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A likelihood-based framework for 
demographic inference from genealogical 
trees
 

Caoqi Fan    1,2  , Jordan L. Cahoon2,3, Bryan L. Dinh1,2, 
Diego Ortega-Del Vecchyo    4, Christian D. Huber    5, Michael D. Edge    2, 
Nicholas Mancuso1,2 & Charleston W. K. Chiang    1,2 

The demographic history of a population underlies patterns of genetic 
variation and is encoded in the gene-genealogical trees of the sampled 
haplotypes. Here we propose a demographic inference framework called the 
genealogical likelihood (gLike). Our method uses a graph-based structure to 
summarize the relationships among all lineages in a gene-genealogical tree 
with all possible trajectories of population memberships through time and 
derives the full likelihood across trees under a parameterized demographic 
model. We show through simulations and empirical applications that 
for populations that have experienced multiple admixtures, gLike can 
accurately estimate dozens of demographic parameters, including ancestral 
population sizes, admixture timing and admixture proportions, and it 
outperforms conventional demographic inference methods using the 
site frequency spectrum. Taken together, our proposed gLike framework 
harnesses underused genealogical information to offer high sensitivity and 
accuracy in inferring complex demographies for humans and other species.

Accurately inferring the demographic history of humans not only has 
archeological and historical significance1–6 but also lessens confound-
ing effects in association studies by better accounting for genetic ances-
try and serves as the null expectation of genetic variation when inferring 
about natural selection7–11. Given the complicated interplay of random 
processes related to the underlying demography and observed geno-
types—including migration, coalescence, recombination, mutation and 
genotyping error—demographic inference is a challenging problem, 
often requiring simplifying model assumptions or relatively coarse 
data summaries. One approach to estimate population size histories, 
first popularized by the Pairwise Sequentially Markovian Coalescent 
(PSMC) model12, uses a hidden Markov model (HMM) to describe the 
variation of haplotypes along the genome, in which the hidden states 

correspond to the underlying genealogical trees12–15. As the number of 
potential trees grows exponentially with sample size, these methods 
are only computationally tractable using a reduced representation 
of the underlying genealogy. As a result, these methods are typically 
constrained by small sample sizes (usually <100) and the assumption 
of a single, homogeneous population, although they are flexible with 
respect to population size trajectories over time. To accommodate 
larger samples informing recent histories and more complex demo-
graphic events, alternative approaches rely on a further reduced rep-
resentation of the genealogy, such the pattern of haplotype sharing by 
descent16,17, or more commonly, the site frequency spectrum18–23 (SFS).

HMM-based and SFS-based methods are informed by observed 
genotypes or haplotypes. However, because neutral variation is related 
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splits, admixtures and population size variations, providing tools for 
model selection and parameter estimation.

Results
Genealogical likelihood under multi-population demography
A genealogical tree, despite being a complete record of the coalescent 
events of the sampled haplotypes within a chromosomal interval, does 
not specify the migration history of lineages. In a typical genetic study, 
samples (leaf nodes) are collected from known populations, which 
serves as the initial condition. The internal lineages could migrate, 
subject to the restriction that coalescences must happen within a 
population. Therefore, the probability of a given genealogical tree 
corresponds to the cumulative total of all migration scenarios that 
are compatible with that tree. Our proposed method, gLike, computes 
the likelihood of any given genealogical tree under a hypothesized 
demographic history (Methods). Operationally, it is broken into two 
topological steps to search for possible population memberships of 
lineages, followed by three numerical steps to compute the conditional 
and marginal probabilities (Fig. 1).

We define a ‘state’ as a specification of the population member-
ships of all lineages existing at a specific time. All possible states before 
each historical event (for example, occurring at t1, t2,… , t5  in Fig. 1) 
form a directed acyclic graph (Fig. 1, step 2), which we call the ‘graph 
of states’ (GOS), a complete representation of all possible migration 
scenarios. When a state specifies a lineage in an impossible population, 
it becomes a dead-end state that does not connect to the origin. For 
example, in step 2, if we imagine a state ‘AA’ at t4 as a child of ‘F’, it will 
not connect to the origin state ‘ABBCC’ because the fourth and fifth 
samples cannot migrate from C to A per the hypothesized demographic 
model (Fig. 1). To reduce computation time, we avoid generating any 

to demographic history entirely through the genealogical processes, 
(unknown) genealogy arguably has a more direct relationship with the 
underlying demography than the downstream genotypes24–26. Moreo-
ver, the complete genealogy of a collection of samples, as represented 
by an ancestral recombination graph (ARG)27–29, has richer information 
than the SFS because it includes the correlated coalescent histories 
between segments of a chromosome. Therefore, to the extent that 
ARG can be inferred accurately and consistently30,31, a genealogy-based 
demographic inference method has the potential32 to distinguish 
complex demographic histories.

Here, we introduce a genealogical likelihood framework named 
gLike to compute the likelihood of an observed genealogical tree under 
a parameterized demographic history. A genealogy does not imply 
the assortment history of any of its lineages (that is, the set of discrete 
population memberships that a particular lineage has traversed over 
time), requiring gLike to consider all possible combinations. Notably, 
gLike bears similarity to the independently proposed ‘local ancestry 
path’ problem33, but instead of inferring the population member-
ship distribution of each individual node, gLike aims to compute the 
total likelihood of all combinations. We demonstrate the advantage of 
genealogy-based demography inference by applying gLike to simulated 
and empirical scenarios of complicated admixture histories, such as 
three-way or four-way admixtures, and comparing gLike to SFS-based 
methods. For admixture scenarios across continental ancestries, our 
inference required no reference sample from the ancestral populations 
or explicit inference of local ancestries, information that is often not 
available or is imprecisely estimated for understudied populations with 
a complex recent history. As a first step towards a general-purpose sta-
tistical framework and towards using the information from the entire 
ARG, gLike is applicable to a variety of demographic events: migrations, 
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Fig. 1 | A schematic of the major steps of the gLike algorithm with examples. 
We develop a full methodology for the GOS around three key problems: (1) 
constructing a minimal GOS that contains all necessary states; (2) computing 
the conditional probabilities between connected states with considerations 
of migrations, coalescences and non-coalescences; and (3) propagating the 
marginal probabilities through the GOS to compute the total likelihood of the 
tree. Starting from a parameterized demography and an observed genealogical 
tree with known sample populations, gLike is operationally broken into two 

topological steps and three numerical steps. The topological steps construct 
the fundamental data structure in gLike: the GOS (constructed in step 2), 
which summarizes all possible scenarios for all lineages to move through the 
populations across history. GOS is guaranteed by a preparatory step 1 such that 
no redundant states will be generated, minimizing computational burden. The 
three numerical steps then follow to compute the conditional and marginal 
probabilities. Further operational details can be found in the Supplementary 
Notes, using this exact example.
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dead-end states by a preliminary step (Fig. 1, step 1) that summarizes 
possible population memberships for each lineage. For example, in 
step 1 at t4, lineage 8 may be in ‘A’ or ‘E’, and lineage 7 may be in ‘D’ or ‘E’; 
thus, ‘AA’ is not a legal state in step 2 (Fig. 1). The GOS is then constructed 
from the root states (‘F’ or ‘E’ in this example) forward in time, by search-
ing for child states according to both the specified migration events 
in the demography and the results in step 1.

After building the GOS, the relevant conditional probabilities are 
computed. As lineages are restricted to their respective population 
until a historical event, a state immediately before a historical event ts 
is sufficient to specify the population memberships of all lineages 
between ts−1 and ts. For example, the state ‘EE’ implies that not only the 
two lineages but also the subtrees under both lineages are all in popula-
tion ‘E’ between t3 and t4. Given memberships of all lineages within the 
context of a state, we can compute the ‘genealogical probability’ of the 
state based on standard coalescent theory to describe the coalescence 
(or non-coalescence) events during the relevant interval on the tree. 

