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Abstract

The explainability of deep neural networks (DNNs) remains a major challenge in developing
trustworthy AI, particularly in high-stakes domains such as medical imaging. Although
explainable AI (XAI) techniques have advanced, they remain vulnerable to adversarial
perturbations, underscoring the need for more robust evaluation frameworks. Existing
adversarial attacks often focus on specific explanation strategies, while recent research has
introduced black-box attacks capable of targeting multiple XAI methods. However, these
approaches typically craft pixel-level perturbations that require a large number of queries
and struggle to e!ectively attack less granular XAI methods such as Grad-CAM and LIME.
To overcome these limitations, we propose a novel attack that generates perturbations using
semi-transparent, RGB-valued circles optimized via an evolutionary strategy. This design
reduces the number of tunable parameters, improves attack e"ciency, and is adaptable to
XAI methods with varying levels of granularity. Extensive experiments on medical and
natural image datasets demonstrate that our method outperforms state-of-the-art techniques,
exposing critical vulnerabilities in current XAI systems and highlighting the need for more
robust interpretability frameworks.

1 Introduction

Deep neural networks (DNNs) have revolutionized the field of computer vision, driving significant advancements
across a variety of tasks Lin et al. (2014); Simonyan & Zisserman (2015); Springenberg et al. (2015). In
healthcare, artificial intelligence is becoming a transformative force, o!ering groundbreaking solutions for
diagnosis, treatment, and patient care Chaddad et al. (2023). Yet, the black-box nature of many DNNs raises
concerns regarding their explainability, accountability, and trustworthiness Quinn et al. (2021); Rane et al.
(2023); Rosenbacke et al. (2024b). To address these issues and bolster trust, explainable artificial intelligence
(XAI) has emerged as a pivotal area of research. By understanding the decision-making processes of complex
DNNs, XAI fosters confidence among healthcare providers and patients Dosilovic et al. (2018). Within the
computer vision domain, explanation methods frequently generate attribution maps that visualize feature
importance, illustrating how di!erent elements on an image contribute to a DNN’s predictions Simonyan
et al. (2014); Shrikumar et al. (2017); Selvaraju et al. (2017); Lundberg & Lee (2017); Böhle et al. (2024).

Despite the advancements of XAI, recent studies have revealed that many existing methods remain vulnerable
to adversarial inputs Tamam et al. (2023); Huang et al. (2023); Baniecki & Biecek (2024). Such inputs,
generated through imperceptible perturbations (as illustrated in Figure 1), have shown the ability to
simultaneously alter both the XAI attribution maps and the classification outputs of DNNs Huang et al.
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Figure 1: Adversarial images and perturbations generated by the NES Tamam et al. (2023), SAFARI Huang
et al. (2023) and the proposed EvoAttack algorithm when attacking an image from the Br35h dataset.
Adversarial perturbations generated by NES and SAFARI perturb every pixel of the image whereas the
perturbation generated by the proposed EvoAttack method is constructed using a set of 300 circle shapes

SHAPLEY Saliency Input x Gradient DeepLIFT Grad-CAM++ Grad-CAM LIME

Figure 2: Attribution maps generated by XAI methods. These methods are applied to explain a ‘true’
tumour classification of an image from the Br35h dataset made by a trained VGG-16 classifier. We observe
that DeepLIFT, SHAPLEY, Saliency and Input x Gradient methods produce attribution maps with high-
granularity, emphasizing important pixels. In contrast, Grad-CAM, Grad-CAM++ and LIME generate
attribution maps that capture more global features, highlighting broader regions of the image.

(2023). The presence of these adversarial examples in real-world settings is particularly concerning in domains
where DNN explainability is essential or legally required, such as autonomous driving Omeiza et al. (2022)
and healthcare Chaddad et al. (2023); Hao et al. (2024); van der Velden et al. (2022). Consequently, the
development of adversarial attack techniques has become a crucial research direction for evaluating and
improving the robustness of XAI methods Tamam et al. (2023); Huang et al. (2023).

Early research e!orts primarily focused on crafting adversarial images by targeting specific XAI methods
and leveraging knowledge of the underlying DNN architecture and parameters, a setting known as white-box
attacks Wang et al. (2023); Moosavi-Dezfooli et al. (2016); Zhang et al. (2020); Ghorbani et al. (2019).
However, because these approaches depend on access to internal DNN information, they often fail to generalize
across di!erent explanation techniques. Consequently, recent work has shifted toward the black-box scenario,
where only input–output pairs from the DNN and the XAI method are accessible Tamam et al. (2023); Huang
et al. (2023). In this setting, most existing attacks employ meta-heuristic approaches Tamam et al. (2023);
Huang et al. (2023) inspired by evolutionary algorithms Li et al. (2024).

While existing methods have successfully generated adversarial images against XAI techniques, they face
key limitations. Firstly, these methods often require extensive querying of both the DNN and the XAI
method to achieve meaningful distortions in attribution maps. This dependency poses substantial challenges
in environments where query budgets are limited or expensive, whether due to financial constraints Ilyas
et al. (2018); Dhabliya et al. (2024) or time restrictions Keddous et al. (2023). As a result, conducting
robustness evaluations that involve adversarial attacks with high query budgets becomes costly, impacting
both financial resources and development time. This issue stems from the use of population-based approaches
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Figure 3: Figure shows adversarial images produced by the EvoAttack method when applied to the Task 1
scenario (misclassification with preserved explanation), along with the respective generated attribution maps.
Both original and adversarial explanations on the HAM10000 images are visually similar with PCC values
of 0.7 and above. Both sets of explanations highlight seemingly relevant regions of the image, however, all
adversarial images cause the underlying VGG-16 DNN to misclassify.

combined with the inherently high-dimensional nature of the search space—for instance, attacking an image
from the HAM10000 dataset Tschandl et al. (2018) with dimensions (450 → 600 → 3) results in searching
through a space of 810, 000 dimensions. Secondly, existing attacks often overlook the varying granularity of
XAI methods’ explanations when designing perturbations, as shown in Figure 2. Current approaches tend
to modify all pixels independently, which is e!ective when targeting XAI methods that produce detailed,
pixel-level explanation maps, such as SHAPLEY or Saliency methods. However, these approaches struggle
against XAI methods that emphasize broader, global regions, leading to increased robustness in methods like
Grad-CAM and Grad-CAM++ Huang et al. (2023). This oversight highlights the need for more adaptive
attack strategies that consider the explanatory granularity of di!erent XAI techniques.

To address these limitations, we propose a novel attack method inspired by image approximation techniques
from the computational art community Lambert et al. (2013); Garbaruk et al. (2022); Tian & Ha (2022).
Our approach generates adversarial perturbations using a set of semi-transparent, RGB-valued circles whose
parameters are optimized through an evolutionary strategy. Constructing perturbations in this manner
substantially reduces the search space that remains consistent across images of varying sizes, thereby improving
attack e"ciency. Moreover, by constraining the size of the shapes, our attack can e!ectively target XAI
method that produce attribution maps with di!erent levels of granularity.

The remainder of this paper is organized as follows: Section 2 reviews related works, highlighting key
contributions and limitations. Section 3 introduces the proposed attack and provides a detailed explanation
of its implementation. Section 4 presents the evaluation metrics and experimental results, followed by a
comprehensive analysis. Finally, Section 5 concludes the paper and discusses potential directions for future
research.

2 Related Works

Adversarial attacks on DNNs have become one of the most active research areas within the machine learning
community, predominantly focusing on targeting DNN classifiers Williams & Li (2023b); Dong et al. (2025);
Ilyas et al. (2018); Williams & Li (2023a); Madry et al. (2017); Andriushchenko et al. (2020). More recently,
there has been increasing interest in exploring the e!ects of adversarial perturbations on attribution maps
produced by XAI methods, addressing both white-box Heo et al. (2019); Moosavi-Dezfooli et al. (2016);
Zhang et al. (2020); Ghorbani et al. (2019); Kindermans et al. (2019); Subramanya et al. (2019); Dombrowski
et al. (2019); Kuppa & Le-Khac (2020) and black-box Tamam et al. (2023); Huang & Zhang (2020) settings.
Our work situates itself within this domain by focusing on the black-box scenario. Unlike existing black-box
approaches that generate pixel-wise perturbations, our method employs semi-transparent circular shapes,
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Figure 4: Figure shows adversarial images produced by the EvoAttack method when applied to the Task 2
scenario (correct classification with distorted explanation), along with the respective generated attribution
maps. The original and adversarial explanations on the HAM10000 images are visually dissimilar with PCC
values of ↑0.04 and below. Despite the distortion, all adversarial images are correctly classified by the
VGG-16 DNN.

which substantially reduces the number of optimizable parameters and can be easily adapted to various XAI
methods, addressing key limitations of current strategies.

