ATLAS: Autoformalizing Theorems through Lifting,
Augmentation, and Synthesis of Data

Xiaoyang Liu!, Kangjie Bao!, Jiashuo Zhang!, Yunqi Liu!, Yu Chen!,
Yuntian Liu', Yang Jiao®>*, Tao Luo?"
! School of Mathematical Sciences, Shanghai Jiao Tong University
2 Institute of Natural Sciences, MOE-LSC, CMA-Shanghai, Shanghai Jiao Tong University
3 SPEIT, Shanghai Jiao Tong University
4 JoinTech Co., Ltd
{jiaoyang2002, luotao41}@sjtu.edu.cn

Abstract

Autoformalization, the automatic translation of mathematical content from natural
language into machine-verifiable formal languages, has seen significant progress
driven by advances in large language models (LLMs). Nonetheless, a primary
barrier to further improvements is the limited availability of parallel corpora that
map informal mathematical text to its formal counterpart. To address this limitation,
we propose ATLAS (Autoformalizing Theorems through Lifting, Augmentation,
and Synthesis of Data), a novel data generation framework designed to produce
large-scale, high-quality parallel corpora of theorem statements. Distinct from prior
approaches, ATLAS begins with a concept repository, accelerates the improvement
of the student model through expert iteration combined with knowledge distillation,
and introduces two novel augmentation strategies that exploit the structural char-
acteristics of formal languages. Running the proposed ATLAS framework for 10
iterations, we construct an undergraduate-level dataset of 117k theorem statements
and develop the ATLAS Translator by fine-tuning Llama3.1-8B-Instruct with LoRA.
This model establishes a new state of the art, demonstrating statistically significant
improvements over both the Herald Translator and the Kimina-Autoformalizer
across all benchmarks (p < 0.05, two-sided t-test). Furthermore, we demonstrate
that the full-parameter fine-tuning of a stronger base model on the ATLAS dataset
leads to superior performance. The datasets, model, and code are available at
https://github.com/XiaoyangLiu-sjtu/ATLAS.

1 Introduction

In modern mathematics, the escalating complexity of proofs, combined with the increasing reliance
on computer-assisted arguments, has raised substantial concerns about reliability. Errors in traditional
proofs can remain undetected for extended periods, while computer-assisted proofs frequently
lack transparency and are difficult to verify manually, thereby raising issues of trust within the
mathematical community. For example, the Four Color Theorem’s 1879 proof went unchallenged
for over a decade before its flaw was discovered. The first computer-assisted proof in 1976 raised
concerns due to its unverifiable computations, prompting further debate. Only in 2005 was the proof
formally verified using Coq [4]]. To address such issues, formal languages like Isabelle [29]], HOL
Light [10], Coq, and Lean [7] have been developed to rigorously verify the correctness of proofs.

However, writing mathematical content in formal languages requires significant time and effort, as
well as a deep familiarity with these languages, making the process highly labor-intensive. This

*Corresponding authors: Yang Jiao, Tao Luo

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/XiaoyangLiu-sjtu/ATLAS

highlights the critical importance of autoformalization, which aims to translate theorem statements
and proofs from natural language (NL) into their formal language (FL) counterparts [34]. Since
the precise formalization of statements can provide valuable training data for automated theorem
proving [21]], current research primarily focuses on the autoformalization of theorem statements. In
this context, recent progress has shown encouraging results, primarily achieved by fine-tuning large
language models (LLMs) with parallel corpora of theorem statements. For clarity, we hereafter refer
to theorem statements expressed in natural language as NL statements, those expressed in formal
language as FL statements, and their pairs as parallel statements. Furthermore, while ATLAS is a
general framework for any formal language, this work focuses on Lean 4 [27] as the target language.

To construct parallel statements, previous studies such as MMA [[15] and Herald [9] extract FL.
statements from Mathlib [35] and generate their NL counterparts using LLMs. However, the limited
size of Mathlib imposes restrictions on the scale of the resulting datasets. Alternative methods,
including Lean Workbook [51]] and DeepSeek-Prover [46], attempt to generate FL statements from
NL sources obtained via large-scale web scraping. Although this approach greatly alleviates the
limitations on dataset size, it requires extensive pre-processing to obtain high-quality, formalizable
NL statements, which significantly reduces overall efficiency. Consequently, it is essential to design a
more effective method for generating large-scale, high-quality parallel statements.

In this work, we introduce ATLAS, a data generation framework composed of three key components:
Data Lifting, Data Synthesis, and Data Augmentation.

» Data Lifting. Unlike previous approaches, this work integrates FL statements and NL statements
as its starting point. Specifically, mathematical concepts are abstracted and extracted directly from
Mathlib to synthesize NL statements. This method not only overcomes scale limitations but also
eliminates the need for data pre-processing.

* Data Synthesis. Adopting the knowledge distillation [[11]] paradigm, teacher models guide the
student model’s learning process, and the Lean compiler is jointly employed to ensure that the
generated FL statements are both semantically accurate and syntactically valid. The resulting
parallel statements are hereafter referred to as "synthetic data".

» Data Augmentation. The synthetic data are further expanded using two techniques: augmentation
via proof and contraposition. The core idea is to leverage Lean 4’s capability whereby the Infoview
provides real-time updates of the current state after each proof step. The additional parallel
statements generated are hereafter referred to as "augmented data".

Finally, the synthetic and augmented data are combined to fine-tune the student model. The expert
iteration [30, 131]] approach is then employed to iteratively execute ATLAS. After 10 iterations,
we build an undergraduate-level dataset comprising 117k parallel statements and train the ATLAS
Translator. The performance of the ATLAS Translator shows statistically significant improvements
over both the Herald Translator and the Kimina-Autoformalizer across all benchmarks.

Our main contributions are as follows:

1. We propose ATLAS, a novel framework for generating large-scale, high-quality parallel
statements. Unlike previous work that starts from NL statements or FL statements, our
innovative approach begins by extracting concepts directly from Mathlib through a process
we call Data Lifting. Based on these concepts, we employ Data Synthesis and Data
Augmentation to synthesize and augment the parallel statements.

2. We introduce the ATLAS dataset and the MathQual dataset. The former comprises 117k
undergraduate-level parallel statements, making it one of the largest available. In contrast,
the latter contains 465 graduate-level natural language statements, designed to assess the
model’s autoformalization capability on more challenging data.

3. We develop the ATLAS Translator, which establishes a new state of the art by demonstrating
statistically significant improvements over strong baselines across all benchmarks (p < 0.05,
two-sided t-test). Furthermore, we demonstrate that the full-parameter fine-tuning of a
stronger base model on the ATLAS dataset leads to superior performance.

Fine-tuning

r
(a) Data Lifting (b) Data Synthesis ‘l

.
(NLcen Theorem: If K is a compact subset
L IVNI| = of Rand f : K — Ris continuous,
Community then f(K) is compact.
Mathlib Concept Concepts Teacher Model NL Statement Student Model

Repository
Next Iteration
\.

Re-Compile

p % - Lo
(c) Data Augmentation =N <>
X == %
g Teacher Model
: < e [
ATLAS Dataset /X Lean Compiler x
B iz Teacher Model Parsed FL Statement
\ Contraposition

Figure 1: The overview of the proposed ATLAS framework.

2 Related Work

Autoformalization. The task of autoformalization can be seen as a machine translation problem
[39]], aiming to convert natural language content into expressions consistent with the target formal
language’s syntax and vocabulary. Early approaches [6}40] have utilized neural machine translation
techniques to address the autoformalization of theorem statements. With the rapid advancement
of LLMs, recent research on LLM-based autoformalization can be broadly categorized into three
main paradigms. First, researchers [1} 43| 58] have explored few-shot prompting to enable LLMs to
perform autoformalization effectively. Second, some methods [2 25 [26]] further enhance performance
by fine-tuning LLMs with parallel statements. Finally, retrieval-augmented generation techniques
have been combined with LLMs [54] to achieve additional improvements.

Meanwhile, another line of research focuses on the autoformalization of proofs [[16l |55], a more
challenging task that closely resembles a simplified form of automated theorem proving [3}[19, 132} [38|
44| 148]]. For example, DSP [16] leverages LLMs to generate informal proofs, which are subsequently
mapped to formal proof sketches. These sketches then serve as guidance for automated theorem
provers to fill in the remaining proof gaps.

Dataset Generation. Obtaining large-scale, high-quality parallel corpora of theorem statements
remains a significant challenge. Previous efforts [9, 115 45] have tackled this problem by extracting FL.
statements from relevant repositories (e.g., Mathlib) and using LLMs to generate their NL counterparts.
However, the limited size of these repositories constrains the scalability of the resulting datasets. On
the other hand, some approaches [[18} 46, |51] take the opposite direction by collecting NL statements
from large-scale web sources and translating them into FL representations. While this strategy enables
the creation of large-scale datasets, these web-based pipelines rely on extensive preprocessing to filter
high-quality, formalizable NL statements, thereby diminishing overall efficiency.

3 Methodology

Our framework ATLAS, as illustrated in Figure[I] comprises three components: Data Lifting, Data
Synthesis, and Data Augmentation. The framework begins with data lifting, which constructs the
concept repository, as described in Section[3.1} Building on this foundation, Section[3.2] details the
subsequent data synthesis workflow. Finally, Section [3.3|explains our approach to data augmentation.

3.1 Data Lifting

Mathlib. Mathlib [35], the most extensive mathematical library within the Lean community,
provides a vast collection of formalized notations (e.g., ||-||), concepts, and theorems. This wealth of
resources forms the cornerstone of autoformalization. Consequently, importing Mathlib is practically
essential before translating a NL statement into a FL statement.

Pre-Process

Workflow Typical Work Free Scalability Correctness
BNy o f R
Mathlib
(NLP{FL] Lean Workbook x J
Internet
Corpus
[———— === = 1
' ==
| by E, »NL>{FL ATLAS w4 w4
1 Mathlib Concept :
Lo Repository |
Data Lifting

Figure 2: Comparison of different methods for constructing parallel statements.

However, the reliance on Mathlib reveals a critical limitation: when NL statements involve mathe-
matical concepts absent in Mathlib, such as subgradients, the autoformalization process is prone
to failure. This issue has affected prior work that begins by collecting NL statements. For example,
Lean Workbook uses LLMs to categorize 458,692 NL statements and selects 327,870 based on this
classification, primarily aiming to exclude NL statements involving concepts not present in Mathlib.
In contrast, extracting FL statements from Mathlib does not face this challenge, but the library’s size
constrains the scalability of the resulting datasets.

