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Abstract
This paper focuses on learning a model of system dynamics online while satisfying safety constraints.
Our motivation is to avoid offline system identification or hand-specified dynamics models and allow
a system to safely and autonomously estimate and adapt its own model during online operation.
Given streaming observations of the system state, we use Bayesian learning to obtain a distribution
over the system dynamics. In turn, the distribution is used to optimize the system behavior and
ensure safety with high probability, by specifying a chance constraint over a control barrier function.
Keywords: Gaussian Process, high relative-degree system safety, control barrier function

1. Introduction

Unmanned vehicles promise to transform many aspects of our lives, including transportation, agricul-
ture, mining, and construction. Successful use of autonomous robots in these areas critically depends
on the ability of robots to safely adapt to changing operational conditions. Existing systems, however,
rely on brittle hand-designed dynamics models and safety rules that often fail to account for both
the complexity and uncertainty of real-world operation. Recent work (Deisenroth and Rasmussen,
2011; Dean et al., 2019; Sarkar et al., 2019; Coulson et al., 2019; Chen et al., 2018; Khojasteh et al.,
2018; Liu et al., 2019; Umlauft and Hirche, 2019; Fan et al., 2020; Chowdhary et al., 2014) has
demonstrated that learning-based system identification and control techniques may be successful
at complex tasks and control objectives. However, two critical considerations for applying these
techniques onboard autonomous systems remain unattended: learning online, relying on streaming
data, and guaranteeing safe operation, despite the uncertainty inherent to learning algorithms.

Motivated by the utility of Lyapunov functions for certifying stability properties, (Ames et al.,
2016; Xu et al., 2017; Xu et al., 2015; Prajna et al., 2007; Ames et al., 2019) proposed Control
Barrier Functions (CBFs) as a tool for characterizing the long-term safety of dynamical systems.
A CBF certifies whether a control policy achieves forward invariance of a safe set C by evaluating
if the system trajectory remains away from the boundary of C. Most of the literature on CBFs
considers systems with known dynamics, low relative degree, no disturbances, and time-triggered
∗ indicates equal contribution.
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control, in which the control inputs are recalculated at a fixed and sufficiently small period. This
is limiting because, low control frequency in a time-triggered setting may lead to safety constraint
violation in-between sampling times. On the other hand, high control frequency leads to inefficient
use of computational resources and actuators. (Yang et al., 2019) extend the CBF framework to
a self-triggered setup in which the longest time until a control input needs to be recomputed to
guarantee safety is provided. CBF techniques handle nonlinear control-affine systems but many
existing results apply only to relative-degree-one systems, in which the first time derivative of the
CBF depends on the control input. This requirement is violated by many underactuated robot systems
and motivated extensions to relative-degree-two systems, such as bipedal and car-like robots. (Hsu
et al., 2015; Nguyen and Sreenath, 2016b). (Nguyen and Sreenath, 2016a) generalized these ideas by
designing an exponential control barrier function (ECBF) capable of handling control-affine systems
with any relative degree.

Providing safety guarantees for learning-based control techniques has lately been the focus of
research. (Koller et al., 2018; Berkenkamp et al., 2016; Fisac et al., 2018; Bastani, 2019; Wabersich
and Zeilinger, 2018; Biyik et al., 2019). In particular, the CBF framework have been extend to
systems with unknown dynamics. For example, techniques for handling additive disturbances
have been proposed in (Clark, 2019; Santoyo et al., 2019), while CBF conditions for systems with
uncertain dynamics have been proposed in (Fan et al., 2019; Wang et al., 2018; Taylor and Ames,
2019; Cheng et al., 2019; Salehi et al., 2019). Furthermore, (Fan et al., 2019) study time-triggered
CBF-based controllers for control-affine systems with relative degree one, where the input gain part
of the dynamics is known and invertible. Bayesian learning is used in (Fan et al., 2019) to determine
a distribution over the drift term of the dynamics. In particular, (Fan et al., 2019) compared the
performances of Gaussian Process regression (Williams and Rasmussen, 2006), Dropout neural
networks (Gal and Ghahramani, 2016), and ALPaCA (Harrison et al., 2018) in simulations. (Wang
et al., 2018), (Cheng et al., 2019), and (Taylor and Ames, 2019) have studied time-triggered CBF-
based control relative-degree-one systems in presence of additive uncertainty in the drift part of the
dynamics. In (Wang et al., 2018), GP regression is used to approximate the unknown part of the
3D nonlinear dynamics of a quadrotor. (Cheng et al., 2019) proposed a two-layers control design
architecture that integrates CBF-based controllers with model-free reinforcement learning. (Taylor
and Ames, 2019) proposed adaptive CBFs to deal with parameter uncertainty. (Salehi et al., 2019)
studies nonlinear systems only with drift terms and uses Extreme Learning Machines to approximate
the dynamics.

