
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALEAC: SCALE ACTOR-CRITIC BY REPLAY RATIO

Anonymous authors
Paper under double-blind review

ABSTRACT

Employing a high replay ratio, defined as the number of updates of an agent’s net-
work parameters per environment interaction, has recently become a promising
strategy to improve sample efficiency in reinforcement learning (RL). However,
most existing efforts to effectively scale a replay ratio stagnate at small values,
leaving the potential of scaling a replay ratio to hundreds underexplored. In this
paper, we aim to break the bottleneck of replay ratio scaling to achieve sample-
efficient RL. We start from the critical pathology that simply increasing the replay
ratio leads to severe dormant neurons in the critic network of actor-critic (AC),
which fundamentally undermines the learning process. To address this problem,
we propose a novel method called ScaleAC, which is built upon advanced AC al-
gorithms (e.g., REDQ, DrQ-v2). First, ScaleAC introduces a periodic soft network
parameter reset to reduce dormant neurons when updating the critic at a high fre-
quency. Second, ScaleAC diversifies the replay experience through two kinds of
data augmentation to prevent overfitting. Experiments across diverse MuJoCo and
DMC tasks demonstrate that ScaleAC successfully achieves effective RL training
at high replay ratios of up to 256 in vector-based RL and 8 in visual pixel-based
RL, yielding substantial learning acceleration and performance improvement.

1 INTRODUCTION

When applying reinforcement learning (RL) to real-world applications, a critical limitation of ex-
isting RL approaches is their poor sample efficiency, which requires a huge amount of environment
interactions to learn satisfactory policies. Therefore, sample-efficient RL algorithms are essential
for practice, as it is always desirable to learn with a minimal amount of environment interactions.

One natural idea is to scale the replay ratio, the number of updates of an agent’s parameters for each
environment interaction (Chen et al., 2021). Recent studies demonstrate that increasing the replay
ratio brings substantial performance improvement in well-tuned RL algorithms (D’Oro et al., 2023;
Smith et al., 2023). For example, Chen et al. (2021) introduce an in-target random minimization
technique called REDQ into soft actor-critic (SAC) to support a replay ratio up to 20 for continuous
control. Subsequently, DroQ (Hiraoka et al., 2022) regularizes the critic with Dropout (Srivastava
et al., 2014) and Layer Normalization (Xu et al., 2019) to harvest similar benefits to REDQ with
the same replay ratio of 20 at a lower computational overhead. Further advances by Nikishin et al.
(2022) found that deep RL agents incur a risk of overfitting to earlier experiences, and simply pe-
riodic resetting a part of the agent allows SAC to scale at a high replay ratio of 32. More recently,
D’Oro et al. (2023) push the replay ratio of SAC to 128 by proposing Scaled-by-Resetting SAC
(SR-SAC), which fully resets the network parameters of SAC within a fixed update interval.

Despite the above works successfully training RL at a high replay ratio, they rarely examine what
happens inside the agent network when facing the high update frequency, therefore limiting the pos-
sibility of scaling RL to a higher replay ratio. In this paper, we aim to break the bottleneck of scaling
replay ratio in the sense of both scaling efficiency (the same ratio but higher performance) and scal-
ing ceiling (the highest ratio that improves performance monotonically). We establish a connection
between the replay ratio scaling and the dormant neuron, showing that increasing the replay ratio
leads to a large portion of network neurons becoming inactive in the critic to harm learning. To
address this problem, we propose ScaleAC, which is built upon advanced AC algorithms such as
REDQ and DrQ-v2 (Yarats et al., 2022), to scale the high replay ratio of agents to a new degree
(i.e., 256 in vector-based RL and 8 in pixel-based RL) with two key innovations. First, we utilize
the periodic plasticity injection technique (Ash & Adams, 2020; D’Oro et al., 2023) to tackle the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

severe dormant neuron problem in the critic at high replay ratios. Second, we integrate two kinds of
data augmentation techniques into the high-replay-ratio setting to diversify the input state to prevent
overfitting. Through the synergy of two key components, ScaleAC successfully addresses the severe
dormant neuron issue at high update frequency and, therefore, scales the AC algorithms to the new
recorded replay ratios. Experiments in MuJoCo (Todorov et al., 2012) and DMC (Tunyasuvunakool
et al., 2020) environments demonstrate that, compared to various baselines, ScaleAC significantly
accelerates learning and improves performance with high replay ratios to achieve sample efficiency.

The main contributions of this paper are summarized below:

• We propose ScaleAC, a novel method that integrates periodic network reset and data aug-
mentation into advanced AC algorithms to enable learning at extremely high replay ratios.

• We provide the experimental analysis showing that high replay ratios lead to a severe dor-
mant neuron phenomenon in the critic, preventing thorough use of high-frequency updates.

• We scale the replay ratio of RL agents to a new record of up to 256 for state-based RL and
8 for pixel-based RL, achieving superior sample efficiency compared to strong baselines.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Consider a Markov Decision Process (MDP). At each discrete time step t, an agent in the environ-
ment observes a state st, the agent responds by selecting an action at, and then the environment
provides the next reward rt and state st+1. For convenience, we use the simpler notations of r, s, a,
s′, and a′ to refer to a reward, state, action, next state, and next action, respectively. The objective
of an RL agent is to optimize its policy π where a ∼ π(s) to maximize the expected discounted
cumulative reward J(π) = Eπ[

∑T
t=0 γ

trt], where γ ∈ [0, 1) is a discount factor and T is the hori-
zon. The state-action value function Qπ(s, a) = Eπ[

∑T
t=0 γ

trt|s0 = s, a0 = a] gives the expected
return starting in s, taking an arbitrary action a, then following policy π. In deep RL, policy and
value functions are approximated with deep neural networks.

2.2 REDQ

Randomized Ensembled Double Q-Learning (REDQ) (Chen et al., 2021) adopts an in-target mini-
mization across a subset M of M Q-functions, which is randomly sampled from an ensemble of N
Q-functions, to derive a lower update target for reducing overestimation. Based on SAC (Haarnoja
et al., 2018) with entropy regularization to encourage exploration, the Q target of REDQ is computed
as

y = r + γ(min
i∈M

Qi(s
′, ã′)− β log π(s′|ã′)), ã′ ∼ π(·|s′), (1)

where i is the index of Q-functions and β is the coefficient of the entropy term in SAC. And the
policy πθ is updated with gradient ascent as

∇θ
1

N

N∑
i=1

(Qϕi(s, ãθ(s))− β log πθ(ãθ(s)|s)), ãθ(s) ∼ πθ(·|s), (2)

where each Q-function is parameterized by ϕ and the policy is parameterized by θ.