In contrast to previous work, our proposed method takes a novel approach by beginning with the
extraction of concepts directly from Mathlib through a process we refer to as Data Lifting. By
utilizing these concepts, we employ LLMs to synthesize NL statements. As shown in Figure 2] this
starting point eliminates the need for pre-processing while ensuring scalability.

Correctness. For synthetic data, an important consideration is the correctness of the mathematical
propositions themselves. However, in the context of autoformalization, the correctness of the
mathematical proposition is secondary, or even insignificant. What is critical in this synthetic process
is that the formalized statement is not only syntactically valid but also semantically equivalent to its
natural language counterpart. This perspective stems from the primary objective of autoformalization
and reflects the realities of mathematical practice, as the correctness of propositions or conjectures
is seldom known a priori. Therefore, prior to formal verification, propositions must be precisely
formalized in formal language—even if they ultimately turn out to be incorrect.

For example, the following example from the Lean Workbook illustrates that, although the NL
statement itself is incorrect (due to the lack of a declaration for the scope of a, b, ¢), the FL statement
is semantically equivalent to the NL statement and is syntactically valid. Therefore, this constitutes a
valuable piece of synthetic data. We further explore the limitations about correctness in Appendix [A]

lean_workbook_plus_62
3(a?b + b%c + c?a) < (ab+be + ca)? <9

theorem lean_workbook_plus_62 : V a b c : R, 3 x (a ~ 2 % b + b ~
2 x c+c "~ 2x*xa)<(a*xb+Dbx*xc+cx*xa) ~2AN L (ax*xDb+ b *
c +c *a) ~2< 9 := by sorry

In the subsequent experimental section, we construct the concept repository based on undergraduate-
level mathematical contentﬂincluded in Mathlib. Following Mathlib’s organization by domain, topic,
and concept, our concept repository comprises 13 domains, 55 topics, and 350 concepts. Further
details regarding the composition of the concept repository are provided in Appendix [C}

Zhttps://github.com/leanprover-community/mathlib4/blob/master/docs/undergrad.yaml

3.2 Data Synthesis

Upon establishing the concept repository, the module is dedicated to producing a substantial number
of high-quality parallel statements by means of knowledge distillation. The following subsections
provide a detailed description of each phase, with the specific prompts provided in Appendix [F]

NL Statements Generation. In this context, the teacher model serves the role of NL Statements
Generation (NL-Gen) by randomly sampling concepts from the constructed concept repository to
synthesize NL statements. To balance diversity and feasibility, we follow previous approaches
[14, 133] by sampling two concepts for each NL statement and the detailed comparisons against
MUSTARD [[14]] are provided in Appendix [A] This choice is motivated by the observation that
using only a single concept often leads the LLM to generate NL statements that are biased toward
well-known, classic mathematical propositions, thus limiting diversity. Conversely, requiring each
NL statement to involve many distinct concepts would be overly restrictive, as such problems are
uncommon in mathematics and may exceed the capabilities of LLMs.

NL Statements Translation. For the synthetic NL statements described above, we employ the
student model to translate them into the corresponding FL statements, thereby enabling subsequent
tests of syntactic validity and semantic accuracy to ensure the quality of the parallel statements.

FL Statements Parsing. Before conducting syntactic validity test on these FL statements, we
use the tactic #check to decompose each FL statement into the following four components:
theorem_name, theorem_variables, theorem_hypotheses, and theorem_conclusion. The
content is then systematically organized line by line, both within and across these components.

Compared to presenting the entire content on a single line, this line-by-line configuration, especially
for statements with substantial content, significantly enhances the clarity of compiler feedback. In
particular, error locations become much more explicit, enabling LLMs to more effectively identify
and correct errors in FL statements that fail to compile.

FL Statements Compilation. In this phase, the Lean compiler is employed to verify the syntactic
validity of FL statements by determining whether they can be compiled successfully. If compilation
fails, detailed error messages are returned, specifying the location and cause of the error, thereby
enabling more efficient subsequent revision. In addition, as the student model is unable to generate
headers, a standard header, import Mathlib, is automatically appended prior to compilation.

FL Statements Revision. For FL statements that fail to compile, we utilize the corresponding
NL statements and compilation error messages as context, providing this information to the teacher
model serving as FL Statements Revision (FL-Rev) for modification. The modified FL statements are
then subjected to a second round of compilation.

Unlike conventional knowledge distillation, the teacher model in our approach is tasked with revising
the FL statements generated by the student model based on the provided error messages, rather
than generating FL statements directly. There are two primary reasons for this design. First, it is
generally much easier to revise existing FL statements than to construct them anew; consequently,
this strategy is more likely to produce syntactically valid FL statements after modification. Second,
as the performance of the student model improves through iterative learning, the need for FL-Rev
diminishes, thus maintaining the efficiency of the overall framework.

FL Statements Alignment. For FL statements that pass either the first or second compilation, the
teacher model acting as the FL Statements Alignment (FL-Align) evaluator assesses their semantic
accuracy in translating the corresponding NL statement, ensuring no information is omitted or
mistranslated. Specifically, the model assesses each pair of parallel statements and assigns a rating
from three categories: good, average, or poor. Pairs rated as good or average are incorporated into the
synthetic data, while those rated as poor, along with FL statements that fail both compilations, have
only their NL statements preserved for the next iteration.

3.3 Data Augmentation

This module augments the synthetic data obtained in Section [3.2] using two innovative methods:
proving these FL statements and converting them into their contrapositives, in order to further expand
the scale of the resulting dataset. Figure [3illustrates an example of the data augmentation process.

theorem tm_name Epos : £ > ©
f:N-R-R) €: R
(fo : R —~ R) h:Ve>o IN Vn2N, V x € Set.Icc ab,
(ab:R) [fnx-fox|l<e
(hab : a < b) hf : V (n : N), ContinuousOn (f n) (Set.Icc a b)
(g : R~ R) hg : Continuous g
(hg : Continuous g) g: R~
(hf : V n, ContinuousOn (f n) (Set.Icc a b)) hab : a < b
(h:Ve:R, e>0-3IN:N, Vn:N, ab:R
n>N-V x € Set.Iccab, |[fnx-fox|<e) fo: R - R
:Ve:R, e>0-3IN:N, Vn:N n2N fF:N-R-R)
[(f xin a..b, £ n x * g x) - (J x in a..b, FAN, V2N [(f(x:R)ina.b, fnx*gx)
fox*gx)|<e - [(x:R)ina..b, fox *gx| <e
Wby sormy TTTTTTTTTTTTS Updated State - Proof Step
Original Statement hab : Je>0, V (N:N), In2N &< [(x:
_______________________________ R) ina..b, f nx * gx) - [(x : R) in a..b, @ x
1i= by intro & Epos;Isorry * g x|
----------------------- h:Ve>e, AN Vn2N, V x € Set.Icc ab,
[fnx-fox|<e
Proof Step hf : V (n : N), ContinuousOn (f n) (Set.Icc a b)
______________________________ / hg : Continuous g
. | ; 3 g:R-R
137 by contrapose! _“a_b:Ii"f"_y ______________ ab:R
it f0: R - R
Contraposition PO UR R
Fb<a

[theorem tn_name (...) : ... := by sorry

Reconstructed Statement

Updated State - Contraposition

Figure 3: Demonstration of the proof step and contraposition augmentation methods.

Augmentation via Proof. For each FL statement in the synthetic data, we use DeepSeek-Prover-
V1.5 [47] to generate a corresponding proof. The resulting proof steps are then executed sequentially.
Each time a tactic is successfully applied and the proof process is not yet complete, Lean’s Infoview
updates the proof state, displaying the current variables, hypotheses, and conclusions. Based on this
information, new FL statements can be constructed.

Augmentation via Contraposition. In Section [3.2] FL Statement Parsing, we obtain the
theorem_hypotheses for each FL statement. Furthermore, by extracting the names of all hy-
potheses and applying the contrapose! tactic, we can transform the original proposition into an
equivalent contrapositive statement for each hypothesis. Leveraging the information provided by
Lean’s Infoview, new FL statements can again be constructed.

Augmentation Data Construction. The aforementioned augmentation operations both rely on
Lean Infoview. However, Infoview occasionally results in information loss, particularly concerning
type-related details. Although Lean supports implicit type inference, this capability does not extend
to all types. To address this, we perform FL Statements Compilation on the augmented FL statements
and retain only those that compile successfully.

Furthermore, in the process of data augmentation, the primary consideration is the extent of diversity
introduced relative to the original data. To maximize this diversity, we employ the following strategies.
For the first augmentation method, we retain only those FL statements produced in the final proof step.
For the second method, we utilize the Levenshtein distance [53]] to select FL statements that exhibit
the greatest dissimilarity from the synthetic FL statements. Finally, we utilize LLMs to translate
these augmented FL statements into their corresponding NL statements, thereby constructing parallel
statements. The used translation prompt can be found in Appendix [{|

Synthetic Data
(mmmm Teacher Model 9, 82.30%
8k{ |mmmm Student Model 80.27% oo 1 mmm Proof Aug. Data
—e— Student Data Ratio 77.279% 280% N mmm Contraposition Aug. Data
7k -
3 —

6k 4
o " E——
< sk S
3 c >]

3

€ ak o 6
< 2 —

3 7 N S E—

2% 8 I ——

9 I S —
1k
10 I S S
0
0 2k 4k 6k 8k 10k
Rounds Amount

Figure 4: Data Generation Statistics Across ATLAS Iterations. Left: The number of synthetic
data produced by the teacher and student models at each iteration, with the ratio of student-generated
data indicated. Right: The composition of the generated data for each round, including synthetic data,
proof augmentation data, and contraposition augmentation data.

—eo— pass@l —#— pass@8 —&— pass@32
(a) ProofNet (b) PutnamBench (c) MathQual

paseas =SS

T

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Rounds Rounds Rounds

(%)

S

Rate

Noow s
S

IS}

Compilation Pass Ra

-
o

Figure 5: Performance of the student model on benchmarks throughout the iterative training process.