As DNNs become increasingly deployed within real-world applications, ensuring their decision-making processes
are interpretable is essential Doshi-Velez et al. (2017), underscoring the importance of developing robust and
accurate explanations. Adversarial attacks against XAI methods are designed to assess the sensitivity of
explanations to minor changes in input images Alvarez-Melis & Jaakkola (2018). While traditional adversarial
attacks on DNNs focus on inducing misclassification, attacks against XAI methods aim to challenge the
reliability of the provided explanations by either 1) causing a minimal distortion to an attribution map whilst
causing misclassification Huang et al. (2023), or 2) maximizing the distortion of an attribution map whilst
maintaining a correct classification Tamam et al. (2023) (shown in Figures 3 and 4).

In their pioneering work, Ghorbani et al. introduced the concept of adversarial attacks on XAI methods
by targeting gradient-based feature attributions of convolutional DNNs. The authors iteratively perturbed
inputs in the direction that altered the explanation’s gradient. Concurrently, research by Kindermans et al.
highlighted the sensitivity of explanations to slight input transformations, although they did not directly
propose methods for constructing such attacks. Subsequent works exploiting gradient information have
constructed adversarial images by altering all pixels in the image Zhang et al. (2020) in addition to localised
regions (patches) Selvaraju et al. (2017).

Whilst most existing methods focusing on the white-box setting, recent e!orts have shifted toward developing
black-box approaches. In the black-box scenario, only the input-output pairs of the DNN and XAI methods
are accessible, allowing these techniques to be applied to any explanation method that produces an attribution
map Huang et al. (2023). Existing black-box techniques often employ heuristic optimization methods to craft an
adversarial image by solving a constructed loss function. Tamam et al. utilize a Natural Evolutionary Strategy
(NES) optimiser Wierstra et al. (2014) to minimize the loss function previously proposed in Dombrowski et al.
(2019). This attack iteratively estimated the gradient of the loss function by computing the finite-di!erences
between a set of points sampled from a normal distribution. Conversely, the attack method by Huang
et al. does not rely on any gradient information. Instead, they adapt the POBA-GA genetic algorithm
developed by Chen et al. to evolve a population of solutions through crossover and mutation genetic operators.
The authors demonstrate the superior performance of their method by targeting both gradient-based and
perturbation-based explanation methods.

Despite recent advances in black-box adversarial attacks against XAI methods, the large number of queries
required for both the DNN and the XAI method raises concerns about their practicality in financially Dhabliya
et al. (2024) or time-constrained Keddous et al. (2023) scenarios. Moreover, the extensive computational e!ort
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needed to generate adversarial examples limits the realistic evaluation of explanation robustness Wu et al.
(2021). In addition, existing approaches overlook the granularity of XAI explanations, typically perturbing
input images at the pixel level. While such fine-grained modifications perform well against highly detailed
methods such as saliency maps and DeepLIFT, they struggle to succeed when attacking XAI techniques that
focus on less granular features, such as Grad-CAM.

For a comprehensive survey of adversarial attacks on XAI methods, readers are referred to Baniecki & Biecek
(2024). A detailed discussion of black-box adversarial attacks against image classifiers is also provided in
Appendix Section A.11.

3 Proposed Method

The goal of our method is to generate adversarial images that either (i) induce misclassification while
minimizing distortion to the attribution map or (ii) maximise the distortion of the attribution map while
preserving the model’s original classification Huang et al. (2023), all under a constrained query budget. We
design the perturbation as a set of semi-transparent, RGB-valued circles, thereby reducing the search-space
dimensionality to the circles’ attributes. Similar to existing approaches, we generate adversarial perturbations
by optimizing a distance-based objective function. We begin this section by formulating the problem, followed
by a detailed description of each component of our proposed method. The overall structure of our approach
is summarized in Figure 6 within the appendix.

3.1 Problem Formulation

Consider a trained DNN classifier f : X ↓ [0, 1]h→w→3 ↔ RP which takes a single benign RGB image we wish
to attack x ↗ X of height h and width w, and outputs a label y = argmax

p↑{1,··· ,P }
fp(x), where P is the total

number of class labels. Further, let g(·, ·) be an explanation function, which takes a trained DNN f and
benign image x as inputs. In this work, we assume access to the output probabilities of the classifier f , and
attack an XAI method g that outputs an attribution map g(·, ·) ↔ Rh→w, where its height and width match
the input image x.

To preserve the semantic integrity of the image, we adhere to existing attack methods by constraining the
perturbation size using the l↓ norm Huang et al. (2023); Tamam et al. (2023); Dombrowski et al. (2019).
Consequently, we aim to generate a perturbation ω that solves the following optimization problems:

Task 1:
minimize

ω
D(g(x), g(x + ω))

subject to ||ω||↓ ↘ ω,

L(f ; x + ω, yq) < 0,

0 ↘ x + ω ↘ 1

(1)

Task 2:
maximize

ω
D(g(x), g(x + ω))

subject to ||ω||↓ ↘ ω,

L(f ; x + ω, yq) > 0,

0 ↘ x + ω ↘ 1,

(2)

where D represents the distance measure between the attribution maps produced for the benign and adversarial
image and ω controls the extent of the perturbation’s impact on the benign image. We follow the setup
of Huang et al. by defining D as the 1/PCC where PCC is the Pearson Correlation Coe"cient. We ensure
that the value of the loss function L(·) is negative when x + ω results in misclassification by defining the loss
in the constraint as the marginal loss:

L(f ; x + ω, y) = fy ↑ fyq , (3)
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Image + Perturbation After ProjectionImage

Figure 5: The process of repairing an adversarial image x + ω (described in equation (5)) to ensure it satisfies
the constraints of (1) and (2), where ω = 6/255

where y corresponds to the true label of x and yq = argmax
q ↔=y

fp(x) is a label corresponding to a class other

than the true label y.

3.2 Perturbation Initialization

To alleviate the issues associated with the large number of tunable values of an image perturbation, we
construct a perturbation by overlaying N RGB-valued semi-transparent circles, drawing inspiration from
techniques prevalent within the computational art field Lambert et al. (2013); Garbaruk et al. (2022); Tian &
Ha (2022).

In this work, we construct the adversarial perturbation ω through the concatenation of N shapes:

ω = ω1 ≃ ω2 · · · ≃ ωN (4)

where ≃ denotes the concatenation operator and ωa is the a-th shape applied to a blank array. In the
proposed attack, each shape ωa, for a ↗ 1, · · · , N , is represented by a vector consisting of seven elements: the
centre’s coordinates (ca

1 , c
a
2), the radius r

a → (Max Diameter) → (w · h), where ’Max Diameter’ is a tunable
parameter controlling the size of the circles, and w, h are the width and height of the attacked image,
respectively. Finally, the vector includes the RGB values R

a
, G

a
, B

a, and the transparency T
a. These

elements are normalized to continuous values between 0 and 1 and are initially sampled randomly from a
uniform distribution, ωa ⇐ U(0, 1). Constructing the perturbation in this manner reduces the number of
optimization variables significantly—from h → w → 3 (which totals 150, 528 for a typical (224, 224, 3) ImageNet
image) to N → 7, where N is the number of circle shapes used to construct the perturbation defined by the
user. Importantly, this perturbation construction method is also invariant to the image size.

3.3 Adversarial Image Construction

Given an adversarial perturbation ω and a benign image x, where both x and ω belong to Rh→w→3, the
corresponding adversarial image x↗ is generated by equation (4) which overlaps all shapes from ω onto x. To
ensure x↗ complies with the constraints of (1) and (2), we project the pixels of the constructed adversarial
image as follows:

x↗
i =






xi + ω if x↗
i > xi + ω

xi ↑ ω if x↗
i < x ↑ ω

x↗
i otherwise,

, (5)

where i is a pixel index. For greyscale images, we convert the RGB values of each circle to their greyscale
equivalents before placing them onto the benign image. We visualize the projection process in Figure 5 which
ensures the constraints of (1) and (2) are satisfied.

