Under review as a conference paper at ICLR 2026

SCALEAC: SCALE ACTOR-CRITIC BY REPLAY RATIO

Anonymous authors
Paper under double-blind review

ABSTRACT

Employing a high replay ratio, defined as the number of updates of an agent’s net-
work parameters per environment interaction, has recently become a promising
strategy to improve sample efficiency in reinforcement learning (RL). However,
most existing efforts to effectively scale a replay ratio stagnate at small values,
leaving the potential of scaling a replay ratio to hundreds underexplored. In this
paper, we aim to break the bottleneck of replay ratio scaling to achieve sample-
efficient RL. We start from the critical pathology that simply increasing the replay
ratio leads to severe dormant neurons in the critic network of actor-critic (AC),
which fundamentally undermines the learning process. To address this problem,
we propose a novel method called ScaleAC, which is built upon advanced AC al-
gorithms (e.g., REDQ, DrQ-v2). First, ScaleAC introduces a periodic soft network
parameter reset to reduce dormant neurons when updating the critic at a high fre-
quency. Second, ScaleAC diversifies the replay experience through two kinds of
data augmentation to prevent overfitting. Experiments across diverse MuJoCo and
DMC tasks demonstrate that ScaleAC successfully achieves effective RL training
at high replay ratios of up to 256 in vector-based RL and 8 in visual pixel-based
RL, yielding substantial learning acceleration and performance improvement.

1 INTRODUCTION

When applying reinforcement learning (RL) to real-world applications, a critical limitation of ex-
isting RL approaches is their poor sample efficiency, which requires a huge amount of environment
interactions to learn satisfactory policies. Therefore, sample-efficient RL algorithms are essential
for practice, as it is always desirable to learn with a minimal amount of environment interactions.

One natural idea is to scale the replay ratio, the number of updates of an agent’s parameters for each
environment interaction (Chen et al., 2021). Recent studies demonstrate that increasing the replay
ratio brings substantial performance improvement in well-tuned RL algorithms (D’Oro et al., 2023;
Smith et al., 2023). For example, Chen et al. (2021) introduce an in-target random minimization
technique called REDQ into soft actor-critic (SAC) to support a replay ratio up to 20 for continuous
control. Subsequently, DroQ (Hiraoka et al., 2022) regularizes the critic with Dropout (Srivastava
et al., 2014) and Layer Normalization (Xu et al., 2019) to harvest similar benefits to REDQ with
the same replay ratio of 20 at a lower computational overhead. Further advances by Nikishin et al.
(2022) found that deep RL agents incur a risk of overfitting to earlier experiences, and simply pe-
riodic resetting a part of the agent allows SAC to scale at a high replay ratio of 32. More recently,
D’Oro et al. (2023) push the replay ratio of SAC to 128 by proposing Scaled-by-Resetting SAC
(SR-SAC), which fully resets the network parameters of SAC within a fixed update interval.

Despite the above works successfully training RL at a high replay ratio, they rarely examine what
happens inside the agent network when facing the high update frequency, therefore limiting the pos-
sibility of scaling RL to a higher replay ratio. In this paper, we aim to break the bottleneck of scaling
replay ratio in the sense of both scaling efficiency (the same ratio but higher performance) and scal-
ing ceiling (the highest ratio that improves performance monotonically). We establish a connection
between the replay ratio scaling and the dormant neuron, showing that increasing the replay ratio
leads to a large portion of network neurons becoming inactive in the critic to harm learning. To
address this problem, we propose ScaleAC, which is built upon advanced AC algorithms such as
REDQ and DrQ-v2 (Yarats et al., 2022), to scale the high replay ratio of agents to a new degree
(i.e., 256 in vector-based RL and 8 in pixel-based RL) with two key innovations. First, we utilize
the periodic plasticity injection technique (Ash & Adams, 2020; D’Oro et al., 2023) to tackle the

Under review as a conference paper at ICLR 2026

severe dormant neuron problem in the critic at high replay ratios. Second, we integrate two kinds of
data augmentation techniques into the high-replay-ratio setting to diversify the input state to prevent
overfitting. Through the synergy of two key components, ScaleAC successfully addresses the severe
dormant neuron issue at high update frequency and, therefore, scales the AC algorithms to the new
recorded replay ratios. Experiments in MuJoCo (Todorov et al., 2012) and DMC (Tunyasuvunakool
et al., 2020) environments demonstrate that, compared to various baselines, ScaleAC significantly
accelerates learning and improves performance with high replay ratios to achieve sample efficiency.

The main contributions of this paper are summarized below:

* We propose ScaleAC, a novel method that integrates periodic network reset and data aug-
mentation into advanced AC algorithms to enable learning at extremely high replay ratios.

* We provide the experimental analysis showing that high replay ratios lead to a severe dor-
mant neuron phenomenon in the critic, preventing thorough use of high-frequency updates.

* We scale the replay ratio of RL agents to a new record of up to 256 for state-based RL and
8 for pixel-based RL, achieving superior sample efficiency compared to strong baselines.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Consider a Markov Decision Process (MDP). At each discrete time step ¢, an agent in the environ-
ment observes a state s;, the agent responds by selecting an action a;, and then the environment
provides the next reward r, and state s;;. For convenience, we use the simpler notations of r, s, a,
s’, and a’ to refer to a reward, state, action, next state, and next action, respectively. The objective
of an RL agent is to optimize its policy m where a ~ m(s) to maximize the expected discounted
cumulative reward J(7w) = E, [ZZ;O v'r¢], where v € [0,1) is a discount factor and T is the hori-
zon. The state-action value function Q7 (s, a) = E,r[z;‘lo Yiri|so = s,a0 = a] gives the expected
return starting in s, taking an arbitrary action a, then following policy 7. In deep RL, policy and
value functions are approximated with deep neural networks.

2.2 REDQ

Randomized Ensembled Double Q-Learning (REDQ) (Chen et al., 2021) adopts an in-target mini-
mization across a subset M of M Q-functions, which is randomly sampled from an ensemble of N
Q-functions, to derive a lower update target for reducing overestimation. Based on SAC (Haarnoja
et al., 2018) with entropy regularization to encourage exploration, the Q target of REDQ is computed
as

y =r+7(min Qi(s',a") — Blogn(s'|a’)),a" ~ n(:|s"), (D

where 4 is the index of Q-functions and f is the coefficient of the entropy term in SAC. And the
policy 7y is updated with gradient ascent as

N
1 ~ . ~
Voxr > (Qo,(5,d0(s)) — Blogma(ag(s)]s)), aa(s) ~ mo(-|s), (2)
i=1
where each Q-function is parameterized by ¢ and the policy is parameterized by 6.

2.3 DRrQ-v2

DrQ-v2 (Yarats et al., 2022) is an advanced off-policy AC algorithm for visual continuous control,
which uses data augmentation to learn directly from pixels. DrQ-v2 is updated as Deep Determinis-
tic Policy Gradient (DDPG) (Lillicrap et al., 2016), which concurrently learns a Q-function Q4 and
a deterministic policy g where a = pg(s). The Q target is computed as

y=r+7(Qg,(s" 1o (s)), 3)
and the policy is updated with gradient ascent as
VoQy (8, 110(8)) = VaQy(8,a)|a=pe(s) Vora(s). 4)

Under review as a conference paper at ICLR 2026

2.4 DORMANT NEURON

Sokar et al. (2023) identify the dormant neuron phenomenon in deep RL, where an agent’s network
suffers from an increasing number of inactive neurons during the training process, thereby affecting
network expressivity. The definition of the dormant neuron is given below.