4 Experiments

4.1 ATLAS dataset Construction
4.1.1 Experimental Setup

We employ DeepSeek-V2.5 [22] as the teacher model and Llama3.1-8B-Instruct [8] as the student
model, for which we utilize nucleus sampling with top p=0.9 and a temperature of 0.6 for
generation. To demonstrate the effectiveness of our framework, we aim to transform the general-
purpose student model into the Lean 4 expert [41]].

The training procedure of the student model comprises three stages:

1. Model Initialization. We use LeanDojo [50] to extract FL statements from Mathlib and employ
LLMs to generate NL statements, constructing a dataset of 56,830 examples. Together with Lean
Workbook, this dataset initializes the student model.

2. Expert Iteration. In each iteration, 10,000 new NL statements are generated and combined with
the remaining NL statements from the previous round to create the synthetic and augmented data.
The student model is then fine-tuned on this dataset before proceeding to the next iteration, with
this process repeated for a total of 10 rounds.

3. Final Re-training. Llama3.1-8B-Instruct is re-trained on the data generated during expert iteration
(referred to as the ATLAS dataset) to develop the ATLAS Translator.

All three stages are fine-tuned using LoRA with LLaMA-Factory [57]] for 3 epochs, with a total
batch size of 128 and a learning rate of 1.0e-5 with a cosine decay schedule. All experiments are
conducted on a single NVIDIA A100 GPU with 40GB of memory. In particular, during the Expert

Iteration stage, fine-tuning required only 10 minutes to 1 hour, with minimal hardware requirements
and low computational cost, further demonstrating the efficiency of our framework.

4.1.2 Experiment Results

As illustrated on the left side of Figure] the total amount of synthetic data produced by both the
teacher and student models increases across ATLAS iterations. Notably, the proportion of data
generated by the student model (indicated by the Student Data Ratio) grows substantially, rising from
42.68% in round 1 to 82.30% in round 10. This demonstrates the increasing capacity of the student
model to autonomously contribute to the synthetic data as training progresses.

Meanwhile, the right side presents the detailed composition of the generated data for each round.
It is evident that with each iteration, not only does the overall quantity of data increase, but the
contributions from proof and contraposition augmentation methods also become more prominent.
This diversified data augmentation strategy effectively enhances the variety of the dataset, allowing
subsequent model iterations to benefit from richer and more diverse training signals. We refer to the
synthetic and augmented data as the ATLAS dataset, whose statistics are shown in Table[T]

Figure [3] presents the student model’s pass rates on benchmarks across iterative rounds, clearly
demonstrating a steady and significant improvement as training progresses. These results indicate
that our framework effectively and continuously enhances the student model’s autoformalization
ability, to a certain extent, since successful compilation is a prerequisite for correct formalization.
In addition, Appendix [E] provides some examples of the synthetic data to illustrate the evolution of
the student model’s behavior during successive iterations, including cases that achieve successful
formalization after several rounds as well as cases that remain unsolved even after 10 iterations.

Table 1: Statistics of the ATLAS dataset
Synthetic Data Proof Aug. Data Contraposition Aug. Data ~ Total

ATLAS dataset 54,641 22,103 40,401 117,145

4.2 ATLAS Translator Evaluation

4.2.1 Experimental Setup

Dataset. The datasets used for evaluation are ProofNet [2]], PutnamBench [36], and MathQual.
The version of ProofNet utilized in this evaluation is sourced from DeepSeek’ MathQual is a
graduate-level dataset introduced in our work, consisting of 465 NL statements, specifically designed
to assess the model’s generalization ability on more challenging problems. Detailed information on
the construction process and specifics of MathQual can be found in Appendix [D}

Baselines. We compare ATLAS Translator with the teacher model DeepSeek-V3 [23] (as V2.5 no
longer provides API services), the initialization model Llama3.1-Initialization, the previous state-
of-the-art model Herald Translator [9], and the latest work Kimina-Autoformalizer [37] to evaluate
its performance. DeepSeek-V3 is set with a sampling temperature of 0.7, and the prompt used is
provided in Appendix [F| Herald Translator and Kimina-Autoformalizer utilize the sampling and
prompt settings from their original papers, while Llama3.1-Initialization and ATLAS Translator
follow the configurations in Section 4.1}

Validation Pipeline. To conduct the evaluation, we follow the validation pipeline described in the
Lean Workbook [51]] and Herald [9], which includes several key steps:

1. Translation. We translate the NL statements into FL statements using the corresponding model.
2. Compilation. We use the Lean compiler to verify the syntactic validity of the FL statements.

3. Back-Translation. For FL statements that pass compilation, we use InternLM2-Math-Plus-7B
[52] to translate them back into NL statements.

*https://github.com/deepseek-ai/DeepSeek-Prover-V 1.5/tree/main/datasets

Table 2: Overall results of the competing baselines and ATLAS Translator. The boldface refers
to the highest score and the underline indicates the next best result of the models. “-” indicates
that testing is not performed because the corresponding model uses that dataset during training. “*”
signifies statistically significant improvements (two-sided t-test with p < 0.05) over the best baseline.

Model \ ProofNet \ PutnamBench \ MathQual

| pass@l pass@8 pass@32 | pass@l pass@8 pass@32 | pass@l pass@8 pass@32
DeepSeek-V3 18.82% 34.07% 41.35% 11.53% 27.74% 37.33% 4.90% 13.42% 17.29%
Llama3.1-Initialization 23.56% 42.75% 51.54% 19.30% 45.58% 62.16% 6.97% 15.61% 22.02%
Herald Translator 31.43% 64.85% 78.57% 20.36% 52.56% 71.35% 10.92% 31.83% 45.33%

Kimina-Autoformalizer - - - - - - 19.01% 38.97% 50.71%
ATLAS Translator 39.46%* 67.28%* 78.71% | 23.16%* 55.51%* 72.93%* | 22.75%* 45.85%* 58.23%*

Table 3: Ablation study on the three components. The boldface refers to the highest score and the
underline indicates the next best result of the models.

Model | ProofNet | PutnamBench | MathQual

| pass@1 pass@8 pass@32 | pass@l pass@8 pass@32 | pass@l pass@8 pass@32
- w/o Synthetic 24.10% 51.86% 67.06% 1599% 42.46% 58.15% 11.79% 29.76% 40.82%
- w/o Proof Aug. 3741% 64.85% 7639% | 22.88% 53.23% 70.71% | 22.97% 44.69% 56.13%
- w/o Contraposition Aug. | 39.03% 66.09% 77.79% | 22.70% 52.56% 69.56% | 22.97% 44.95% 57.20%
ATLAS Translator 39.46% 67.28% 78.71% | 23.16% 55.51% 72.93% | 22.75% 45.85% 58.23%

4. NLI Check. Qwen2.5 [49] is used to compare the back-translated NL statements with the original
NL statements to ensure semantic accuracy.

We consider the translation successful if any of these candidates pass both the compilation and NLI
check. For a detailed discussion and case study of the validation pipeline’s effects, especially the NLI
check, please refer to Appendix B}

Evaluation Metrics. We use the pass@Fk metric [5] with £ = 1, 8, 32, as larger values of k enable
LLMs to better realize their potential in generating diverse outputs, which is beneficial for addressing
challenging tasks [17, 41]. To reduce randomness, we conduct 5 experiments using the seeds 42,
43, 44, 45, 46, and report the mean of the results. To examine statistical significance, we further
perform a two-tailed t-test with p < 0.05.

4.2.2 Overall Results

The overall results are presented in Table[2} At a glance, we find that the proposed ATLAS Translator
outperforms all competing baselines across all datasets and all pass @k metrics, thereby confirming
the efficacy of our framework. Further insights will be explored through the subsequent analysis.

Comparison with Teacher and Initialization Model. The experimental results clearly demonstrate
that ATLAS Translator significantly outperforms its teacher model DeepSeek-V3 and initialization
model Llama3.1-Initialization across all benchmarks. Notably, on ProofNet, ATLAS achieves a
pass@1 score of 39.46%, nearly doubling DeepSeek-V3’s 18.82% and surpassing Llama3.1’s 23.56%.
More importantly, similar improvements are consistently observed in pass@8 and pass @32 metrics,
as well as across other benchmarks, strongly validating the effectiveness of ATLAS framework.

Comparison with Competing Models. When examining the comparison with competing models,
ATLAS Translator shows remarkable advantages over both the Herald Translator and the newer
Kimina-Autoformalizer. With the exception of ProofNet’s pass @32, statistically significant improve-
ments are observed in all other metrics and across all other benchmarks. Furthermore, considering
that Herald Translator utilizes 1,160k data points for fine-tuning and that Kimina-Autoformalizer
consistently involves Lean 4 experts during its training process, it is noteworthy that the ATLAS
Translator achieves these results using only 117k data points and without any human intervention.
This further underscores the effectiveness of the ATLAS framework.

Table 4: Additional results of LoRA and full-parameter fine-tuning on various base models
with the ATLAS dataset. “*” denotes full-parameter fine-tuning. Abbreviations: L (Llama-3.1-8B-
Instruct), D (DeepSeek-Prover-V1.5-7B-Base), and Q (Qwen2.5-Coder-7B-Instruct). The boldface
refers to the highest score and the underline indicates the best result of the baselines. “-” indicates
that testing is not performed because the corresponding model uses that dataset during training.

Model | miniF2F | ProofNet | PutnamBench | MathQual
| pass@1 pass@8 pass@32 | pass@l pass@8 pass@32 | pass@l pass@8 pass@32 | pass@l pass@8 pass@32

Herald Translator 76.02% 93.44% 9529% | 3143% 64.85% 78.57% | 20.36% 52.56% 71.35% | 10.92% 31.83% 45.33%
Kimina-Autoformalizer - - - - - - - - - 19.01% 3897% 50.71%

ATLAS Translator (L) 66.60% 88.52% 93.24% | 39.46% 67.28% 78.71% | 23.16% 5551% 72.93% | 22.75% 45.85% 58.23%
ATLAS Translator* (L) 69.67% 92.42% 96.93% | 47.98% 74.66% 86.52% | 38.54% 73.29% 84.98% | 40.22% 65.81% 75.48%
ATLAS Translator (D) 67.01% 90.98% 96.31% | 39.51% 69.49% 81.62% | 25.64% 59.03% 75.75% | 24.30% 49.59% 63.74%
ATLAS Translator* (D) | 77.25% 93.65% 95.90% | 54.99% 80.86% 88.95% | 42.49% 76.93% 87.86% | 38.92% 67.31% 79.78%
ATLAS Translator (Q) 66.60% 91.80% 96.72% | 38.81% 71.43% 84.10% | 29.29% 66.77% 8225% | 28.17% 54.19% 68.17%
ATLAS Translator* (Q) 69.88% 89.75% 92.62% | 50.67% 79.51% 86.25% | 3991% 76.93% 81.56% | 37.63% 65.59% 76.34%

4.2.3 Ablation Study

The results of the ablation study are shown in Table[3] where we also conduct 5 experiments using the
same seeds and report the mean results. The removal of synthetic data leads to the most significant
performance drop across all datasets and metrics, underscoring its critical role in training robustness.
In contrast, omitting proof or contraposition augmentation data results in a more moderate decline
in performance. Nevertheless, the full model consistently achieves the highest scores or, at the very
least, competitive second-best results, thereby validating the synergistic effect of all components.