We also compute the ‘migration probability’ between a state and its 
child, which is the product of the migration probability of each lineage, 
according to the migration matrix of the historical event (Fig. 1, step 
3). The ‘marginal probability’ of a state is then the probability condi-
tional on the origin state and can be computed recursively (Fig. 1, step 
4). Finally, we compute the likelihood of the genealogical tree as the 
sum of the marginal probabilities of the root states (Fig. 1, step 5).

Further operational details for each step with illustrative examples 
can be found in the Supplementary Notes and Supplementary Fig. 1. 
In practice, we apply gLike to a subsample of trees that are presumed 
independent, ideally from evolutionarily neutral sites distantly spaced 
across the genome (usually 10–100, depending on the computational 
resources), and the total likelihood is computed as the product over 
each individual tree and optimized. The final estimation of param-
eters is averaged over a number of subsamples with replacement. The 
variance across subsamples serves as an indicator of the uncertainty 
of the estimate.
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Fig. 2 | gLike accurately reconstructs three-way admixture without ancestral 
population samples. a, The true demography under which the genealogical 
trees and genotypes were simulated, with six populations involved: population 
O is admixed from A and B; B is the intermediate population admixed from C 
and D, where C is defined to be the major ancestor (proportion ≥ 0.5) without 
loss of generalizability; E is the ancestor of A, C and D. All population sizes are 
to scale. There are 11 parameters involved, including six population sizes as well 
as t1, time of admixture of population O; t2, time of admixture of population B; 
t3, time of split from population E; r1, admixture proportion of A in O; and r2, 
admixture proportion of C in B. The true value of each parameter is provided 

on the right. b–d, The reconstructed demography using parameter estimates 
averaged over 50 independent simulations (left) and boxplots of relative errors 
((estimated − true) / true) in each simulation (right). Boxplots are capped at 
300% relative error for ease of visualization. Trees and genotypes of 1,000 
haplotypes drawn from population O were simulated on a 30 Mb chromosome. 
The demographic parameters were estimated by gLike on the true trees (b), by 
gLike on the tsinfer + tsdate-reconstructed trees from the true genotypes (c), and 
by Fastsimcoal2 on the allele frequency spectra derived from true genotypes (d). 
A reference for the width of the population sizes equivalent to 20,000 is given in 
each panel.
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gLike accurately infers three-way admixture demography
To showcase the performance of gLike to analyze complex admixture, 
we simulated 1,000 haplotypes on a 30 Mb chromosome from a popu-
lation formed by two consecutive recent admixture events from three 
ancestral populations. Such a demography is parameterized by three 
event times, two admixture proportions and six population sizes, total-
ing up to 11 parameters (Fig. 2a). When true genealogical trees were 
available, the maximum likelihood estimates from gLike, averaged 
over 50 independent simulations, for all 11 parameters achieved an 
overall 3.8% relative error (Fig. 2b), with highly concordant distribu-
tion of the coalescence events (Extended Data Fig. 1). On the other 
hand, gLike on the tsdate-reconstructed trees achieved an overall 23.3% 
relative error (Fig. 2c). In this case, we found that t1 and NO are the most 
overestimated parameters (by 35.6% and 97.3%, respectively) when 
using tsdate-reconstructed trees, possibly because of the tendency 
of tsdate to overestimate times of recent coalescences, prolonging 
the recent branches (Extended Data Fig. 2). Apart from t1 and NO, the 
other nine parameters are estimated with 13.7% relative error. We found 
that using as few as 30 haplotypes only marginally decreased accuracy 
when using true ARG (an overall relative error of 17.1%; Supplementary 
Fig. 2), although at least 30–100 samples are generally recommended 
for inference when using trees inferred by tsdate (Supplementary Fig. 3) 
and may vary by data quality and model complexity. We also found that 
accuracy is lowered when admixture events are older (Supplementary 
Figs. 4 and 5), probably because few lineages are left going farther back 
in time. However, this could be ameliorated with the presence of refer-
ence populations or ancient samples (see below, also see Discussion).

We benchmarked our method against Fastsimcoal2 (ref. 21), which 
is capable of flexibly inferring complex demography using site fre-
quency spectra. Based on true genotypes and the same three-way 
admixture model, Fastsimcoal2 estimates had a relative error of 

54.1%, which led to a visually distorted demography (Fig. 2d). This 
is in sharp contrast to Fastsimcoal2 showing comparable accuracy 
to gLike on a three-population split demography (Supplementary 
Fig. 6) and is probably partly driven by the lack of reference samples 
for admixture. We also found that gLike outperformed pg-gan34, a 
generative-adversarial-network-based deep-learning approach (for 
example, Supplementary Fig. 7), although our experiments were not 
conducted with any specialized neural network hardware and thus we 
do not dismiss the potential for generative adversarial network as an 
emergent approach.

gLike detects components of admixture with high confidence
We examined the ability of gLike to distinguish two-way from three-way 
admixtures. We first applied gLike under a hypothesized three-way 
admixture model to estimate admixture proportions, r1 and r2. We 
found that when the true demography was a three-way admixture, the 
estimated admixture proportion for the third ancestry component, r2, 
centered around the true value (0.7) and was always far from the bound-
aries (0.5 and 1.0). When the true demography was a two-way admix-
ture, the estimated r2 was almost always 1.0, with only one exception 
(Fig. 3a, left and middle). This indicates that gLike correctly reduced a 
three-way admixture model into a two-way model when it was indeed 
two-way admixed. By contrast, both r1 and r2 were estimated to be the 
boundary values around half of the time by Fastsimcoal2, regardless 
of the true demography (Fig. 3a, right panel).

We next evaluated the maximum likelihood achieved under a 
two-way admixture model and a three-way admixture model (Methods).  
Akaike’s information criterion (AIC) model selection was applied on the 
log-likelihood differences between two models to select the more plau-
sible model between the two-way and three-way admixtures. Across 100 
independent simulations, the three-way admixture model was never 
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between two models (see Methods for technical details). The distributions of log-
likelihood improvement after model expansion are shown as histograms. Model 
selection through AIC resulted in a classification accuracy of 92%.
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preferred when the true admixture was two-way, and the three-way 
admixture model was preferred over the two-way when it was the true 
model ~85% of the time with both true ARGs and tsdate-reconstructed 
ARGs (Fig. 3b), resulting in ~92% accuracy of classification.

gLike infers complex demographic histories from stdpopsim
We further evaluated the ability of gLike to reconstruct two additional 
demographic models with increasing complexity, as published in std-
popsim35: the American Admixture (stdpopsim model 4B11; Fig. 4) and 
the Ancient Europe (stdpopsim model 4A21; Fig. 5) demographies.