3.4 Perturbation Optimization

To optimize the properties of each shape ωa, we utilize a single-solution evolutionary strategy known as
(1 + 1)-ES. In each iteration, a child solution ω↗↗ is generated by stochastically modifying its parent ω↗ with
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values sampled from a normal distribution ε · N (0, I). The parameter ε is adjustable, allowing a balance
between exploration—searching unexplored regions of the solution space—and exploitation—fine-tuning the
current solution. A larger ε facilitates exploration, while a smaller value encourages exploitation. The child
solution replaces the parent if it demonstrates superior performance on the task at hand.

Traditionally, the selection process is based solely on comparing the objective values of the parent and child
solutions. However, due to the constraints outlined in equations (1) and (2), a more nuanced selection process
is warranted. Huang et al. addressed this issue for (1) by proposing a heuristic method related to the
dynamics of the evolutionary population, and resolved (2) by multiplying the objective value of solutions not
satisfying the constraint with ↑1. Alternatively, Tamam et al. proposed a methodology that combines D
and L using a weighted sum of its estimated gradients. Nonetheless, the single-solution architecture of our
proposed method limits its ability to incorporate these existing strategies.

Instead, we draw inspiration from evolutionary computation research that addresses complex constrained
optimization problems using dominance functions Coello Coello & Mezura-Montes (2002); Williams & Li
(2023b); Williams et al. (2023), similar to techniques employed in the multi-objective optimization domain Deb
(2001). For each task, a child solution ω↗↗ replaces its parent ω↗ if any of the following conditions are satisfied:

Definition 1 (Task 1 Domination) :

• L(ω↗) ⇒ 0 and L(ω↗↗) < 0 .

• Both L(ω↗) < 0 and L(ω↗↗) < 0 and D(g(x), g(x + ω↗↗)) < D(g(x), g(x + ω↗))

• Both L(ω↗) > 0 and L(ω↗) > 0 and L(ω↗↗) < L(ω↗)

Definition 2 (Task 2 Domination) :

• L(ω↗) ↘ 0 and L(ω↗) > 0 .

• Both L(ω↗) > 0 and L(ω↗) > 0 and D(g(x), g(x + ω↗↗)) > D(g(x), g(x + ω↗))

• Both L(ω↗) < 0 and L(ω↗) < 0 and L(ω↗↗) < L(ω↗).

These domination definitions are designed to guide our attack method in generating perturbation values that
either minimize (for task 1) or maximize (for task 2) the distortion of the explanation, while simultaneously
satisfying the respective classification constraints.

4 Experiments

Most existing studies assess their methods by attacking explanation techniques applied to ImageNet trained
classifiers. In contrast, our work additionally focuses on classification tasks within the medical imaging domain,
where the explainability of a DNN’s decisions is critically important Chaddad et al. (2023); Hao et al. (2024);
van der Velden et al. (2022). Therefore, we target explanation methods applied to DNN classifiers trained on
three distinct medical image datasets and ImageNet. The experimental setup is outlined in Section 4.1, which
is followed by a comparative analysis of leading attack methods SAFARI Huang et al. (2023), NES Tamam
et al. (2023) and Square Attack Andriushchenko et al. (2020), detailed in Section 4.2. Subsequently, we
utilise our proposed method to rank the robustness of various XAI techniques, as presented in Section 4.3. In
Section 4.4, we evaluate XAI methods applied to adversarially trained models that incorporate adversarial
images generated by our attack method within their training processes. Lastly, Section 4.5 presents an ablation
study that examines the significance of di!erent components and parameters of our proposed approach.

4.1 Experimental Setup

Datasets: We evaluate XAI methods on deep neural network (DNN) classifiers trained across three medical
imaging datasets as well as ImageNet. The HAM10000 dataset Tschandl et al. (2018) contains approximately
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10, 000 dermatology images of pigmented skin lesions spanning seven diagnostic categories, including malignant
cases. The Br35h dataset Hamada (2020) consists of 3, 000 brain MRI scans, annotated to indicate the
presence or absence of tumours. The COVID-QU-Ex dataset Tahir et al. (2021) provides 33, 920 chest X-rays
classified into three categories: COVID-19, pneumonia, and normal. Following prior work Huang et al. (2023);
Tamam et al. (2023), we randomly sample 100 correctly classified images from each dataset’s test or validation
split to conduct adversarial attacks. All images are resized to (224 → 224 → 3) prior to input into the DNN
models.

Explanation and Classifier Settings: In this study, we explore seven XAI methods to assess their robust-
ness and e"ciency. Specifically, we evaluate Grad-CAM Selvaraju et al. (2017), Grad-CAM++ Chattopadhyay
et al. (2017), Saliency Maps Simonyan et al. (2014); Selvaraju et al. (2017), DeepLIFT Shrikumar et al. (2017),
Gradient x Input Shrikumar et al. (2017), LIME Peng & Menzies (2021), and Shapley Lundberg & Lee (2017).
For the classifiers, we employ the architectures of MobileNet Howard et al. (2019), AlexNet Krizhevsky
et al. (2012), and VGG-16 Simonyan & Zisserman (2015). Given the relatively small size of our medical
datasets, we fine-tune models pre-trained on ImageNet using the PyTorch library Paszke et al. (2019). Each
model undergoes fine-tuning over 10 epochs, with a batch size of 32 and a learning rate of 1 → 10↘4, utilizing
the ADAM optimizer Kingma & Ba (2015) and cross entropy loss. The datasets are divided into training,
validation, and testing subsets with a ratio of 70%/10%/20%. Detailed performance metrics are provided
in Section A.2 in the appendix. All experiments were executed on an NVIDIA RTX A6000 GPU system.

Parameter Settings: To ensure the generated perturbations cause minimal semantic alterations to the
attacked images, we set the value of ω using previous adversarial attack research targeting image classification
DNNs Rusu et al. (2022). For RGB images from the ImageNet and HAM10000 datasets, we set ω = 8/255,
whereas for greyscale images from the Br35h and COVID-QU-Ex datasets, we set ω = 6/225 Dong et al.
(2025). Consistent with prior studies, we set K = 5000 Williams & Li (2023a;b) for all attacks. As outlined
in Section 3, our approach involves three adjustable parameters: ε, N , and ‘Max Diameter’. Here, ε governs
the exploration of the method, N signifies the number of shapes used to create the perturbation, and ‘Max
Diameter’ determines the largest possible size of the perturbation circles. The specific values for these
parameters are listed in Table 4, with justification provided in Section 4.5.

Performance Metrics: For evaluating the e!ectiveness of the proposed method, we follow previous works
and adopt PCC for measuring of the distortion caused to the attribution maps Huang et al. (2023). PCC

values near 1 indicate strong positive correlation, values close to 0 imply no correlation, and values approaching
↑1 suggest strong negative correlation. Additionally, we report the percentage of generated adversarial
images that meet the constraints specified in (1) and (2). To ensure fair comparison, distortion measurements
are only conducted on images that satisfy their respective task constraints. For ranking the robustness of
XAI methods, we utilize the dominance relations described in Definitions 1 and 2 to evaluate and rank the
considered XAI methods.

Given the stochastic nature of our method, each experiment is repeated over 10 di!erent random seeds. For
each metric, we aggregate its value across all model architectures. To statistically verify whether the results
achieved by our method are significantly di!erent to other algorithms, we employ the Wilcoxon signed-rank
test Wilcoxon (1992) at a 5% significance level, as is standard practice within the evolutionary optimization
field Williams & Li (2023a); Storn & Price (1997); Deb (2001).

4.2 Results Analysis

To ensure a fair comparison among EvoAttack, SAFARI, and NES, we fix the population size of SAFARI and
NES to 50, which corresponds to 100 iterations of their optimization cycles. For Square Attack, we adapt its
selection strategy by replacing it with the domination functions defined in 1 and 2.

Constraint satisfaction: Table 1 reports statistical results for the proposed method and comparative
attacks; arrows indicate whether larger or smaller metric values are preferable. Task 1 enforces image
misclassification, whereas Task 2 requires the original correct classification to be preserved. The Task 2
satisfaction rates below 100% for EvoAttack and SAFARI indicate that even random perturbations sometimes
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Table 1: Table presents the Pearson Correlation Coe"cient (PCC) along with the percentage of images that
satisfy the respective task constraint when attacking images from the HAM10000, Br35h and COVID-QU-Ex
datasets. We provide the mean each metric over 10 runs and its variance inside the brackets.