4.2.4 Additional Results

The results of applying LoRA and full-parameter fine-tuning to various base models on the ATLAS
dataset are detailed in Table[d] These experiments reveal two key insights.

First, a primary finding is that full-parameter fine-tuning consistently and significantly outperforms
the more parameter-efficient LoRA approach. This performance gap is particularly pronounced for
the DeepSeek-Prover-V1.5-7B-Base model; on miniF2F [56]], full-parameter fine-tuning achieves
a pass@1 score of 77.25%, a substantial improvement of over 10 absolute points compared to its
LoRA counterpart (67.01%). This trend holds true across all three base models.

Furthermore, the results highlight the critical role of the base model. The DeepSeek-Prover-V1.5-7B-
Base model, when fine-tuned on the ATLAS dataset, achieves new state-of-the-art results on most
benchmarks, with impressive pass@1 scores of 54.99% on ProofNet and 42.49% on PutnamBench.
This outcome is expected, given the model’s extensive pre-training on Lean-related corpora. Conse-
quently, we hypothesize that employing a more powerful base model as the student model within our
iterative framework would further enhance its overall efficiency.

5 Conclusion

In this paper, we propose a novel framework to advance autoformalization by synthesizing and
augmenting large-scale, high-quality parallel statements. Our method addresses key limitations of
existing approaches, such as the finite amount of data that can be extracted from Mathlib and the
extensive pre-processing required for data obtained from web scraping. Through comprehensive
experiments, we verify the effectiveness of the ATLAS framework and achieve a new state of the art.

Acknowledgments and Disclosure of Funding

This work is sponsored by the National Key R&D Program of China Grant No. 2022YFA 1008200 (T.
L.). We also thank Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS) for
their financial support. This research was funded by SIMIS under grant number SIMIS-ID-2025-ST.
The authors are grateful for the resources and facilities provided by SIMIS, which were essential for
the completion of this work. We appreciate the insightful discussions with Wei Zhao, Xinpu Tu, and
Shuyu Yin during the early stages of the project, as well as Tao Zhu’s valuable involvement in the
human evaluation at a later stage.

10

References

[1] A. Agrawal, S. Gadgil, N. Goyal, A. Narayanan, and A. Tadipatri. Towards a mathematics
formalisation assistant using large language models. arXiv preprint arXiv:2211.07524, 2022.

[2] Z. Azerbayev, B. Piotrowski, H. Schoelkopf, E. W. Ayers, D. Radev, and J. Avigad. ProofNet:
Autoformalizing and formally proving undergraduate-level mathematics. arXiv preprint
arXiv:2302.12433, 2023.

[3] Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. McAleer, A. Q. Jiang, J. Deng,
S. Biderman, and S. Welleck. Llemma: An open language model for mathematics. In The
Twelfth International Conference on Learning Representations, 2024.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre, J.-C.
Filliatre, E. Giménez, H. Herbelin, et al. The Coq proof assistant reference manual. INRIA,
version, 6(11), 1999.

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[6] G. Cunningham, R. C. Bunescu, and D. Juedes. Towards autoformalization of mathematics and
code correctness: Experiments with elementary proofs. In Proceedings of the 1st Workshop
on Mathematical Natural Language Processing (MathNLP), pages 25-32. Association for
Computational Linguistics, 2023.

[7] L. De Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. The Lean theorem prover
(system description). In Automated Deduction-CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pages 378-388.
Springer, 2015.

[8] A.Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783,2024.

[9] G. Gao, Y. Wang, J. Jiang, Q. Gao, Z. Qin, T. Xu, and B. Dong. Herald: A natural language anno-
tated Lean 4 dataset. In The Thirteenth International Conference on Learning Representations,
2024.

[10] J. Harrison. HOL Light: A tutorial introduction. In International Conference on Formal
Methods in Computer-Aided Design, pages 265-269. Springer, 1996.

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[12] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

[13] E.J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[14] Y. Huang, X. Lin, Z. Liu, Q. Cao, H. Xin, H. Wang, Z. Li, L. Song, and X. Liang. MUSTARD:
Mastering uniform synthesis of theorem and proof data. In The Twelfth International Conference
on Learning Representations, 2024.

[15] A.Q.Jiang, W. Li, and M. Jamnik. Multilingual mathematical autoformalization. arXiv preprint
arXiv:2311.03755, 2023.

[16] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample, and
Y. Wu. Draft, Sketch, and Prove: Guiding formal theorem provers with informal proofs. In The
Eleventh International Conference on Learning Representations, 2023.

[17] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample, and
Y. Wu. Draft, Sketch, and Prove: Guiding formal theorem provers with informal proofs. In The
Eleventh International Conference on Learning Representations, 2023.

11

[18] J. Li, E. Beeching, L. Tunstall, B. Lipkin, R. Soletskyi, S. Huang, K. Rasul, L. Yu, A. Q.
Jiang, Z. Shen, et al. Numinamath: The largest public dataset in ai4maths with 860k pairs of
competition math problems and solutions. Hugging Face repository, 13:9, 2024.

[19] Y. Li, D. Du, L. Song, C. Li, W. Wang, T. Yang, and H. Mi. Hunyuanprover: A scalable data
synthesis framework and guided tree search for automated theorem proving. arXiv preprint
arXiv:2412.20735, 2024.

[20] Z. Li, Y. Wu, Z. Li, X. Wei, X. Zhang, F. Yang, and X. Ma. Autoformalize mathematical
statements by symbolic equivalence and semantic consistency. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[21] Y. Lin, S. Tang, B. Lyu, J. Wu, H. Lin, K. Yang, J. Li, M. Xia, D. Chen, S. Arora, et al.
Goedel-prover: A frontier model for open-source automated theorem proving. arXiv preprint
arXiv:2502.07640, 2025.

[22] A. Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai, D. Guo, et al.
Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv
preprint arXiv:2405.04434, 2024.

[23] A.Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[24] Q. Liu, X. Zheng, X. Lu, Q. Cao, and J. Yan. Rethinking and improving autoformalization:
Towards a faithful metric and a dependency retrieval-based approach. In The Thirteenth
International Conference on Learning Representations, 2025.

[25] J. Lu, Y. Wan, Y. Huang, J. Xiong, Z. Liu, and Z. Guo. Formalalign: Automated alignment
evaluation for autoformalization. In The Thirteenth International Conference on Learning
Representations, 2024.

[26] J. Lu, Y. Wan, Z. Liu, Y. Huang, J. Xiong, C. Liu, J. Shen, H. Jin, J. Zhang, H. Wang, et al.
Process-driven autoformalization in lean 4. arXiv preprint arXiv:2406.01940, 2024.

[27] L. d. Moura and S. Ullrich. The Lean 4 theorem prover and programming language. In
Automated Deduction—CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12—15, 2021, Proceedings 28, pages 625-635. Springer, 2021.

[28] L. Murphy, K. Yang, J. Sun, Z. Li, A. Anandkumar, and X. Si. Autoformalizing euclidean
geometry. In Forty-first International Conference on Machine Learning, 2024.

[29] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

[30] S. Polu, J. M. Han, K. Zheng, M. Baksys, 1. Babuschkin, and I. Sutskever. Formal mathematics
statement curriculum learning. arXiv preprint arXiv:2202.01344, 2022.

[31] S. Polu and I. Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020.

[32] Z. Ren, Z. Shao, J. Song, H. Xin, H. Wang, W. Zhao, L. Zhang, Z. Fu, Q. Zhu, D. Yang, et al.
Deepseek-prover-v2: Advancing formal mathematical reasoning via reinforcement learning for
subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025.

[33] V. Shah, D. Yu, K. Lyu, S. Park, N. R. Ke, M. C. Mozer, Y. Bengio, S. Arora, and A. Goyal.
Al-assisted generation of difficult math questions. In The 4th Workshop on Mathematical
Reasoning and Al at NeurIPS’24, 2024.

[34] C. Szegedy. A promising path towards autoformalization and general artificial intelligence. In
Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy,
July 26-31, 2020, Proceedings 13, pages 3—20. Springer, 2020.

[35] The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs. ACM, Jan. 2020.

12

[36] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings, A. Thakur, and S. Chaudhuri.
PutnamBench: Evaluating neural theorem-provers on the putnam mathematical competition. In
The Thirty-eight Conference on Neural Information Processing Systems Datasets and Bench-
marks Track, 2024.

[37] H. Wang, M. Unsal, X. Lin, M. Baksys, J. Liu, M. D. Santos, F. Sung, M. Vinyes, Z. Ying, Z. Zhu,
et al. Kimina-prover preview: Towards large formal reasoning models with reinforcement
learning. arXiv preprint arXiv:2504.11354, 2025.

[38] H. Wang, H. Xin, C. Zheng, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi, E. Xie, J. Yin, Z. Li,
and X. Liang. LEGO-Prover: Neural theorem proving with growing libraries. In The Twelfth
International Conference on Learning Representations, 2024.

[39] Q. Wang, C. Brown, C. Kaliszyk, and J. Urban. Exploration of neural machine translation
in autoformalization of mathematics in mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 85-98, 2020.

[40] Q. Wang, C. Kaliszyk, and J. Urban. First experiments with neural translation of informal to
formal mathematics. In Intelligent Computer Mathematics: 11th International Conference,
CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings 11, pages 255-270. Springer,
2018.

[41] R. Wang, J. Zhang, Y. Jia, R. Pan, S. Diao, R. Pi, and T. Zhang. Theoremllama: Transforming
general-purpose 1lms into lean4 experts. arXiv preprint arXiv:2407.03203, 2024.