The American Admixture model consists of four populations. 
Following stdpopsim, three ancestral populations were labeled AFR, 
EUR and ASIA to represent ancestries from the African, European and 

Asian continents, respectively. ADMIX is the population formed by a 
very recent admixture from the three ancestral populations. This model 
has 15 parameters, including four event times, two admixture propor-
tions, six population sizes and three exponential growth rates (Fig. 4). 
We simulated 1,000 haplotypes from population ADMIX on a 30 Mb 
chromosome. gLike on the true trees inferred all 15 parameters with 
overall 11.3% relative error (Fig. 4b). In particular, Nooa, the size of the 
out-of-Africa predecessor of the EUR population, was overestimated by 
38.5%. This is a result of approximations that gLike undertook because 
the number of connections between states exceeded the predefined 
threshold (see Methods), and the bias can be mitigated by increasing 
this threshold (Extended Data Fig. 3). gLike on the tsdate-reconstructed 
trees inferred parameters with overall 23.5% relative error (Fig. 4c). 
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Fig. 4 | gLike reconstructs the American admixture demography.  
a, American admixture demography with parameters from stdpopsim model 
4B11. All population sizes are drawn to scale. The true value for the sizes of each 
population (N), the growth rate (gr) and time of demographic events are given on 
the right. b–d, The reconstructed demography using estimations averaged over 
50 replicate simulations (left) and boxplots of relative errors in each simulation 
(right). Trees and genotypes of 1,000 haplotypes from the admixed population 
were simulated on a 30 Mb chromosome, the demographic parameters were 

estimated by gLike on the true trees (b) or the tsinfer + tsdate-reconstructed 
trees (c), and by Fastsimcoal2 on the allele frequency spectra derived from 
true genotypes (d). Boxplots are capped at 300% relative error for ease of 
visualization. A reference for the width of the population sizes equivalent to 
50,000 is given in each panel. e, Ternary plots showing admixture proportions 
estimated by gLike on the true trees (left), by gLike on the tsinfer + tsdate-
reconstructed trees (middle) or by Fastsimcoal2 on the allele frequency spectra 
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Except from the overestimation of Nooa by 77.8%, the error concentrated 
on the AFR branch. Fastsimcoal2, by comparison, estimated the same 
set of parameters with 46.0% relative error (Fig. 4d). Fastsimcoal2 esti-
mated the AFR proportion fairly accurately, but appears to be unable 
to distinguish between the EUR and ASIA proportions (Fig. 4e). Provid-
ing Fastsimcoal2 with 500 additional haplotypes from each ancestral 
population and multidimensional site frequency spectra improved 
the accuracy and consistency of Fastsimcoal2’s estimation of almost 
all parameters (an average of 17.2% relative error), which is comparable 
to the performance of gLike based on the inferred trees (16.7% relative 
errors), although gLike on true trees (5.8% relative errors) was still 
more accurate in capturing the histories of these populations (Sup-
plementary Fig. 8).

To test the performance of gLike on intra-continental admixtures, 
we also evaluated the Ancient Europe model from stdpopsim (2A21). 
This model is a four-way admixture model in which the two intermedi-
ate ancestors of the Bronze Age (‘bronze’ in Fig. 5a) population are each 
in turn admixed from two ancestors. For such a complex demography 

that involves six ancestral populations and relatively old admix-
tures, inference without any reference sample appeared challenging  
(Supplementary Fig. 9). Therefore, we simulated 100 haplotypes from 
the present-day population that descended from the Bronze Age and 20 
from each of the ancient populations, sampled according to the times 
specified by stdpopsim. These sample sizes were chosen to roughly 
match the sample sizes currently available for an ancient DNA sample 
and for computational consideration (see ‘Runtime considerations’ 
section below). Applying gLike to the true trees resulted in estimates 
of the 20 parameters with overall 3.1% relative error (Fig. 5b). Fast-
simcoal2 estimated all parameters with an average relative error of 
44.5% (Fig. 5c). Notably, Fastsimcoal2 significantly overestimated Nyam 
because the reference samples were only informative for about 20 gen-
erations in the model (sampled 160 generations ago and admixed 180 
generations ago). We did not test gLike using inferred trees, as ancient 
samples are not yet fully incorporated during ARG inference by tsdate 
(see Supplementary Fig. 10 for an illustrative example). However, we 
anticipate that gLike will substantially improve over Fastsimcoal2 in 
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Fastsimcoal2

Nana = 50,000 (260 gen.)a
Nneo = 50,000 (180 gen.)
Nwhg = 10,000 (250 gen.)
Nbronze = 50,000 (contemp.)
Nyam = 5,000 (160 gen.)
Nehg = 10,000 (250 gen.)

t1 = 140 (time of YAM and NEO admixture)
t2 = 180 (time of EHG and CHG admixture)
t3 = 200 (time of ANA and WHG admixture)
t4 = 600 (time of WHG and EHG divergence)
t5 = 800 (time of ANA and CHG divergence)
t6 = 1,500 (time of basal European split)
r1 = 0.5 (NEO admixture proportion into Bronze)
r2 = 0.5 (EHG admixture proportion into YAM)
r3 = 0.75 (ANA admixture proportion into NEO)

Nchg = 10,000 (300 gen.)
Nne = 5,000
Nwa = 5,000
Nooa = 5,000

b

c

Fig. 5 | gLike reconstructs the ancient Europe demography. a, Ancient Europe 
demography with parameters from stdpopsim model 4A21. Populations 
are labeled per stdpopsim model: OOA/ooa, out-of-Africa; NE/ne, Northern 
European; WA/wa, West Asian; CHG/chg, Caucasus hunter-gatherer;  
ANA/ana, Anatolian; WHG/whg, western hunter-gatherer; EHG/ehg, eastern 
hunter-gatherer; YAM/yam, Yamnaya; NEO/neo, Neolithic; Bronze/bronze, 
Bronze Age. The Bronze Age population is plotted with initial size true to scale, 
but the growth rate (gr) is shown as text to avoid a disproportionate figure.  
All other population sizes are constant size and drawn to scale. True parameters 
for simulation are shown on the right. For sampled populations, the sampling 
times are shown inside brackets following the corresponding population sizes. 
b,c, The reconstructed demography using estimates averaged over 50 replicate 

simulations (left) and boxplots of percentage errors in each simulation (right). 
Trees and genotypes were simulated on a 30 Mb chromosome. A total of 220 
haplotype samples (100 contemporary samples descended directly from 
the Bronze Age population and 20 ancient samples each from the six ancient 
populations) were drawn at collection times as described by stdpopsim. The 
demographic parameters were estimated by gLike on the true trees (b) or by 
Fastsimcoal2 on the site frequency spectra of the true genotypes (c). Boxplots are 
capped at 300% relative error for ease of visualization. A reference for the width 
of the population sizes equivalent to 100,000 is given in each panel. For each 
ancestral population, the period after reference sample collection is marked by 
hash lines, to indicate that reference samples do not provide information on this 
part of history.
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accuracy for some parameter estimates if inferred ARGs can accurately 
incorporate ancient samples, and expect that gLike can generally han-
dle intra-continental admixtures when ancestral populations may be 
relatively closely related.

Inferring admixture history of Latinos and Native Hawaiians
We applied gLike to investigate populations with complex demographic 
histories using genome-wide array genotyping data from Latinos and 
Native Hawaiians. We estimated 16 parameters of a four-way admix-
ture model consisting of Africans, Europeans, East Asians and a fourth 
ancestral population representing either the Indigenous Americans 
(for Latinos) or the Polynesians (for Native Hawaiians) (Fig. 6 and 
Supplementary Table 1). In both cases, the inferred demography 
reduced down to a three-way admixed model (Fig. 6), with estimates 
of admixture proportions broadly consistent with those from previ-
ous studies36,37 and an alternative supervised approach (Supplemen-
tary Table 2). We estimated the Native Hawaiians to be more recently 
admixed than the Latinos (19 compared to 25 generations ago), with 
a slightly smaller initial population size (35,682 ± 10,656 compared to 
41,579 ± 16,851, but both are probably overestimated; see Discussion) 
and smaller growth rate (0.078 ± 0.009 compared to 0.132 ± 0.012) 
since the admixture. We found that European ancestries participated 
in both admixture events, with similar population sizes (13,388 ± 2,388 
and 13,341 ± 4,702) and timing of its divergence with the East Asians 

(1,018 ± 172 and 1,041 ± 87 generations ago), suggesting a similar 
underlying population that colonized the Americas and Polynesia. 
Note that this ancestry should be more appropriately interpreted as 
the colonizing population, which is less genetically diverse than the 
entire European continent currently or at the time. On the other hand, 
the Indigenous American ancestry was estimated to have larger sizes 
(73,170 ± 28,939) than the Polynesian ancestry (15,695 ± 7,393), which 
may reflect greater population sizes or more extensive structure in 
the indigenous ancestors of the Latinos than their counterpart of the  
Native Hawaiians.

