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Abstract

The challenge of deep neural network (DNN) explainability continues to be a significant hurdle
in developing trustworthy AI, particularly in essential fields like medical imaging. Despite
progress in explainable AT (XAT), these methods remain susceptible to adversarial images,
emphasizing the urgent need for robustness evaluation. While many current adversarial
attack techniques focus on specific explanation strategies, emerging research has introduced
black-box methods capable of targeting multiple approaches. However, such methods often
necessitate a large number of queries due to the complexity of pixel-level modifications. In
response, we propose an innovative attack method that employs semi-transparent, RGB-
valued circles to create perturbations, optimizing their features via an evolutionary strategy,
drastically reducing the number of tunable optimization parameters required. Through
experiments on medical image datasets, our method demonstrates superior performance
compared to current leading techniques. This study further underscores the vulnerabilities
of XAI methods in critical sectors such as medical imaging, advocating for more robust
solutions.

1 Introduction

Deep neural networks (DNNs) have revolutionized the field of computer vision, driving significant advancements
across a variety of tasks [Lin et al. (2014); |[Simonyan & Zisserman| (2015); [Springenberg et al.| (2015). In
healthcare, artificial intelligence is becoming a transformative force, offering groundbreaking solutions for
diagnosis, treatment, and patient care |(Chaddad et al. (2023)). Yet, the black-box nature of many DNNs raises
concerns regarding their explainability, accountability, and trustworthiness |Quinn et al. (2021); Rane et al.
(2023); [Rosenbacke et al. (2024b). To address these issues and bolster trust, explainable artificial intelligence
(XAI) has emerged as a pivotal area of research. By understanding the the decision-making processes of
complex DNNs, XAT fosters confidence among healthcare providers and patients [Dosilovic et al.| (2018). In
the realm of computer vision, explanation methods frequently generate attribution maps that visualize feature
importance, illustrating how different elements contribute to a DNN’s predictions [Simonyan et al. (2014);
Shrikumar et al. (2017)); Selvaraju et al.| (2017)); Lundberg & Lee| (2017)); Bohle et al. (2024)).

Despite the progress in existing explainability methods, recent studies reveal their vulnerability to adversarial
inputs [Tamam et al. (2023); [Huang et al.| (2023)); Baniecki & Biecek (2024). These inputs, which are subtly
altered by imperceptible perturbations (as illustrated in Figure , have shown to potentially impact both the
attribution maps and classification of a DNN simultaneously. The occurrence of such adversarial examples
in real-world scenarios Dong et al.| (2025); |[Wang et al. (2023) is particularly troubling for areas where
DNN explainability is crucial or legally required, such as autonomous driving |(Omeiza et al. (2022) and
healthcare [Chaddad et al.| (2023); Hao et al.| (2024)); [van der Velden et al.| (2022)). Therefore, the development
of adversarial attack methods has emerged as a critical research avenue for assessing the robustness of
explainability methods |Tamam et al. (2023); Huang et al.| (2023).

Initially, research efforts primarily focused on crafting adversarial images that target XAI methods by
utilizing insights into the underlying DNN architecture, known as white-box attacks Wang et al. (2023);
Moosavi-Dezfooli et al.| (2016)); |Zhang et al.| (2020); |Ghorbani et al.| (2019). However, these strategies often
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Figure 1: Adversarial images and perturbations generated by the NES [Tamam et al. (2023), SAFARI Huang
@ and the proposed EvoAttack algorithm when attacking an image from the Br35h datasets. We
observe that the adversarial perturbation generated by NES and SAFARI perturbs every pixel of the image
whereas the perturbation generated by the proposed method is constructed using a set of 300 circle shapes
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Figure 2: Attribution maps generated by XAI methods. These methods are applied to explain a ’true
decision for tumor classification on the Br35h dataset made by the trained VGG-16 classifier. We observe
that DeepLIFT, SHAPLEY, Saliency and Input x Gradient methods produce high-granularity attribution
maps, emphasizing important pixels. In contrast, Grad-Cam, Grad-Cam++ and LIME provide attributions
that capture more global features, highlighting broader regions of the image.

lack the ability to generalize across different explanation techniques. Consequently, recent investigations
have shifted toward the black-box scenario, where only the input-output pairs of the DNN and the XAI
method are available [Tamam et al. (2023); Huang et al.| (2023). To achieve this, existing attacks largely rely
on meta-heuristic approaches Tamam et al.| (2023); [Huang et al.| (2023), inspired by evolutionary algorithms

Li et al. (2024).