DeepLIFT Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 84.87%(2.054) 0.52(0.1)‡ 77.34%(2.046) 0.29(0.097)‡

EvoAttack 83.91%(1.718) 0.7(0.08)† 78.23%(2.164) �0.03(0.08)†

NES 30.84%(1.53)‡ 0.2(0.096)‡ 61.02%(2.363)‡ 0.35(0.105)‡

SAFARI 36.81%(1.639)‡ 0.46(0.117)‡ 65.72%(1.783)‡ 0.53(0.114)‡

Saliency Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 83.07%(1.979) 0.4(0.097)‡ 81.46%(1.631) 0.24(0.097)‡

EvoAttack 81.94%(2.463) 0.57(0.077)† 83.05%(1.489) 0.0(0.081)†

NES 30.85%(1.982)‡ 0.2(0.092)‡ 61.28%(1.392)‡ 0.29(0.112)‡

SAFARI 32.25%(2.114)‡ 0.35(0.088)‡ 64.91%(2.328)‡ 0.41(0.099)‡

Grad-CAM Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 82.71%(2.022) 0.36(0.149)‡ 86.5%(1.949) 0.3(0.161)‡

EvoAttack 81.79%(2.063) 0.88(0.136)† 87.62%(2.186) �0.57(0.195)†

NES 31.08%(1.802)‡ 0.18(0.269)‡ 59.95%(2.465)‡ 0.43(0.211)‡

SAFARI 33.6%(2.034)‡ 0.31(0.256)‡ 62.0%(1.346)‡ 0.55(0.214)‡

Shapley Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 82.69%(2.229) 0.52(0.12)‡ 75.06%(1.82) 0.29(0.11)‡

EvoAttack 81.67%(1.777) 0.73(0.092)† 75.83%(1.767) 0.04(0.107)†

NES 30.58%(2.39)‡ 0.25(0.129)‡ 61.3%(1.974)‡ 0.39(0.125)‡

SAFARI 32.98%(2.564)‡ 0.46(0.112)‡ 63.05%(1.678)‡ 0.56(0.108)‡

Input x Gradient Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 84.17%(1.906) 0.4(0.105)‡ 75.11%(1.963) 0.24(0.103)‡

EvoAttack 82.92%(1.95) 0.57(0.072)† 76.24%(1.759) 0.05(0.08)†

NES 30.57%(1.302)‡ 0.15(0.084)‡ 60.33%(1.569)‡ 0.28(0.107)‡

SAFARI 36.97%(2.364)‡ 0.35(0.099)‡ 64.2%(1.301)‡ 0.41(0.104)‡

Grad-CAM++ Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 83.71%(1.672) 0.66(0.144)‡ 83.69%(2.299) 0.33(0.168)‡

EvoAttack 81.72%(2.135) 0.89(0.065)† 84.73%(1.664) �0.46(0.243)†

NES 30.37%(2.115)‡ 0.28(0.243)‡ 60.52%(2.197)‡ 0.44(0.21)‡

SAFARI 35.81%(1.849)‡ 0.61(0.144)‡ 65.58%(2.03)‡ 0.6(0.155)‡

LIME Task 1 Task 2
Method Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

Square-Attack 86.06%(4.143) 0.33(0.14)‡ 88.88%(3.893) 0.27(0.1)‡

EvoAttack 85.14%(5.216) 0.88(0.071)† 90.4%(5.177) �0.6(0.091)†

NES 33.91%(3.96)‡ 0.21(0.13)‡ 69.38%(3.623)‡ 0.41(0.103)‡

SAFARI 38.23%(4.944)‡ 0.28(0.138)‡ 50.19%(4.238)‡ 0.55(0.09)‡

† denotes the performance of the method significantly outperforms the compared methods according to
the Wilcoxon signed-rank test Wilcoxon (1992) at the 5% significance level; ‡ denotes the corresponding

method is significantly outperformed by the best performing method (shaded).

cause the DNN to misclassify, preventing those attacks from producing perturbations that meet the Task 2
constraint. For NES, the ability to satisfy either constraint additionally depends on the relative weighting
used to combine the classification and attribution objectives.

Overall, EvoAttack outperforms both SAFARI Huang et al. (2023) and NES Tamam et al. (2023) across XAI
methods and datasets, particularly under tight query budgets. As noted in Section 1, many existing approaches
implicitly assume access to large query budgets, and their e!ectiveness degrades substantially when queries
are limited. In our experiments, NES and SAFARI frequently fail to induce adversarial misclassification
(Task 1) across datasets, consistent with prior observations about the di"culty of generating adversarial
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HAM10000 Br35h COVID-QU-Ex
XAI Method Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

DeepLIFT 4.19 (0.982) 4.15 (1.269) 4.02 (1.535) 4.9 (1.368) 4.04 (1.043) 2.71(0.825)
Grad-CAM 5.48 (1.095) 5.88 (1.649) 4.14 (1.529) 5.84 (1.839) 6.2 (0.965) 5.71 (1.285)
SHAPLEY 4.87 (0.875) 3.12 (0.968) 4.69 (1.467) 5.0 (1.535) 4.31 (1.012) 3.04 (0.943)

Input x Gradient 2.43(0.86) 2.82(0.948) 3.93(1.437) 4.15(1.637) 3.34 (0.947) 2.9 (1.02)
Grad-CAM++ 6.17 (1.516) 5.49 (1.669) 4.42 (1.373) 5.16 (2.013) 6.52 (0.726) 5.89 (1.489)

Saliency 3.38 (0.963) 2.93 (1.037) 4.51 (1.34) 4.95 (1.367) 2.54(0.79) 4.35 (1.262)

Table 2: Table presents the robustness ranking of XAI methods across each task and dataset using the
proposed EvoAttack as the attack method. We provide the mean and variance of each metric over 10 runs.

images under constrained-query settings. By contrast, EvoAttack achieves substantially higher success rates
in producing adversarial examples while better respecting the query and classification constraints.

Square Attack shares conceptual similarities with EvoAttack in that it also employs shape-based perturbations.
Our experimental results indicate that Square Attack achieves a comparable success rate in inducing
misclassification. This e!ectiveness can be attributed to two main factors: (i) its perturbations are bounded
within the range [↑ω, ω], a constraint known to be e!ective for generating adversarial examples, and (ii) its
square-shaped perturbations have been shown to be particularly e!ective in misleading classifiers.

When evaluating performance under the Task 2 condition, the di!erences among NES, SAFARI, and EvoAttack
are less pronounced. Since Task 2 requires perturbations that preserve the original classification, this outcome
can be attributed to the inherent robustness of the underlying DNN classifiers to small pixel-level perturbations.
Compared with Square Attack, EvoAttack achieves higher success under this constraint: although Square
Attack is highly e!ective at inducing misclassification, the strength of its perturbations diminishes its ability
to maintain correct classifications.

When analyzing constraint satisfaction rates across datasets (see Tables 11, 13, 12, and 14 in the Appendix),
all attack methods exhibit reduced performance on the Br35h dataset. Despite the presence of clearly defined
regions of interest across all datasets, diagnostic cues in Br35h images tend to be more explicit—such as the
visible presence of a tumour. Consequently, the classifiers may have learned more robust features (e.g., tumour
presence) rather than relying on non-robust or spurious correlations, a phenomenon commonly referred to as
shortcut learning Wang et al. (2024).

Finally, only minor discrepancies in constraint satisfaction rates are observed across di!erent XAI methods.
This uniformity is expected for EvoAttack, Square Attack, and SAFARI, as all prioritize satisfying the task
constraints before optimizing for explanation distortion.

Explanation distortion: In assessing the distortions to explanations caused by the attack methods,
EvoAttack consistently outperforms Square-Attack, SAFARI and NES across all experimental scenarios,
demonstrating significant superiority in the majority of cases. Notably, there is a pronounced performance
disparity when targeting XAI methods that generate less granular, more region-focused explanations, such
as Grad-CAM, Grad-CAM++, and LIME. Conversely, when attacking more granular XAI methods like
DeepLIFT, Saliency maps, SHAPLEY, and Input x Gradient, the performance gap between EvoAttack and
the other attack methods narrows. This outcome is anticipated due to the less granular perturbation strategy
employed by EvoAttack, emphasizing the importance of accounting for the granularity of XAI explanations
when designing perturbations. However, it also underscores the adaptability of the proposed method to
e!ectively target both granular and non-granular XAI methods.