Definition 1 (7-Dormant Neuron). Given an input distribution D, let pé- (z) denote the activation of
neuron j in layer [under input x € D and N; be the number of neurons in layer /. The normalized
activation score of a neuron j in layer [is defined as follows:

4 Eucoldl(@)
= ~ .
’ NLL Zk;1 EmGD‘pé(x”

Then neuron j in layer [is defined as 7-dormant if its score dg- < 7. In this paper, we set 7 at 0.01.

&)

2.5 SCALING REPLAY RATIO IN DEEP REINFORCEMENT LEARNING

Moderately increasing the replay ratio for model-free reinforcement learning algorithms has been
shown to be a competitive data-efficient baseline for both discrete and continuous control when com-
pared to model-based reinforcement learning methods (Nikishin et al., 2022; D’Oro et al., 2023).
For example, REDQ (Chen et al., 2021) uses ensembles with in-target minimization to stabilize
SAC training at a high replay ratio of 20, which achieves the same level of sample efficiency when
compared to model-based reinforcement learning algorithms such as MBPO (Janner et al., 2019).
Later, Nikishin et al. (2022) found that deep RL agents incur a risk of overfitting to earlier expe-
riences, and simply periodic resetting a part of the agent, such as its last few layers, mitigates this
primacy bias problem and allows SAC to achieve its superior performance at the high replay ratio
of 32. Next, D’Oro et al. (2023) further scale the replay ratio of RL agents up to 128 by propos-
ing Scaled-by-Resetting SAC (SR-SAC) and Scaled-by-Resetting SPR (SR-SPR) algorithms. For
instance, SR-SAC completely resets all agent parameters to initial values every 2.56 x 10 updates.

A parallel stream of work attempts to scale the model size of RL agents through more advanced
network architectures to accommodate high replay ratios. For example, BRO (Nauman et al., 2025)
scales the SAC critic to about 5 million parameters, using various tricks such as layer normalization
and residual connections, to support a high replay ratio of 10. Similarly, SimBa (Lee et al., 2025)
scales up network parameters of SAC through network architecture modifications, including an ob-
servation normalization layer, a residual feedforward block, and a layer normalization, to achieve a
replay ratio of up to 16. In this work, we focus on scaling the replay ratio with the default network
architecture and model size from a new perspective of connecting dormant neurons to replay ratios.

3 METHOD

In this section, we build ScaleAC upon REDQ (Chen et al., 2021) for vector-based RL and DrQ-v2
(Yarats et al., 2022) for pixel-based RL at high replay ratios. First, in Section 3.1, we reveal that high
replay ratios cause severe dormant neurons in the SAC critic. Second, in Section 3.2, we introduce
the soft network reset to tackle the dormant neurons. Third, in Section 3.3, we integrate random
amplitude scaling to ScaleAC to diversify state vectors. Fourth, in Section 3.4, we build the visual
version of ScaleAC on DrQ-v2 with both soft network reset and data augmentation on image pixels.

3.1 THE DORMANT NEURONS IN CRITIC AT HIGH REPLAY RATIOS

Here, we conduct an experimental study in MuJoCo and increase the replay ratio of updating the
critic as Chen et al. (2021). Specifically, we measure the dormant neuron ratios, which are defined
as the proportion of 7-dormant neurons of a neural network, in the SAC critic. The dormant neuron
ratios and test episode returns are shown in Figure 1. Clearly, we observe on all tested tasks that
increasing the replay ratio results in high dormant neuron rates in the critic network. At the same
time, when the replay ratio reaches a high value, such as 64 or 128, the performance of SAC drops
significantly on all tasks. This experimental study reveals that high replay ratios lead to high dormant
neuron rates in the critic, which undermines the network’s representation ability as a larger portion
of network neurons becomes inactive and therefore cripples the learning process of RL agents. This

Under review as a conference paper at ICLR 2026

correlation of replay ratios and dormant neurons motivates us to reduce the dormant neurons in the
critic to stabilize the training of RL at high replay ratios for desired sample efficiency. Next, we
introduce the periodic plasticity injection technique to tackle the severe dormant neuron problem.

Hopper-v5 Ant-v5 Walker2d-v5 Humanoid-v5
= SAC (RR=1) H = SAC (RR=1)
SAC (RR=8) e SAC (RR=8)

0.5 c
= SAC (RR=16) §0-5] —— SAC (RR=16)
.4{ === SAC (RR=32) 2 0.4] = SAC (RR=32) //
3| — SAC(RR=64) z ~—— SAC (RR=64)

3| — sAcC (RR=128) £03) __ ac(RR=128) — A
. £o.

Qo1

3 ———

k. 60k 120k 180k 240k 300k ok 60k 120k 180k 240k 300k
Steps. Steps

o
@

= SAC (RR=1)

. SAC (RR=8)
= SAC (RR=16)
= SAC (RR=32) /

= SAC (RR=1)

°

S
o
S

SAC (RR=8)

= SAC (RR=16)
3| = SAC (RR=32)
= SAC (RR=64)
2] == SAC (RR=128)

===

k 60k 120k 180k 240k 300k
Steps

°
w
°
w
°
S

—— SAC (RR=64)
.2{ === SAC (RR=128) pmmmemmeme]

20k

°

°
N
°
N

°
Y
rm
°
N

°
o

°
[
.01-Dormant Neuron Rate

0.01-Dormant Neuron Rate
0.01-Dormant Neuron Rate

o
°
0.01-
e @
° n
o.
°
°

e
°

o
=

a0k 60k 80k 100k
Steps.

°
°

(a) Dormant neuron rate. (b) Dormant neuron rate. (€) Dormant neuron rate. (d) Dormant neuron rate.
Hopper-v5 Ant-v5 Walker2d-v5 Humanoid-v5
3500
3000] = SAC (RR=1) so00] — SAC (RR=1) s000] — SAC (RR=1) 3000{ —— SAC (RR=1)
SAC (RR=8) SAC (RR=8) SAC (RR=8) SAC (RR=8)
£ — sacC (RR=16) £ 25901 __ SAC (RR=16) £ a000] —— SAC (RR=16) £259°| SAC (RR=16)
£ 2000{ = SAC (RR=32) 2 2000) — SAC (RR=32) 2 —— SAC (RR=32) £ 2000| = SAC (RR=32)
H —— SAC (RR=64) % 1500] —— SAC (RR=64) %3000] — SAC (RR=64) H —— SAC (RR=64)
g““" —— SAC (RR=128) £ 1000 — SAC (RR=128) 2 000] = SAC(RR=128) §75%°| = sAC(Rr=128)
§ 1000 £ . g Sao0
500 o 1ooo: 500
o s00 o 0
0k 20k 40l

k 60l 80k 100k ok 60k 120k 180k 240k 300k ok 60k 120k 180k 240k 300k ok 60k 120k 180k 240k 300k
Steps Steps Steps. Steps

(e) Reward on Hopper-v5. (f) Reward on Ant-v5. (g) Reward on Walker2d-v5. (h) Reward on Humanoid-v5.

Figure 1: The dormant neuron rates and test episode returns of SAC with different replay ratios of 1,
8, 16, 32, and 64. The dormant neuron rates increase with the replay ratio on these MuJoCo tasks.