2.3 DRQ-V2

DrQ-v2 (Yarats et al., 2022) is an advanced off-policy AC algorithm for visual continuous control,
which uses data augmentation to learn directly from pixels. DrQ-v2 is updated as Deep Determinis-
tic Policy Gradient (DDPG) (Lillicrap et al., 2016), which concurrently learns a Q-function Qϕ and
a deterministic policy µθ where a = µθ(s). The Q target is computed as

y = r + γ(Qϕ̄i
(s′, µθ(s

′))), (3)

and the policy is updated with gradient ascent as

∇θQϕ(s, µθ(s)) = ∇ãQϕ(s, ã)|ã=µθ(s)∇θµθ(s). (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.4 DORMANT NEURON

Sokar et al. (2023) identify the dormant neuron phenomenon in deep RL, where an agent’s network
suffers from an increasing number of inactive neurons during the training process, thereby affecting
network expressivity. The definition of the dormant neuron is given below.

Definition 1 (τ -Dormant Neuron). Given an input distribution D, let ρlj(x) denote the activation of
neuron j in layer l under input x ∈ D and Nl be the number of neurons in layer l. The normalized
activation score of a neuron j in layer l is defined as follows:

dlj =
Ex∈D|ρlj(x)|

1
Nl

∑Nl

k=1 Ex∈D|ρlk(x)|
. (5)

Then neuron j in layer l is defined as τ -dormant if its score dlj ≤ τ . In this paper, we set τ at 0.01.

2.5 SCALING REPLAY RATIO IN DEEP REINFORCEMENT LEARNING

Moderately increasing the replay ratio for model-free reinforcement learning algorithms has been
shown to be a competitive data-efficient baseline for both discrete and continuous control when com-
pared to model-based reinforcement learning methods (Nikishin et al., 2022; D’Oro et al., 2023).
For example, REDQ (Chen et al., 2021) uses ensembles with in-target minimization to stabilize
SAC training at a high replay ratio of 20, which achieves the same level of sample efficiency when
compared to model-based reinforcement learning algorithms such as MBPO (Janner et al., 2019).
Later, Nikishin et al. (2022) found that deep RL agents incur a risk of overfitting to earlier expe-
riences, and simply periodic resetting a part of the agent, such as its last few layers, mitigates this
primacy bias problem and allows SAC to achieve its superior performance at the high replay ratio
of 32. Next, D’Oro et al. (2023) further scale the replay ratio of RL agents up to 128 by propos-
ing Scaled-by-Resetting SAC (SR-SAC) and Scaled-by-Resetting SPR (SR-SPR) algorithms. For
instance, SR-SAC completely resets all agent parameters to initial values every 2.56× 106 updates.

A parallel stream of work attempts to scale the model size of RL agents through more advanced
network architectures to accommodate high replay ratios. For example, BRO (Nauman et al., 2025)
scales the SAC critic to about 5 million parameters, using various tricks such as layer normalization
and residual connections, to support a high replay ratio of 10. Similarly, SimBa (Lee et al., 2025)
scales up network parameters of SAC through network architecture modifications, including an ob-
servation normalization layer, a residual feedforward block, and a layer normalization, to achieve a
replay ratio of up to 16. In this work, we focus on scaling the replay ratio with the default network
architecture and model size from a new perspective of connecting dormant neurons to replay ratios.

3 METHOD

In this section, we build ScaleAC upon REDQ (Chen et al., 2021) for vector-based RL and DrQ-v2
(Yarats et al., 2022) for pixel-based RL at high replay ratios. First, in Section 3.1, we reveal that high
replay ratios cause severe dormant neurons in the SAC critic. Second, in Section 3.2, we introduce
the soft network reset to tackle the dormant neurons. Third, in Section 3.3, we integrate random
amplitude scaling to ScaleAC to diversify state vectors. Fourth, in Section 3.4, we build the visual
version of ScaleAC on DrQ-v2 with both soft network reset and data augmentation on image pixels.

3.1 THE DORMANT NEURONS IN CRITIC AT HIGH REPLAY RATIOS

Here, we conduct an experimental study in MuJoCo and increase the replay ratio of updating the
critic as Chen et al. (2021). Specifically, we measure the dormant neuron ratios, which are defined
as the proportion of τ -dormant neurons of a neural network, in the SAC critic. The dormant neuron
ratios and test episode returns are shown in Figure 1. Clearly, we observe on all tested tasks that
increasing the replay ratio results in high dormant neuron rates in the critic network. At the same
time, when the replay ratio reaches a high value, such as 64 or 128, the performance of SAC drops
significantly on all tasks. This experimental study reveals that high replay ratios lead to high dormant
neuron rates in the critic, which undermines the network’s representation ability as a larger portion
of network neurons becomes inactive and therefore cripples the learning process of RL agents. This

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

correlation of replay ratios and dormant neurons motivates us to reduce the dormant neurons in the
critic to stabilize the training of RL at high replay ratios for desired sample efficiency. Next, we
introduce the periodic plasticity injection technique to tackle the severe dormant neuron problem.

0k 20k 40k 60k 80k 100k
Steps

0.0

0.1

0.2

0.3

0.4

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Hopper-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(a) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.0

0.1

0.2

0.3

0.4

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Ant-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(b) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Walker2d-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(c) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Humanoid-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(d) Dormant neuron rate.

0k 20k 40k 60k 80k 100k
Steps

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
tu

rn

Hopper-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(e) Reward on Hopper-v5.

0k 60k 120k 180k 240k 300k
Steps

500

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

Ant-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(f) Reward on Ant-v5.

0k 60k 120k 180k 240k 300k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Walker2d-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(g) Reward on Walker2d-v5.

0k 60k 120k 180k 240k 300k
Steps

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
tu

rn

Humanoid-v5
SAC (RR=1)
SAC (RR=8)
SAC (RR=16)
SAC (RR=32)
SAC (RR=64)
SAC (RR=128)

(h) Reward on Humanoid-v5.

Figure 1: The dormant neuron rates and test episode returns of SAC with different replay ratios of 1,
8, 16, 32, and 64. The dormant neuron rates increase with the replay ratio on these MuJoCo tasks.