[42] X. Wang, Y. Chen, and W. Zhu. A survey on curriculum learning. IEEFE transactions on pattern
analysis and machine intelligence, 44(9):4555-4576, 2021.

[43] Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and C. Szegedy. Autoformalization
with large language models. Advances in Neural Information Processing Systems, 35:32353—
32368, 2022.

[44] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen. Internlm?2.5-stepprover:
Advancing automated theorem proving via expert iteration on large-scale lean problems. arXiv
preprint arXiv:2410.15700, 2024.

[45] Z. Wu, J. Wang, D. Lin, and K. Chen. Lean-github: Compiling github lean repositories for a
versatile lean prover. arXiv preprint arXiv:2407.17227, 2024.

[46] H. Xin, D. Guo, Z. Shao, Z. Ren, Q. Zhu, B. Liu, C. Ruan, W. Li, and X. Liang. DeepSeek-
Prover: Advancing theorem proving in llms through large-scale synthetic data. In The 4th
Workshop on Mathematical Reasoning and Al at NeurIPS’24, 2024.

[47] H. Xin, Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang, X. Lu, Q. Du, W. Gao,
H. Zhang, Q. Zhu, D. Yang, Z. Gou, Z. Wu, F. Luo, and C. Ruan. DeepSeek-Prover-V1.5:
Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search. In
The Thirteenth International Conference on Learning Representations, 2025.

[48] R. Xin, C. Xi, J. Yang, F. Chen, H. Wu, X. Xiao, Y. Sun, S. Zheng, and K. Shen. Bfs-
prover: Scalable best-first tree search for llm-based automatic theorem proving. arXiv preprint
arXiv:2502.03438, 2025.

[49] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.
Qwen?2.5 technical report. arXiv preprint arXiv:2412.15115,2024.

[50] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. J. Prenger, and
A. Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models.
Advances in Neural Information Processing Systems, 36, 2024.

[51] H. Ying, Z. Wu, Y. Geng, J. Wang, D. Lin, and K. Chen. Lean Workbook: A large-scale Lean
problem set formalized from natural language math problems. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

13

[52] H.Ying, S. Zhang, L. Li, Z. Zhou, Y. Shao, Z. Fei, Y. Ma, J. Hong, K. Liu, Z. Wang, Y. Wang,
Z. Wu, S. Li, F. Zhou, H. Liu, S. Zhang, W. Zhang, H. Yan, X. Qiu, J. Wang, K. Chen, and
D. Lin. InternLM-Math: Open math large language models toward verifiable reasoning. CoRR,
abs/2402.06332, 2024.

[53] L. Yujian and L. Bo. A normalized levenshtein distance metric. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1091-1095, 2007.

[54] L. Zhang, X. Quan, and A. Freitas. Consistent autoformalization for constructing mathematical
libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pages 4020-4033. Association for Computational Linguistics, Nov. 2024.

[55] C.Zheng, H. Wang, E. Xie, Z. Liu, J. Sun, H. Xin, J. Shen, Z. Li, and Y. Li. Lyra: Orchestrating
dual correction in automated theorem proving. arXiv preprint arXiv:2309.15806, 2023.

[56] K. Zheng, J. M. Han, and S. Polu. miniF2F: a cross-system benchmark for formal Olympiad-
level mathematics. In International Conference on Learning Representations, 2022.

[57] Y. Zheng, R. Zhang, J. Zhang, Y. Ye, and Z. Luo. LlamaFactory: Unified efficient fine-tuning
of 100+ language models. In Y. Cao, Y. Feng, and D. Xiong, editors, Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), pages 400-410. Association for Computational Linguistics, Aug. 2024.

[58] J. P. Zhou, C. E. Staats, W. Li, C. Szegedy, K. Q. Weinberger, and Y. Wu. Don’t Trust: Verify —
grounding LLLM quantitative reasoning with autoformalization. In The Twelfth International
Conference on Learning Representations, 2024.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The scope and contributions of the paper are included in the abstract and intro-
duction. Please refer to the first and last paragraph of Section [I]for scope and contributions,
respectively.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is included in the Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [NA] .
Justification: The paper does not have any theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all implementation details in Section[d.1.T]and Section[d.2.1]
All prompts used are given in Appendix [

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets, model, and code are available at https://github.com/
XiaoyangLiu-sjtu/ATLAS.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all implementation details in Section[d.1.1]and Section[d.2.1]
All prompts used are given in Appendix [F|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run the experiments 5 times with seeds 42, 43, 44, 45, 46, report
the mean results, and perform a two-tailed t-test with p < 0.05 to demonstrate statistical
significance in Table 2]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://github.com/XiaoyangLiu-sjtu/ATLAS
https://github.com/XiaoyangLiu-sjtu/ATLAS
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of compute resources in the last paragraph in Section

11
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive impacts that our framework will bring in the
Section[T

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

e The answer NA means that

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper or attached the link to the existing assets used
in this paper.
Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

19

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets up to now.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: In Sections [3]and i} we provide a detailed introduction on how LLMs are
incorporated into our framework. In Appendix [F we present the prompts used for each
LLM in our framework.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Motivation, Limitations, and Future Work

Motivation. Our work builds upon MUSTARD [[14] by addressing two of its primary limitations.
And solutions to these limitations constitute the core contributions of this paper.

* Data Sourcing. MUSTARD sources concepts from the Khan Academy Website, which can create
a "formalization bottleneck" as some concepts lack a direct counterpart in Mathlib. To overcome
this, ATLAS sources concepts exclusively from Mathlib, guaranteeing a valid formalization path
for every statement from the start.

* Generation Efficiency. MUSTARD’s reliance on GPT-4 for correction loops is a costly, low-yield
process: over 90% of initial generations fail the prover validation, resulting in a final dataset
of only 6k samples. In contrast, the teacher-student distillation framework in ATLAS is highly
efficient, dramatically reducing costs and enabling the generation of a much larger dataset of 117k
high-quality pairs.

Limitations. A key limitation of our work is that we do not verify the correctness of the synthetic
mathematical propositions in the ATLAS dataset. This decision is based on two primary factors.
First, the autoformalization task is fundamentally about the fidelity of translation from natural
language to formal language; the underlying truth value of a proposition does not alter the core
translation challenge. Second, the current capabilities of automated theorem provers are insufficient
for reliably verifying a large corpus of undergraduate-level mathematics. For example, the state-of-
the-art DeepSeek-Prover-V2-671B [32] only achieves a 7.44% success rate on PutnamBench, making
large-scale verification prohibitively challenging and costly.

Nevertheless, we acknowledge that training models on a corpus containing false propositions poses a
potential risk for downstream applications, particularly for the automated theorem proving task. To
quantify this risk, we performed an analysis to estimate the prevalence of incorrect propositions in
our dataset. We randomly sampled 100 propositions from ATLAS and established a ground truth
for their correctness using a panel of experts, which included human evaluators alongside advanced
LLMs (DeepSeek-R1 and Gemini-2.5-Pro). Using a majority vote consensus from this panel, our
analysis classified 60 of the sampled propositions as true and 40 as false. This finding provides a
baseline estimate of the dataset’s truthfulness and highlights an area for future work in synthetic data
refinement.

Another limitation is the diversity of data enhanced by proof. The augmentation-via-proof method
is designed to generate novel propositions by treating each step of a formal proof as a semantic
transformation. Ideally, the final proposition in a proof chain should be substantially different from
the original. However, a limitation of the current implementation is that the practical diversity of
these transformations can be constrained, particularly when the proof relies on trivial tactics.

To quantify the textual diversity of augmented data, we conducted an analysis on 100 randomly sam-
pled propositions. We measured the BLEU score between the original and augmented versions, where
a lower score signifies greater novelty. The analysis revealed that augmentation-via-proof (Average
BLEU: 0.6709) produces less diverse statements on average than augmentation-via-contraposition
(Average BLEU: 0.6026). To enhance the former, we plan to implement a stricter filtering mechanism
that, for example, disallows augmentations generated from trivial tactics.

Future Work. A primary direction for future work is to implement a more explicit curriculum
learning [42] strategy to guide the model’s improvement. This strategy comprises two main compo-
nents:

* Compositional Complexity. We will restructure the concept repository into a graph, enabling
the systematic generation of a curriculum. New theorems will be synthesized by progressively
increasing both the conceptual distance between ideas (i.e., path length in the graph) and the
number of concepts required to form a valid statement.

* Conceptual Hierarchy. We will introduce a graded concept repository (e.g., high school —
undergraduate — graduate). The model must demonstrate proficiency at one level before unlocking
access to the next, creating a structured path toward mastering more advanced topics.

Together, these mechanisms will enable our pipeline to autonomously generate a curriculum of
increasing difficulty, creating a powerful virtuous cycle of self-improvement.

22

A more ambitious goal is to extend our framework from formalizing individual statements to entire
mathematical theories. This direction is inspired by dependency-aware, retrieval-based methods like
RAutoformalizer [24]. While such methods improve performance by retrieving premises at inference
time, our work focuses on data generation. A promising synthesis of these ideas is to integrate the
core principle of dependency awareness directly into our data generation process.

Our technical approach for this involves restructuring the concept repository into a dependency-aware
tree. During synthesis, we will generate data in a bottom-up, layer-by-layer fashion, explicitly
preserving the logical dependencies from foundational axioms to advanced theorems. The result-
ing structured dataset would be ideal for training next-generation models capable of theory-level
autoformalization.

B Discussion for Validation Pipeline

In this section, we discuss and examine the reliability and equity of our validation pipeline and
evaluate instances of both successful and unsuccessful validations.

Discussion. Recently, there has been some work [20} 24, 28] on automated evaluation of translated
FL statements. However, all of these approaches are based on the mutual proof of the translated FL
statements and the labeled FL statements. Considering the development of the field of automated
theorem proving, it is unrealistic to use this method for automated evaluation on undergraduate
and graduate datasets, as the most powerful model currently, DeepSeek-Prover-V2-671B, has only
achieved a proof rate of 7.44% on PutnamBench.

Conversely, concerning the validation pipeline, it is important to highlight that validation based on
LLMs can sometimes diverge from human judgment, particularly in instances of false positives.
Nevertheless, this approach remains standard in the field (e.g., see Lean Workbook [51]], Herald [9]])
and is currently one of the few viable solutions for large-scale automated evaluation. This is primarily
because conducting human expert reviews under the pass@ k metric is impractical.