3.2 SHRINK & PERTURB TO TACKLE DORMANT NEURONS

Nikishin et al. (2022) choose to fully reset the network parameters of a part of the SAC agent, such
as its last few layers, to initial values. Similar strategy is followed by D’Oro et al. (2023) to com-
pletely reset all the agent parameters every 2.56 x 106 of its updates. Such a resetting behavior
cleans the learned weights and biases in the reset network layers, and heavily relies on the replay
buffer to restore the learned experience of RL agents. Therefore, in ScaleAC, we choose to partially
reset the network parameters by interpolating between the current network parameters and the initial
network parameters. Specifically, we introduce the Shrink & Perturb strategy (Ash & Adams, 2020)
to partially reset the agent network parameters to initial values periodically to maintain the network
plasticity. This Shrink & Perturb strategy was originally proposed to warm-start neural network
training to incorporate newly arriving data without sacrificing generalization (Ash & Adams, 2020).
Recently, Shrink & Perturb has been employed in the SPR (Schwarzer et al., 2021) algorithms,
such as SR-SPR (D’Oro et al., 2023) and BBF (Schwarzer et al., 2023), to prevent overfitting un-
der a high replay ratio setting for discrete-action-space control. It has also been applied into the
domain of multiagent RL (Yang et al., 2024) and large language model post-training (Liu et al.,
2025). Differently, in this work, we focus on integrating Shrink & Perturb into AC algorithms for
continuous-action-space control. The formulation of Shrink & Perturb is defined as

Ht — Oégt + (1 — 01)90, (6)

and
bt + ads + (1 — a)eo, @)

where 6y is an agent’s initial policy network parameters and ¢ is the initial critic network pa-
rameters. 0; and ¢, are the current agent policy and critic network parameters, respectively. The
interpolation factor o decides how much the current network parameters are kept.

3.3 RANDOM AMPLITUDE SCALING FOR DATA AUGMENTATION IN VECTOR-BASED RL

As ScaleAC updates RL agents with a high replay ratio, it is natural to augment each mini-batch
of transitions sampled from the replay buffer to prevent overfitting. Therefore, we introduce the
random amplitude scaling (Laskin et al., 2020) into ScaleAC to diversify the replay experiences and
prevent overfitting under high replay ratios (Yang et al., 2024; Ma et al., 2024). Random amplitude
scaling is a classical data augmentation technique, especially for state-based RL with proprioceptive

Under review as a conference paper at ICLR 2026

inputs (e.g., positions and velocities) (Laskin et al., 2020; He et al., 2023), which randomizes the
amplitude of input states while keeping intrinsic consistencies. Its formulation is defined as

S 4— Sk z,

b ®)
§ 5 *z,

where z ~ Ul(zg,2p) is randomly sampled from a uniform distribution over [z, zp]. Note that

the random amplitude scale is applied randomly across the batch experiences but consistently across

time, i.e., the same randomization to the current and next input state vectors. With random amplitude

scaling, the intrinsic consistencies are kept, such as the sign of inputs along adjacent time steps.

Now we give the detailed algorithm of ScaleAC for vector-based RL, which is shown in Algorithm 1.
Lines 8-9 use the in-target random ensemble minimization from REDQ to calculate the target Q-
value. In Line 7, the random amplitude scaling is performed on the sampled mini-batch transitions.
The critic is updated Ngrp times every environment interaction step. As indicated in Line 14, the
actor is updated every Tp critic updates or after the Nrp critic updates. If we set Ty at a larger
number, such as 20 in MuJoCo, the actor is updated less frequently than the critic. In Lines 18-19,
Shrink & Perturb is conducted every Tr environment steps on agent networks, which suffer from
the severe dormant neuron problem when updated at high replay ratios.

Algorithm 1 ScaleAC for Scaling Vector-Based Actor-Critic by Replay Ratio

1: Initialize policy network parameters 6, the critic network parameters ¢;,¢ = 1,2,--- , N, and an empty
replay buffer D. Set target critic network parameters ¢; < ¢;,% = 1,2,--- , N. Set agent network reset
interval T’r. Set policy network update interval Tj.

2: for each time step ¢ do
3: Agent takes action as ~ mg(+|s¢). Step into state s;+1. Receive reward 4.
4: Add transition data to the replay buffer: D < D U {(s¢, at, ¢, St41) }-
5: for each update time nrr from 1 to Nrr do
6: Sample a mini-batch B = {(s,a,r, s")} from D.
7: Apply random amplitude scaling as in Equation (8) on sampled transition batch B.
8: Sample a set M of M distinct indices from {1,2,--- , N}.
9: Compute the target Q-value y (same for all critics):
y=r+(min Qs (+,@) — Blog ma(@[s)). @ ~ ma(ls"). ©
10: fori:=1,2,--- N do
11: Update ¢; with gradient descent using
1
V¢7‘,® Z (Q¢1 (Sva) - y)2' (10)
(s,a,r,s")EB
12: Update target networks with ¢; < pp; + (1 — p)¢s.
13: end for
14: if (nrr mod Ty = 0) or (nrr = Nrr) then
15: Update policy network parameters 6 with gradient ascent using
1 1 o
VG‘E SeZB(N ; Qo (s,a0(s)) — Blogme(aa(s)|s)), ae(s) ~ mo(-[s). (11)
16: end if
17: end for
18: ift mod Tr = O then
19: Perform Shrink & Perturb as in Equation (6) and (7) on agent networks.
20: endif
21: end for

3.4 EXTENDING SCALEAC TO VISUAL PIXEL-BASED RL

In this section, we extend ScaleAC to an advanced pixel-based AC algorithm, DrQ-v2 (Yarats et al.,
2022), to improve the replay ratio to a new degree in visual RL with image input. First, we apply the
in-target minimization technique in REDQ to DrQ-v2, where the Q target is computed as in Deep

Under review as a conference paper at ICLR 2026

Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) that
y:T‘F’Y(IZ,IeliNI;[}Qd;i(S/?u@(S/)))a (12)

where (g is a parameterized actor function which deterministically maps states to a specific action,
and the agent policy is updated through the chain rule by maximizing). M is a subset of M
Q-functions, which is randomly sampled from the ensemble of size V.

Shrink & Perturb is also employed in the visual version ScaleAC. For the image-based state input, we
utilize another data augmentation technique called random shift with bilinear interpolation (Yarats
etal., 2022), which applies random shifts to pixel observations for image augmentation. In the visual
continuous control of DMC, the random shift is instantiated by first padding each side of 84 x 84
observation rendering by 4 pixels (by repeating boundary pixels), and then selecting a random 84 X
84 crop, yielding the original image shifted by £4 pixels. Then the bilinear interpolation is applied
on top of the shifted image by replacing each pixel value with the average of the four nearest pixel
values. The algorithm of this visual version ScaleAC based on DrQ-v2 is detailed in Appendix A.

Next, we experiment with ScaleAC to validate it in high-replay-ratio settings on various continuous
control tasks in both the MuJoCo and DMC environments. The detailed hyperparameter settings of
ScaleAC for each environment, such as how to reset agent networks, are provided in Appendix C.

4 EXPERIMENTS

In this section, we experiment with the proposed ScaleAC in both the MuJoCo (Todorov et al., 2012)
and DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020) environments of continuous
action control. First, in Section 4.1, we benchmark ScaleAC in MuJoCo with the standard SAC
algorithm and advanced SAC algorithms such as REDQ and SR-SAC, which support high replay
ratios. Second, in Section 4.2, we compare all the algorithms with the same replay ratio and show
that Scale AC also achieves the best performance while maintaining the lowest dormant neuron rates.
Third, we further benchmark ScaleAC with baselines on the 7 challenging hard tasks in DMC in
Section 4.3. Fourth, as shown in Section 4.4, we show that ScaleAC is able to scale the replay ratio
to even 256. Fifth, we give the ablation study in Section 4.5 to validate each component of ScaleAC.
Finally, we extend ScaleAC to the domain of visual RL to improve the replay ratio in Section 4.6.