3.2 SHRINK & PERTURB TO TACKLE DORMANT NEURONS

Nikishin et al. (2022) choose to fully reset the network parameters of a part of the SAC agent, such
as its last few layers, to initial values. Similar strategy is followed by D’Oro et al. (2023) to com-
pletely reset all the agent parameters every 2.56 × 106 of its updates. Such a resetting behavior
cleans the learned weights and biases in the reset network layers, and heavily relies on the replay
buffer to restore the learned experience of RL agents. Therefore, in ScaleAC, we choose to partially
reset the network parameters by interpolating between the current network parameters and the initial
network parameters. Specifically, we introduce the Shrink & Perturb strategy (Ash & Adams, 2020)
to partially reset the agent network parameters to initial values periodically to maintain the network
plasticity. This Shrink & Perturb strategy was originally proposed to warm-start neural network
training to incorporate newly arriving data without sacrificing generalization (Ash & Adams, 2020).
Recently, Shrink & Perturb has been employed in the SPR (Schwarzer et al., 2021) algorithms,
such as SR-SPR (D’Oro et al., 2023) and BBF (Schwarzer et al., 2023), to prevent overfitting un-
der a high replay ratio setting for discrete-action-space control. It has also been applied into the
domain of multiagent RL (Yang et al., 2024) and large language model post-training (Liu et al.,
2025). Differently, in this work, we focus on integrating Shrink & Perturb into AC algorithms for
continuous-action-space control. The formulation of Shrink & Perturb is defined as

θt ← αθt + (1− α)θ0, (6)

and
ϕt ← αϕt + (1− α)ϕ0, (7)

where θ0 is an agent’s initial policy network parameters and ϕ0 is the initial critic network pa-
rameters. θt and ϕt are the current agent policy and critic network parameters, respectively. The
interpolation factor α decides how much the current network parameters are kept.

3.3 RANDOM AMPLITUDE SCALING FOR DATA AUGMENTATION IN VECTOR-BASED RL

As ScaleAC updates RL agents with a high replay ratio, it is natural to augment each mini-batch
of transitions sampled from the replay buffer to prevent overfitting. Therefore, we introduce the
random amplitude scaling (Laskin et al., 2020) into ScaleAC to diversify the replay experiences and
prevent overfitting under high replay ratios (Yang et al., 2024; Ma et al., 2024). Random amplitude
scaling is a classical data augmentation technique, especially for state-based RL with proprioceptive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

inputs (e.g., positions and velocities) (Laskin et al., 2020; He et al., 2023), which randomizes the
amplitude of input states while keeping intrinsic consistencies. Its formulation is defined as

s← s ∗ z,
s′ ← s′ ∗ z,

(8)

where z ∼ U(za, zb) is randomly sampled from a uniform distribution over [za, zb]. Note that
the random amplitude scale is applied randomly across the batch experiences but consistently across
time, i.e., the same randomization to the current and next input state vectors. With random amplitude
scaling, the intrinsic consistencies are kept, such as the sign of inputs along adjacent time steps.

Now we give the detailed algorithm of ScaleAC for vector-based RL, which is shown in Algorithm 1.
Lines 8-9 use the in-target random ensemble minimization from REDQ to calculate the target Q-
value. In Line 7, the random amplitude scaling is performed on the sampled mini-batch transitions.
The critic is updated NRR times every environment interaction step. As indicated in Line 14, the
actor is updated every Tθ critic updates or after the NRR critic updates. If we set Tθ at a larger
number, such as 20 in MuJoCo, the actor is updated less frequently than the critic. In Lines 18-19,
Shrink & Perturb is conducted every TR environment steps on agent networks, which suffer from
the severe dormant neuron problem when updated at high replay ratios.

Algorithm 1 ScaleAC for Scaling Vector-Based Actor-Critic by Replay Ratio
1: Initialize policy network parameters θ, the critic network parameters ϕi, i = 1, 2, · · · , N , and an empty

replay buffer D. Set target critic network parameters ϕ̄i ← ϕi, i = 1, 2, · · · , N . Set agent network reset
interval TR. Set policy network update interval Tθ .

2: for each time step t do
3: Agent takes action at ∼ πθ(·|st). Step into state st+1. Receive reward rt.
4: Add transition data to the replay buffer: D ← D ∪ {(st, at, rt, st+1)}.
5: for each update time nRR from 1 to NRR do
6: Sample a mini-batch B = {(s, a, r, s′)} from D.
7: Apply random amplitude scaling as in Equation (8) on sampled transition batch B.
8: Sample a set M of M distinct indices from {1, 2, · · · , N}.
9: Compute the target Q-value y (same for all critics):

y = r + γ(min
i∈M

Qϕ̄i
(s′, ã′)− β log πθ(ã

′|s′)), ã′ ∼ πθ(·|s′). (9)

10: for i = 1, 2, · · · , N do
11: Update ϕi with gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′)∈B

(Qϕi(s, a)− y)2. (10)

12: Update target networks with ϕ̄i ← ρϕ̄i + (1− ρ)ϕi.
13: end for
14: if (nRR mod Tθ = 0) or (nRR = NRR) then
15: Update policy network parameters θ with gradient ascent using

∇θ
1

|B|
∑
s∈B

(
1

N

N∑
i=1

Qϕi(s, ãθ(s))− β log πθ(ãθ(s)|s)), ãθ(s) ∼ πθ(·|s). (11)

16: end if
17: end for
18: if t mod TR = 0 then
19: Perform Shrink & Perturb as in Equation (6) and (7) on agent networks.
20: end if
21: end for

3.4 EXTENDING SCALEAC TO VISUAL PIXEL-BASED RL

In this section, we extend ScaleAC to an advanced pixel-based AC algorithm, DrQ-v2 (Yarats et al.,
2022), to improve the replay ratio to a new degree in visual RL with image input. First, we apply the
in-target minimization technique in REDQ to DrQ-v2, where the Q target is computed as in Deep

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) that

y = r + γ(min
i∈M

Qϕ̄i
(s′, µθ(s

′))), (12)

where µθ is a parameterized actor function which deterministically maps states to a specific action,
and the agent policy is updated through the chain rule by maximizing Q. M is a subset of M
Q-functions, which is randomly sampled from the ensemble of size N .

Shrink & Perturb is also employed in the visual version ScaleAC. For the image-based state input, we
utilize another data augmentation technique called random shift with bilinear interpolation (Yarats
et al., 2022), which applies random shifts to pixel observations for image augmentation. In the visual
continuous control of DMC, the random shift is instantiated by first padding each side of 84 × 84
observation rendering by 4 pixels (by repeating boundary pixels), and then selecting a random 84×
84 crop, yielding the original image shifted by ±4 pixels. Then the bilinear interpolation is applied
on top of the shifted image by replacing each pixel value with the average of the four nearest pixel
values. The algorithm of this visual version ScaleAC based on DrQ-v2 is detailed in Appendix A.

Next, we experiment with ScaleAC to validate it in high-replay-ratio settings on various continuous
control tasks in both the MuJoCo and DMC environments. The detailed hyperparameter settings of
ScaleAC for each environment, such as how to reset agent networks, are provided in Appendix C.