We estimated the uncertainties of these parameter estimates 
through parametric bootstrapping. We found the resampled error 
intervals captured the true parameters approximately 83% of the 
time overall, although empirical coverage differed across parameters 
(Supplementary Table 3). Considering the potential errors during the 
ARG-reconstruction process (as have been seen in Figs. 2 and 4), biases 
resulting from approximations for computational efficiency (Extended 
Data Fig. 3) and the lack of high-quality sequencing data (Supplemen-
tary Table 4), these point estimates of the demographic parameters 
for both populations should be taken with caution. Nevertheless, our 
results suggest that gLike is able to qualitatively capture known features 
of the demographic history of Latinos and Native Hawaiians without 
reference data from their ancestral populations, and the results stand 
to improve as ARG-reconstruction approaches advance.
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Fig. 6 | Parameter estimations for the demographic histories of Latinos and 
Native Hawaiians. a,b, gLike was applied under a potential four-way admixture 
model reminiscent of stdpopsim model 4B11 for both the Latino (a) and Native 
Hawaiian (b) data, each with 500 individuals. The four potential ancestral 
populations are African, European, East Asian and Indigenous American (for 
Latinos) or Polynesian (for Native Hawaiians). gLike was run in 20 independent 
parallel threads, each making an inference based on ten randomly sampled 

trees. The reconstructed demographic diagrams are to scale, marked with 
relevant parameters and estimation uncertainties based on the mean and 
standard deviation of the 20 threads, respectively. Ancestral populations 
estimated to have 0% admixture proportion are shown as translucent because 
their sizes cannot be estimated. Stacked barplots show the estimated admixture 
proportions of ancestral populations.
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Runtime considerations
The mean runtime of gLike inference on each experiment is summarized 
in Supplementary Table 5, ranging from 0.55 h for the three-way admix-
ture model to 86.12 h for the Latino empirical data analysis. Factors 
influencing the computational burden of gLike include the number of 
states and their interconnections as well as the exact structure of the 
genealogical trees (see Supplementary Table 5 legend). Sample size is 
also an important factor affecting gLike runtime. In the three-way 
admixture model (Fig. 2), we found that increasing the sample size up 
to 30,000 led to a logarithmic increase in computational burden 
(Extended Data Fig. 4). Therefore, a sample size between 100 (see Sup-
plementary Fig. 3) and 30,000 would be generally recommended for 
balancing performance and runtime. We also introduce a customizable 
parameter, κ, to directly control the scale of the GOS and restrict the 
runtime when enumerating all states may not be feasible for complex 
demographies (see Methods for details). In such cases, κ  connections 
are randomly sampled to approximate the entire GOS. The default 
setting of 10,000 connections is usually sufficient for accurately esti-
mating most parameters, but some parameters, such as the out-of-Africa 
population size, Nooa, in the American Admixture model (Fig. 4) may 
require a higher κ  to be estimated within 10% error (Extended Data 
Fig. 3).

Discussion
With recent advances in scalable ARG inference, a population-genetic 
approach that explicitly uses the ARG or its marginal trees is an excit-
ing area of active research. In this study, we introduced a framework 
that explains the stochastic formation of the genealogical trees in a 
multi-population context and computes the full likelihood of each 
demographic scenario. Our results revealed that the history of 
cross-continental admixture can be clearly decoded from the gene-
alogical trees of a single sample of admixed haplotypes. For many 
understudied diverse populations across the world, it is often unclear 
whether they are admixed and, if so, what the genetic properties of 
the ancestral populations may be. Even if the ancestral populations 
can be hypothesized, they may no longer exist or could be difficult to 
sample. For these populations, demographic inference using allele 
frequencies can be challenging38. gLike has the potential to provide 
new demographic insights for these understudied or ancient popula-
tions as well as for other species.

gLike has some commonality with approaches to species-tree 
inference based on gene trees, where gene trees can be used to esti-
mate the topology and branch lengths of a phylogenetic tree39. Such 
methods estimate the whole topology, whereas we pre-specify the 
demographic history and estimate parameters related to it, includ-
ing processes like admixture that do not feature as prominently in 
species-tree inference. Having to assume a parametric demographic 
model is a common approach shared by many existing demographic 
inference methods but it also underscores the importance of select-
ing an appropriate model for meaningful inference. The gLike pack-
age includes visualization utilities, such as coalescence distributions 
(Extended Data Fig. 1) and the most probable population label for 
each node of a tree, which could provide some intuition of the fit of 
data to the hypothesized demographic model. In comparing models 
with different waves of admixture (Fig. 3), we found that using AIC for 
model selection worked well, although alternative approaches, such as 
leaving alternate chromosomes out during model fitting, could also be 
sensible. Nevertheless, for complicated models, some prior knowledge 
will be useful for model construction or candidate model proposals. 
Therefore, developing comprehensive methods incorporating model 
selection, perhaps starting with approaches akin to the species-tree or 
admixturegraph inference4,40–42 to obtain a skeleton topology, will be 
an important focus of future research.

We note that currently, gLike is not using the full information 
encoded in an ARG but rather relies on sets of presumed independent 

trees. HMM-based demographic inferences12–15 are computationally 
intensive and have limited scalability because of their intricate handling 
of recombination events. We reasoned that although recombination 
events are essential for ARG inference, they are less informative for 
genealogy-based demographic inference. Given an accurately inferred 
ARG, recombination events can be modeled as a random breakpoint 
in the genealogical tree re-coalesced onto the rest of the tree. The 
random break is independent of demography, and the re-coalescence 
holds minimal information compared to the numerous coalescences 
already on the tree. In light of the limited gain in information from 
recombination events, gLike currently focuses on rigorously mod-
eling lineage assortments and coalescent events within independ-
ent trees rather than the variability between neighboring trees to 
accommodate thousands of samples and multiple populations in  
the model.

One current limitation of gLike is that continuous migration is not 
supported because it drastically increases the number of states. In the 
American Admixture simulations (Fig. 4), we omitted the weak migra-
tions (10−5–10−4 per generation) between continental populations as 
originally specified by the stdpopsim model. Omitting the continuous 
migrations has no visible impact on estimating the remaining param-
eters unless they are ~100 times more intense than typically presumed 
rates between continental human populations (Extended Data Fig. 5). 
However, such frequent migrations (10−3–10−2 per generation) may 
exist between intra-continental populations, where geographical 
separations are minimal. Estimating the migration rate itself is also of 
interest in ecological studies of other species, and a future focus will 
be extending gLike to incorporate continuous migration, perhaps 
through discretizing the continuous migration coupled with a more 
efficient random sampling technique on the states.

Future improvement on ARG inference methods (for example, ref. 
43) may further expand the applications of gLike; here, we discuss three 
possible directions. First, the point estimates of coalescent times may 
be incomplete summaries of the data30. Incorporating the uncertain-
ties or posterior distributions of the ARG might lead to more accurate 
and robust demographic inferences. Second, inferring genealogies 
with ancient DNA (aDNA) samples is of great interest in many applica-
tions. In simulations modeling the intra-continental demography of 
Ancient Europe, we found that as few as ten diploid aDNA samples 
significantly enhanced inference accuracy (compare Fig. 5 and Sup-
plementary Fig. 9) and reduced computation time (Supplementary 
Table 4). This is because ancient samples are closer to the admixture 
events and thus experienced fewer coalescences. If aDNA samples can 
be accurately sequenced and phased, they offer more information 
about the admixtures and histories of ancestral populations than 
contemporary samples of the same size. However, this potential appli-
cation is currently limited by the quality of ancient DNA data and the 
lack of methods to appropriately incorporate ancient DNA into the 
ARGs (see Supplementary Fig. 10). Finally, gLike on ARGs inferred 
by tsinfer + tsdate on simulated array data showed noticeable biases 
(Supplementary Tables S3 and S4). Implementing specialized correc-
tion procedures to account for ascertainment bias, either during ARG 
inference or demographic inference, could broaden the application 
of this method to other populations and species.