4.1 BENCHMARK EXPERIMENTS IN MUJoCoO

First, we benchmark ScaleAC and baselines in the classical MuJoCo tasks, including Hopper-v5,
Ant-v5, Walker2d-v5, and Humanoid-v5, with details of each task in Appendix B. For baselines,
SAC has a standard replay ratio of 1. REDQ is set to its default replay ratio of 20. SR-SAC’s replay
ratio is 128 according to its recommended configurations. For ScaleAC, we found that a replay
ratio of 64 consistently performs well. For Shrink & Perturb, we set Tr = 2000 to reset the critic
network every 2000 environment steps and set « = 0.8 to mix 80% of the values of current network
parameters and 20% of the values of initial network parameters. For random amplitude scaling, we
set z, = 0.8 and 2, = 1.2 for the amplitude range. The policy network update interval T} is 20.
The benchmark results in MuJoCo are shown in Figure 2. The reported metrics are averaged over 6
independent trials with different random seeds, and the 95% confidence intervals are shadowed.

As we can see, ScaleAC, with a replay ratio of 64, consistently outperforms baselines within the
same number of environment interactions, showing its superior sample efficiency. At the same time,
SR-SAC with a higher replay ratio than ScaleAC does not perform well in these MuJoCo tasks,
indicating that how to reset RL agents to support a high update frequency is not trivial.

4.2 BENCHMARKING WITH THE SAME REPLAY RATIO TO EVALUATE SCALING EFFICIENCY

Next, we also evaluate each method with the same replay ratio of 32 to compare their scaling effi-
ciency. Results of the test episode return and dormant neuron rate are plotted in Figure 3.

As shown in Figure 3, under the same replay ratio of 32, ScaleAC also achieves the best perfor-
mance among the four MuJoCo tasks, while REDQ is competitive to ScaleAC in Walker2d-v5.
When checking the dormant neuron rates in the critic, ScaleAC has the lowest dormant neuron rates,

Under review as a conference paper at ICLR 2026

Hopper-v5 Ant-v5
35001 ScaleAC (RR=64) 6000 | === ScaleAC (RR=64)
3000/ = REDQ (RR=20) 5000] " REDQ (RR=20)
£ = SR-SAC (RR=128) £ = SR-SAC (RR=128)
§25°0 m— SAC (RR=1) §4ooo == SAC (RR=1)
© 2000 5
° © 3000
21500 g
5 5 2000
1000
3 Z 1000
500
1]
o
Ok 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Ok 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k
Steps Steps
(a) Reward on Hopper-vS5. (b) Reward on Ant-v5.
Walker2d-v5 Humanoid-v5
5000 { === ScaleAC (RR=64) m= ScaleAC (RR=64)
== REDQ (RR=20) 50007 — REDQ (RR=20)
€ 4000 == SR-SAC (RR=128) £ = SR-SAC (RR=128)
2 == SAC (RR=1) 240007 — sac (RR=1)
7] 7]
e« 3000 [
° 5 3000
-])
g 2000 g 2000
< 1000 <1000
01 0
Ok 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k Ok 30k 60k 90k 120k 150k 180k 210k 240k 270k 300k
Steps Steps
(c) Reward on Walker2d-v5. (d) Reward on Humanoid-v5.

Figure 2: Benchmark RL algorithms with their default replay ratios in the MuJoCo environment.
SAC has a replay ratio of 1. REDQ has a replay ratio of 20. SR-SAC has a replay ratio of 128.

Hopper-v5 Ant-v5 Walker2d-v5 L i 5
3500 6000 5000
—— ScaleAC (RR=32) —— ScaleAC (RR=32) —— ScaleAC (RR=32) so00| — SCaleAC (RR=32)
3000| —— REDQ (RR=32) "/—/’\-/“ s000| —— REDQ (RR=32) 000 — REDQ (RR=32) 0ot —— REDQ (RR=32)
£ 2500] =™ SR-SAC (RR=32) £ 4000] = SR-SAC (RR=32) £ = SR-SAC (RR=32) £ a000{ = SR-SAC (RR=32)
2 —— SAC (RR=32) H —— SAC (RR=32) £ 3000] = SAC (RR=32) 2 —— SAC (RR=32)
& 2000 £ 3000 v [& 3000
1500 3 s 3
g £ 2000 g 2000 £ 2000
2 1000 g s H
< < 1000 < 3000 <
500 1000
o
o o °
0k 20k 40k 60k 80k 100k k 60k 120k 180k 240k 300k 0k 60k 120k 180k 240k 300k k 60k 120k 180k 240k 300k
Steps Steps Steps Steps
(a) Reward on Hopper-v5. (b) Reward on Ant-v5. (c) Reward on Ant-v5. (d) Reward on Walker2d-v5.
Hopper-v5 0.20 Ant-v5 Walker2d-v5 Humanoid-v5
8 .25 = ScaleQ (RR=32) 20'“ —— ScaleAC (RR=32) £0.201 = SCaleAC (RR=32) | 8 0401 . ScaleAC (RR=32)
& ~—— REDQ (RR=32) / &% —— REDQ (RR=32) & ~— REDQ (RR=32) &0.35{ —— REDQ (RR=32)
§0.20{ = SR-SAC (RR=32) __ | §0-15] —— SR-SAC (RR=32) § 0.15] = SRSAC (RR=32) §0.30{ = SR-SAC (RR=32)
H = SAC (RR=32) 13| == SAC (RR=32) H = SAC (RR=32) 2 0.25] = SAC (RR=32)
2015 — H 2
€ £0.10 £0.20
H H H
E 0.10 E § 0.15
H H H
5 0.05- goos goxo
2 S g00s
© 0.00- © 0.00- © 0.00
0k 20k 40k 60k 80k 100k ok 60k 120k 180k 240k 300k 0k 60k 120k 180k 240k 300k 0Ok 60k 120k 180k 240k 300k
Steps Steps Steps Steps
(e) Dormant neuron rate. (f) Dormant neuron rate. (g) Dormant neuron rate. (h) Dormant neuron rate.

Figure 3: Experimental results of RL methods in MuJoCo with the same replay ratio of 32.

allowing the network to maintain plasticity and learn progressively in the high-replay-ratio setting.
On the other hand, fully resetting both the policy network and critic network in SR-SAC does not
work well, as it cannot steadily reduce the dormant neurons, especially in the Ant-v5 task. This indi-
cates that introducing the Shrink & Perturb strategy in ScaleAC is the key to stabilizing RL training
by maintaining a low level of dormant neuron rate when facing a high update frequency.

4.3 BENCHMARK EXPERIMENTS IN DMC

In this section, we validate ScaleAC in DMC, which features a range of locomotion and manipula-
tion tasks. We benchmark methods in 7 challenging DMC Hard tasks, including dog-run, dog-trot,
dog-stand, dog-walk, humanoid-run, humanoid-stand, and humanoid-walk. More details about these
tasks can be found in Appendix B. Similar to the benchmark experiments in MuJoCo, SAC’s replay

Under review as a conference paper at ICLR 2026

ratio is 1, REDQ’s replay ratio is 20, and SR-SAC has a replay ratio of 128. For the dog-series tasks,
we found that ScaleAC with a replay ratio of 64 performs best. For the humanoid-series tasks, we
found that a replay ratio of 256 works best for ScaleAC. The specific hyperparameters of ScaleAC
in DMC are given in Appendix C, where T = 2000, = 0.8, z, = 0.8, and 2, = 1.2 are the same
as in MuJoCo. The results of each method with its corresponding replay ratio are demonstrated in
Figure 4. The reported test episode returns are averaged over 6 independent trials with different ran-
dom seeds, and the 95% confidence intervals are shadowed. We also provide additional experiments
on three simple walker-series tasks in DMC, which are available in Appendix D.