4 EXPERIMENTS

In this section, we experiment with the proposed ScaleAC in both the MuJoCo (Todorov et al., 2012)
and DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020) environments of continuous
action control. First, in Section 4.1, we benchmark ScaleAC in MuJoCo with the standard SAC
algorithm and advanced SAC algorithms such as REDQ and SR-SAC, which support high replay
ratios. Second, in Section 4.2, we compare all the algorithms with the same replay ratio and show
that ScaleAC also achieves the best performance while maintaining the lowest dormant neuron rates.
Third, we further benchmark ScaleAC with baselines on the 7 challenging hard tasks in DMC in
Section 4.3. Fourth, as shown in Section 4.4, we show that ScaleAC is able to scale the replay ratio
to even 256. Fifth, we give the ablation study in Section 4.5 to validate each component of ScaleAC.
Finally, we extend ScaleAC to the domain of visual RL to improve the replay ratio in Section 4.6.

4.1 BENCHMARK EXPERIMENTS IN MUJOCO

First, we benchmark ScaleAC and baselines in the classical MuJoCo tasks, including Hopper-v5,
Ant-v5, Walker2d-v5, and Humanoid-v5, with details of each task in Appendix B. For baselines,
SAC has a standard replay ratio of 1. REDQ is set to its default replay ratio of 20. SR-SAC’s replay
ratio is 128 according to its recommended configurations. For ScaleAC, we found that a replay
ratio of 64 consistently performs well. For Shrink & Perturb, we set TR = 2000 to reset the critic
network every 2000 environment steps and set α = 0.8 to mix 80% of the values of current network
parameters and 20% of the values of initial network parameters. For random amplitude scaling, we
set za = 0.8 and zb = 1.2 for the amplitude range. The policy network update interval Tθ is 20.
The benchmark results in MuJoCo are shown in Figure 2. The reported metrics are averaged over 6
independent trials with different random seeds, and the 95% confidence intervals are shadowed.

As we can see, ScaleAC, with a replay ratio of 64, consistently outperforms baselines within the
same number of environment interactions, showing its superior sample efficiency. At the same time,
SR-SAC with a higher replay ratio than ScaleAC does not perform well in these MuJoCo tasks,
indicating that how to reset RL agents to support a high update frequency is not trivial.

4.2 BENCHMARKING WITH THE SAME REPLAY RATIO TO EVALUATE SCALING EFFICIENCY

Next, we also evaluate each method with the same replay ratio of 32 to compare their scaling effi-
ciency. Results of the test episode return and dormant neuron rate are plotted in Figure 3.

As shown in Figure 3, under the same replay ratio of 32, ScaleAC also achieves the best perfor-
mance among the four MuJoCo tasks, while REDQ is competitive to ScaleAC in Walker2d-v5.
When checking the dormant neuron rates in the critic, ScaleAC has the lowest dormant neuron rates,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Steps

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (RR=64)
REDQ (RR=20)
SR-SAC (RR=128)
SAC (RR=1)

(a) Reward on Hopper-v5.

0k 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k
Steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

Ant-v5
ScaleAC (RR=64)
REDQ (RR=20)
SR-SAC (RR=128)
SAC (RR=1)

(b) Reward on Ant-v5.

0k 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Walker2d-v5
ScaleAC (RR=64)
REDQ (RR=20)
SR-SAC (RR=128)
SAC (RR=1)

(c) Reward on Walker2d-v5.

0k 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Humanoid-v5
ScaleAC (RR=64)
REDQ (RR=20)
SR-SAC (RR=128)
SAC (RR=1)

(d) Reward on Humanoid-v5.

Figure 2: Benchmark RL algorithms with their default replay ratios in the MuJoCo environment.
SAC has a replay ratio of 1. REDQ has a replay ratio of 20. SR-SAC has a replay ratio of 128.

0k 20k 40k 60k 80k 100k
Steps

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(a) Reward on Hopper-v5.

0k 60k 120k 180k 240k 300k
Steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

Ant-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(b) Reward on Ant-v5.

0k 60k 120k 180k 240k 300k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Walker2d-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(c) Reward on Ant-v5.

0k 60k 120k 180k 240k 300k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Humanoid-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(d) Reward on Walker2d-v5.

0k 20k 40k 60k 80k 100k
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Hopper-v5
ScaleQ (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(e) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Ant-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(f) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.00

0.05

0.10

0.15

0.20

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Walker2d-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(g) Dormant neuron rate.

0k 60k 120k 180k 240k 300k
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.
01

-D
or

m
an

t
N

eu
ro

n
Ra

te

Humanoid-v5
ScaleAC (RR=32)
REDQ (RR=32)
SR-SAC (RR=32)
SAC (RR=32)

(h) Dormant neuron rate.

Figure 3: Experimental results of RL methods in MuJoCo with the same replay ratio of 32.

allowing the network to maintain plasticity and learn progressively in the high-replay-ratio setting.
On the other hand, fully resetting both the policy network and critic network in SR-SAC does not
work well, as it cannot steadily reduce the dormant neurons, especially in the Ant-v5 task. This indi-
cates that introducing the Shrink & Perturb strategy in ScaleAC is the key to stabilizing RL training
by maintaining a low level of dormant neuron rate when facing a high update frequency.

4.3 BENCHMARK EXPERIMENTS IN DMC

In this section, we validate ScaleAC in DMC, which features a range of locomotion and manipula-
tion tasks. We benchmark methods in 7 challenging DMC Hard tasks, including dog-run, dog-trot,
dog-stand, dog-walk, humanoid-run, humanoid-stand, and humanoid-walk. More details about these
tasks can be found in Appendix B. Similar to the benchmark experiments in MuJoCo, SAC’s replay

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ratio is 1, REDQ’s replay ratio is 20, and SR-SAC has a replay ratio of 128. For the dog-series tasks,
we found that ScaleAC with a replay ratio of 64 performs best. For the humanoid-series tasks, we
found that a replay ratio of 256 works best for ScaleAC. The specific hyperparameters of ScaleAC
in DMC are given in Appendix C, where TR = 2000, α = 0.8, za = 0.8, and zb = 1.2 are the same
as in MuJoCo. The results of each method with its corresponding replay ratio are demonstrated in
Figure 4. The reported test episode returns are averaged over 6 independent trials with different ran-
dom seeds, and the 95% confidence intervals are shadowed. We also provide additional experiments
on three simple walker-series tasks in DMC, which are available in Appendix D.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

Av
er

ag
e

Re
tu

rn

dog-run
ScaleAC (RR=64)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(a) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

Av
er

ag
e

Re
tu

rn

dog-trot
ScaleAC (RR=64)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(b) Reward on dog-trot.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (RR=64)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(c) Reward on dog-stand.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0
100
200
300
400
500
600
700
800

Av
er

ag
e

Re
tu

rn

dog-walk
ScaleAC (RR=64)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(d) Reward on dog-walk.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

25

50

75

100

125

150

Av
er

ag
e

Re
tu

rn

humanoid-run
ScaleAC (RR=256)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(e) Reward on humanoid-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0
100
200
300
400
500
600
700
800

Av
er

ag
e

Re
tu

rn

humanoid-stand
ScaleAC (RR=256)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(f) Reward on humanoid-stand.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

500

600

Av
er

ag
e

Re
tu

rn

humanoid-walk
ScaleAC (RR=256)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(g) Reward on humanoid-walk.