Despite its success in satisfying the task constraints, Square Attack struggled to distort the attribution maps
produced by the XAI methods. This limitation can be attributed to several factors. First, Square Attack
samples perturbations exclusively on the constraint boundary [↑ω, +ω], which is e!ective for classification
attacks but can be overly restrictive for more complex objectives such as explanation distortion. Second, the
attack proceeds by initially perturbing the entire image with vertical strips and then adding one square at
a time; however, once a square is accepted, it cannot be removed, making the optimization process being
prone to local optima. In contrast, EvoAttack can flexibly adjust perturbations to cover either broad regions
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or localized areas of the image. Third, as the attack progresses, Square Attack iteratively decreases the
size of its perturbation squares. While this strategy is advantageous for inducing misclassification, it proves
less e!ective for explanation methods that emphasize coarse-grained features (e.g., Grad-CAM), where fine
perturbations exert minimal influence. For more fine-grained XAI methods, the sparse structure of Square
Attack’s perturbations similarly reduces e!ectiveness. EvoAttack, however, adapts its perturbations to
varying levels of granularity through its attack parameters, enabling stronger distortion of attribution maps.

Comparing task performances, the attack methods generally achieve greater success in maximizing the
distortion of explanations for correctly classified images rather than minimizing distortion for misclassified
ones. This indicates that XAI-generated explanations are more susceptible to Task 2 attacks, where the
classification remains accurate, but the explanation is distorted. Although this scenario poses less risk to
patient safety due to correct disease classification, it could undermine trust in AI systems among medical
practitioners, potentially reducing their willingness to rely on AI for assistance Rosenbacke et al. (2024a).

Additionally, performances vary across di!erent XAI methods among the attack strategies. EvoAttack notably
manipulates less granular explanations, such as Grad-CAM, Grad-CAM++, and LIME, more e!ectively
in all experimental setups compared to the granular methods, underscoring their specific vulnerabilities to
structured perturbations. Among granular XAI methods, the greatest challenge appears in attacking Saliency
maps and Input x Gradient, particularly for Task-1. For example, when targeting images from the HAM10000
and COVID-QU-Ex datasets, no attack achieves an average PCC value above 0.6, which is a benchmark for
consistency between explanations. Conversely, for Task 2, EvoAttack is able to reduce the average PCC of
those XAI values below 0.4, indicating inconsistent explanations Huang et al. (2023), highlighting the greater
vulnerability of XAI methods when distorting correctly classified images.

More visual comparisons of adversarial images and explanations is provided in Section A.6 of the Appendix.
We also compare the performance of the proposed and compared attack methods over varying query budget
K in Section A.8 along with their attack speed in Section A.10.

4.3 XAI Robustness Comparison

The findings in Section 4.2 highlight the superior performance of the proposed method over existing attack
techniques, showcasing its utility for robustness evaluations. However, the combination of the task’s objective
and constraint (as detailed in Section 3) makes it di"cult to use a single metric value for ranking. Therefore,
to rank the robustness of the targeted XAI methods, we employ the task-specific domination relations defined
in 1 and 2.

For each attacked image, we utilize non-dominated sorting Deb et al. (2002) to rank each XAI method based
on the performance of EvoAttack in targeting the image, where lower ranks correspond to poorer attack
results, indicating greater robustness of the XAI method. This procedure is repeated across all 100 images
for each model architecture. We repeat this procedure over the 10 di!erent random seeds, with the average
rank serving as a measure of the XAI method’s overall performance.

The final robustness ranking of XAI methods, as presented in Table 2, indicates that Input x Gradient
frequently achieves better average rankings across most attack instances. Despite the Saliency method
attaining better average PCC values, it achieves higher overall rankings on 2 out of 3 datasets. This
discrepancy arises because the metric values in Section 4.2 focused solely on attack instances that satisfied
the constraints, whereas this ranking accounts for all evaluated images. For example, during Task-1 attacks
on images from the HAM10000 dataset (see Table 12 within the Appendix), the Saliency method shows
greater resistance to attacks, resulting in a higher average PCC value. By employing the domination relation,
the ranking considers the attack’s ability to satisfy the constraint, demonstrating that EvoAttack achieves
lower constraint satisfaction when targeting Input x Gradient compared to Saliency, leading to Input x
Gradient’s superior average rank. Finally, in Task-1 attacks on COVID-QU-Ex images, the Saliency method
demonstrates superior robustness, while DeepLIFT proves most resilient against Task-2 attacks.
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Table 3: Table presents the Pearson Correlation Coe"cient (PCC) along with the percentage of images that
satisfy the respective task constraint when attacking XAI method applied to adversarial trained classifiers.
We provide the mean and variance of each metric over 10 runs.

DeepLIFT Task 1 Task 2
Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

HAM10000 98.06 (2.04) 0.71 (0.118) 97.01 (2.544) 0.08 (0.162)
Br35h 56.00 (2.376) 0.66 (0.148) 56.99 (2.182) 0.56 (0.158)

COVID-QU-Ex 98.01 (2.577) 0.57 (0.154) 61.08 (2.508) -0.0 (0.235)
Saliency Task 1 Task 2
Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

HAM10000 98.07 (2.214) 0.54 (0.112) 98.91 (2.782) 0.17 (0.16)
Br35h 59.29 (2.816) 0.65 (0.124) 59.0 (2.218) 0.51 (0.146)

COVID-QU-Ex 98.95 (2.46) 0.46 (0.11) 67.01 (2.86) -0.1 (0.083)
Grad-CAM Task 1 Task 2
Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

HAM10000 98.07 (2.034) 0.77 (0.238) 99.94 (2.531) -0.36 (0.391)
Br35h 40.0 (2.46) 0.60 (0.209) 48.0 (2.334) 0.68 (0.365)

COVID-QU-Ex 98.92 (2.31) 0.78 (0.268) 75.06 (2.367) -0.73 (0.481)
Shapley Task 1 Task 2
Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

HAM10000 97.9 (2.185) 0.76 (0.11) 96.91 (2.139) 0.13 (0.176)
Br35h 41.0 (2.687) 0.63 (0.154) 42.0 (2.385) 0.56 (0.139)

COVID-QU-Ex 98.96 (2.866) 0.59 (0.151) 60.93 (2.174) -0.0 (0.223)
Input x Gradient Task 1 Task 2

Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)
HAM10000 97.94 (2.476) 0.48 (0.123) 96.99 (2.005) 0.12 (0.147)

Br35h 52.03 (2.82) 0.67 (0.131) 41.0 (2.913) 0.56 (0.118)
COVID-QU-Ex 97.95 (2.708) 0.52 (0.1) 60.9 (2.6) 0.01 (0.087)
Grad-CAM++ Task 1 Task 2

Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)
HAM10000 98.02 (2.541) 0.86 (0.154) 99.9 (2.416) -0.33 (0.401)

Br35h 46.0 (2.105) 0.49 (0.259) 46.0 (2.344) 0.69 (0.34)
COVID-QU-Ex 97.92 (2.327) 0.87 (0.154) 75.06 (2.933) -0.73 (0.482)

LIME Task 1 Task 2
Dataset Constraint Satisfied (") PCC (") Constraint Satisfied (") PCC (#)

HAM10000 99.31 (1.409) 0.77 (0.101) 99.4 (0.18) -0.41 (0.392)
Br35h 38.11 (1.201) 0.49 (0.259) 46.0 (2.344) 0.69 (0.34)

COVID-QU-Ex 97.92 (2.327) 0.87 (0.154) 75.06 (2.933) -0.73 (0.482)

4.4 Evaluation of Adversarial Training

The results in Section 4.2 demonstrate the e!ectiveness of the proposed attack in compromising XAI methods
and outperforming existing attacks. Since adversarial training has emerged as a promising defence against
adversarial attacks, we next evaluate its potential to improve the robustness of XAI methods against EvoAttack.
A comparison with the black-box defence mechanisms proposed by Qin et al. and Cohen et al. is further
provided in Section A.9 of the appendix.