While existing methods have successfully generated adversarial images against XAl techniques, they face
key limitations. Firstly, these methods often require extensive querying of both the DNN and the XAI
method to achieve meaningful distortions in attribution maps. This dependency poses substantial challenges
in environments where query budgets are limited or expensive, whether due to financial constraints [[lyas|
let al. (2018); Dhabliya et al. (2024) or time restrictions Keddous et al.| (2023). As a result, conducting
robustness evaluations that involve adversarial attacks with high query budgets becomes costly, impacting
both financial resources and development time. This issue stems from the use of population-based approaches
combined with the inherently high-dimensional nature of the search space—for instance, attacking an image
from the HAM10000 dataset |Tschandl et al. (2018) with dimensions (450 x 600 x 3) results in searching
through a space of 810,000 dimensions. Secondly, existing attacks often overlook the varying granularity of
XAI methods’ explanations when designing perturbations, as shown in Figure 2. Current approaches tend
to modify all pixels independently, which is effective when targeting XAI methods that produce detailed,
pixel-level explanation maps, such as SHAPLEY or Saliency methods. However, these approaches struggle
against XAl methods that emphasize broader, global regions, leading to increased robustness in methods like
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Figure 3: Task 1 (misclassification with preserved explanation) adversarial images produced by the EvoAttack
method, along with the respective generated attribution maps. Both original and adversarial explanations
on the HAM10000 images are visually similar with PCC values of 0.7 and above. Both sets of explanations
highlight seemingly relevant regions of the image, however, all adversarial images cause the underlying
VGG-16 DNN to misclassify.

Grad-CAM and Grad-CAM-++ [Huang et al.| (2023). This oversight highlights the need for more adaptive
attack strategies that consider the explanatory granularity of different XAl techniques.

To address these limitations, we propose a novel attack method inspired by image approximation techniques
from the computational-art community [Lambert et al. (2013); |Garbaruk et al| (2022); Tian & Ha (2022).
Our approach involves creating adversarial perturbations using a set of RGB-valued, semi-transparent
shapes. These shapes are optimized via an evolutionary strategy to maximize distortion in the attribution
maps generated by XAI methods. By focusing on the intrinsic characteristics of each shape, this approach
substantially reduces the search space and remains consistent across different image sizes.

The rest of this paper is organized as follows: In Section [2, we provide an overview of related works,
highlighting their contributions and limitations. Section [3|outlines our proposed attack scenario and offers an
in-depth explanation of our method’s implementation. The proposed evaluation metrics, alongside empirical
results, are presented and analysed in Section[d] Finally, Section [5]concludes the paper and suggests potential
directions for future research.

2 Related Works

Adversarial attacks on DNNs have become one of the most active research areas within the machine learning
community, predominantly focusing on targeting DNN classifiers Williams & Li| (2023b); Dong et al. (2025);
Myas et al. (2018); Williams & Li| (2023a)); Madry et al.| (2017); |Andriushchenko et al. (2020). More recently,
there has been increasing interest in exploring the effects of adversarial perturbations on attribution maps
produced by XAI methods, addressing both white-box [Heo et al. (2019); Moosavi-Dezfooli et al. (2016);
Zhang et al.| (2020); |Ghorbani et al. (2019); Kindermans et al.| (2019); [Subramanya et al.| (2019)); Dombrowskil
et al.| (2019); Kuppa & Le-Khac (2020) and black-box Tamam et al.| (2023)); Huang & Zhang (2020)) settings.
Our work situates itself within this domain by focusing on the black-box scenario. Unlike existing black-box
approaches that demand extensive query budgets, our method is designed to achieve substantial distortion
with a notably limited query budget, addressing key constraints faced by current strategies.

As DNNs are increasingly deployed in real-world applications, ensuring that their decision-making processes
are interpretable becomes essential Doshi-Velez et al.| (2017). This underscores the importance of developing
robust and accurate explanations for DNNs. Adversarial attacks against XAI methods are designed to assess
the sensitivity of explanations to minor changes in input images |Alvarez-Melis & Jaakkola| (2018). While
traditional adversarial attacks on DNNs focus on inducing misclassification, attacks against XAI methods aim
to challenge the reliability of provided explanations by either 1) causing minimal distortion to an attribution
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Figure 4: Task 2 (correct classification with distorted explanation) adversarial images produced by the
EvoAttack method, along with the respective generated attribution maps. The original and adversarial
explanations on the HAM10000 images are visually dissimilar with PCC values of —0.04 and below. Dispite
the distortion, all adversarial images are correctly classified by the VGG-16 DNN.

map while causing misclassification [Huang et al.| (2023), or 2) maximizing the distortion of an attribution
map whilst maintaining the correct classification Tamam et al.| (2023) (shown in Figures [3] and [4)).