Figure 4: Benchmark RL algorithms with their default replay ratios in the DMC environment. SAC
has a replay ratio of 1. REDQ has a replay ratio of 20. SR-SAC has a replay ratio of 128.

In Figure 4, ScaleAC outperforms baselines in almost all DMC Hard tasks, with one exception that
ScaleAC performs slightly worse than SR-SAC on humanoid-stand in the last environment steps.
Meanwhile, REDQ struggles to learn these DMC Hard tasks, which necessitates ScaleAC’s compo-
nents beyond REDQ, including Shrink & Perturb and random amplitude scaling. While SR-SAC
achieves good performance on humanoid-series tasks, it fails on dog-series tasks, showing that fully
resetting networks may not be a general solution to train RL at high replay ratios. The impressive
performance of ScaleAC in both MuJoCo and DMC environments demonstrates its effectiveness in
stabilizing RL training under high replay ratios to accelerate learning. At the same time, ScaleAC
consistently achieves superior performance in all the tested tasks, demonstrating its broad generality.

4.4 SCALING UP THE REPLAY RATIO TO 256 TO EVALUATE SCALING CEILING

0k 20k 40k 60k 80k 100k
Steps

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

Hopper-v5

ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(a) Reward on Hopper-v5.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

25

0

25

50

75

100

125

150

Av
er

ag
e

Re
tu

rn

humanoid-run
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(b) Reward on humanoid-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

500

600

700

800

Av
er

ag
e

Re
tu

rn

humanoid-stand
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(c) Reward on humanoid-stand.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

500

600

Av
er

ag
e

Re
tu

rn

humanoid-walk
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(d) Reward on humanoid-walk.

Figure 5: Scaling up the replay ratio of ScaleAC to 256 on Hopper-v5 in the MuJoCo environment
and on humanoid-run, humanoid-stand, and humanoid-walk in the DMC environment.

In this section, we demonstrate that ScaleAC is able to scale up the replay ratio to even 256 to speed
up the learning process. The results of ScaleAC with different replay ratios of 32, 64, 128, and 256
are plotted in Figure 5. As we see, ScaleAC significantly accelerates the learning of RL agents with
a replay ratio of up to hundreds, especially on humanoid-stand and humanoid-walk. To the best of
our knowledge, this is the highest reported replay ratio to successfully train deep RL in the current
literature (Ma et al., 2025). In summary, ScaleAC unlocks the potential to achieve better sample

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

efficiency through scaling of the replay ratio to hundreds (i.e., 256). On the other hand, we should
also notice that a higher replay ratio does not mean higher performance. ScaleAC may have different
optimal replay ratios on different tasks. For example, in the dog-series tasks, the best replay ratio of
ScaleAC is 64, while replay ratios such as 128 and 256 decrease the performance of ScaleAC. The
replay ratio scaling of ScaleAC in the dog-series tasks is shown in Appendix E.

4.5 ABLATION STUDY OF SCALEAC

Here, we conduct the ablation study to verify each component in ScaleAC. The ablation results are
given in Figure 6. We see that both Shrink & Perturb and random amplitude scaling contribute to
the performance of ScaleAC. Especially, without Shrink & Perturb, ScaleAC fails to learn in dog-
run and dog-stand, which necessitates Shrink & Perturb to reduce dormant neurons when the replay
ratio is high. Meanwhile, random amplitude scaling also enhances the performance of ScaleAC.

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Steps

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (RR=64)
ScaleAC w/o S&P (RR=64)
ScaleAC w/o RAS (RR=64)

(a) Reward on Hopper-v5.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

Av
er

ag
e

Re
tu

rn
dog-run

ScaleAC (RR=64)
ScaleAC w/o S&P (RR=64)
ScaleAC w/o RAS (RR=64)

(b) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (RR=64)
ScaleAC w/o S&P (RR=64)
ScaleAC w/o RAS (RR=64)

(c) Reward on dog-stand.

Figure 6: The ablation study of ScaleAC. ‘ScaleAC w/o S&P’ indicates removing the Shrink &
Perturb in ScaleAC. ‘ScaleAC w/o RAS’ indicates removing random amplitude scaling in ScaleAC.

4.6 BENCHMARK EXPERIMENTS OF VISUAL SCALEAC IN VISUAL DMC

In this section, we compare the visual ScaleAC algorithm in visual DMC (details in Appendix B.3)
with two advanced visual RL approaches, DrQ-v2 (Yarats et al., 2022) with a default replay ratio
of 0.5 and Adaptive RR (Ma et al., 2024) with a replay ratio increasing from 0.5 to 2. Results are
shown in Figure 7. The visual ScaleAC achieves substantial learning acceleration and performance
improvement with a higher replay ratio. Notably, in hopper-hop, the visual ScaleAC boosts learning
with a replay ratio of 8, demonstrating the great potential of high replay ratios in visual RL.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Frames

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

walker-stand
ScaleAC (RR=4)
Adaptive RR (RR=0.5->2)
DrQ-v2 (RR=0.5)

(a) Reward on walker-stand.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Frames

0

100

200

300

400

500

Av
er

ag
e

Re
tu

rn

reacher-hard
ScaleAC (RR=4)
Adaptive RR (RR=0.5->2)
DrQ-v2 (RR=0.5)

(b) Reward on reacher-hard.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Frames

0
20
40
60
80

100
120
140
160

Av
er

ag
e

Re
tu

rn

hopper-hop
ScaleAC (RR=8)
Adaptive RR (RR=0.5->2)
DrQ-v2 (RR=0.5)

(c) Reward on hopper-hop.

Figure 7: Benchmarking results on visual DMC tasks.