Lastly, we acknowledge that human migrations and admixtures 
exist on a continuum. In the current framework, we opted to model 
discrete populations and components of ancestries, as is custom-
ary when modeling the histories of multi-ancestry, recently admixed 
populations such as the Latinos. However, one of the advantages of 
an ARG-based view of human history may be to remove the notion 
of discrete populations. Enabling continuous rather than pulse-like 
migrations between populations to enhance gLike may be another step 
forward, and future developments of ARG-based demographic infer-
ence may emphasize the paradigm shift to represent human histories 
and structure on a continuum.
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Methods
Probability of a genealogical tree under a demography
The demographic history of K  populations can be represented by the 
interplay between two stochastic processes affecting the lineages: 
coalescence and movement among populations. The coalescence rate, 
na (t), of each population a as a function of time t is:

na (t) =
1

kNa (t)
,a ∈ {1,… ,K } , t ∈ (0,∞),

where Na is the effective population size and k  is ploidy. The migration 
probability matrix, m, at each of the S historical events is:

mab (ts) ,a,b ∈ {1,… ,K }, s ∈ {1,… , S},

where ts is the time of the sth historical event and mab (ts) is the instan-
taneous probability for a lineage to move (backward in time) from 
population a to b.

The demography is thus defined as:

𝒟𝒟 = (n,m) = ({na} , {mab}) ,

a size-K  vector of coalescence rates defined on continuous time and a 
K × K  matrix of migration probabilities defined on a discrete set of 
times. Although gLike currently does not explicitly incorporate con-
tinuous migration, it can potentially be represented as a series of  
historical events through discretization.

A genealogical tree with N  nodes can be defined by the time and 
children of each node as:

𝒢𝒢 = {(τi,πi)|i ∈ {1,… ,N }} ,

where τi is the time of the node i (or, equivalently, the emergence of 
lineage i) and πi is the set of its child nodes (which is empty if i is a leaf 
node). The end time ωi of lineage i can be calculated as the time of its 
parent node (that is, ωi = τj if i ∈ πj) or ∞ if it has no parent. Our goal is 
to compute ℙ (𝒢𝒢𝒟𝒟) for arbitrary 𝒢𝒢 and 𝒟𝒟, and we will omit thereafter the 
‘conditional on 𝒟𝒟’ notation, which is always implied.

It is helpful to define the set of lineages existing at time t  as:

L (t) = {i|τi ≤ t < ωi}

and the lineages emerging between t  and t′ as:

L (t, t′) = {i|t < τi,ωi < t′}

Migration trajectory and states
The population identity of a lineage i during its existence,

xi (t) , t ∈ [τi,∞)

is a time-dependent variable taking values from {1,… ,K } that describes 
how this lineage, or its ancestor lineage when t > ωi, migrates in history. 
For convenience, the value of xi (t) at exactly the time of a historical 
event is defined as the left limit xi(ts)= lim

t→ts−
x(t), so that x (t) is left-continuous.

The population identity of all lineages existing at any time through-
out history is:

x (t) = {xi (t) , |, i ∈ L (t)} , t ∈ [0,∞),

which gives a complete migration trajectory of the genealogical tree. 
The genealogical tree itself does not dictate x, and the probability of 
it should be computed as the sum over all possible trajectories,

ℙ (𝒢𝒢) = ∑
x
ℙ (𝒢𝒢∩x) .

To compute ℙ (𝒢𝒢) recursively over time, we define 𝒢𝒢 (0, t) as the 
genealogical history in 𝒢𝒢 until time t  and define a ‘state’ as:

𝒢𝒢 (0, t) ∩ x (t) .

For example, the state ‘ABCC’ in Fig. 1 at t1 contains 𝒢𝒢 (0, t1), which 
indicates that lineages 2 and 3 coalesced at τ1 but all other possible 
coalesces has not happened at t1, and x (t1) = ABCC, which indicates that 
the remaining four lineages (1, 6, 4 and 5) are in populations A, B, C and 
C, respectively, at t1.

Now ℙ (𝒢𝒢) can be expressed as the sum of the probability of root 
states:

ℙ (𝒢𝒢)=ℙ (𝒢𝒢 (0,∞)) = ∑
x(∞)

ℙ (𝒢𝒢𝒢0,∞) ∩ x (∞)) .

Conditional probability between states
The conditional probability between states,

ℙ (𝒢𝒢𝒢0, ts+1) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts))

= ℙ (𝒢𝒢𝒢0, ts) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts)) ℙ (𝒢𝒢𝒢0, ts+1) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts+1)) ,

consists of a migration probability and a genealogical probability.
The migration probability,

ℙ (𝒢𝒢𝒢0, ts) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts)) = ∏
i∈L(ts)

mxi(ts)xi(ts+1) (ts) ,

describes the migration of each lineage i from xi (ts)  to xi (ts+1)   
at time ts.

The genealogical probability, ℙ (𝒢𝒢𝒢0, ts+1) ∩ x (ts+1) 𝒢𝒢𝒢0, ts) ∩ x (ts+1)), 

describes how likely the genealogical tree grows, according to 𝒢𝒢, back-
ward in time from ts  to ts+1, given population identities x (ts+1). This 
requires that every coalescence in 𝒢𝒢 happened exactly at its time in 𝒢𝒢 
(which we call the coalescence probability) and that any other possible 
coalescence did not happen (which we call the non-coalescence 
probability).

The coalescence probability is:

∏
i∈L(ts ,ts+1)

[nxi(ts+1) (τi)]
max(0,|πi |−1),

where nxi(ts+1) (τi) is the coalescence rate of lineage i’s population when 
it emerges. Note that the lack of migration between τi and ts+1 guaran-
tees xi (τi) = xi (ts+1); max (0, |πi| − 1) is the number of coalescences at the 
emergence of i (for example, a binary node is formed with one coales-
cence, a ternary node can be viewed as two coalescences at the same 
moment and a leaf node or unary node does not have coalescence).

The non-coalescence probability is:

∏
a∈{1,…,K}

exp (−∫
ts+1

ts

(
la (t)

2
) • n (t)dt) ,

where

la (t) = |{i|i ∈ L (t) , xi (ts+1) = a}|

is the number of lineages in population a at time t  (if population identi-
ties are specified by xi (ts+1)), which is a step function that jumps when 

lineages emerge or coalesce; ( la (t)2 ) = la(t)(la(t)−1)
2

 is the number of lineage 

pairs in a that are possible to coalesce; and the exponential term is the 
probability that none of them actually coalesced during (ts, ts+1), which 
is derived from a nonhomogeneous Poisson process with rate 
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λ (t) = ( la (t)2 ) • n (t). Note that n (t) can be any integrable function, ena-

bling flexibility to the population size variation in the demographic 
model.

We conclude that the conditional probability between states is:

ℙ (𝒢𝒢𝒢0, ts+1) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts))

= (∏i∈L(ts) mxi(ts)xi(ts+1) (ts)) • (∏i∈L(ts ,ts+1) [nxi(ts+1) (τi)]
max(0,|πi |−1))

• (∏a∈{1,…,K} exp (−∫
ts+1

ts

(
la (t)

2
) • n (t)dt))

= (migration probability) • (coalescence probability)

• (noncoalescence probability)

= (migration probability) • (genealogical probability)

Practically, the migration probability has to be computed between 
any parent–child state pair, but the genealogical probability is inde-
pendent from the child state and needs to be calculated only once for 
every state. As a boundary condition, the origin state at the bottom 
(that is, leaves) of the tree has a probability of 1:

ℙ (𝒢𝒢𝒢0,0) ∩ x (0)) =ℙ (x (0)) = 1,

where x (0) specifies the population identities of each individual in the 
study samples.