In our implementation of the validation pipeline, especially the NLI check, the primary objective is to
establish a fair performance evaluation among different models. As demonstrated in the subsequent
experiments, all the baseline models and our proposed model yield comparable results regarding the
proportion of false-positive cases, indicating that the validation pipeline is relatively fair.

Experiment Results. To provide a clearer illustration of the false positive cases and the fairness
discussed earlier, we conduct an experiment to evaluate the outcomes that pass through the validation
pipeline. Specifically, we select the entire ProofNet dataset, consisting of 371 natural language
statements, and translate it using the ATLAS Translator, as well as two baseline models: the Herald
Translator and the Llama-3.1 Initialization.

The outputs of autoformalization that successfully pass validation are classified by human experts into
three distinct categories: correct translations, minor errors, and major errors. These classifications
adhere to the evaluation criteria established in Herald [9]].

* Correct Translation. A correct translation must accurately reflect the mathematical meaning of
the natural language statement. In cases where the original statement is ambiguous, we allow the
formalized statement to adopt any mathematically valid interpretation.

* Minor Error. If the formalized result deviates from the original statement but can be easily
corrected by altering a single formal definition or restructuring a single logical relation within the

hypothesis or statement, it is classified as a minor error.

* Major Error. All other cases are classified as major errors.

As shown in Table[5] the ATLAS Translator and other baseline models also experience false positives,
exhibiting comparable false positive rates, which ensures a fair comparison. In Sections [B.T} [B.2} and
we provide examples for each of these three categories.

23

Table 5: Human evaluation results of validation passed statements

Model Validation Passed Correct Translation Minor Error Major Error
Llama3.1-Initialization 82 43 30 9
Herald Translator 134 79 31 24
ATLAS Translator 151 99 26 26

B.1 Correct Examples

Example 1
Suppose that f is holomorphic in an open set 2. Prove that if Re(f) is constant, then f is
constant.

theorem tm_name (£ : Set C) (h{2 : IsOpen Q) (f : C - C) (hf :
DifferentiableOn C £ Q) (h : V 2z € Q, Vw € Q, (f z).re = (f w)
.re) : VzeQ, VweQ fz=1fw:= Dby sorry

Example 2

Let X be a topological space; let A be a subset of X. Suppose that for each = € A there is an

open set U containing x such that U C A. Show that A is open in X.

theorem tm_name {X : Type*} [TopologicalSpace X] (A : Set X) (hA
V x € A, 30U, IsOpen UA x € UAUCA) : IsOpen A := by sorry

Example 3
Letp: X — Y be a closed continuous surjective map such that p~1({y}) is compact, for each
y € Y. (Such a map is called a perfect map.) Show that if Y is compact, then X is compact.

theorem tm_name {X Y : Typex} [TopologicalSpace X] [
TopologicalSpace Y] [CompactSpace Y] {p : X — Y} (hp
Continuous p) (h : Function.Surjective p) (h’> : V y : Y,
IsCompact (p ~ {y})) : CompactSpace X := by sorry

B.2 Minor Error Examples

Example 1
Show that fol log(sin rx)dx = — log 2.

theorem tm_name (v : R) : [x in (0 : R)..1, Real.log (Real.sin
(rxx)/7)| = -Real.log 2 := by sorry

Analysis: Incorrectly formalizing sin 7rx as sin(7 *) /7.

Example 2
Let f be a real uniformly continuous function on the bounded set E in R'. Prove that f is
bounded on FE.

theorem tm_name (f : R—R) (E : Set R) (hE : |IsCompact E|) (hf
UniformContinuousOn f E) : I M, V x € E, [f x| <M := by sorry

Analysis: In the formalization, the condition that the set E' is bounded is strengthened to
being compact.

Example 3
Let R be a commutative ring with 1 # 0. Prove that if a is a nilpotent element of R then 1 — ab
is a unit for all b € R.

theorem tm_name {R : Typex*} [CommRing R] [] [Nontrivial R
] (a b : R) (ha : IsNilpotent a) : IsUnit (1 - a * b) := by
sorry

Analysis: In the formalization, an additional assumption was made that R is a domain.

24

B.3 Major Error Examples

Example 1

If Cy + %+--~+%+n%l = 0, where Cy, ..., C,, are real constants, prove that the

equation Cy + C1z + - - + Cp_12™ 1 + C,z™ = 0 has at least one real root between 0 and 1.

theorem tm_mname (n : N) (hn : 0 < n) (C : Fin (n + 1) — R) (hC : X
i : Fin (n + 1), Ci/ (i + 1) =0) :dx :R, 0<xAx<1A
CcCo0O+C1=x*xzx+C2*xx "~ 2+C3*xx~3+C4xx3x"4+2C5
* x 5 +C6 xx ~6+C7x3x"~7+C8*x ~8+C9 *xx "~ 9
+ C 10 * x ©~ 10 = 0 := by sorry

Analysis: The polynomial is written as explicit terms instead of a general sum, losing generality
for arbitrary n.

Example 2 _ o
If G is a group in which (ab)* = a"b* for three consecutive integers i, prove that G is abelian.

theorem tm_name {G : Typex*} [Group G] [Fintype G] [AddCommMonoid G
] [MulAction G G] (ab : G) (i jk : N) (h : i+ 1=3A3+1
=k) (h> : (a*xb) ~i=2a "~ 1i*xb ~ i) : a * b =Db * a := by
sorry

Analysis: Omitted the assumptions (ab)’ = a’b’ and (ab)* = a*b*, only stated (ab)’ = a’b’.

Example 3
Prove that a set U C M is open if and only if none of its points are limits of its complement.

theorem tm_name {M : Typex*} [MetricSpace M] [TopologicalSpace M] (

U : Set M) : IsOpen UV x € U, Yy € UY, x #y := by sorry
Analysis: This formalization does not faithfully express the conclusion about limit points of the
complement."

C Concept Repository

The complete concept repository is composed of 13 domains, 55 topics, and 350 concepts. For the
sake of clarity and brevity, Table[6|only presents a subset of topics from 3 domains, along with their
corresponding concepts. And the full repository can be accessed in the open-source material.

D MathQual

The MathQual dataset is derived from graduate qualification examinations from multiple universities,
including Boston University, Johns Hopkins University, University of Texas at Dallas, University
of California, Los Angeles, University of California Riverside, and University of Georgia. Table
[7| presents the domains included in the MathQual dataset and the process of creating the dataset is
elaborated as follows.

1. Relevant PDF documents are retrieved from official websites.

2. Optical Character Recognition (OCRﬂ technology is employed to convert these documents
into Markdown format.

3. High-quality, formalizable problem statements are meticulously selected through a manual
filtration process. Notably, for proof problems consisting of multiple sub-questions, we
amalgamate the overarching contextual conditions of the main problem with the specific
conditions of each sub-question, thereby constructing several distinct problem statements.

4. The pri%blem statements are categorized according to Mathematics Subject Classification
MSC

*https://github.com/opendatalab/MinerU
>https://zbmath.org/classification

25

Table 6: Partial list of mathematical concepts in the concept repository

Domain Topic Concept
vector space, product of vector spaces, vector subspace, quotient
space, sum of subspaces, direct sum, complementary subspaces,
Fundamentals linear independence, generating sets, bases, existence of bases,
linear map, range of a linear map, kernel of a linear map, algebra of
endomorphisms of a vector space, general linear group
Duality dual vector space, dual basis, transpose of a linear map
Finite- L . Lo . . n .
. . finite-dimensionality, isomorphism with K™, rank of a linear map,
dimensional X . s
rank of a set of vectors, isomorphism with bidual
. vector spaces
Linear Algebra
- . multilinear map, determinant of vectors, determinant of
Multilinearity . . .
endomorphisms, orientation of a R-vector space
commutative-ring-valued matrices, field-valued matrices, matrix
Matrices representation of a linear map, change of basis, rank of a matrix,
determinant, invertibility
Endomorphism annihilating polynomials, minimal polynomial, characteristic
polynomials polynomial, Cayley-Hamilton theorem
Structure theory
eigenvalue, eigenvector, generalized eigenspaces,
of .S
. Jordan-Chevalley-Dunford decomposition
endomorphisms
radius of convergence, continuity, differentiability with respect to
the complex variable, complex exponential, extension of
Complex Valued trigonometric functions(cos) to the complex plane, extension of
Sinele Variable series trigonometric functions(sin) to the complex plane, power series
& . expansion of elementary functions(cos), power series expansion of
Complex Analysis . ;
elementary functions(sin)
. holomorphic functions, Cauchy formulas, analyticity of a
Functions on
one complex holomorphic function, principle of isolated zeros, principle of
variable analytic continuation, maximum principle, holomorphic stability
under uniform convergence
topology of a metric space, induced topology, finite product of
metric spaces, limits of sequences, cluster points, continuous
functions, homeomorphisms, compactness in terms of open covers
Topology and (Borel-Lebesgue), sequential compactness is equivalent to
Metric Spaces compactness (Bolzano-Weierstrass), connectedness, connected
components, path connectedness, Lipschitz functions, uniformly
continuous functions, Heine-Cantor theorem, complete metric
spaces, contraction mapping theorem
topology on a normed vector space, Banach open mapping
theorem, equivalence of norms in finite dimension, norms ||-||,, on
Topology

Normed vector
spaces on R and

C

Hilbert spaces

R™ and C", absolutely convergent series in Banach spaces,
continuous linear maps, norm of a continuous linear map, uniform
convergence norm (sup-norm), normed space of bounded
continuous functions, completeness of the space of bounded
continuous functions, Heine-Borel theorem (closed bounded
subsets are compact in finite dimension), Riesz’ lemma (unit-ball
characterization of finite dimension), Arzela-Ascoli theorem

Hilbert projection theorem, orthogonal projection onto closed
vector subspaces, dual space, Riesz representation theorem, inner
product space 12, completeness of [2, inner product space L2,
completeness of L2, Hilbert bases, example, the Hilbert basis of
trigonometric polynomials, Lax-Milgram theorem

26

Table 7: Domain Classification and Problem Counts in MathQual

Domain Count
Algebraic geometry 2
Algebraic topology 26
Associative rings and algebras 11
Calculus of variations and optimal control; optimization 3
Category theory; homological algebra 6
Combinatorics 1
Commutative algebra 43
Difference and functional equations 1
Differential geometry 9
Field theory and polynomials 32
Functional analysis 23
Functions of a complex variable 101
General topology 24
Global analysis, analysis on manifolds 18
Group theory and generalizations 51
Harmonic analysis on Euclidean spaces 7
Linear and multilinear algebra; matrix theory 25
Manifolds and cell complexes 12
Mathematical logic and foundations 11
Measure and integration 16
Number theory 5
Operator theory 3
Ordinary differential equations 2
Partial differential equations 5
Potential theory 7

—_—
—_

Probability theory and stochastic processes

Real functions 4
Several complex variables and analytic spaces 3
Topological groups, Lie groups 3
Total 465

27

E Case Study

This section presents both successful and unsuccessful cases of synthetic data during the ATLAS
iterative process. Tables[§]to[T3|display successful cases generated by ATLAS, while Tables[T4]and
[[3]illustrate the failed cases, each accompanied by corresponding analyses. The FL statements consist
of multiple rounds, with content highlighted in red boxes indicating syntactic errors or inconsistencies
with the relevant NL statements. Iteration for each data point ceases when there are no syntactic or
semantic errors in the FL statement. The cases below demonstrate that, as the model iterates, it is
able to formalize mathematical concepts in Lean with increasing accuracy.