Our work proposes a learning approach for estimating posterior distribution of robot dynamics
from online data to design a control policy that guarantees safe operation. We make the following
contributions. First, we develop a matrix variate Gaussian Process (GP) regression approach with
efficient covariance factorization to learn the drift term and input gain terms of a nonlinear control-
affine system. Second, we use the GP posterior to specify a probabilistic safety constraint and
determine the longest time until a control input needs to be recomputed to guarantee safety with high
probability. Finally, we extend our formulation to dynamical systems with arbitrary relative degree
and show that a safety constraint can be specified only in terms of the mean and variance of the Lie
derivatives of the CBF. Notation, proofs, and additional remarks are available in the appendix
at arXiv (Khojasteh et al., 2019).
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2. Background

Consider a control-affine nonlinear system:

ẋ = f(x) + g(x)u =
[
f(x) g(x)

] [1
u

]
=: F (x)u (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state and control input, respectively, at time t.
Assume that the drift term f : Rn → Rn and the input gain g : Rn → Rn×m are locally Lipschitz.
We study the problem of enforcing probabilistic safety properties via CBF when f and g are unknown.
We first review key results on CBF-based safety for known dynamics (Ames et al., 2019).

2.1. Known Dynamics: Control Barrier Functions for Safety

Let C ⊂ D ⊂ Rn be a safe set of system states. Assume C = {x ∈ D | h(x) ≥ 0} is specified
as the superlevel set of h ∈ C1(D,R), a continuously differentiable function D → R, such that
∇xh(x) 6= 0 for all x when h(x) = 0. For any initial condition x(0), there exists a maximum time
interval I(x(0)) = [0, t̄) with t̄ ∈ R ∪ {∞} such that x(t) is a unique solution to (1) (Khalil, 2002).
System (1) is safe with respect to set C if C is forward invariant, i.e., for any x(0) ∈ C, x(t) remains
in C for all t in I(x(0)). System safety may be asserted as follows.

Definition 1 A function h ∈ C1(D,R) is a control barrier function (CBF) for the system in (1)
if the control barrier condition (CBC), supu CBC(x,u) ≥ 0, is satisfied for all x ∈ D; where
CBC(x,u) := Lfh(x) + Lgh(x)u + α(h(x)), α is any extended class K∞ function and Lfh(x)
and Lgh(x) are the Lie derivatives of h along f and g, respectively.

Theorem 1 (Sufficient Condition for Safety (Ames et al., 2019)) Consider a safe set C with as-
sociated function h ∈ C1(D,R). If ∇xh(x) 6= 0 for all x ∈ ∂C, then any Lipschitz continuous
control policy π(x) ∈ {u ∈ U | CBC(x,u) ≥ 0} renders the system in (1) safe.