The minimal GOS
All possible states at all times of all historical events t1, t2,… , tS form a 
directed acyclic graph, named the GOS, whereby states in adjacent 
layers (one at ts and the other at ts+1) are connected with their condi-
tional probability as introduced above. A state with zero marginal 
probability will not contribute to the marginal probability of its parent 
state and is redundant in the graph. A GOS without redundant states is 
called a minimal GOS.

The coalescence probability and non-coalescence probability are 
always >0, because population sizes cannot be zero or infinity. This 
means that to judge whether a state is possible or not, we only have 
to check the migration probabilities, which are decomposable into 
migrations of each individual lineage. In other words, a state is possible 
if every lineage is in a possible population. To put it mathematically, 
we have:

ℙ (𝒢𝒢𝒢0, ts) ∩ x (ts)) > 0 ⟺[I (xi (0)) ∏
1≤r≤s

m (tr)]
xi(ts)

> 0, ∀i ∈ L (0) ,

where I (xi (0))  is a size-K  indicator vector with value 1 at the population 
xi (0)  from which sample  was collected, and all other elements  
are zero; ∏1≤r≤s m (tr) is the transition matrix summarizing the first s 

historical events; and [I (xi (0))∏1≤r≤s m (tr)]xi(ts)  is the probability  

that lineage  migrated from xi (0)  to xi (ts). Step 1 in Fig. 1 can be  
understood as the non-zero elements in I (xi (0))∏1≤r≤s m (tr)  for  
every s.

Sampling connections between states
The computational time and memory cost for a gLike evaluation of a 
tree depends on the number of states and the number of connections 
between states or, in the language of graph theory, the number of 
vertices and edges of the GOS. We introduce a customizable parameter, 
κ , that controls the maximum number of connections between the 
current layer of states to the next (moving forward in time). If the 
number of connections is prohibitive for enumeration even in the 
minimal GOS, gLike creates a sampled GOS (sGOS) by randomly 

sampling a number of connections to approximate the complete GOS. 
Specifically, gLike controls the total number of connections between 
adjacent layers:

∑
x(ts+1)

∑
x(ts)

ν (x (ts+1) , x (ts)) = κ,

where ν = 1 if the states x (ts+1) and x (ts) are connected in the sGOS, and 
ν = 0 otherwise. The hyperparameter κ  is intuitively the ‘throughput’ 
of the sGOS and controls the trade-off between time and performance. 
By default, it is set to 10,000. All connections between two adjacent 
layers in the original GOS are equally likely to be sampled into the sGOS. 
That is,

ℙκ (ν (x (ts+1) , x (ts)) = 1) = min (1, κ

Ks
) ,

ifℙ (𝒢𝒢𝒢0, ts) ∩ x (ts+1) |𝒢𝒢𝒢0, ts) ∩ x (ts)) > 0,

where

Ks = ∑
x(ts+1)

∑
x(ts)

1ℙ(𝒢𝒢(0,ts)∩x(ts+1)|𝒢𝒢(0,ts)∩x(ts))>0

is the number of connections between ts+1 and ts in the original GOS.
A set of ν values gives an instance of the sGOS, which represents a 

probability measure ℚν different from ℙ. The conditional probability 
in ℚν is

ℚν (𝒢𝒢 (0, ts+1) x (ts+1) |𝒢𝒢 (0, ts) x (ts))

=ℙ (𝒢𝒢 (0, ts+1) x (ts+1) |𝒢𝒢 (0, ts) x (ts)) • ν (x (ts+1) , x (ts)) •max (1, Ks

κ
) .

It is straightforward by induction that the equality,

𝔼𝔼κ (ℚν (𝒢𝒢 (0,∞) ∩ x (∞) |𝒢𝒢 (0, ts) ∩ x (ts)))

= ℙ ((𝒢𝒢 (0,∞) ∩ x (∞) |𝒢𝒢 (0, ts) ∩ x (ts))) ,

holds for any state. Applying this to the origin state yields

𝔼𝔼κ (ℚν (𝒢𝒢 (0,∞))) = 𝔼𝔼κ (ℚν (𝒢𝒢 (0,∞) x(∞)|𝒢𝒢 (0,0) x(0)))

=ℙ (𝒢𝒢 (0,∞) x(∞)|𝒢𝒢 (0,0) x(0)) =ℙ (𝒢𝒢 (0,∞)) ,

which means ℚν (𝒢𝒢 (0,∞)) is an unbiased estimator of 𝒢𝒢 (0,∞).
In practice, Ks  can be quickly determined using the migration 

matrix m (ts). If Ks < κ , no approximation is conducted; if Ks > κ , all 
states between ts+1 and ts  are sampled without replacement with a 
probability κ/Ks. The migration probability is multiplied by Ks/κ  to keep 
the unbiasedness of the sGOS.

Implementation details and optimization
With the above-mentioned theory to calculate ℙ (𝒢𝒢𝒟𝒟θ)  on a demo-
graphic model 𝒟𝒟θ  parameterized by θ, the estimated parameter that 
best explains the observed 𝒢𝒢 is

θ∗ = argmax
θ

ℙ (𝒢𝒢|𝒟𝒟θ) .

gLike encapsulates the likelihood computation and a simulated 
annealing-based optimization into an open-source Python package, 
alongside a C extension to accelerate Cartesian product operations 
when searching for child states (https://github.com/Ephraim-usc/
glike). All probabilities are implemented in log scale, and sums of prob-
abilities are calculated with the scipy logsumexp function, which are 
computationally relatively inexpensive (Extended Data Fig. 4). When 
multiple, presumed independent and neutrally evolving trees are pro-
vided, the final log likelihood is the sum of the log likelihoods of each 
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tree. We presume independence of trees, as the total likelihood would 
assume more complicated forms if trees were nearby and not independ-
ent. We also presume neutrality, as coalescence probabilities would 
deviate from the inverse of population sizes when there are variants 
under natural selection. We set a user-defined parameter to drop some 
proportion (default, 50%) of the lowest likelihood trees during optimi-
zation, as we found in practice that this filtering improves robustness 
against errors in tree reconstruction (such as erroneous coalescences) 
and migrations that are neglected in the demographic model.

A current limitation of gLike, which is a common problem in many 
demographic inference methods, is that certain parameters are not 
individually identifiable. These entangled parameters could only be 
optimized in combination if multiple combinations of the two param-
eters produce the same average coalescence rate. An example is that 
the effects of population size and growth rate are hard to separate if a 
population exists for only a short time (Extended Data Fig. 6). When 
applying gLike with simulated annealing-based optimization, the 
estimates of entangled parameters could be path-dependent. There-
fore, a grid search on specific entangled parameters after a general 
optimization routine may be beneficial to an unbiased estimation of 
the demography.

Demographic inference in simulations
All simulations were performed on a 30 Mb chromosome with both 
recombination and mutation rates set to 10−8 per generation per base 
pair, with a sample size of 1,000 haplotypes from the admixed popula-
tion. The demographic parameters are annotated in the corresponding 
figures or cloned from stdpopsim35 models 4B11 (American Admixture) 
and 4A21 (Ancient Europe). In American Admixture simulations, we 
ignored the continuous migrations in our simulations and estimations. 
The extent to which hidden migrations potentially undermine gLike 
results was tested on additional simulations with 1×, 10× and 100× 
continuous migrations as reported by stdpopsim 4B11. In the Ancient 
Europe simulation, we additionally sampled 200 haplotypes from each 
ancestral population according to the collection times reported by 
stdpopsim, to mimic genetic studies with ancient DNA.