Adversarial Training Setup: We implement adversarial training on the HAM10000, Br35h, and COVID-
QU-Ex datasets following a similar procedure established in prior work Madry et al. (2017); Chernyak et al.
(2021). In each training iteration, all images are augmented with random EvoAttack perturbations, producing
batches that contain both benign and adversarial examples and thereby doubling the e!ective batch size. To
expose the DNN to a diverse range of perturbation structures, the parameters N and Maximum Diameter are
randomly sampled for each perturbation from the grid used in our ablation study. A detailed description of
the adversarial training procedure, along with the performance metrics of the adversarially trained classifiers,
is provided in Section A.4.

Task 1: The results presented in Table 3 illustrates the impact of adversarial training on di!erent XAI
methods. First, we see that adversarially trained HAM10000 DNN classifiers become more vulnerable to
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adversarial attacks. This phenomenon is likely attributed to the large class imbalance in the HAM10000
dataset, which has shown to be an issue for adversarial training Wang et al. (2022). Comparing with Br35h
and COVID-QU-Ex classifiers, we see adversarial training has improved their robustness against the proposed
EvoAttack.

Comparing the performance of the di!erent XAI methods, we observe that adversarial training consistently
improves robustness across all methods. The e!ect is particularly pronounced for the less granular methods,
such as Grad-CAM, Grad-CAM++, and LIME, which exhibit larger gains in robustness. Nevertheless, these
methods remain among the least vulnerable overall. For the more granular XAI methods, adversarial training
substantially enhances the robustness of Saliency Maps and Input × Gradient, reducing their PCC values
to around or below 0.6 across all three datasets. This suggests that, while adversarial explanations are not
entirely inconsistent with their benign counterparts, their similarity falls close to or below the threshold of
consistency, implying that distortions in the attribution maps may become perceptible.

Task 2: Similar to Task 1, we witness an enhancement in robustness across all XAI methods which can
be described by the increased average PCC values. In the case of Br35h images, EvoAttack’s ability to
meet the constraint is diminished, reflecting improved robustness across XAI methods, with all average PCC

values exceeding 0.5. This suggests that EvoAttack faces challenges in altering the original explanation to be
inconsistent while ensuring the classifier predicts accurately.

Similar observations arise with the COVID-QU-Ex dataset, where EvoAttack’s success in meeting the
constraint is reduced, while the average PCC values for most XAI methods increase. This indicates that
adversarial training has degraded EvoAttack’s ability to distort explanations while retaining accurate classifier
predictions.

Despite the impact of adversarial training in improving the robustness across XAI methods, EvoAttack is still
able to distort attribution maps to PCC values of below 0.4, which indicates that inconsistency was achieved.

4.5 Ablation Study

The proposed method incorporates three tunable parameters: N , ε and the maximum circle diameter ‘Max
Diameter’ expressed as a percentage of the image. We employ a grid search over the parameter space to
determine their optimal values. Specifically, we explore N ↗ 100, 300, ε ↗ 0.1, 0.2, 0.3, and maximum circle
diameters with ranges 20%, 30%, 40%, 50% of the original image size. These parameter ranges are based
on commonly set values used in the evolutionary Skiscim & Golden (1983) and computational art Tian
& Ha (2022) fields. To evaluate the performance of each parameter configuration, we conduct attacks on
each explanation for each task using a VGG-16 ImageNet classifier with 100 correctly classified images from
the validation set. To compare the performance of di!erent parameter configurations, we employ the same
methodology as described in Section 4.3.

Configuration Performance Analysis: As illustrated in Table 4, the optimal configuration varies
significantly across XAI methods and tasks. Similar to previous studies that highlight the lack of consensus
among XAI methods, this suggests that the vulnerabilities between them may di!er. Nonetheless, some
patterns emerge across di!erent XAI methods. Firstly, for Task 1, which aims to induce misclassification
while preserving the explanation, the best-performing configurations consistently feature a maximum circle
diameter of 80% of the image size. Conversely, configurations with smaller circle diameters perform worse.
This indicates that utilizing larger local perturbations (i.e., larger circles) is more e!ective in influencing the
DNN classifier while minimizing distortion in the attribution map.

Another observed pattern is that all optimal configurations use N = 100 circles. A likely explanation for
this is that adding more shapes increases the number of variables involved, which might demand a larger
computational budget for e!ective optimization Williams et al. (2021); Eltaeib & Mahmood (2018). Keeping
a constant budget might lead to prematurely halting the optimization process, thus a!ecting performance
negatively.

For Task 2, which aims to distort the explanation while maintaining correct classification, we observe greater
variation in the best performing configurations. However, similar configuration performances are seen across
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Task 1 Task 2
XAI Method N Max Diameter (%) � N Max Diameter (%) �
DeepLIFT 100 80.0 0.1 300 60.0 0.3
Saliency 100 80.0 0.3 200 70.0 0.2

Grad-CAM 100 80.0 0.3 100 80.0 0.2
LIME 100 80.0 0.3 100 80.0 0.2
Shapley 100 80.0 0.3 300 60.0 0.3

Input x Gradient 100 80.0 0.1 300 60.0 0.3
Grad-CAM++ 100 80.0 0.1 100 80.0 0.3

Table 4: Chosen EvoAttack parameters for attacking the considered XAI methods.

di!erent XAI methods. Specifically, the results indicate that XAI methods that produce similar granularity
in attribution maps are e!ectively attacked with comparable parameter setups. For example, when targeting
highly granular XAI methods of DeepLIFT, Input x Gradient, and SHAPLEY (see Figure 2), the proposed
method achieves superior performance using smaller diameter circles. Conversely, XAI methods Grad-CAM,
Grad-CAM++, and SHAPLEY, which highlight broader regions rather than individual pixels, are more
susceptible to larger circular perturbations. This behaviour stems from altering the perturbations’ granularity
by changing circle size, with smaller circles constructing perturbations more closely resembling pixel-level
perturbations.

A surprising result from the ablation study was the performance of parameter configurations when targeting
the Saliency XAI method. Unlike other granular methods, the Saliency method proved more vulnerable
to medium to large circle perturbations, while remaining robust against smaller circles. This di!erence
might be attributed to its level of granularity. Whereas SHAPLEY and DeepLIFT produce sparse maps
emphasizing specific pixels, Saliency maps highlight broader regions. Although the Input x Gradient method
also emphasizes broader areas, its multiplication with the input image may also have an impact, resulting in
being vulnerable to perturbations constructed from smaller circles.

These results underscore the advantages of the proposed attack method. By adjusting the size of the
circular shapes, EvoAttack e!ectively manages the trade-o! related to XAI granularity when targeting
explanation methods—an aspect that existing strategies lack. In conclusion, we recommend adopting the
optimal configurations detailed in Table 4 for the XAI methods considered in this study. We provide the
performance across all configurations in Figure 7 within the Appendix.

5 Conclusion, Limitations, and Future Work

Conclusion: This paper introduces a novel adversarial attack designed to attack computer vision XAI
methods. Unlike existing approaches that modify each pixel of the benign image, our method constructs
adversarial perturbations by concatenating RGB-valued circular shapes. We optimize the parameters of these
shapes using a (1+1)-evolutionary strategy, a widely used optimization heuristic in evolutionary computation.
To enhance the attack’s e"cacy, we conducted an ablation study assessing the influence of various parameters
on EvoAttack’s performance across several XAI methods. The results demonstrate that larger circles e!ectively
manipulate less granular XAI methods like Grad-CAM, Grad-CAM++, and LIME, whereas smaller circles
yield better results against more granular XAI methods such as DeepLIFT and Input x Gradient. Compared
to state-of-the-art attacks, the proposed method consistently outperforms them in distorting XAI attributions
maps across all attack setups, showcasing its e"ciency and e!ectiveness.

Then, we leverage the EvoAttack method to evaluate and rank the robustness of XAI methods. Given the
complexity of assessing XAI methods using both PCC and constraint metrics, we employed the EvoAttack
domination relation for each task to rank the resistance of XAI methods with respect to each attacked image.
By averaging the rank of each XAI method across all attacked images and underlying classifiers, we formulate
a comprehensive ranking. This approach allowed us to incorporate all data regarding XAI distortion alongside
constraint satisfaction, culminating in a unified ranking table for each dataset.