dog-run dog-trot 1000 dog-stand 200 dog-walk
200/ = ScaleAC (RR=64) 400] = ScaleAC (RR=64) —— ScaleAC (RR=64) 700| —— ScaleAC (RR=64)
€ SR-SAC (RR=128) € SR-SAC (RR=128) - 800 SR-SAC (RR=128) /__‘/,,_,-v.—- £ 000 SR-SAC (RR=128)
3150 — REDQ(RR=20) ., .~ ~] §300) — REDQ (RR=20) H 00| — REDQ (RR=20) 2 s00{ — REDQ (RR=20)
3 —— SAC (RR=1) « —— SAC (RR=1) & —— SAC (RR=1) £ 400] — SAC (RR=1)
B100 . 8200 $ 00 §300
100
- o o o
(a) Reward on dog-run. (b) Reward on dog-trot. (¢) Reward on dog-stand. (d) Reward on dog-walk.
humanoid-run 200 humanoid-stand humanoid-walk
150{ = ScaleAC (RR=256) 700] = ScaleAC (RR=256) 600{ = ScaleAC (RR=256)
c12s SR-SAC (RR=128) £ 600 SR-SAC (RR=128) € 500 SR-SAC (RR=128)
5 ~—— REDQ (RR=20) ~ 3 ~—— REDQ (RR=20) 5 ~—— REDQ (RR=20)
100 § 500 @ 400
2 =~ SAC (RR=1) & 400 — SAC(RR=1) Z & = SAC (RR=1)
o 75 o @ 300
2 g 300 g
£ 50 1 § 200
1] 2200 2
Z 25 H s
< <100 <100
° o1)
ok 50k 100k 150k 200k 250k 300k 330k 400k 450k 500K ok 50k 100k 150k 200k 250k 300k 330k 400k 450k 500K 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps. Steps Steps.
(e) Reward on humanoid-run. (f) Reward on humanoid-stand. (g) Reward on humanoid-walk.

Figure 4: Benchmark RL algorithms with their default replay ratios in the DMC environment. SAC
has a replay ratio of 1. REDQ has a replay ratio of 20. SR-SAC has a replay ratio of 128.

In Figure 4, ScaleAC outperforms baselines in almost all DMC Hard tasks, with one exception that
ScaleAC performs slightly worse than SR-SAC on humanoid-stand in the last environment steps.
Meanwhile, REDQ struggles to learn these DMC Hard tasks, which necessitates ScaleAC’s compo-
nents beyond REDQ, including Shrink & Perturb and random amplitude scaling. While SR-SAC
achieves good performance on humanoid-series tasks, it fails on dog-series tasks, showing that fully
resetting networks may not be a general solution to train RL at high replay ratios. The impressive
performance of ScaleAC in both MuJoCo and DMC environments demonstrates its effectiveness in
stabilizing RL training under high replay ratios to accelerate learning. At the same time, ScaleAC
consistently achieves superior performance in all the tested tasks, demonstrating its broad generality.

4.4 SCALING UP THE REPLAY RATIO TO 256 TO EVALUATE SCALING CEILING

Hopper-v5 humanoid-run 800 humanoid-stand humanoid-walk
3500 150 =™ ScaleAC (RR=256) 7000 ™ ScaleAC (RR=256) 600 = ScaleAC (RR=256)
3000 ScaleAC (RR=128) 600 ScaleAC (RR=128) ScaleAC (RR=128)
£ 2500 £ 1] — scaleAC (RR=64) £ %] — ScaleAC (RR=64) £°%°] — ScaleAC (RR=64) L
2 2100 —— ScaleAC (RR=32) /‘/ £ 5991 —— ScaleAC (RR=32) 2 400{ —— ScaleAC (RR=32)
£ 2000 2 , & 100 g
& 3 / 3 g,300
200
geoo —— ScaleAC (RR=256) g so g €200
3 1000 ScaleAC (RR=128) z s j__——/" § 200 H
100
500 —— ScaleAC (RR=64) 100 /
=
= ScaleAC (RR=32)
o -
k 20k 40k 60k 80k 100k k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps Steps Steps Steps
(a) Reward on Hopper-v5. (b) Reward on humanoid-run. ~ (C) Reward on humanoid-stand. (d) Reward on humanoid-walk.

Figure 5: Scaling up the replay ratio of ScaleAC to 256 on Hopper-v5 in the MuJoCo environment
and on humanoid-run, humanoid-stand, and humanoid-walk in the DMC environment.

In this section, we demonstrate that ScaleAC is able to scale up the replay ratio to even 256 to speed
up the learning process. The results of ScaleAC with different replay ratios of 32, 64, 128, and 256
are plotted in Figure 5. As we see, ScaleAC significantly accelerates the learning of RL agents with
a replay ratio of up to hundreds, especially on humanoid-stand and humanoid-walk. To the best of
our knowledge, this is the highest reported replay ratio to successfully train deep RL in the current
literature (Ma et al., 2025). In summary, ScaleAC unlocks the potential to achieve better sample

Under review as a conference paper at ICLR 2026

efficiency through scaling of the replay ratio to hundreds (i.e., 256). On the other hand, we should
also notice that a higher replay ratio does not mean higher performance. ScaleAC may have different
optimal replay ratios on different tasks. For example, in the dog-series tasks, the best replay ratio of
ScaleAC is 64, while replay ratios such as 128 and 256 decrease the performance of ScaleAC. The
replay ratio scaling of ScaleAC in the dog-series tasks is shown in Appendix E.

4.5 ABLATION STUDY OF SCALEAC

Here, we conduct the ablation study to verify each component in ScaleAC. The ablation results are
given in Figure 6. We see that both Shrink & Perturb and random amplitude scaling contribute to
the performance of ScaleAC. Especially, without Shrink & Perturb, ScaleAC fails to learn in dog-
run and dog-stand, which necessitates Shrink & Perturb to reduce dormant neurons when the replay
ratio is high. Meanwhile, random amplitude scaling also enhances the performance of ScaleAC.

Hopper-v5 dog-run 1000 dog-stand
3500{ = ScaleAC (RR=64) 200{ = ScaleAC (RR=64) —— ScaleAC (RR=64)
< 3000 ScaleAC w/o S&P (RR=64) ;:;,’\")fw‘ c ScaleAC w/o S&P (RR=64) . 800 ScaleAC w/o S&P (RR=64) _ a1
5 2500| — ScaleAC w/o RAS (RR=64) 5 150] — ScaleAC w/o RAS (RR:W 5 —— ScaleAC w/o RAS (RR=64)
o - 9 o 600
£ 2000 < 100 H
g 1500 & 2 ao00
€ 1000 : g
Z < 50 < 200
500
0 o
10k 20k 30k 40k 50k 6ok 70k 86k 90k 100k Ok 50k 100k 150k 200k 250k 300k 350k 400K 450K 500K i S0k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Steps Steps Steps
(a) Reward on Hopper-v5. (b) Reward on dog-run. (c) Reward on dog-stand.

Figure 6: The ablation study of ScaleAC. ‘ScaleAC w/o S&P’ indicates removing the Shrink &
Perturb in ScaleAC. ‘ScaleAC w/o RAS’ indicates removing random amplitude scaling in ScaleAC.

4.6 BENCHMARK EXPERIMENTS OF VISUAL SCALEAC IN VISUAL DMC

In this section, we compare the visual ScaleAC algorithm in visual DMC (details in Appendix B.3)
with two advanced visual RL approaches, DrQ-v2 (Yarats et al., 2022) with a default replay ratio
of 0.5 and Adaptive RR (Ma et al., 2024) with a replay ratio increasing from 0.5 to 2. Results are
shown in Figure 7. The visual ScaleAC achieves substantial learning acceleration and performance
improvement with a higher replay ratio. Notably, in hopper-hop, the visual ScaleAC boosts learning
with a replay ratio of 8, demonstrating the great potential of high replay ratios in visual RL.

walker-stand reacher-hard 160 hopper-hop
10001 ___ ScaleAC (RR=4) 5001 —— ScaleAC (RR=4) 140 = ScaleAC (RR=8)
800 Adaptive RR (RR=0.5->2) | £ 200 Adaptive RR (RR=0.5->2) €120 Adaptive RR (RR=0.5->2)
—— DrQ-v2 (RR=0.5)] = DrQ-v2 (RR=0.5) —— DrQ-v2 (RR=0.5)

Average Return

Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Frames Frames

(a) Reward on walker-stand. (b) Reward on reacher-hard. (c) Reward on hopper-hop.