Ames et al. (2019) also provide a necessary condition for safety allowing a concise charaterization:

(1) is safe with respect to C ⇔ ∃ u = π(x) s.t. CBC(x,u) ≥ 0 ∀x ∈ D. (2)

2.2. Known Dynamics: Optimization-based Safe Control

The results in Sec. 2.1 allow designing a control policy π(x) that guarantees system safety as long
as CBC(x, π(x)) remains positive at all times. In practice, this is achieved by solving a quadratic
program (QP) repeatedly at triggering times tk = kτ for k ∈ N and τ > 0:

min
uk

u>k Quk s.t. CBC(xk,uk) ≥ 0, (3)

where Q � 0, xk := x(tk), uk := u(tk). While the QP above cannot be solved infinitely fast,
Theorem 3 of Ames et al. (2016) shows that if f , g, and α ◦ h are locally Lipschitz, then uk(x) and
CBC(x,uk(x)) are locally Lipschitz. Thus, for sufficiently small τ , solving (3) at {tk}k∈N ensures
safety during the inter-triggering times as well.
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3. Problem Statement

Consider a control-affine nonlinear system (1), where F : Rn → Rn×(m+1) is unknown. Our
objective is to estimate F (x) from online observations of the system state and control trajectory and
ensure that (1) remains safe with respect to a set C.

Problem 1 Given a prior Gaussian Process distribution vec(F (x))1∼ GP (vec(M0(x)),K0(x,x′))
on the unknown system dynamics and a training set X1:k := [x(t1), . . . ,x(tk)], U1:k := [u(t1),
. . . ,u(tk)], Ẋ1:k = [ẋ(t1), . . . , ẋ(tk)]

2, compute the posterior Gaussian Process distribution
GP (vec(Mk(x)),Kk(x,x

′)) of vec(F (x)) conditioned on (X1:k,U1:k, Ẋ1:k).

Problem 2 Given a safe set C, and a safe system state xk := x(tk) ∈ C, and the distribution
GP(vec(Mk(x)),Kk(x,x

′)) of vec(F (x)) at time tk, choose a control input uk and triggering
period τk such that:

P(CBC(x(t),uk) ≥ 0) ≥ pk for u(t) ≡ uk and t ∈ [tk, tk + τk) (4)

where x(t) follows the dynamics in (1), and pk ∈ (0, 1) is a user-specified risk tolerance.

4. Matrix Variate Gaussian Process Regression of System Dynamics

We propose an efficient Gaussian Process (GP) regression approach to estimate a posterior distribution
over the dynamics F (x) of the nonlinear control-affine systems (1). The posterior will be used
to determine the distribution of CBC(x,u) in Sec. 53. Since F (x) is matrix-valued, we define a
GP over its columnwise vectorization, vec(F (x)) ∼ GP(vec(M0(x)),K0(x,x′)). The controller
can observe X1:k and U1:k without noise, but the measurements Ẋ1:k might be noisy. As the
controller observes f(x) and g(x) together via Ẋ1:k, there may be a correlation between their
different components. Thus, we develop an efficient factorization of K0(x,x′) based on the Matrix
Variate Gaussian distribution (Sun et al., 2017; Louizos and Welling, 2016) to learn f(x) and g(x)
together. We provide definition and properties of the MVG distribution in Appendix B.1. Two
alternative approaches to infer a posterior over F (x) and their drawbacks are also discussed in
Appendix B.1.

Note that if X ∼MN (M,A,B), then vec(X) ∼ N (vec(M),B⊗A). Based on this observa-
tion, we propose the following GP parameterization for the vector-valued functions vec(F (x)):

vec(F (x)) ∼ GP(vec(M0(x)),B0(x,x′)⊗A) (5)

The above parameterization is efficient as compared to learning the full covariance K0(., .) ∈
Rn(m+1)×(m+1)n, because we need to learn smaller matrices, B0(x,x′) ∈ R(m+1)×(m+1) and
A ∈ Rn×n. Fortunately, this parameterization also preserves its structure on inference.

1. vec(F (x)) ∈ Rn(m+1) is a vector obtained by stacking the columns of F (x)

2. If not available, the derivatives may be approximated via Ẋ1:k−1 :=
[x(t2)−x(t1)

t2−t1

>
, . . . ,

x(tk)−x(tk−1)

tk−tk−1

>]> provided
that the inter-triggering times {τk} are sufficiently small.

3. We only consider epistemic but no aleatoric uncertainty. Namely, while F (x) is sampled from a GP, no additive
disturbances are considered for the dynamics (1).
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Consider the training set (X1:k,U1:k, Ẋ1:k) and a query test point x∗. The train and test data are
jointly Gaussian:

ẋ1
...