Table 8: A successful case generated by ATLAS

Analysis: In the first round, the model incorrectly formalized the matrix notation in Lean. However, in the
second round, the formalization was correct.

Conceptl: commutative-ring-valued matrices

Domainl: Linear algebra
Concept2: determinant
Domain2: Linear algebra

NL statement: For any commutative ring R and any two m X n matrices A and B
over R, the determinant of their product AB is equal to the product of their
determinants, i.e., det(AB) = det(A)det(B)

FL statements:

Round 1

theorem tm_name {R : Type*} [CommRing R] (n : N)
(A B : Matrix (Finn) R))| : (A * B).det = A.det * B.det := by
sorry

Round 2

theorem tm_name {R : Type*} [CommRing R] (n : N) (A B : Matrix (
Fin n) (Fin n) R) : (A % B).det = A.det * B.det := by sorry

Table 9: A successful case generated by ATLAS

Analysis: In the first two rounds, the model was unable to correctly formalize the concept of “derivative."
However, in the third round, it successfully formalizes this concept, demonstrating that the
model effectively masters it after the learning experiences of the first two rounds.

Conceptl: Leibniz formula

Domainl: Single Variable Real Analysis
Concept2: hyperbolic trigonometric functions
Domain2: Single Variable Real Analysis

NL statement: The derivative of the hyperbolic sine function, sinh(z), can be
expressed using the Leibniz formula as sinh’(z) = cosh(zx).
FL statements:

Round 1

theorem tm_name (x : R) : ‘deriv sinh x = cosh x‘ := by sorry

Round 2

theorem tm_name : ‘deriv sinh = cosh‘ := by sorry

Round 3

theorem tm_name : HasDerivAt (fun x : R => Real.sinh x) (Real.
cosh x) x := by sorry

28

Table 10: A successful case generated by ATLAS

Analysis: In the first round, the model failed to correctly formalize the concepts of “domain” and “being an
injection on a certain set." In the second and third rounds, it learned how to formalize “domain,"
but struggled to accurately formalize “being an injection on a certain set." In the fourth round, it
successfully formalized these concepts.

Conceptl: metric structure

Domainl: Single Variable Real Analysis
Concept2: derivative at a point
Domain2: Single Variable Real Analysis

NL statement: If a function f is differentiable at c and f'(c) # 0, then there

exists a neighborhood U of c such that f is injective on U.

FL statements:

Round 1

theorem tm_name (f : R—R) (¢ : R) (hf : DifferentiableAt R f ¢
A deriv f ¢ # 0) : 3 (U : Set R), |[(c e)| A ‘(Injective[]n f U)

:= by sorry

Round 2

theorem tm_name (f : R—R) (c : R) (hf : DifferentiableAt R f c)
(hc : deriv f ¢ # 0) : 3 U € nhds c, |Function.InjectiveOn f U

= by sorry
Round 3

theorem tm_name (f : R—R) (¢ : R) (hf : DifferentiableAt R f c)
(hc : deriv f ¢ # 0) : 3 U € nhds c,

Function.Injective (f o (A x => x) o (U :=0U) o (A x =>x) o (U :=1))

:= by sorry
Round 4
theorem tm_name (f : R—R) (¢ : R) (hf : DifferentiableAt R f c)
(h’f : deriv f ¢ # 0) : 3 U € nhds c, Set.InjOn f U := by
sorry

29

Table 11: A successful case generated by ATLAS

Analysis: In the previous rounds, the model was unable to correctly formalize “the order of a finite group'
and the concept of “two coprime positive integers", and there was unnecessary formalization.
However, in the eighth round, the formalization was done correctly.

Conceptl: direct product of groups

Domainil: Group Theory

Concept2: Z is a euclidean ring

Domain2: Ring Theory

NL statement: Let G and H be groups. If G x H is cyclic, then G and H are
cyclic and their orders are coprime.

FL statements:

Round 3

theorem tm_name {G H : Type*} [Group G] [Group H] (h : IsCyclic (
G X H)) : IsCyclic G A IsCyclic H A

Nat.coPrime (order0f0f G) (orderOf0f H)‘ := by sorry

Round 4

theorem tm_name {G H : Typex*} [Group G] [Group H] (hG : IsCyclic
(G x H)) (hH : |IsCyclic (H x G) ‘) : IsCyclic G A IsCyclic H A

Nat.coPrime (order0f0f G) (orderOf0f H)‘ := by sorry

Round 5

theorem tm_name {G H : Type*} [Group G] [Group H] (hG : IsCyclic
(G x H)) : IsCyclic G A IsCyclic H A

Nat.coPrime (Nat.card G) (Nat.card H) | := by sorry

Round 6
theorem tm_name {G H : Type*} [Group G] [Group H] [Fintype G] [
Fintype H] (hG : IsCyclic (G x H)) (hH : ‘IsCyclic Hx G
IsCyclic G A IsCyclic H A
Nat.coPrime (Fintype.card G) (Fintype.card H)‘ := by sorry

Round 7
theorem tm_name {G H : Type*} [Group G] [Group H] [Fintype G] [
Fintype H] (hG : IsCyclic (G x H)) (hH :‘IsCyclic Hx G6))

IsCyclic G A IsCyclic H A (Fintype.card G).gcd (Fintype.card
H) = 1 := by sorry

Round 8

theorem tm_name {G H : Typex*} [Group G] [Group H] [Fintype G] [
Fintype H] (h : IsCyclic (G X H)) : IsCyclic G A IsCyclic H A
(Fintype.card G).gcd (Fintype.card H) = 1 := by sorry

30

Table 12: A successful case generated by ATLAS

Analysis: In rounds five to seven, the incorrect formalization "Finset" was used. In round eight, the model
revised it to "toFinSet," but it remained incorrect. Finally, in round nine, the formalization was
done correctly. Note: The translation results for rounds 1 to 4 were subpar and lacked any
significant insights, so they are not displayed.

Conceptl: Cauchy-Schwarz inequality

Domainl: Bilinear and Quadratic Forms Over a Vector Spac

Concept2: counting measure

Domain2: Measures and integral calculus

NL statement: For any finite set S and functions f, g : S — R, the

Cauchy-Schwarz inequality holds: (), . g f(x)g(:r))2 < (Ches (@) (Xaes9(@)?).
FL statements:

Round 5 ~ 7

theorem tm_name (S :) (fg: R=>R) : (¥ xin S, f x x g
x) " 2< (X xin S8, £fx - 2) x (¥ x in S, g x = 2) := by
sorry

Round 8

theorem tm_name (S : Set R) (hS : S.Finite) (f g : S —-R) : (¥ x

in [S.toinset], £ x * g © ~ 2 < (C x in [5.voRimSet], £ x ~ 2) *
(Exin,gx“2) := by sorry

Round 9

theorem tm_name {S : Type*} [Fintype S] (f g : S—-R) : (¥ x : S8,
fx*gzx) " 2< Ezx:8,fx"~2)*x Xx:8, gzx "~ 2) :=
by sorry

31

Table 13: A successful case generated by ATLAS

Analysis: In the first two rounds, there were formalization errors in Lean syntax, while in rounds three
and four, the formalization expressed overly strong semantics. However, in round five, the
formalization was done correctly.

Conceptl: K[X] is a euclidean ring when K is a field

Domainl: Ring Theory

Concept2: inverse trigonometric functions

Domain2: Single Variable Real Analysis

NL statement: Let K be a field. For any polynomial f(X) € K[X], there
exists a polynomial g(X) € K[X] such that f(X)-g(X) = 1 if and only if f(X)
is a constant polynomial. This property is analogous to the invertibility of
non-zero constants in the context of inverse trigonometric functions.

FL statements:

Round 1

theorem tm_name {K : Typex} [Field K] (f : Polynomial K) : (3 (g
Polynomial K), |Polynomial.mul f g = 1‘) >

f.coeffs.all ((*@*@) n => n = O)‘ := by sorry

Round 2

theorem tm_name {K : Typex} [Field K] (f : K[X]) : (3 g : KI[X], £
*x g =1) < |f=C (1 : K)‘ := by sorry

Round 3

theorem tm_name {K : Typex*} [Field K] (f : Polynomial K) : (3 g
Polynomial K, f *x g = 1) <—>‘f =1V If= —1‘ := by sorry

Round 4
theorem tm_name {K : Typex} [Field K] (f : Polynomial K) : (3 g

Polynomial K, f *x g = 1) & := by sorry
Round 5
theorem tm_name {K : Type*} [Field K] (f : Polynomial K) : (3 g :

Polynomial K, £f * g = 1) < (d ¢ : K, £ = Polynomial.C c)
by sorry

32

Table 14: A failed case generated by ATLAS

Analysis: The model was unable to correctly formalize the concept of a Gaussian integer ring.

Conceptl: field C of complex numbers

Domainl: Ring Theory

Concept2: greatest common divisor

Domain2: Ring Theory

NL statement: Let o and [be non-zero elements in the ring of Gaussian
integers Z[i]. Then the greatest common divisor gcd(w,) in Z[i] is a Gaussian
integer of the form v =x + yi¢, where x and y are integers.