Figure 7: Benchmarking results on visual DMC tasks.

5 CONCLUSION

In this paper, we propose ScaleAC to scale up the replay ratio to hundreds (i.e., 256) in RL. We
found that high replay ratios lead to saturated dormant neurons in the critic, thus undermining RL
learning. To tackle this problem, we integrate Shrink & Perturb into advanced AC algorithms such
as REDQ and DrQ-v2 to partially reset the critic periodically. Two kinds of data augmentation are
also applied to enhance state input diversity. Extensive experiments in MuJoCo and DMC show that
ScaleAC greatly improves sample efficiency in both vector and pixel-based RL at high replay ratios.

For future work, first, dynamically adjusting the replay ratio is promising to reduce the computation
cost. Second, introducing ScaleAC to LLM post-training also has great potential. Third, introducing
plastic network structures to ScaleAC is a natural direction to further improve the replay ratio.

Under review as a conference paper at ICLR 2026

REFERENCES

Jordan T. Ash and Ryan P. Adams. On warm-starting neural network training. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS *20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC,
Canada.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized Ensembled Double Q-
Learning: Learning Fast Without a Model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0OtDd.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=0pC-9aBBVJe.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861-1870. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/haarnojal8b.html.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and
Xuelong Li. Diffusion Model is an Effective Planner and Data Synthesizer for Multi-Task Rein-
forcement Learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 64896—64917. Curran
Associates, Inc., 2023.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout Q-Functions for Doubly Efficient Reinforcement Learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xCVJIMsPv3RT.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-
based policy optimization. In Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC, Canada.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity Bias for
Scaling Up Parameters in Deep Reinforcement Learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
JXLiDKsuDo.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), Proceedings of the 4th International Conference on Learning
Representations, 2016. URL http://arxiv.org/abs/1509.02971.

Zichuan Liu, Jinyu Wang, Lei Song, and Jiang Bian. Sample-efficient LLM Optimization with Reset
Replay, August 2025. URL http://arxiv.org/abs/2508.06412. arXiv:2508.06412
[cs].

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqgian Wang,
and Dacheng Tao. Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and
Training Stages. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=0aR1s9YxoL.

10

https://openreview.net/forum?id=AY8zfZm0tDd
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=jXLiDKsuDo
https://openreview.net/forum?id=jXLiDKsuDo
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2508.06412
https://openreview.net/forum?id=0aR1s9YxoL

Under review as a conference paper at ICLR 2026

Yi Ma, Hongyao Tang, Chenjun Xiao, Yaodong Yang, Wei Weli, Jianye Hao, and Jiye Liang. Scaling
DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies, August
2025. URL http://arxiv.org/abs/2508.03194. arXiv:2508.03194 [cs].

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mitos, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In Pro-
ceedings of the 38th International Conference on Neural Information Processing Systems, NIPS
24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 979-8-3313-1438-5. event-place:
Vancouver, BC, Canada.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The Pri-
macy Bias in Deep Reinforcement Learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 16828-16847. PMLR, July 2022. URL https://proceedings.mlr.press/v162/
nikishin22a.html.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-Efficient Reinforcement Learning with Self-Predictive Representations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=uCQfPZwRaUu.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc G. Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, better, faster: human-level atari with human-level efficiency. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23, Honolulu,
Hawaii, USA, 2023. JMLR.org.

Laura Smith, Ilya Kostrikov, and Sergey Levine. Demonstrating a walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning. Robotics: Science and Systems (RSS)
Demo, 2(3):4, 2023.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The Dormant Neuron Phe-
nomenon in Deep Reinforcement Learning. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023. Place: Honolulu, Hawaii, USA.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929-1958, January 2014. ISSN 1532-4435. Publisher: JMLR.org.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based con-
trol. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026—
5033, Vilamoura-Algarve, Portugal, October 2012. IEEE. ISBN 978-1-4673-1736-8 978-1-4673-
1737-5 978-1-4673-1735-1. doi: 10.1109/IROS.2012.6386109. URL http://ieeexplore.
ieee.org/document/6386109/.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, November 2020. ISSN 26659638. doi: 10.
1016/j.simpa.2020.100022. URL https://linkinghub.elsevier.com/retrieve/
Pii/S26659638203000909.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Yaodong Yang, Guangyong Chen, Jianye Hao, and Pheng Ann Heng. Sample-efficient multiagent
reinforcement learning with reset replay. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24, Vienna, Austria, 2024. JMLR.org.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous
Control: Improved Data-Augmented Reinforcement Learning. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=_SJ—_
yyes8.

11

http://arxiv.org/abs/2508.03194
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/
https://linkinghub.elsevier.com/retrieve/pii/S2665963820300099
https://linkinghub.elsevier.com/retrieve/pii/S2665963820300099
https://openreview.net/forum?id=_SJ-_yyes8
https://openreview.net/forum?id=_SJ-_yyes8

Under review as a conference paper at ICLR 2026

A SCALEAC BUILT ON DRQ-V2 FOR PIXEL-BASED RL

In this section, we give the detailed algorithm of ScaleAC based on DrQ-v2 for pixel-based RL,
which is shown in Algorithm 2. Lines 8-9 use the in-target random ensemble minimization to calcu-
late the target Q-value as REDQ. In Line 7, the random shift with bilinear interpolation is performed
on the sampled mini-batch transitions. The critic is updated Nrg times every environment interac-
tion. As indicated in Line 14, the actor is updated every T} critic updates or after the Npp critic
updates. In Lines 18-19, Shrink & Perturb is conducted every Tr environment steps on agent net-
works, which suffer from the severe dormant neuron problem with a high replay ratio.

Algorithm 2 ScaleAC for Scaling Pixel-Based AC by Replay Ratio
1: Initialize policy network parameters 6, the critic network parameters ¢;,¢ = 1,2,--- , N, and
an empty replay buffer D. Set target critic network parameters ¢; < ¢;,7 = 1,2,--- | N. Set
agent network reset interval T'r. Set policy network update interval Tp.

2: for each time step ¢ do
3: Agent takes action a; ~ 7p(+|s). Step into state s;1. Receive reward ;.
4: Add transition data to the replay buffer: D < D U {(s¢, at, 7, St+1) }-
5. for each update time npr from 1 to Ny do
6: Sample a mini-batch B = {(s, a,r, s")} from D.
7: Apply random shift with bilinear interpolation on sampled transition batch B.
8: Sample a set M of M distinct indices from {1,2,--- , N}.
9: Compute the target Q-value y (same for all critics):
y=r+yminQs (s, po(s))- (13)
10: fori=1,2,--- ,Ndo
11: Update ¢; with gradient descent using
1
Vo g Y. (Qulsia)—y)* (14)
(s,a,r,s’)EB
12: Update target networks with ¢; < po; + (1 — p)¢s.
13: end for
14: if (ngrr mod Ty = 0) or (nrr = Ngr) then
15: Update policy network parameters 6 with gradient ascent using
1 1
E Z(ﬁZV&Q¢i(57a)‘d:;ts(s)v9u9(5))' (15)
seEB =1
16: end if
17: end for
18: ift mod T = O then
19: Perform Shrink & Perturb as in Equation (6) and (7) on agent networks.
20: end if
21: end for

For the visual version of ScaleAC, it has an encoder to encode the image into a vector for both the
actor and critic networks. We also reset the encoder in the same way as resetting the critic.