To evaluate gLike, ARGs and genotypes were simulated by 
msprime44. ARG reconstructions by tsinfer + tsdate (tsinfer v.0.3.0 and 
tsdate v.0.1.4)45,46 or Relate (v.1.1.6)47 were performed with all default 
parameters (including an effective population size (Ne) of 10,000) as 
suggested in the user manual. We observed that the inferred distribu-
tion of coalescences from tsinfer + tsdate is more robust to the choice 
of Ne than that from Relate, particularly for the relatively recent time 
period (~10–100 generations ago) when admixture events tend to 
occur (Extended Data Fig. 2). As such, we used Ne = 10,000 for all of our 
evaluations. In total, 100 evenly spaced trees across the chromosome 
were selected for gLike inference. The precision of the gLike param-
eter estimation (that is, the minimal step size during optimization by 
simulated annealing relative to the current estimate) was set to 2%. 
The parameters are initially set to uninformative values (for example, 
all 10,000 for population sizes and all 0.01 for growth rates) to avoid 
bias. The exact initial values and boundary conditions can be found in 
Supplementary Table 6. The absolute difference between the average 
estimate and the truth, divided by truth, is defined as the relative error. 
The average estimates across 50 (or 20 for analyses presented in supple-
mentary figures) replicate simulations were used as the final pictorial 
representation of the reconstructed demography, with boxplots of 
the relative errors across 50 or 20 replicates also shown. All boxplots 
display the first, second (the median) and third quartiles of the data, 
with whiskers extending from the box to the farthest data point lying 
within 1.5× the inter-quartile range.

We find that in our application with gLike for the demographies 
we have studied, analyses using tsinfer + tsdate-estimated genealogical 
trees produced more accurately estimated demographies than using 
trees estimated by Relate. The difference in performance may trace 

to the fact that Relate does not accurately reproduce the coalescence 
distributions during the period between ~10–100 generations ago when 
admixture events happened (Extended Data Fig. 3b,c), thereby leading 
to mis-estimations in the gLike framework (even when using multiple 
trees sampled from the posterior of Relate; Supplementary Fig. 11). As 
a result, gLike on Relate-reconstructed trees was not tested further in 
this study. Notably, Relate may outperform tsdate in other applica-
tions using the genealogical trees, such as inferring the genome-wide 
expected relationship matrix26, suggesting that current methods have 
respective strengths in capturing different aspects of the true ARGs.

To compare gLike to Fastsimcoal2 (v.2.8.0.0)21, derived allele fre-
quency spectra of 1,000 haplotypes (the same sample size as used when 
evaluating gLike) were computed on all simulated single nucleotide 
polymorphisms (SNPs) (including singletons), and parameter estima-
tion was performed with 100,000 simulations and 40 ECM (expecta-
tion / conditional-maximization) loops, using the commands ‘-n 1 
-s0 -d -k 1000000’ for SFS simulation and ‘-n 100000 -d -M -L 40’ for 
parameter estimation. Following the recommendation of the author 
for Fastsimcoal2, for a simulated dataset of a given demographic his-
tory, we performed 20 replicates of estimation (each initiated with 
an independent random seed). The single replicate with the high-
est likelihood was then taken as the inference result. This process is 
then repeated over 50 simulated datasets. Boxplots were made based 
on the best estimations for each of the 50 datasets. When multiple 
populations are present (for example, Fig. 5 and Supplementary Fig. 8), 
using the multidimensional SFS command (-n 100000 -d -M -L 40 
-q–multiSFS -c12 -B12) showed an improvement over using pairwise 
two-dimensional SFS; however, because of computational limitation 
set by Fastsimcoal2 for multidimensional SFS, the sample sizes were 
proportionally reduced (in Fig. 5, 25 haplotypes from Bronze and five 
haplotypes from each ancestral populations; in Supplementary Fig. 8, 
60 haplotypdes from ADMIX and 30 haplotypes from each ancestral 
population).

We also compared gLike performance to pg-gan34 (v.9/27/22), a 
deep-learning demographic parameter inference method that uses 
generative adversarial networks to create realistic simulated training 
data. Genotypes from simulated ARGs of the same demographic model 
were used as training data and run for up to 300 training iterations with 
default training parameters. We used the same range for each demo-
graphic parameter to be consistent with the Fastsimcoal2 comparisons. 
As pg-gan gives multiple sets of parameter proposals at the end of 
training, the set of inferred demographic parameters with the lowest 
relative error compared to the true parameters was selected as the final 
estimate of this run. A total of 50 independent runs were conducted.

To characterize the impact of ARG reconstruction using array data 
instead of sequencing data, we performed an additional simulation 
experiment in which SNPs were retained with the probability

p(MAF) = Cref(MAF)/Csim(MAF)

where MAF is the minor allele frequency of the simulated SNP, Cref (MAF) 
is the number of occurrences of MAF in the Latinos array data and Csim  
is the number of occurrences of MAF in a simulated genome (3,000 Mb). 
As expected, it was found that Csim is greater than Cref  across all values 
of MAF ∈ [0,0.5], which ensures that p is always less than one. We then 
inferred the ARG using tsinfer + tsdate using the simulated array data.

Model selection in simulations
To test for the existence of an additional ancestral component, gLike 
was applied under a two-way admixture model and a three-way admix-
ture model, and the maximum likelihoods achieved under both models 
were compared. Specifically, the two-way admixture model structurally 
mimicked the three-way admixture as in Fig. 2a, but without popula-
tion D, so that all lineages from population B entered population C. 
As such, the two-way admixture model had two fewer parameters: r2 
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(admixture proportion from D) and ND (population size of D). gLike was 
then applied in a two-step manner. First, the parameters were estimated 
under the two-way admixture model with the default hill-climbing 
optimization. Next, we applied gLike under the three-way admixture 
model and performed a grid search on r2, NC and ND, while fixing other 
parameters at their two-way admixture estimates. Finally, the dif-
ference between the maximum log likelihoods achieved under two 
models was used for AIC model selection (with two degrees of freedom 
to account for the two extra parameters in the three-way admixture 
model), and the model with the higher AIC value was selected.

Latino and Native Hawaiian data processing
A total of 500 individuals were randomly chosen from each of the 
self-identified Native Hawaiians (from up to 5,382 individuals) and 
Latinos (from up to 3,659 individuals) subcohorts from the Multiethnic 
Cohort for empirical analysis using gLike. Written informed consent 
was obtained from all participants, and study protocols were reviewed 
and approved by the Institutional Review Boards at the University of 
Hawaii and the University of Southern California.

The two cohorts were genotyped on two separate genome-wide 
association study arrays: Illumina MEGA and Illumina Global Diversity 
Array. After taking the intersection of SNPs found on both arrays, the 
genotyping data were lifted to hg38 using triple-liftover48 to ensure 
that alleles in inverted sequences between reference genome builds 
were properly lifted. We removed variants that were genotyped in 
fewer than 95% of individuals, variants out of Hardy–Weinberg equilib-
rium (P < 10−6) and individuals with greater than 2% missing genotypes 
(although no one was removed with this threshold). After quality 
check, the Native Hawaiian and Latino datasets contained 990,549 
and 1,093,693 SNPs, respectively. The data were phased without a 
reference using EAGLE (v.2.4.1)49 and its default hg38 genetic map. We 
randomly subsampled 1,000 haploids and removed monomorphic 
SNPs, resulting in 879,040 and 927,254 SNPs in the Native Hawaiian 
and Latino datasets, respectively. The ancestral alleles were called 
by a comparison with the human ancestor GRCh38 e107 genome (ftp.
ensembl.org/pub/release-86/fasta/ancestral_alleles). Tsinfer and 
tsdate were used with all default parameters as suggested in the user 
manual to reconstruct the ARG. The human neutralome50 (that is, the 
regions of the human genome identified as probably selectively neu-
tral) was converted into hg38 coordinates, and 319 neutral regions that 
are at least 5 Mb from each other were selected for gLike analysis. Ten 
trees were sampled in each gLike optimization thread, and 20 threads 
were run in parallel. The estimates of demographic parameters were 
averaged over 20 threads. The standard deviation across 20 threads 
serves as an indicator of the parameter uncertainties, as listed in Sup-
plementary Tables 1 and 4. The precision of gLike parameter estima-
tion was set to 5%, higher than 2% used in simulations. This choice is 
because of the broader span of the likelihood curve’s plateau, which 
generally extends past 5%, wider than observed in simulations. There-
fore, using smaller step sizes would increase computational costs with 
little gain in performance.