5 CONCLUSION

In this paper, we propose ScaleAC to scale up the replay ratio to hundreds (i.e., 256) in RL. We
found that high replay ratios lead to saturated dormant neurons in the critic, thus undermining RL
learning. To tackle this problem, we integrate Shrink & Perturb into advanced AC algorithms such
as REDQ and DrQ-v2 to partially reset the critic periodically. Two kinds of data augmentation are
also applied to enhance state input diversity. Extensive experiments in MuJoCo and DMC show that
ScaleAC greatly improves sample efficiency in both vector and pixel-based RL at high replay ratios.

For future work, first, dynamically adjusting the replay ratio is promising to reduce the computation
cost. Second, introducing ScaleAC to LLM post-training also has great potential. Third, introducing
plastic network structures to ScaleAC is a natural direction to further improve the replay ratio.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jordan T. Ash and Ryan P. Adams. On warm-starting neural network training. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC,
Canada.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized Ensembled Double Q-
Learning: Learning Fast Without a Model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0tDd.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=OpC-9aBBVJe.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and
Xuelong Li. Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Rein-
forcement Learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 64896–64917. Curran
Associates, Inc., 2023.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout Q-Functions for Doubly Efficient Reinforcement Learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xCVJMsPv3RT.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-
based policy optimization. In Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC, Canada.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity Bias for
Scaling Up Parameters in Deep Reinforcement Learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
jXLiDKsuDo.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), Proceedings of the 4th International Conference on Learning
Representations, 2016. URL http://arxiv.org/abs/1509.02971.

Zichuan Liu, Jinyu Wang, Lei Song, and Jiang Bian. Sample-efficient LLM Optimization with Reset
Replay, August 2025. URL http://arxiv.org/abs/2508.06412. arXiv:2508.06412
[cs].

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang,
and Dacheng Tao. Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and
Training Stages. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=0aR1s9YxoL.

10

https://openreview.net/forum?id=AY8zfZm0tDd
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=jXLiDKsuDo
https://openreview.net/forum?id=jXLiDKsuDo
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2508.06412
https://openreview.net/forum?id=0aR1s9YxoL

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yi Ma, Hongyao Tang, Chenjun Xiao, Yaodong Yang, Wei Wei, Jianye Hao, and Jiye Liang. Scaling
DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies, August
2025. URL http://arxiv.org/abs/2508.03194. arXiv:2508.03194 [cs].

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In Pro-
ceedings of the 38th International Conference on Neural Information Processing Systems, NIPS
’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 979-8-3313-1438-5. event-place:
Vancouver, BC, Canada.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The Pri-
macy Bias in Deep Reinforcement Learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 16828–16847. PMLR, July 2022. URL https://proceedings.mlr.press/v162/
nikishin22a.html.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-Efficient Reinforcement Learning with Self-Predictive Representations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=uCQfPZwRaUu.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc G. Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, better, faster: human-level atari with human-level efficiency. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23, Honolulu,
Hawaii, USA, 2023. JMLR.org.

Laura Smith, Ilya Kostrikov, and Sergey Levine. Demonstrating a walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning. Robotics: Science and Systems (RSS)
Demo, 2(3):4, 2023.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The Dormant Neuron Phe-
nomenon in Deep Reinforcement Learning. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023. Place: Honolulu, Hawaii, USA.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, January 2014. ISSN 1532-4435. Publisher: JMLR.org.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based con-
trol. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–
5033, Vilamoura-Algarve, Portugal, October 2012. IEEE. ISBN 978-1-4673-1736-8 978-1-4673-
1737-5 978-1-4673-1735-1. doi: 10.1109/IROS.2012.6386109. URL http://ieeexplore.
ieee.org/document/6386109/.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, November 2020. ISSN 26659638. doi: 10.
1016/j.simpa.2020.100022. URL https://linkinghub.elsevier.com/retrieve/
pii/S2665963820300099.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Yaodong Yang, Guangyong Chen, Jianye Hao, and Pheng Ann Heng. Sample-efficient multiagent
reinforcement learning with reset replay. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24, Vienna, Austria, 2024. JMLR.org.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous
Control: Improved Data-Augmented Reinforcement Learning. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=_SJ-_
yyes8.

11

http://arxiv.org/abs/2508.03194
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/
https://linkinghub.elsevier.com/retrieve/pii/S2665963820300099
https://linkinghub.elsevier.com/retrieve/pii/S2665963820300099
https://openreview.net/forum?id=_SJ-_yyes8
https://openreview.net/forum?id=_SJ-_yyes8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A SCALEAC BUILT ON DRQ-V2 FOR PIXEL-BASED RL

In this section, we give the detailed algorithm of ScaleAC based on DrQ-v2 for pixel-based RL,
which is shown in Algorithm 2. Lines 8-9 use the in-target random ensemble minimization to calcu-
late the target Q-value as REDQ. In Line 7, the random shift with bilinear interpolation is performed
on the sampled mini-batch transitions. The critic is updated NRR times every environment interac-
tion. As indicated in Line 14, the actor is updated every Tθ critic updates or after the NRR critic
updates. In Lines 18-19, Shrink & Perturb is conducted every TR environment steps on agent net-
works, which suffer from the severe dormant neuron problem with a high replay ratio.

Algorithm 2 ScaleAC for Scaling Pixel-Based AC by Replay Ratio
1: Initialize policy network parameters θ, the critic network parameters ϕi, i = 1, 2, · · · , N , and

an empty replay buffer D. Set target critic network parameters ϕ̄i ← ϕi, i = 1, 2, · · · , N . Set
agent network reset interval TR. Set policy network update interval Tθ.

2: for each time step t do
3: Agent takes action at ∼ πθ(·|st). Step into state st+1. Receive reward rt.
4: Add transition data to the replay buffer: D ← D ∪ {(st, at, rt, st+1)}.
5: for each update time nRR from 1 to NRR do
6: Sample a mini-batch B = {(s, a, r, s′)} from D.
7: Apply random shift with bilinear interpolation on sampled transition batch B.
8: Sample a set M of M distinct indices from {1, 2, · · · , N}.
9: Compute the target Q-value y (same for all critics):

y = r + γ(min
i∈M

Qϕ̄i
(s′, µθ(s

′))). (13)

10: for i = 1, 2, · · · , N do
11: Update ϕi with gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′)∈B

(Qϕi(s, a)− y)2. (14)

12: Update target networks with ϕ̄i ← ρϕ̄i + (1− ρ)ϕi.
13: end for
14: if (nRR mod Tθ = 0) or (nRR = NRR) then
15: Update policy network parameters θ with gradient ascent using

1

|B|
∑
s∈B

(
1

N

N∑
i=1

∇ãQϕi
(s, ã)|ã=µθ(s)∇θµθ(s)). (15)

16: end if
17: end for
18: if t mod TR = 0 then
19: Perform Shrink & Perturb as in Equation (6) and (7) on agent networks.
20: end if
21: end for

For the visual version of ScaleAC, it has an encoder to encode the image into a vector for both the
actor and critic networks. We also reset the encoder in the same way as resetting the critic.