In their pioneering work, Ghorbani et al.Ghorbani et al.| (2019) introduced the concept of adversarial attacks
on explanations by targeting gradient-based feature attributions in convolutional DNNs. The authors
iteratively perturbed inputs in the direction that altered the explanation’s gradient. Concurrently, research
by Kindermans et alKindermans et al.| (2019) highlighted the sensitivity of explanations to slight input
transformations, although they did not directly propose methods for constructing such attacks. Subsequent
works exploiting the gradient information have constructed adversarial images by altering all pixels in the
image [Zhang et al.| (2020)) in addition to localised regions (patches) Selvaraju et al.| (2017).

While most existing methods focus on the white-box setting, recent efforts have shifted toward developing
black-box approaches. In the black-box scenario, only the input-output pairs of the DNN and XAI methods
are accessible, allowing these techniques to be applied to any explanation method that produces an attribution
map [Huang et al.| (2023). Existing black-box techniques often employ heuristic optimization methods to craft
adversarial images by solving a constructed loss function. Tamam et al.Tamam et al. (2023) utilize the Natural
Evolutionary Strategy method [Wierstra et al. (2014) to minimize the loss function previously proposed by
Dombrowski et al. [Dombrowski et al.| (2019). Their attack iteratively updates a single solution by sampling a
set of solutions from a normal distribution at each iteration to estimate the gradient of the loss function.
Conversely, the attack method by Huang et allHuang et al. (2023) does not rely on any gradient information.
Instead, they adapt the POBA-GA genetic algorithm developed by Chen et al/Chen et al.| (2019) to evolve a
population of solutions through the genetic operators crossover and mutation. The authors demonstrate the
superior performance of their method by targeting both gradient-based and perturbation-based explanation
methods.

Despite recent advancements in black-box adversarial attacks against XAI methods, the high number of
queries required for both the DNN and the XAI method raises concerns about their practical applicability to
financial Dhabliya et al. (2024) or time Keddous et al.| (2023) restricted scenarios. Moreover, the excessive
effort to construct adversarial images questions the realistic assessment of explanation robustness against
adversarial images (2021). Furthermore, existing methods do not consider the granularity of the
XAI methods’ explanation and perturb input images by modifying individual pixels. In doing so, these
methods have shown to perform well on granular XAI methods such as saliency maps and DeepLIFT but
struggle against

For an in-depth survey on adversarial attacks against explainable AT methods, we refer readers to Baniecki &

Biecek| (2024]).



Under review as submission to TMLR

Task 1

Perturbation EVOAttaCk @ Adversarial
Options Image
Perturbation i Perturbation —_—
h Selection Search
o O g
Target - - Sensical
Image Explanation
743\
Task 2
Target
XAI O
Explanation DNN Prediction :
i Sensical
Gen-eratAJ_on (Constraint) —_ Imalge
(Objective)
(5)
f I ()
)
o/ = (7))
Target L ) )
DNN

Adversarial
Explanation

Figure 5: Flowchart demonstrates the process of the proposed EvoAttack method. The proposed method
follows the (1 + 1)-ES structure and iteratively generates a single child solution by applying random changes
to its parent. If the parent solution is dominated (defined in Section by its child, it is replaced for the
next generation, otherwise the parent remains.

3 Proposed Method

The aim of our method is to create adversarial images that either: 1) minimize distortion in the attribution
map while causing an incorrect classification or 2) maximize the distortion in the attribution map while
keeping the DNN classification unchanged [Huang et al.| (2023), all while operating within a constrained query
budget. We design the perturbation as a set of semi-transparent RGB-valued circles, which reduce the search
space dimension to their properties. Similar to existing approaches, we generate adversarial perturbations by
optimizing a distance-based objective function. We begin this section by formulating the problem, followed
by a detailed description of each component of our proposed method. The overall structure of our approach
is summarized in Figure

3.1 Problem Formulation

Consider a trained DNN classifier f : X C [0,1]"*%*3 — R? which takes a benign RGB image x € X of

height & and width w and outputs a label y = argmax f,(x), with P representing the total number of class
p€{l, P}

labels. Further, let g(-,-) be an explanation function, where both the trained DNN f and benign image x are

inputs. In this work, we attack XAI methods g that output an attribution map g(-,-) — R"** where the

height and width match that of the input image x.

