vs.
learnable dataset-specific points in place of radar
points, and regression baselines.

MAE RMSE

Learnable Points 1860.9 4207.1

Isotonic Reg. 2895.2 4340.5
Cubic Hermite 2131.3 4588.0
PCHIP 1809.6 4054.7

LoRA 2030.6 4493.7
ViT-Adapter 1859.6 4280.0

Our Performance 1407.8 3193.5

Adapters. Tab. 13 shows that recent adapter-
based finetuning methods LoRA (Hu et al., 2022)
and ViT-Adapter (Chen et al., 2022), even with a
post-hoc linear fit to projected radar points, do not
outperform us.

Regression Baselines. Isotonic regression and
monotone spline fitting methods are natural base-
lines. Tab. 13 shows these methods for regressing
projected radar points on MDE predictions do not
outperform us. We hypothesize that this is due
to noise in radar points that can be mitigated by
learning (Sec. 3.2).

Our learned polynomial fit may, in principle, intro-
duce unwanted inversions of initially correct MDE
predictions. POLAR successfully mitigates this
effect through the proposed novel first-derivative
regularization term (see Sec. 3.4 and Eqs. 6, 7),
which effectively constrains such inversions. To quantify this, we compute Kendall’s τ coefficient be-
tween predicted and ground-truth depths. Our method achieves the highest monotonicity (τ = 0.969)
over regression baselines Isotonic Regression (τ = 0.871), PCHIP (τ = 0.758), and Cubic Hermite
Spline (τ = 0.736). The raw MDE predictions do exhibit monotonicity with respect to ground truth
(τ = 0.957), but our polynomial transformation increases it, indicating that we correct unwanted
inversions. To assess statistical significance, we compute Kendall’s τ over 30 bootstrap samples for
both our method and the raw MDE predictions. A two-sample t-test reveals a statistically significant
difference in mean monotonicity (p = 0.012).

H PROOF: LIMITATIONS OF GLOBAL SCALE AND SHIFT

As further theoretical justification, we prove by
construction that an affine scale-and-shift trans-
formation is insufficient to fit MDE predictions
to ground truth.

Proposition 1. There exist infinitely many sets
of k ≥ 3 (MDE prediction d̂, ground truth d)
pairs such that no global scale α and shift β
satisfy d = αd̂+β for all k pairs simultaneously.

Proof by Construction. Consider the following
three (MDE prediction d̂, ground truth d) pairs
from the nuScenes dataset, specifically from the
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image shown in Fig. 3:
(d̂, d) ∈ {(5, 7), (10, 9), (15, 44)}.

Assume to the contrary that there exist α, β ∈ R such that

d = αd̂+ β

holds for all pairs.

From the first two pairs, we obtain:

7 = 5α+ β, 9 = 10α+ β.

Subtracting gives α = 0.4 and β = 5 as the unique solution for these two pairs.

Applying this solution to the third pair yields:

α · 15 + β = 0.4 · 15 + 5 = 11,

which contradicts the required equality with the ground truth value d = 44, since the residual error
equals 44− 11 = 33 and not zero.

Hence no global scale α and shift β exist that can satisfy all three pairs simultaneously. Moreover,
scaling each pair by any nonzero constant produces infinitely many distinct 3-sets of (d̂, d) pairs for
which no α and β exists. Then, for any such 3-set, appending k − 3 arbitrary pairs yields an infinite
family of k-sets (k > 3) that likewise admit no solution.

Corollary 1. It is therefore a misconception that the scale ambiguity in MDE can be resolved solely
by a global scale and shift. In contrast, any smooth relationship between d̂ and d can be locally
approximated by a polynomial via Taylor expansion, giving our polynomial fitting formulation the
theoretical capacity to approximate d as a function of d̂ arbitrarily well.
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