ẋk
vec(F (x∗))

 ∼ N



M0(x1)u1
...

M0(xk)uk
vec(M0(x∗))

 ,


u>1 B0(x1,x1)u1 · · · u>1 B0(x1,xk)uk u>1 B0(x1,x∗)
...

. . .
...

...
u>k B0(xk,x1)u1 · · · u>k B0(xk,xk)uk u>k B0(xk,x∗)

B0(x∗,x1)u1 · · · B0(x∗,xk)uk B0(x∗,x∗)

⊗A

.
In the above formulation, the resulting posterior is independent of query control input, u∗, which
allows us to use this posterior in Sec. 5 to efficiently compute a safe control input. To simplify notation,
let B0(X1:k,X1:k) ∈ Rk(m+1)×k(m+1) be a matrix with elements [B0(X1:k,X1:k)]ij := B0(xi,xj)

and define M1:k :=
[
M0(x1) · · · M0(xk)

]
∈ Rn×k(m+1) and U1:k := diag(u1, . . . ,uk) ∈

Rk(m+1)×k. Applying a Schur complement, we can derive the posterior distribution of vec(F (x∗))
conditioned on (X1:k,U1:k, Ẋ1:k) as a Gaussian Process GP(vec(Mk(x∗)),Bk(x∗,x

′
∗)⊗A) with

parameters:

Mk(x∗) := M0(x∗) +
(
Ẋ1:k −M1:kU1:k

)(
U>1:kB0(X1:k,X1:k)U1:k

)−1
U>1:kB0(X1:k,x∗)

Bk(x∗,x
′
∗) := B0(x∗,x

′
∗) + B0(x∗,X1:k)U1:k

(
U>1:kB0(X1:k,X1:k)U1:k

)−1
U>1:kB0(X1:k,x

′
∗)

This inference has a computation complexity of O((1 + m)3k2) + O(k3) while the same for
independent GP is O((1 + m)k2) + O(k3). Since k >> m is common, the proposed model has
almost same inference cost as independent GP. Step by step details are provided in Appendix C.1.2.
For a given query control input u∗, the posterior of F (x∗)u∗ is:

F (x∗)u∗ = f(x∗) + g(x∗)u∗ ∼ GP(Mk(x∗)u∗,u
>
∗ Bk(x∗,x

′
∗)u∗ ⊗A). (6)

5. Self-triggered Control with Probabilistic Safety Constraints

Sec. 4 addressed Problem 1 by proposing an efficient Gaussian Process inference algorithm for
nonlinear control-affine systems. Now, we consider Problem (2). As discussed in Sec. 2.1 if f and g
are locally Lipschitz, then system (1) has a unique solution for any x(0) for all time t in I(x(0)).
We assume the sample paths of the GP used to model the dynamics (1) are locally Lipschitz with
high probability. Similar smoothness assumption has been made previously in Srinivas et al. (2010).
As mentioned in Problem (2), we use a zero-order hold (ZOH) control mechanism in inter-triggering
time, i.e., u(t) ≡ uk for t ∈ [tk, tk + τk). In detail, we assume that for any Lk > 0, uk, and
triggering time tk, there exists a constant bk > 0, such that,

P

(
sup

s∈[0,τk)
‖F (x(tk + s))uk − F (xk)uk‖ ≤ Lk‖x(tk + s)− xk‖

)
≥ qk := 1− e−bkLk . (7)

This assumption is valid for a large class of GPs, e.g., those with stationary kernels that are four times
differentiable, such as squared exponential and some Matérn kernels (Ghosal et al., 2006; Shekhar
et al., 2018). However, it may not hold for GPs with highly erratic sample paths.

The posterior of F (x)u in (6) induces a distribution over CBC(x,u). To ensure that safety in the
sense of (4) is preserved over a period of time [tk, tk + τk), we enforce a tighter constraint at time
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tk and determine the time τk for which it remains valid. In detail, we solve a chance-constrained
version of (3) at time tk,

min
uk

u>k Quk s.t. P(CBC(xk,uk) ≥ ζ|xk,uk) ≥ p̃k, (8)

where p̃k = pk/qk. The choice of ζ and its effect on τk is discussed next.