B ENVIRONMENT DETAILS

B.1 MUJOCO

We consider a total of 4 continuous control tasks for the MuJoCo benchmark. These tasks include
Hopper-v5, Ant-v5, Walker2d-v5, and Humanoid-v5. The short descriptions, observation dimen-
sion, and action space dimension are listed in Table 1. For ScaleAC and baselines in MuJoCo, we
utilize the official codebase of REDQ (Chen et al., 2021) with PyTorch to implement algorithms.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 1: Descriptions of Different MuJoCo Tasks.
Task Robot Short Description State dim Action dim
Hopper-v5 2D Runners 2D monoped for hopping 11 3
Ant-v5 Quadruped 3D quadruped for running 105 8
Walker2d-v5 2D Runners 2D biped for walking 17 6
Humanoid-v5 Humanoid Bipeds 3D humanoid for running 348 17

B.2 DMC

We consider a total of 7 continuous control tasks for the DMC Hard benchmark (Tunyasuvunakool
et al., 2020). These tasks include dog-run, dog-trot, dog-stand, dog-walk, humanoid-run, humanoid-
stand, and humanoid-walk. The observation dimension and action space dimension are listed in
Table 2. For ScaleAC and baselines in DMC, we utilize the official codebase of SR-SAC (D’Oro
et al., 2023) with JAX to implement these algorithms. We additionally list three walker-series tasks
in Table 2, which are used in Appendix D for extra benchmarking experiments in DMC.

Table 2: Observation and Action Dimensions for Different DMC Hard Tasks.
Task Difficulty Description State dim Action dim
Dog-run Hard A Pharaoh Dog model to run 223 38
Dog-trot Hard A Pharaoh Dog model to trot 223 38
Dog-stand Hard A Pharaoh Dog model to stand 223 38
Dog-walk Hard A Pharaoh Dog model to walk 223 38
Humanoid-run Hard A 21-joint humanoid to run at 10 m/s 67 24
Humanoid-stand Hard A 21-joint humanoid to stand at 0 m/s 67 24
Humanoid-walk Hard A 21-joint humanoid to walk at 1 m/s 67 24
Walker-run Medium An improved planar walker to run 24 6
Walker-stand Easy An improved planar walker to stand 24 6
Walker-walk Easy An improved planar walker to walk 24 6

B.3 VISUAL DMC

We consider three tasks in the visual DMC, including walker-stand, reacher-hard, and hopper-hop,
to validate the visual ScaleAC. Tasks are summarized in Table 3. In this setting, environment obser-
vations are stacks of 3 consecutive RGB images of size 84×84, stacked along the channel dimension
to enable inference of dynamic information like velocity and acceleration. For ScaleAC and base-
lines in visual DMC, we utilize the official codebase of DrQ-v2 (Yarats et al., 2022) and Adaptive
RR Ma et al. (2024) with PyTorch to implement these algorithms.

Table 3: Descriptions of Different Visual DMC Tasks.
Task Traits Difficulty Action dim
Walker-stand stand, dense easy 6
Reacher-hard reach, dense medium 2
Hopper-hop move, dense medium 4

C HYPERPARAMETERS OF SCALEAC

In this section, we provide the hyperparameters of ScaleAC. For the Shrink & Perturb strategy, we
set TR = 2000 to reset the agent networks every 2000 environment steps and set α = 0.8 to keep
80% of the values of current network parameters. For random amplitude scaling, we set za = 0.8
and zb = 1.2 for the amplitude range. Specifically, in MuJoCo, we set the policy network update
interval Tθ at 20, which is updated less frequently than the critic network. Therefore, we only reset
the critic network in MuJoCo. Meanwhile, in DMC, we set the policy network update interval Tθ at
1 and reset both the policy network and critic network. In visual DMC, we set the policy network

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

update interval Tθ at 1 and reset the encoder network, policy network, and critic network. The
setting of the random shift with bilinear interpolation for visual ScaleAC is the same as in DrQ-
v2. Other hyperparameters are kept the same as the original configurations provided in the official
codebases (Chen et al., 2021; D’Oro et al., 2023; Yarats et al., 2022; Ma et al., 2024). The study of
hyperparameter sensitivity of ScaleAC is provided in Appendix F for reference.

D BENCHMARK EXPERIMENTS ON DMC WALKER-SERIES TASKS

We also conduct additional benchmark experiments in DMC to validate the generality of ScaleAC.
We experiment on three walker-series tasks, including walker-run, walker-stand, and walker-walk,
with 0.2 million environment steps. The results of each method on these tasks are plotted in Figure 8.
All the methods achieve good performance. Meanwhile, although the final performance of SR-SAC
is close to ScaleAC, it is clear that ScaleAC learns much faster at the early stage than SR-SAC in
these walker-series tasks. Notably, ScaleAC with a replay ratio of 32 also learns faster than SR-SAC
with a replay ratio of 128, indicating the superior sample efficiency of ScaleAC.

0k 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Steps

0

200

400

600

800

Av
er

ag
e

Re
tu

rn

walker-run

ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(a) Reward on walker-run.

0k 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

walker-stand

ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(b) Reward on walker-stand.

0k 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

walker-walk

ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)
SR-SAC (RR=128)
REDQ (RR=20)
SAC (RR=1)

(c) Reward on walker-walk.

Figure 8: Additional benchmarking results on walker-series tasks in DMC.

E REPLAY RATIO SCALING OF SCALEAC IN DOG-SERIES TASKS

In this section, we show that a higher replay ratio does not always correspond to higher performance.
The replay ratio scaling of ScaleAC on dog-series tasks is plotted in Figure 9. It is clear that 64 is
the optimal replay ratio on these tasks. Higher values, such as 128 and 256, hurt the performance.
Therefore, we infer that there exists a saturation point of the replay ratio that exhausts a model’s plas-
ticity when fitting the given replay buffer. Shrink & Perturb tries to recover the model’s plasticity,
while random amplitude scaling reduces the plasticity cost of each trained sample, which coincides
somewhat with the findings in the domain of visual reinforcement learning (Ma et al., 2024).

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

Av
er

ag
e

Re
tu

rn

dog-run
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(a) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(b) Reward on dog-stand.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

Av
er

ag
e

Re
tu

rn

dog-trot
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(c) Reward on dog-trot.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

100

200

300

400

500

600

700

800

Av
er

ag
e

Re
tu

rn

dog-walk
ScaleAC (RR=256)
ScaleAC (RR=128)
ScaleAC (RR=64)
ScaleAC (RR=32)

(d) Reward on dog-walk.