FL statements:

Round 1

theorem tm_name {a : C} (ha : IsAlgebraic Z «) (h : IsMonic (
Polynomial .map (algebraMap Z C) (X - C a)))
IsEuclideanDomain (Z{(a)) := by sorry

Round 2

theorem tm_name (a B : ZI[i]) (ha : a # 0) (hB : B # 0) : I x y
Z, 3 v : Z[il, vy = x + y * I AN v = gcd a« B := by sorry

Round 3

theorem tm_name (a B : Z[i]) (ha : o # 0) (b : B # 0) : I~ : Z[
il], vy = ged a S ANT xy :Z, vy=x+7y % I := by sorry

Round 4

theorem tm_name (a B : Z[i]) (ha «
[i]1) (xy : Z), v =x +y3 *x I A~y

Round 5

#0) (g : B#0) : I (v : Z
= gcd o B := by sorry

theorem tm_name (a [: Z[i]) (h«a

a#0) (b : B#0) : I (y : Z
[i]) (xy : Z), v =x +y * I N~ =

gcd a B := by sorry
Round 6

theorem tm_name (a B : Z[i]) (ha : o # 0) (b : B # 0) : I~ : ZI[
il, 3 xy : Z, v = (x, y) ANy = ged a § := by sorry

Round 7

theorem tm_name (a B : Z[i]) (ha : o # 0) (b : B # 0) : T ~ : ZL[
il, v = gcd o B := by sorry

Round 8

theorem tm_name (a B : Z[i]) (ha : o # 0) (hB : B # 0) : T ~ : ZI[
il], y =ged a AT xy : Z, v =x +y *x i := by sorry

Round 9

theorem tm_name (a B : Z[i]l) (ha : a # 0) (B : B # 0) : T ~v : ZI[
il], 7 = gecd a B := by sorry

Round 10

theorem tm_name (a B : Z[i]) (ha : o # 0) (b : B # 0) : I ~ : ZL[
il, v = gcd o B := by sorry

33

Table 15: A failed case generated by ATLAS

Analysis: The model was unable to formalize such a relatively complex problem, and there were also
certain issues with the natural language statement itself.

Conceptl: Taylor’s theorem with Lagrange form for remainder

Domainl: Single Variable Real Analysis

Concept2: affine function

Domain2: Affine and Euclidean Geometry

NL statement: For a function f that is n + 1 times differentiable on

an interval containing a and z, the Taylor polynomial of degree n at a
approximates f(z) with an error term that can be expressed as an affine
function of (z —a)"*'.

FL statements:

Round 1

theorem tm_name (n : N) (f : R—-R) (hf : V x, (x € Set.Icc a x)
— HasFDerivAt (f’ x) f x) (x : R) (hx : x € Set.Icc a x) : d
c : R, £f x - taylorPolynomial n a f = c * (x - a) -~ (n + 1)
= by sorry

Round 2

theorem tm_name (a x : R) (n : N) (f : R—-R) (hf : V x, f x =X
i in range (n + 1), (£-[i] a * (x - a) ~ 1 / i')) : I k : R,
f x - ¥ i in range (n + 1), (£~[i] a *x (x - a) -~ i / i!') =k
* (x - a) -~ (n + 1) := by sorry

Round 3

theorem tm_name (n : N) (a x : R) (£f : R—-R) (hf : V k : N, k <
n — DifferentiableOn R (fun x => iteratedDeriv n f x) (Set.

Icc ax)) : 3¢ : R, f x - iteratedDeriv n f a = ¢ * (x - a)
~ (n + 1) := by sorry
Round 4

theorem tm_name (n : N) (a x : R) (f : R—R) (hf : ContDiff R (n
+ 1) £) : 3k : R, £f x - (f a+ X i in FinSet.range (n + 1),
(f~[1i + 1] a * (x - a) ~ i/ (i + 1)) =k x (x - a) =~ (n +
1) := by sorry

Round 5

theorem tm_name (f : R—=R) (n : N) (a x : R) (hf : ContDiff R (n
+1) £) : 3> g : R, £f x =f a+ £’ * (x - a) + g * (x - a)
=~ (n + 1) := by sorry

Round 6

theorem tm_name (f : R—=R) (a x : R) (n : N) (hf : ContDiff R (n
+ 1) £f) : 3k : R, x =f a+ (£ a) * (x - a) + (1 / (Nat.
factorial (n + 1))) (f (n+ 1) a) * (x - a) =~ (n + 1) + k *

(x -a) - (n+ 1) by sorry

I * +Fh

Round 10

theorem tm_name (n : N) (a : R) (f : R—-R) (hf : Vk : N, k <n
— DifferentiableOn R (fun x => deriv~[k] f x) (Set.Icc a a))
Ip:R>R, Vx : R, I[fx-pxl<C=x*|x-al~ (n+1)
= by sorry

34

F Prompt Templates

This section presents all the prompts used to facilitate the reproducibility of our work.

Prompt Template for NL Statements Translation (DeepSeek-V3)

Please autoformalize the following problem in Lean 4 with a header. Use the following
theorem names: tm_name. Respond strictly with the translation, without any additional
explanation.\n\n

Prompt Template for Back-Translation

[UNUSED_TOKEN_ 146]user\nConvert the formal statement into natural language:\n“
lean\nformal_statement\n“‘[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_ 146]assistant\n

Prompt Template for NLI Check

You are an experienced mathematics expert and educator with extensive experience in
mathematical problem analysis. I need you to analyze the fundamental nature of the
following two mathematical problems.

Focus on:

1. Core mathematical concepts and principles

2. Problem-solving approaches and methodologies
3. Ultimate objectives of the problems

Ignore:
1. Variations in wording
2. Changes in contextual scenarios

Present your answer using exactly this format:
Analysis\nlnsert your analysis here
Conclusion\nreply llsamell or lldifferentll with "|lI" format

Please approach this analysis with professional rigor.
Math Problem 1: {informal_statement}
Math Problem 2: {back_translation }

Prompt Template for NL Statements Generation

You are an expert mathematics professor tasked with creating proof problems for undergradu-
ate mathematics majors. Your assignment is to construct a proof problem that integrates
{conceptl } from {domainl} and {concept2} from {domain2}.

Requirements:

1. Create a concise theorem appropriate for undergraduate mathematics majors.
2. The theorem should be brief, not exceeding 50 words.

3. Incorporate both specified concepts into the theorem naturally.

4. State the theorem clearly and concisely.

5. Ensure the theorem is simple enough to be easily translated into Lean4.

Format exactly:
Answer\nInsert your problem with
language here.l

n”n

format, i.e. [ITheorem: Insert the theorem in natural

Prompt Template for NL Statements Translation (ATLAS)

You are an expert in the Lean4 theorem prover. Your task is to translate theorems from
natural language into formal Lean4 statements. Please follow these guidelines:

1. Carefully analyze the given theorem in natural language.

2. Translate it into a correct and precise Lean4 formal statement.

3. Use the following format for your response: theorem tm_name : The theorem’s Lean4
formal statement := by sorry

4. Focus solely on the translation. Do not attempt to prove the theorem or provide additional
explanations.

5. Ensure that your translation accurately captures all the mathematical concepts and
relationships expressed in the natural language version.

6. Use appropriate Lean4 syntax, including correct use of quantifiers, implications, and
mathematical symbols.

7. If the theorem involves specific mathematical structures (e.g., groups, rings, topological
spaces), use the corresponding Lean4 definitions and notations.

Remember, the goal is to create a syntactically correct and semantically accurate formaliza-
tion in Lean4. Your translation should be faithful to the meaning of the original theorem
while adhering to Lean4 conventions and best practices.

Now please begin by carefully reading the natural language statement provided, and then
proceed with your translation into Lean4.
{informal_statement}

Prompt Template for FL. Statements Revision

You are a math expert and an expert in Lean4. Your task is to modify the Lean4 code based
on the given natural language description of a theorem, the corresponding Lean4 code, and
the error message from the Lean compiler.

Requirements:

1. Correct the Lean4 code to make it compile successfully.

2. Lean4 code may lack or have additional declarations of certain content. You can add or
remove them as much as possible to keep it consistent with the natural language description.
3. No need to import any packages, because Mathlib will be imported by default as import
Mathlib.

4. Carefully read the content and provide your modified answer: #xLean4 codex:\n{formal
_statement }\nxxCompiler error messagess*\n{compiler_error_messages }\nx:natural
language statement:=\n{informal_statement}

Format exactly:

Analysis\nlnsert your analysis here

Answer\nlnsert your revised Lean4 code with "ll" format, i.e. lltheorem tm_name your
revised Lean4 code here := by sorryll

36

Prompt Template for FL. Statements Alignment

You are a math expert and an expert in Lean4. Your task is to check the alignment between
the given natural language description of a theorem and the corresponding Lean4 code.

Requirements:

1. Determine whether the Lean4 code is missing declarations of certain entities.

2. Assess whether the Lean4 code accurately represents the theorem described in the natural
language.

3. Carefully read the content and provide your answer: s#xLean4 codex#\n {for-
mal_statement }\n+:natural language statement:\n{informal_statement}

Format exactly:
Analysis:\nInsert your analysis here
Answer\nreply ligoodll, llaveragell or lipoorll

Prompt Template for FL. Statements Translation

You are a math expert and an expert in Lean4. Your task is to translate theorems from Lean4
code into natural language.

Requirements:

1. Focus solely on the translation. Do not attempt to prove the theorem or provide additional
explanations.

2. The theorem’s natural language statement should be brief, not exceeding 50 words.

3. Carefully analyze the given theorem in Lean4 code {formal_statement} and provide your
translation in natural language.

Format exactly:
Answer\nInsert your translation with "lI" format, i.e. lITheorem: Insert the theorem in
natural language here.l|

	Introduction
	Related Work
	Methodology
	Data Lifting
	Data Synthesis
	Data Augmentation

	Experiments
	ATLAS dataset Construction
	Experimental Setup
	Experiment Results

	ATLAS Translator Evaluation
	Experimental Setup
	Overall Results
	Ablation Study
	Additional Results

	Conclusion
	Motivation, Limitations, and Future Work
	Discussion for Validation Pipeline
	Correct Examples
	Minor Error Examples
	Major Error Examples

	Concept Repository
	MathQual
	Case Study
	Prompt Templates