Lemma 2 Consider the dynamics in (1) with posterior distribution in (6). Given xk and uk,
CBCk := CBC(xk,uk) is a Gaussian random variable with the following parameters:

E[CBCk] = ∇xh(xk)
>Mk(xk)uk + α(h(xk)), (9)

Var[CBCk] = u>k Bk(xk,xk)uk∇xh(xk)
>A∇xh(xk) (10)

Using Lemma 2, we can rewrite the safety constraint as

P(CBCk ≥ ζ|xk,uk) = 1− Φ

(
ζ − E[CBCk]√

Var[CBCk]

)
≥ p̃k, (11)

where Φ(·) is the cumulative distribution function of the standard Gaussian. Note that if the
control input is chosen so that ζ − E[CBCk] < 0, as the posterior variance of CBCk tends to zero,
the probability P(CBCk ≥ ζ|xk,uk) tends to one. Namely, as the uncertainty about the system
dynamics tends to zero, our results reduce to the setting of Sec. 2.1, and safety can be ensured with
probability one. Noting that Φ−1(1− p̃k) =

√
2erf−1(1− 2p̃k), controller (8) can be rewritten as

min
uk

u>k Quk s.t. E[CBCk]− ζ ≥ 0 and (E[CBCk]− ζ)2 ≥ 2 Var[CBCk] (erf−1(1− 2p̃k))
2.

(12)

The program (12) provides a probabilistic safety constraints at the triggering times {tk}k∈N.
Next, we will extend our analysis to inter-triggering times {τk}. We continue by re-writing the
Proposition 1 of (Yang et al., 2019) for our setup.

Proposition 1 Consider the system in (1) with zero-order hold control in inter-triggering times. If
the event (7) occurs at the kth triggering time, then for all s ∈ [0, τk) we have

‖x(tk + s)− xk‖ ≤ rk(s) :=
1

Lk
‖ẋk‖

(
eLks − 1

)
. (13)

Recall from Sec. 2.1 that h is a continuously differentiable function. Thus using Proposition 1, we
notice for any inter-triggering time τk, there exist a constant χk > 0 such that

sup
s∈[0,τk)

‖∇h(x(tk + s))‖ ≤ χk. (14)

This is used in the next theorem which concerns Problem 2.

Theorem 3 Consider the system in (1) with safe set C. Assume the program (8) has a solution at
triggering time tk, event (7) occurs at least with probability qk, ‖ẋk‖ 6= 0, and for all s ∈ [0, τk),
α ◦ h satisfies the following Lipschitz property

|α ◦ h(x(tk + s))− α ◦ h(xk)| ≤ Lα◦h‖x(tk + s)− xk‖. (15)

Then (4) is valid for pk = p̃kqk, and τk ≤ 1
Lk

ln
(

1 + Lkζ
(χkLk+Lα◦h)‖ẋk‖

)
, where χk is given in (14).

Remark 4 Assuming ‖ẋ(tk)‖ 6= 0 in Theorem (3) is not restricting our results. Since, if the state
of the system is safe and it does not change it remains safe.
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6. Extension to Higher Relative-degree Systems

Next, we extend the probabilistic safety constraint formulation for systems with arbitrary relative
degree, using an exponential control barrier function (ECBF) (Nguyen and Sreenath, 2016a; Ames
et al., 2019) 4

Let r ≥ 1 be the relative degree of h(x), that is, LgL(r−1)
f h(x) 6= 0 and LgL(k−1)

f h(x) = 0,
∀k ∈ {1, . . . , r − 2}. Define traverse dynamics with traverse vector η(x),

η̇(x) = Fη(x) + Gu, h(x) = Cη(x) (16)

where C = [1, 0, . . . , 0]> ∈ Rr. Also, η(x), F , and G are defined in Appendix A.