Figure 9: Replay ratio scaling of ScaleAC on dog-run, dog-stand, dog-trot, and dog-walk in DMC.

F HYPERPARAMETER SENSITIVITY

In this section, we study the hyperparameter sensitivity specifically in ScaleAC. First, we show how
the interpolation factor α, which determines how much of the current network parameters is mixed
with the initial network parameters, affects the performance of ScaleAC in Appendix F.1. Second, in
Appendix F.2, we investigate the sensitivity of the reset interval TR. Finally, we also show how the
amplitude range [za, zb] in random amplitude scaling affects ScaleAC in Appendix F.3. The default
values in ScaleAC include α = 0.8, TR = 2000, and [za = 0.8, zb = 1.2].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

F.1 THE INTERPOLATION FACTOR IN SHRINK & PERTURB

We study the interpolation factor α with different values, and the corresponding results are given in
Figure 10. When α = 0.0, the network parameters are fully reset to initial values. When α = 1.0, the
network parameters are totally kept. As shown in Figure 10, α = 0.8 achieves the best performance
in the three scenarios tested, which is also the default value across tasks and environments. In
the dog-run and dog-stand tasks, α with other values does not perform well, indicating that the
interpolation factor α is an important hyperparameter to tune in ScaleAC carefully.

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Steps

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (=1.0)
ScaleAC (=0.8)
ScaleAC (=0.6)
ScaleAC (=0.4)
ScaleAC (=0.2)
ScaleAC (=0.0)

(a) Reward on Hopper-v5.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

Av
er

ag
e

Re
tu

rn

dog-run
ScaleAC (=1.0)
ScaleAC (=0.8)
ScaleAC (=0.6)
ScaleAC (=0.4)
ScaleAC (=0.2)
ScaleAC (=0.0)

(b) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (=1.0)
ScaleAC (=0.8)
ScaleAC (=0.6)
ScaleAC (=0.4)
ScaleAC (=0.2)
ScaleAC (=0.0)

(c) Reward on dog-stand.

Figure 10: The hyperparameter sensitivity study on the interpolation factor α of ScaleAC.

F.2 THE RESET INTERVAL IN SHRINK & PERTURB

The default reset interval TR is 2000, which means ScaleAC applies Shrink & Perturb every 2000
environment steps. Here we also experiment with TR = 500, 1000, 4000, and 8000. The resulting
plots are given in Figure 11. When TR = 4000, ScaleAC achieves the best performance in Hopper-
v5 and dog-run, but performs worse than TR = 2000 in the task of dog-stand. Generally, the default
reset interval TR = 2000 performs well in these tested cases.

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Steps

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (TR = 500)
ScaleAC (TR = 1000)
ScaleAC (TR = 2000)
ScaleAC (TR = 4000)
ScaleAC (TR = 8000)

(a) Reward on Hopper-v5.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

Av
er

ag
e

Re
tu

rn

dog-run
ScaleAC (TR = 500)
ScaleAC (TR = 1000)
ScaleAC (TR = 2000)
ScaleAC (TR = 4000)
ScaleAC (TR = 8000)

(b) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (TR = 500)
ScaleAC (TR = 1000)
ScaleAC (TR = 2000)
ScaleAC (TR = 4000)
ScaleAC (TR = 8000)

(c) Reward on dog-stand.

Figure 11: The hyperparameter sensitivity study on the reset interval TR of ScaleAC.

F.3 THE SCALING RANGE IN RANDOM AMPLITUDE SCALING

We study the amplitude scaling range [za, zb] with different values, and the corresponding results
are given in Figure 12. We see that, the best scaling range changes in different tasks. For example,
in Hopper-v5, [0.0, 2.0] achieves the highest average return while performing sub-optimally in dog-
stand. At the same time, the default setting of [0.8, 1.2] consistently performs well in three tasks.

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Steps

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
tu

rn

Hopper-v5
ScaleAC (za = 1.0, zb = 1.0)
ScaleAC (za = 0.8, zb = 1.2)
ScaleAC (za = 0.6, zb = 1.4)
ScaleAC (za = 0.4, zb = 1.6)
ScaleAC (za = 0.2, zb = 1.8)
ScaleAC (za = 0.0, zb = 2.0)

(a) Reward on Hopper-v5.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

50

100

150

200

250

Av
er

ag
e

Re
tu

rn

dog-run
ScaleAC (za = 1.0, zb = 1.0)
ScaleAC (za = 0.8, zb = 1.2)
ScaleAC (za = 0.6, zb = 1.4)
ScaleAC (za = 0.4, zb = 1.6)
ScaleAC (za = 0.2, zb = 1.8)
ScaleAC (za = 0.0, zb = 2.0)

(b) Reward on dog-run.

0k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

dog-stand
ScaleAC (za = 1.0, zb = 1.0)
ScaleAC (za = 0.8, zb = 1.2)
ScaleAC (za = 0.6, zb = 1.4)
ScaleAC (za = 0.4, zb = 1.6)
ScaleAC (za = 0.2, zb = 1.8)
ScaleAC (za = 0.0, zb = 2.0)

(c) Reward on dog-stand.

Figure 12: The hyperparameter sensitivity study on the amplitude range [za, zb] of ScaleAC.

15

	Introduction
	Background
	Reinforcement Learning
	REDQ
	DrQ-v2
	Dormant Neuron
	Scaling Replay Ratio in Deep Reinforcement Learning

	Method
	The Dormant Neurons in Critic at High Replay Ratios
	Shrink & Perturb to Tackle Dormant Neurons
	Random Amplitude Scaling for Data Augmentation in Vector-Based RL
	Extending ScaleAC to Visual Pixel-Based RL

	Experiments
	Benchmark Experiments in MuJoCo
	Benchmarking with the Same Replay Ratio to Evaluate Scaling Efficiency
	Benchmark Experiments in DMC
	Scaling up the Replay Ratio to 256 To Evaluate Scaling Ceiling
	Ablation Study of ScaleAC
	Benchmark Experiments of Visual ScaleAC in Visual DMC

	Conclusion
	ScaleAC Built on DrQ-v2 for Pixel-Based RL
	Environment Details
	MuJoCo
	DMC
	Visual DMC

	Hyperparameters of ScaleAC
	Benchmark Experiments on DMC Walker-series Tasks
	Replay Ratio Scaling of ScaleAC in Dog-Series Tasks
	Hyperparameter Sensitivity
	The Interpolation Factor in Shrink & Perturb
	The Reset Interval in Shrink & Perturb
	The Scaling Range in Random Amplitude Scaling