To counter the proposed attack, we developed an adversarial training procedure that incorporates random
EvoAttack-style perturbations into the training process. Attacking adversarially trained models revealed
enhanced robustness in most XAI methods; however, we noted a decrease in classifier robustness on the
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HAM10000 dataset, accompanied by improved XAI robustness. In the Task 2 attack scenario, adversarially
trained classifiers decreased EvoAttack’s e!ectiveness in redirecting the DNN classifier towards correct
predictions, suggesting that while the classifier became more susceptible to random EvoAttack perturbations,
it also developed a stronger resistance to subsequent manipulations. This study underscores the potential
of adversarial training as a crucial strategy for defending against attacks, in addition to the utility of
considering both classifier and XAI performance when evaluating the robustness of human-in-the-loop systems.
Nevertheless, our study highlights the need for further exploration, marking this as a vital area for future
research.

Limitations and Future Work: This study focuses on evaluating and enhancing the robustness of
XAI techniques, with an emphasis on medical imaging datasets. While the proposed method demonstrates
promising results, there are limitations and avenues for future research. Firstly, the hyper-parameters were
optimized using a basic grid-search approach, aimed at analysing the impact of varying parameter values. In
future work, more advanced hyper-parameter optimization frameworks, such as Bayesian Optimization or
methods assisted by large-language models, should be explored Snoek et al. (2012); Zhang et al. (2023).

Additionally, this study employed a predefined l↓ constraint ω based on existing recommendations. Exploring
minimum-norm attacks, which identify the minimal ω value necessary to compromise an AI system could
provide deeper insights into the XAI and classifier vulnerabilities Williams & Li (2023a). Moreover, while
this research examined perturbations that modify all pixels, future studies should consider alternative
perturbations, such as sparse attacks, where only a limited number of pixels are altered.

Finally, this study assumes access to both classifier output probabilities and attribution maps. In practice,
such access may be restricted. Evaluating robustness under these conditions could be guided by decision-only
or transfer-based attack paradigms Ilyas et al. (2018); Papernot et al. (2016); Guo et al. (2019); Cheng et al.
(2019), enabling the development of novel robustness assessments tailored to explainable AI systems.

Our experiments highlight the potential of adversarial training in mitigating the impact of EvoAttack on both
classifier and XAI robustness. At the same time, they reveal EvoAttack’s ability to manipulate explanations to
appear either consistent or inconsistent, depending on the task, while still satisfying the respective constraints.
Future work should therefore explore more sophisticated adversarial training strategies aimed at strengthening
the robustness of both DNN classifiers and XAI methods. One promising direction is to replace random
perturbations with targeted EvoAttack perturbations during adversarial training, even under limited query
budgets, to expose models to more harmful perturbations and improve resilience.

To encourage further research in this domain, we will publicly release our implementation, datasets, and
evaluation scripts upon acceptance of the paper.

Broader Impact Statement

In this work, we introduce a novel adversarial attack method against explainable AI (XAI) techniques that
can account of the varying granularities in explanations, as well as reducing the dimension of the search space.

We apply our proposed attack to the robustness ranking of various XAI methods across three di!erent medical
image datasets. This study underscores the necessity of evaluating both classifier and XAI system robustness.

Within the healthcare domain, our research demonstrates two significant risks: first, the possibility of medical
professionals trusting incorrect AI diagnoses due to seemingly plausible explanations, potentially endangering
patient safety; and second, the risk of decreasing trust between healthcare practitioners and AI systems due
to distorted explanations of accurate diagnoses, which could slow down the diagnostic process by necessitating
additional human evaluations. To address these risks, we explore di!erent mitigation strategies, such as
adversarial training, which showed promise in enhancing the resilience of XAI systems against adversarial
threats.

We hope our work will lead to further research into adversarial training strategies and encourage practitioners
to rigorously test the robustness of XAI systems before deployment. Our ultimate goal is to advance the safe
and e!ective integration of AI in critical domains like healthcare.

15



Published in Transactions on Machine Learning Research (10/2025)

References

David Alvarez-Melis and Tommi S. Jaakkola. On the robustness of interpretability methods. CoRR, 2018.

Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, and Mani B. Srivastava. Genattack: Practical
black-box attacks with gradient-free optimization. CoRR, 2018.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: A
query-e"cient black-box adversarial attack via random search. In Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIII. Springer, 2020.

Hubert Baniecki and Przemyslaw Biecek. Adversarial attacks and defenses in explainable artificial intelligence:
A survey. Inf. Fusion, 2024.

Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Practical black-box attacks on deep neural networks
using e"cient query mechanisms. In Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XII, Lecture Notes in Computer Science, 2018.

Moritz Böhle, Navdeeppal Singh, Mario Fritz, and Bernt Schiele. B-cos alignment for inherently interpretable
cnns and vision transformers. IEEE Trans. Pattern Anal. Mach. Intell., 2024.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Ahmad Chaddad, Jihao Peng, Jian Xu, and Ahmed Bouridane. Survey of explainable AI techniques in
healthcare. Sensors, 23(2):634, 2023.

Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasubramanian. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. CoRR, 2017.

Jinyin Chen, Mengmeng Su, Shijing Shen, Hui Xiong, and Haibin Zheng. POBA-GA: perturbation optimized
black-box adversarial attacks via genetic algorithm. Comput. Secur., 2019.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA,
November 3, 2017, 2017.

Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial attacks
with a transfer-based prior. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019.

Bronya Roni Chernyak, Bhiksha Raj, Tamir Hazan, and Joseph Keshet. Constant random perturbations
provide adversarial robustness with minimal e!ect on accuracy. CoRR, 2021.

Carlos A. Coello Coello and Efrén Mezura-Montes. Handling constraints in genetic algorithms using
dominance-based tournaments. In Adaptive Computing in Design and Manufacture V, 2002.

Jeremy Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized smoothing.
In Proceedings of the 36th International Conference on Machine Learning, ICML, 2019.

Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Wiley-Interscience series in
systems and optimization. Wiley, 2001.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002.

16



Published in Transactions on Machine Learning Research (10/2025)

Dharmesh Dhabliya, Swati Saxena, Jambi Ratna Raja Kumar, Dinesh Kumar Pandey, NV Balaji, and
X Mercilin Raajini. Exposing the financial impact of ai-driven data analytics: A cost-benefit analysis. In
World Conference on Communication & Computing (WCONF), 2024.

Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann, Klaus-Robert
Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame. In Advances in
Neural Information Processing Systems 32, 2019.

Junhao Dong, Junxi Chen, Xiaohua Xie, Jianhuang Lai, and Hao Chen. Survey on adversarial attack and
defense for medical image analysis: Methods and challenges methods and challenges. ACM Comput. Surv.,
2025.

Finale Doshi-Velez, Mason Kortz, Ryan Budish, Chris Bavitz, Sam Gershman, David O’Brien, Stuart Schieber,
James Waldo, David Weinberger, and Alexandra Wood. Accountability of AI under the law: The role of
explanation. CoRR, 2017.

Filip Karlo Dosilovic, Mario Brcic, and Nikica Hlupic. Explainable artificial intelligence: A survey. In 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics,
MIPRO 2018, Opatija, Croatia, May 21-25, 2018. IEEE, 2018.

Tarik Eltaeib and Ausif Mahmood. Large-scale evolutionary optimization using multi-layer di!erential
evolution. In 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), 2018.

Julia Garbaruk, Doina Logofatu, Costin Badica, and Florin Leon. Digital image evolution of artwork without
human evaluation using the example of the evolving mona lisa problem. Vietnam Journal of Computer
Science, 2022.

Amirata Ghorbani, Abubakar Abid, and James Y. Zou. Interpretation of neural networks is fragile. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, 2019.

Yiwen Guo, Ziang Yan, and Changshui Zhang. Subspace attack: Exploiting promising subspaces for query-
e"cient black-box attacks. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019.

Ahmed Hamada. Br35H :: Brain Tumor Detection 2020. https://www.kaggle.com/datasets/
ahmedhamada0/brain-tumor-detection, 2020. Accessed: 2024-10-15.

Jinkui Hao, William R Kwapong, Ting Shen, Huazhu Fu, Yanwu Xu, Qinkang Lu, Shouyue Liu, Jiong Zhang,
Yonghuai Liu, Yifan Zhao, et al. Early detection of dementia through retinal imaging and trustworthy ai.
npj Digital Medicine, 2024.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adversarial model
manipulation. In Advances in Neural Information Processing Systems 32, 2019.

Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun Wang, Liang-
Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching for mobilenetv3. In
International Conference on Computer Vision, ICCV, 2019.

Wei Huang, Xingyu Zhao, Gaojie Jin, and Xiaowei Huang. SAFARI: versatile and e"cient evaluations for
robustness of interpretability. In IEEE/CVF International Conference on Computer Vision, ICCV, 2023.

Zhichao Huang and Tong Zhang. Black-box adversarial attack with transferable model-based embedding. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited
queries and information. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Proceedings of Machine Learning Research.
PMLR, 2018.

17

https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection


Published in Transactions on Machine Learning Research (10/2025)

Fekhr Eddine Keddous, Nadiya Shvai, Arcadi Llanza, and Amir Nakib. Inference acceleration of deep learning
classifiers based on RNN. In IEEE International Conference on Image Processing, ICIP. IEEE, 2023.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schütt, Sven Dähne,
Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods. In Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning. Springer, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geo!rey E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

Aditya Kuppa and Nhien-An Le-Khac. Black box attacks on explainable artificial intelligence(xai) methods
in cyber security. In nternational Joint Conference on Neural Networks, IJCNN. IEEE, 2020.

Nicholas Lambert, William H. Latham, and Frederic Fol Leymarie. The emergence and growth of evolutionary
art: 1980-1993. In International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
2013, Anaheim, CA, USA, July 21-25, 2013, Art Gallery, 2013.

Nan Li, Lianbo Ma, Guo Yu, Bing Xue, Mengjie Zhang, and Yaochu Jin. Survey on evolutionary deep
learning: Principles, algorithms, applications, and open issues. ACM Comput. Surv., 2024.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In 2nd International Conference on Learning
Representations, ICLR 2014, Ban!, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems,
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. CoRR, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and accurate
method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

Hemanth Nadipineni. Method to classify skin lesions using dermoscopic images. CoRR, 2020.

Daniel Omeiza, Helena Webb, Marina Jirotka, and Lars Kunze. Explanations in autonomous driving: A
survey. IEEE Trans. Intell. Transp. Syst., 2022.

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. CoRR, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32. 2019.

Kewen Peng and Tim Menzies. Documenting evidence of a reuse of ’"why should I trust you?": explaining the
predictions of any classifier’. In ESEC/FSE: 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021.

Zeyu Qin, Yanbo Fan, Hongyuan Zha, and Baoyuan Wu. Random noise defense against query-based black-
box attacks. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021.

18



Published in Transactions on Machine Learning Research (10/2025)

Hao Qiu, Leonardo Lucio Custode, and Giovanni Iacca. Black-box adversarial attacks using evolution
strategies. In GECCO ’21: Genetic and Evolutionary Computation Conference, Companion Volume, Lille,
France, July 10-14, 2021, 2021.

Thomas P. Quinn, Manisha Senadeera, Stephan Jacobs, Simon Coghlan, and Vuong Le. Trust and medical
AI: the challenges we face and the expertise needed to overcome them. J. Am. Medical Informatics Assoc.,
28, 2021.

Nitin Rane, Saurabh Choudhary, and Jayesh Rane. Explainable artificial intelligence (xai) in healthcare:
Interpretable models for clinical decision support. SSRN, 2023.

Rikard Rosenbacke, Åsa Melhus, Martin McKee, and David Stuckler. How explainable artificial intelligence
can increase or decrease clinicians’ trust in ai applications in health care: Systematic review. JMIR AI,
2024a.

Rikard Rosenbacke, Åsa Melhus, Martin McKee, and David Stuckler. How explainable artificial intelligence
can increase or decrease clinicians’ trust in ai applications in health care: Systematic review. JMIR AI,
2024b.

Andrei A. Rusu, Dan Andrei Calian, Sven Gowal, and Raia Hadsell. Hindering adversarial attacks with
implicit neural representations. In International Conference on Machine Learning, ICML, 2022.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 2017.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
activation di!erences. In Proceedings of the 34th International Conference on Machine Learning, ICML.
PMLR, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, ICLR, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. In 2nd International Conference on Learning Representations,
2014.

Christopher C. Skiscim and Bruce L. Golden. Optimization by simulated annealing: A preliminary com-
putational study for the TSP. In Proceedings of the 15th conference on Winter simulation, WSC 1983,
Arlington, VA, USA, December 12-14, 1983, 1983.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, 2012.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving for simplicity:
The all convolutional net. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, 2015.

Rainer Storn and Kenneth V. Price. Di!erential evolution - A simple and e"cient heuristic for global
optimization over continuous spaces. 1997.

Akshayvarun Subramanya, Vipin Pillai, and Hamed Pirsiavash. Fooling network interpretation in image
classification. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV, 2019.

Anas M. Tahir, Muhammad Enamul Hoque Chowdhury, Amith Khandakar, Tawsifur Rahman, Yazan
Qiblawey, Uzair Khurshid, Serkan Kiranyaz, Nabil Ibtehaz, M. Sohel Rahman, Somaya Al-Máadeed, Sakib
Mahmud, Maymouna Ezeddin, Khaled Hameed, and Tahir Hamid. COVID-19 infection localization and
severity grading from chest x-ray images. Comput. Biol. Medicine, 2021.

19



Published in Transactions on Machine Learning Research (10/2025)

Snir Vitrack Tamam, Raz Lapid, and Moshe Sipper. Foiling explanations in deep neural networks. Trans.
Mach. Learn. Res., 2023.

Yingtao Tian and David Ha. Modern evolution strategies for creativity: Fitting concrete images and abstract
concepts. In Artificial Intelligence in Music, Sound, Art and Design - 11th International Conference,
EvoMUSART 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20-22, 2022, Proceedings, Lecture
Notes in Computer Science. Springer, 2022.

Philipp Tschandl, Cli! Rosendahl, and Harald Kittler. The HAM10000 dataset: A large collection of
multi-source dermatoscopic images of common pigmented skin lesions. CoRR, 2018.

Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming
Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural
networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, 2019.

Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aäron van den Oord. Adversarial risk and
the dangers of evaluating against weak attacks. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Proceedings of
Machine Learning Research, 2018.

Bas H. M. van der Velden, Hugo J. Kuijf, Kenneth G. A. Gilhuijs, and Max A. Viergever. Explainable
artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Anal., 2022.

Jiakai Wang, Donghua Wang, Jin Hu, Siyang Wu, Tingsong Jiang, Wen Yao, Aishan Liu, and Xianglong Liu.
Adversarial examples in the physical world: A survey. CoRR, 2023.

Shunxin Wang, Raymond Veldhuis, Christoph Brune, and Nicola Strisciuglio. A survey on the robustness of
computer vision models against common corruptions, 2024.

Wentao Wang, Han Xu, Xiaorui Liu, Yaxin Li, Bhavani Thuraisingham, and Jiliang Tang. Imbalanced
adversarial training with reweighting. In IEEE International Conference on Data Mining, ICDM. IEEE,
2022.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber. Natural
evolution strategies. J. Mach. Learn. Res., 2014.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics. Springer, 1992.

Phoenix Williams and Ke Li. Camopatch: An evolutionary strategy for generating camoflauged adversarial
patches. In Advances in Neural Information Processing Systems, 2023a.

Phoenix Neale Williams and Ke Li. Black-box sparse adversarial attack via multi-objective optimisation
CVPR proceedings. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
2023b.

Phoenix Neale Williams, Ke Li, and Geyong Min. Large-scale evolutionary optimization via multi-task
random grouping. In 2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2021.

Phoenix Neale Williams, Ke Li, and Geyong Min. Sparse adversarial attack via bi-objective optimization. In
Evolutionary Multi-Criterion Optimization - 12th International Conference, EMO, 2023.

Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash Harandi, and Li Li. Performance evaluation of
adversarial attacks: Discrepancies and solutions. CoRR, 2021.

Hao Yu, Ke Liang, Dayu Hu, Wenxuan Tu, Chuan Ma, Sihang Zhou, and Xinwang Liu. Gzoo: Black-box
node injection attack on graph neural networks via zeroth-order optimization. IEEE Transactions on
Knowledge and Data Engineering, 2025.

20



Published in Transactions on Machine Learning Research (10/2025)

Michael R. Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large language
models for hyperparameter optimization. CoRR, 2023.

Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. Interpretable deep
learning under fire. In 29th USENIX Security Symposium, 2020.

21