Definition 2 A function h ∈ Cr(D,R) is an exponential control barrier function (ECBF) for the
system in (1) if there exists a row vector Kα ∈ Rr such that the rth order condition CBC(r)(x,u) :=

L(r)
f h(x)+LgL(r−1)

f h(x)u+Kαη(x) satisfies supu CBC(r)(x,u) ≥ 0 for all x ∈ D, which results
in h(x(t)) ≥ Cη(x0)e(F−GKα)t ≥ 0, whenever h(x0) ≥ 0.

If Kα is chosen appropriately (see Appendix B.2), a control policy u = π(x) that ensures CBC(r) ≥
0, renders the dynamics (1) safe with respect to set C. Thus, as in (8), we are interested in solving

min
uk

u>k Quk s.t. P(CBC(r)
k ≥ ζ|xk,uk) ≥ p̃k. (17)

Proposition 2 For a control-affine system of relative degree r, the expectation E[CBC(r)
k ] is affine

in u and Var[CBC(r)
k ] is quadratic in u.

Proposition 3 For a control-affine system of relative degree r, as defined in (1), the system stays in
the safe set C with ECBF h if the control is determined from the following Quadratically Constrained
Quadratic Program (QCQP),

min
u>k

u>k Quk s.t. E[CBC(r)
k ]− ζ ≥ 0 and (E[CBC(r)

k ]− ζ)2 ≥ p̃k
1− p̃k

Var[CBC(r)
k ] (18)

Solving the program (18) requires the knowledge of the mean and variance of CBC(r)
k (see

Thm. 8 in Appendix C.3.1 for CBC(2)). In general, Monte Carlo sampling could be used to estimate
these quantities. The chance constraint in (18) can be interpreted the standard deviation of CBC(r)

k

should be smaller than the mean by a factor of
√
p̃k/(1− p̃k).

7. Simulations

We evaluate the proposed approach on a pendulum with mass m and length l with state x = [θ, ω]
and control-affine dynamics f(x) = [ω,−g

l sin(θ)] and g(x) = [0, 1
ml ] as depicted in Fig 1. A safe

set is chosen as the complement of a radial region [θc −∆col, θc + ∆col] that needs to be avoided.

4. The motivation for assuming known relative degree and CBF but unknown dynamics comes from robotics applications.
Commonly, the class of the system is known but the parameters (e.g., mass, the moment of inertia) and high-order
interactions (e.g., jerk, snap) of the dynamics are unknown. Finding the relative degree and a proper CBF is left open
for future work (cf. (Akella et al., 2020; Robey et al., 2020)).
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Figure 1: Top left: Pendulum simulation (left) with an unsafe (red) region. Top right: The pendulum trajectory
(middle) resulting from the application of safe control inputs (right) is shown. Bottom row: Learned vs true
pendulum dynamics using matrix variate Gaussian Process regression

The controller knows a priori that the system is control-affine with relative degree two, but it is
not aware of f and g. The control barrier function is thus h(x) = cos(∆col) − cos(θ − θc). We
formulate a quadratically constrained quadratic program as in (18) for r = 2. We specify a task
requiring the pendulum to track a reference control signal u0 and specify the optimization objective as
(uk − u0)>Q(uk − u0). We initialize the system with parameters θ0 = 75◦, ω0 = −0.01, τ = 0.01,
m = 1, g = 10, l = 1, θc = 45, ∆col = 22.5. The system dynamics are approximated accurately
(see Fig. 1) while the system remains in the safe region (see Fig. 1). An ε-greedy exploration strategy
is used to sample u0 ∈ [−20, 20]. We use an exponentially decreasing ε-greedy scheme going from 1
to 0.01 in 100 steps. Negative control inputs get rejected by the CBF-based constraint, while positive
inputs allow the pendulum to bounce back from the unsafe region.

8. Conclusion

Allowing artificial systems to safely adapt their own models during online operation will have
significant implications for their successful use in unstructured, changing real-world environments.
This paper developed a Bayesian inference approach to approximate system dynamics and their
uncertainty from online observations. The posterior distribution over the dynamics may be used
to enforce probabilistic constraints that guarantee safe online operation with high probability. Our
results offer a promising approach for controlling complex systems in challenging environments.
Future work will focus on extending the self-triggering time analysis to systems with higher relative
degree and on applications of the proposed approach to real robot systems.
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