B ENVIRONMENT DETAILS

B.1 MuloCo

We consider a total of 4 continuous control tasks for the MuJoCo benchmark. These tasks include
Hopper-v5, Ant-v5, Walker2d-v5, and Humanoid-v5. The short descriptions, observation dimen-
sion, and action space dimension are listed in Table 1. For ScaleAC and baselines in MuJoCo, we
utilize the official codebase of REDQ (Chen et al., 2021) with PyTorch to implement algorithms.

12

Under review as a conference paper at ICLR 2026

Table 1: Descriptions of Different MuJoCo Tasks.

Task Robot Short Description State dim Action dim

Hopper-v5 2D Runners 2D monoped for hopping 11 3

Ant-v5 Quadruped 3D quadruped for running 105 8

Walker2d-v5 2D Runners 2D biped for walking 17 6

Humanoid-vS Humanoid Bipeds 3D humanoid for running 348 17
B.2 DMC

We consider a total of 7 continuous control tasks for the DMC Hard benchmark (Tunyasuvunakool
et al., 2020). These tasks include dog-run, dog-trot, dog-stand, dog-walk, humanoid-run, humanoid-
stand, and humanoid-walk. The observation dimension and action space dimension are listed in
Table 2. For ScaleAC and baselines in DMC, we utilize the official codebase of SR-SAC (D’Oro
et al., 2023) with JAX to implement these algorithms. We additionally list three walker-series tasks
in Table 2, which are used in Appendix D for extra benchmarking experiments in DMC.

Table 2: Observation and Action Dimensions for Different DMC Hard Tasks.

Task Difficulty Description State dim Action dim
Dog-run Hard A Pharaoh Dog model to run 223 38
Dog-trot Hard A Pharaoh Dog model to trot 223 38
Dog-stand Hard A Pharaoh Dog model to stand 223 38
Dog-walk Hard A Pharaoh Dog model to walk 223 38
Humanoid-run Hard A 21-joint humanoid to run at 10 m/s 67 24
Humanoid-stand Hard A 21-joint humanoid to stand at O m/s 67 24
Humanoid-walk Hard A 21-joint humanoid to walk at 1 m/s 67 24
Walker-run Medium An improved planar walker to run 24 6
Walker-stand Easy An improved planar walker to stand 24 6
Walker-walk Easy An improved planar walker to walk 24 6

B.3 VisuaL DMC

We consider three tasks in the visual DMC, including walker-stand, reacher-hard, and hopper-hop,
to validate the visual ScaleAC. Tasks are summarized in Table 3. In this setting, environment obser-
vations are stacks of 3 consecutive RGB images of size 84 x 84, stacked along the channel dimension
to enable inference of dynamic information like velocity and acceleration. For ScaleAC and base-
lines in visual DMC, we utilize the official codebase of DrQ-v2 (Yarats et al., 2022) and Adaptive
RR Ma et al. (2024) with PyTorch to implement these algorithms.

Table 3: Descriptions of Different Visual DMC Tasks.

Task Traits Difficulty Action dim
Walker-stand stand, dense easy 6
Reacher-hard reach, dense medium 2
Hopper-hop move, dense medium 4

C HYPERPARAMETERS OF SCALEAC

In this section, we provide the hyperparameters of ScaleAC. For the Shrink & Perturb strategy, we
set Tr = 2000 to reset the agent networks every 2000 environment steps and set a = 0.8 to keep
80% of the values of current network parameters. For random amplitude scaling, we set z, = 0.8
and z, = 1.2 for the amplitude range. Specifically, in MuJoCo, we set the policy network update
interval T} at 20, which is updated less frequently than the critic network. Therefore, we only reset
the critic network in MuJoCo. Meanwhile, in DMC, we set the policy network update interval Ty at
1 and reset both the policy network and critic network. In visual DMC, we set the policy network

13

Under review as a conference paper at ICLR 2026

update interval Ty at 1 and reset the encoder network, policy network, and critic network. The
setting of the random shift with bilinear interpolation for visual ScaleAC is the same as in DrQ-
v2. Other hyperparameters are kept the same as the original configurations provided in the official
codebases (Chen et al., 2021; D’Oro et al., 2023; Yarats et al., 2022; Ma et al., 2024). The study of
hyperparameter sensitivity of ScaleAC is provided in Appendix F for reference.

D BENCHMARK EXPERIMENTS ON DMC WALKER-SERIES TASKS

We also conduct additional benchmark experiments in DMC to validate the generality of ScaleAC.
We experiment on three walker-series tasks, including walker-run, walker-stand, and walker-walk,
with 0.2 million environment steps. The results of each method on these tasks are plotted in Figure 8.
All the methods achieve good performance. Meanwhile, although the final performance of SR-SAC
is close to ScaleAC, it is clear that ScaleAC learns much faster at the early stage than SR-SAC in
these walker-series tasks. Notably, ScaleAC with a replay ratio of 32 also learns faster than SR-SAC
with a replay ratio of 128, indicating the superior sample efficiency of ScaleAC.

walker-run walker-stand walker-walk
800 1000 ——— 1000
£ c 800 -~ c 800
5600 5 H
g = ScaleAC (RR=256) g 600 e ScaleAC (RR=256) g 600 = ScaleAC (RR=256)
@ 400 ScaleAC (RR=128) " ScaleAC (RR=128) o ScaleAC (RR=128)
g w— ScaleAC (RR=64) 2 400 w—— ScaleAC (RR=64) 2 ao00 w—— ScaleAC (RR=64)
g = ScaleAC (RR=32) o = ScaleAC (RR=32) H = ScaleAC (RR=32)
- H H
g 200 w== SR-SAC (RR=128) < 200 === SR-SAC (RR=128) < 200 == SR-SAC (RR=128)
=== REDQ (RR=20) o == REDQ (RR=20) w—— REDQ (RR=20)
0= SAC (RR=1) o - SAC (RR=1) - SAC (RR=1)
Ok 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k Ok 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k k 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Steps. Steps Steps

(a) Reward on walker-run. (b) Reward on walker-stand. (¢) Reward on walker-walk.

Figure 8: Additional benchmarking results on walker-series tasks in DMC.

E REPLAY RATIO SCALING OF SCALEAC IN DOG-SERIES TASKS

In this section, we show that a higher replay ratio does not always correspond to higher performance.
The replay ratio scaling of ScaleAC on dog-series tasks is plotted in Figure 9. It is clear that 64 is
the optimal replay ratio on these tasks. Higher values, such as 128 and 256, hurt the performance.
Therefore, we infer that there exists a saturation point of the replay ratio that exhausts a model’s plas-
ticity when fitting the given replay buffer. Shrink & Perturb tries to recover the model’s plasticity,
while random amplitude scaling reduces the plasticity cost of each trained sample, which coincides
somewhat with the findings in the domain of visual reinforcement learning (Ma et al., 2024).

dog-run dog-stand dog-trot dog-walk
1000 s00
200] = ScaleAC (RR=256) —— ScaleAC (RR=256) —— ScaleAC (RR=256) 00| — ScaleAC (RR=256)
ScaleAC (RR=128) 800, SCaleAC (RR=128) oy 00 ScaleAC (RR=128) ScaleAC (RR=128)
1s0] —— SCAleAC (RR=64) —— ScaleAC (RR=64) —— ScaleAC (RR=64) :m —— ScaleAC (RR=64)
— ScaleAC (RR=32) Al | 600{ —— ScaleAC (RR=32) —— ScaleAC (RR=32) £ 50| — ScaleAC (RR=32)

Average Return

Average Return
8
8
Average Return
8
8

H
H

1 £ =

50k 100k 150k 200k 250k 300k 350k 400k 450k 500k 50k 100k 150k 200k 250k 300k 330k 400k 450k 500k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500}

(a) Reward on dog-run. (b) Reward on dog-stand. (c) Reward on dog-trot. (d) Reward on dog-walk.