To compare the estimated ancestry proportion from gLike with 
that obtained from alternative approach, we also performed supervised 
ADMIXTURE (v1.3.0). AFR (n = 678), American (AMR; n = 82), East Asian 
(EAS; n = 751) and Non-Finnish European (NFE; n = 648) individuals as 
defined by gnomAD (v3.1.2) were used as references for African, Indig-
enous American, East Asian and European ancestries. AFR, EAS and 
NFE were used as references for both Latinos and Native Hawaiians. An 
additional 114 Native Hawaiian individuals from the Multiethnic Cohort 
previously estimated to have >90% Polynesian ancestry36,51 were also 
added as Polynesian reference samples for Native Hawaiians, while the 
AMR individuals from gnomAD were used for Latinos. A total of 323,697 
and 328,112 SNPs for Latinos and Native Hawaiians, respectively, were 
used for analysis after intersecting variants between the references 
and target cohorts and LD pruning (window size of 50 SNPs, shifting 

in ten SNP steps, and r2 threshold of 0.1) using PLINK (v.1.90b6.20). 
ADMIXTURE was run in supervised mode with K = 4 for both analyses.

Statistics and reproducibility
Choice for sample size and genomic region sizes in simulation were made 
to accommodate computational scale and feasibility while allowing  
rigorous insight to the evaluation of our method. For empirical analysis, 
we selected randomly 500 individuals from each of the Native Hawaiian 
and Latino subcohorts of the Multiethnic Cohort. No statistical method 
was used to predetermine sample size; this sample size was chosen to 
ensure the efficient demonstration of gLike’s capabilities and because we 
found that sample sizes greater than 100 appear to be sufficient to provide 
accurate demographic inference using gLike (Supplementary Fig. 3). All 
samples passing quality controls were available for random selection. 
The researchers had no access to any information associated with the 
individual other than self-reported ethnicity for the purpose of forming 
analysis units and random subsets. Codes used for simulation and plotting 
can be found on Zenodo (https://doi.org/10.5281/zenodo.14708630)52.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level genetic data for Native Hawaiian and Latino data-
sets were derived from the Multiethnic Cohort and are available on 
dbGaP (accession numbers phs000220.v2.p2 and phs002183.v1.p1).

Code availability
The gLike package is available on its GitHub page (https://github.com/
Ephraim-usc/glike). The version of gLike as well as codes used for 
simulation and plotting presented in this study can also be found on 
Zenodo (https://doi.org/10.5281/zenodo.14708630)52.
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Extended Data Fig. 1 | The expected coalescence distribution based on the 
inferred demography matches the simulated input. (A) We simulated 100 
equal-distant trees of 1000 haplotypes were simulated on a 30 Mb chromosome, 
under the same demography as in Fig. 2a. The demography is inferred by gLike 
on the true trees with default settings, and the expected coalescence distribution 
is computed by simulation of 10,000 trees under the inferred demography. The 
two distributions are highly consistent, except for small random fluctuations 

on the observed distribution. (B) The same experiment as in (A), but tsdate 
reconstruction is applied to the observed trees, the parameters are then inferred 
by gLike on the reconstructed trees, and tsdate reconstruction is again applied 
to the simulated trees under the inferred parameters. Vertical dash lines indicate 
t1, t2, and t3 in the simulated demography, corresponding to the time of the more 
recent admixture event, the more distant admixture event, and the split of three 
ancestral populations, respectively.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | The inferred distribution of coalescence under the 
three-way admixture demography as function of input parameter Ne during 
ARG inference. For ARG inference based on (A) tsdate, (B) Relate, and (C) Relate 
with branch sampling, the left panels show the times of coalescences (that 
is, inner nodes) in ascending order in a genealogical tree of 1000 haplotypes 

simulated under the three-way admixture demography as in Fig. 2a. Different 
color bands show 2 times standard deviation across 50 independent simulations. 
Right panels show TMRCA in the true tree versus the reconstructed tree, using  
Ne = 10,000, which we use as default for all ARG inference in this study. Results 
from 50 independent simulations are pooled for display.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Log likelihood distribution around Nooa values for 
different thresholds of maximum number of edges connecting all states 
between two time points. For computational efficiency, if the total connections 
between two adjacent layers of the GOS exceeds a customizable hyperparameter, 
κ, gLike will approximate via sampleing (see Methods for details). Here we 
evaluate the impact of setting this threshold, κ, on the apparent biased estimate 
of Nooa parameter in Fig. 4. A total of 50 replicate experiments were conducted 
in each panel. Solid circles and error bars indicate mean and standard deviation, 
respectively, across the replicates. In each replicate experiment, 100 equally 
distant trees of 1000 haplotypes were simulated on a 30 Mb chromosome from 

population ADMIX under the same demography as in Fig. 4. The log-likelihood 
(logP) of observing these 100 trees were calculated by gLike assuming different 
Nooa values and all other demographic parameters fixed at true values. The logP 
calculated from the true Nooa = 1867 were subtracted from all logP values, for 
comparability between replicates. As we increased the default threshold for 
connections before gLike begin approximating the likelihood, the maximum 
likelihood estimate (dashed line) also tended towards the true value (solid 
line), suggesting that the exact computation of likelihood is unbiased, though 
approximation for computational reasons could lead to bias.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Average gLike runtime on a single genealogical tree 
with varying sample sizes. 50 replicate experiments were conducted for each 
sample size. Solid circles indicate the average runtime on each tree, and squares 
indicate the average time spent on scipy logsumexp function for each tree. 

Error bars indicate the standard deviation across 50 replicates. In each replicate 
experiment, 100 equally distant trees of 1000 haplotypes were simulated on 
a 30 Mb chromosome under the same three-way admixture demography as in 
Fig. 2.
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Extended Data Fig. 5 | Robustness of gLike against misspecified continuous 
migrations. The same experiment in Fig. 4a except that the true demography 
contains AFR-EUR, AFR-ASIA, EUR-ASIA and AFR-OOA continuous migrations 
that are set to be 1x (A), 10x (B) and 100x (C) of their rates as in the stdpopsim 
4B11 model. gLike was applied on the true trees in the same way as in Fig. 4a, 
assuming no continuous migrations. Note that the 1x continuous migrations 

have no visible impact on the results, while 100x continuous migrations lead to 
considerable underestimations of t3, t4 and Nafr, due to the accumulation of 
coalescences earlier than expected in a migration-free demography. Boxplots 
display the first, second (the median), and third quartiles of the data, with 
whiskers extending from the box to the farthest data point lying within 1.5x  
of the inter-quartile range.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Unidentifiability between population sizes and growth 
rates. The log-likelihood of the gLike model on the population sizes (at time 
of admixture) and growth rates of the Latinos and Native Hawaiians in a grid of 
possible parameters. All other parameters were fixed at their estimates shown 

in Fig. 6. This result indicates the potential bias when estimating entangled 
parameters, because the hill-climbing optimization could stop anywhere along 
the red curve, depending on the initial values.
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