Figure 9: Replay ratio scaling of ScaleAC on dog-run, dog-stand, dog-trot, and dog-walk in DMC.

F HYPERPARAMETER SENSITIVITY

In this section, we study the hyperparameter sensitivity specifically in ScaleAC. First, we show how
the interpolation factor o, which determines how much of the current network parameters is mixed
with the initial network parameters, affects the performance of ScaleAC in Appendix F.1. Second, in
Appendix F.2, we investigate the sensitivity of the reset interval Tr. Finally, we also show how the
amplitude range [z,, 5] in random amplitude scaling affects ScaleAC in Appendix F.3. The default
values in ScaleAC include o = 0.8, T = 2000, and [z, = 0.8, 2, = 1.2].

14

Under review as a conference paper at ICLR 2026

F.1 THE INTERPOLATION FACTOR IN SHRINK & PERTURB

We study the interpolation factor o with different values, and the corresponding results are given in
Figure 10. When o = 0.0, the network parameters are fully reset to initial values. When oo = 1.0, the
network parameters are totally kept. As shown in Figure 10, oo = 0.8 achieves the best performance
in the three scenarios tested, which is also the default value across tasks and environments. In
the dog-run and dog-stand tasks, o with other values does not perform well, indicating that the
interpolation factor « is an important hyperparameter to tune in ScaleAC carefully.

Hopper-v5 dog-run 1000 dog-stand
3500{ —— ScaleAC (a=1.0) 200{{= ScaleAC (a=1.0) —— ScaleAC (a=1.0)
< 3000 ScaleAC (a=0.8) € ScaleAC (a=0.8) - 800 ScaleAC (a=0.8)
5 2500, = ScaleAC (a=0.6) 2 150{ = ScaleAC (a=0.6) 3 = ScaleAC (a=0.6)
gzooo —— ScaleAC (a=0.4) K] —— ScaleAC (a=0.4) 8 e00 ScaleAC (@=0.4)
g = ScaleAC (a=0.2) %1001 = ScaleAC (a=0.2) 3 = ScaleAC (a=0.2)
g1500 ScaleAC (a=0.0) g —— ScaleAC (@=0.0) g 499 . SscaleAC (a=0.0)
2 1000 - 3 s0 g
z < < 200
500 ==!!E!!E§E§§E§§§EE; ;;ggg:sg E
o/ 0 ° i
Ok 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
(a) Reward on Hopper-v5. (b) Reward on dog-run. (¢) Reward on dog-stand.

Figure 10: The hyperparameter sensitivity study on the interpolation factor o of ScaleAC.

F.2 THE RESET INTERVAL IN SHRINK & PERTURB

The default reset interval T’z is 2000, which means ScaleAC applies Shrink & Perturb every 2000
environment steps. Here we also experiment with T = 500, 1000, 4000, and 8000. The resulting
plots are given in Figure 11. When Tr = 4000, ScaleAC achieves the best performance in Hopper-
v5 and dog-run, but performs worse than T = 2000 in the task of dog-stand. Generally, the default
reset interval Tr = 2000 performs well in these tested cases.

Hopper-v5 dog-run 1000 dog-stand
35001 ScaleAC (Tz = 500) —— ScaleAC (Tg =500) —— ScaleAC (Tg = 500)
3000 ScaleAC (Tg = 1000) m £ ScaleAC (T =1000) o 800 ScaleAC (T =1000) mo A= |
52500 = ScaleAC (Tg =2000) E] = ScaleAC (Tg = 2000) 5 600l — ScaleAC (Tg = 2000)
& 2000{ = ScaleAC (Tx =4000) & = ScaleAC (T = 4000) & —— ScaleAC (T = 4000)
8 1500] — ScaleAC (Tp = 8000)) ~ ScaleAC (Tg = 8000) 8 400] —— ScaleAC (T =8000) s,
g g g y
o ¢ o
1000
é E ; 200 /,
500
o
o | |
Ok 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k Ok 50k 100k 150k 200k 250k 300k 330k 400k 450k 500k i 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k

(a) Reward on Hopper-v5. (b) Reward on dog-run. (c) Reward on dog-stand.

Figure 11: The hyperparameter sensitivity study on the reset interval T of ScaleAC.

F.3 THE SCALING RANGE IN RANDOM AMPLITUDE SCALING

We study the amplitude scaling range [z, 2] with different values, and the corresponding results
are given in Figure 12. We see that, the best scaling range changes in different tasks. For example,
in Hopper-v5, 0.0, 2.0] achieves the highest average return while performing sub-optimally in dog-
stand. At the same time, the default setting of [0.8, 1.2] consistently performs well in three tasks.

Hopper-v5 dog-run 1000 dog-stand
35001 __ ScaleAC (2, =1.0,2,=1.0) P ——| 250] — SCAleAC(2,=1.0,2,=10) —— ScaleAC (z,=1.0,2 = 1.0)
. 3000 ScaleAC (z,=0.8,2,=12) M c ScaleAC (z,=0.8,2,=1.2) - 800 ScaleAC (z,=0.8,2,=1.2)
52500{ —— ScaleAC (z,=0.6,2,= 1.4) 5200) — ScaleAC (z,=0.6,2,=14) H —— SCaleAC (2, =0.6,25=1.4) = |
€ 2000| — ScaleAC (z,=0.4,2,=1.6) 2 o] = ScaleAC (z,=0.4,2,=1.6) ﬁ G 690) ___ ScaleAC (z,=0.4,2,=1.6)
& 1500] — ScaleAC (z,=0.2,2,=1.8) s = ScaleAC (zo=0.2,2,=1.8) / 2 400 ScaleAC (z, = 0.2, 2, =1.8) %&
£ —— ScaleAC (z,=0.0,2,=2.0) £100| — ScaleAC (2,=0.0,2,=2.0) ¢ —— ScaleAC (z,=0.0,2,=2.0) =" |
§ 1000 2 Z 200
500 / 50 j/ /
o ('] o
ok 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k ok 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500K
Steps Steps Steps
(a) Reward on Hopper-v5. (b) Reward on dog-run. (¢) Reward on dog-stand.

Figure 12: The hyperparameter sensitivity study on the amplitude range [z,, 2] of ScaleAC.

15

	Introduction
	Background
	Reinforcement Learning
	REDQ
	DrQ-v2
	Dormant Neuron
	Scaling Replay Ratio in Deep Reinforcement Learning

	Method
	The Dormant Neurons in Critic at High Replay Ratios
	Shrink & Perturb to Tackle Dormant Neurons
	Random Amplitude Scaling for Data Augmentation in Vector-Based RL
	Extending ScaleAC to Visual Pixel-Based RL

	Experiments
	Benchmark Experiments in MuJoCo
	Benchmarking with the Same Replay Ratio to Evaluate Scaling Efficiency
	Benchmark Experiments in DMC
	Scaling up the Replay Ratio to 256 To Evaluate Scaling Ceiling
	Ablation Study of ScaleAC
	Benchmark Experiments of Visual ScaleAC in Visual DMC

	Conclusion
	ScaleAC Built on DrQ-v2 for Pixel-Based RL
	Environment Details
	MuJoCo
	DMC
	Visual DMC

	Hyperparameters of ScaleAC
	Benchmark Experiments on DMC Walker-series Tasks
	Replay Ratio Scaling of ScaleAC in Dog-Series Tasks
	Hyperparameter Sensitivity
	The Interpolation Factor in Shrink & Perturb
	The Reset Interval in Shrink & Perturb
	The Scaling Range in Random Amplitude Scaling