To preserve the semantic integrity of the image, we adhere to existing attack methods by constraining the
perturbation size using the /o, norm Huang et al. (2023); Tamam et al.| (2023); Dombrowski et al.| (2019).
Consequently, we aim to generate a perturbation § that solves the following optimization problems:

Task 1:
miniamize D(g(x), g(x +9))
subject to  ||0]]co < €, (1)
L(f;x+9,y,) <O,
0<x+6<1,
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Image + Perturbation After Projection

Figure 6: The process of repairing an adversarial image x 4+ ¢ (described in equation ) to ensure it satisfies
the constraints of and , where € = 6/255

Task 2:
maximize  D(g(x),9(x +9))
subject to  ||0]|eo <€, (2)
L(f;x+9,y,) >0,
0 S X + o S ]-7

where D represents the distance measure between the attribution maps of the benign and adversarial images
and e controls the extent of the perturbation’s impact on the benign image. We follow the setup of
by defining D as the 1/PCC where PCC is the Pearson Correlation Coefficient. We ensure that the
value of the loss function £(-) is negative when x + § results in misclassification. This is achieved by defining
the loss in the constraint as the margin loss:

E(f§x+5ay):fy_fyq7 (3)

where y corresponds to the true labels of x and y, = argmax f,(x) is a label corresponding to a class other
97y
than the true class y.

3.2 Perturbation Initialization

To alleviate the issues associated with the large number of tunable values of an image perturbation, we
construct a perturbation by overlaying N RGB-valued semi-transparent circles, drawing inspiration from
techniques prevalent in the computational art field Lambert et al.| (2013); |Garbaruk et al. (2022); |Tian & Ha|

@022).

In this work, we construct the adversarial perturbation § through the concatenation of N shapes:

5=56" @6 s (4)

where @ denotes the concatenation operator and 8% the a-th shape applied to a blank array. In the proposed
attack, each shape 8%, for a € 1,--- | N, is represented by a vector consisting of seven elements: the centre’s
coordinates (cf, c%), the radius r* x (Max Diameter) x (w - h), where 'Max Diameter’ is a tunable parameter
controlling the size of the circles, and w, h are the width and height of the attacked image. Finally, the
vector includes the RGB values R*, G, B®, and the transparency 7. These elements are normalized
to continuous values between 0 and 1 and are initially sampled randomly from a uniform distribution,
8 ~U(0,1). Constructing the perturbation in this manner reduces the number of optimization variables
significantly—from h x w x 3 (which totals 150,528 for a typical (224,224, 3) ImageNet image) to N X 7,
where N is the number of circle shapes used to construct the perturbation defined by the user. Importantly,
this method of perturbation construction is also invariant to the image size.
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3.3 Adversarial Image Construction

Given an adversarial perturbation § and a benign image x, where both x and § belong to R**%*3_ the
corresponding adversarial image x* is generated by equation which overlaps all shapes from é onto x. To
ensure x* complies with the constraints of and , we project the pixels of the constructed adversarial
image as follows:

x;+e ifx)>x+e
r<x—¢€, (5)

X, =(x; —€ ifx]

x; otherwise

where ¢ are the pixel indices. For greyscale images, we convert the RGB values of each circle to their greyscale
equivalents before placing them onto the benign image. We visualize the projection process in Figure [6] which
ensures the constraints of and are satisfied.

3.4 Perturbation Optimization

To optimize the properties of each shape 8%, we utilize a single-solution evolutionary strategy known as
the (14 1)-ES. In each iteration, a child solution 6** is generated by perturbing its parent §* using values
sampled from a normal distribution o - N'(0, I). The parameter ¢ is adjustable, allowing a balance between
exploration—searching unexplored regions of the solution space—and exploitation—fine-tuning the current
solution. A larger o facilitates exploration, while a smaller value encourages exploitation. The child solution
replaces the parent if it demonstrates superior performance on the task at hand.

Traditionally, the selection process is based solely on comparing the objective values of the parent and child
solutions. However, due to the constraints outlined in equations and , a more nuanced selection
process is warranted. [Huang et al. addressed this issue for by implementing a heuristic method related
to population dynamics and resolved by multiplying the objective value of solutions not satisfying the
constraint with —1. Alternatively, Tamam et al.| proposed a methodology that combines D and L using a
weighted sum of its estimated gradients. Nonetheless, the single-solution architecture of our proposed method
limits its ability to incorporate these existing strategies.

Instead, we draw inspiration from previous research in evolutionary computation that tackles objectives
constrained by complex conditions using dominance functions |Coello Coello & Mezura-Montes| (2002);
Williams & Li (2023Db); Williams et al. (2023)), similar to techniques in the multi-objective domain Deb (2001).
Specifically, for each attack task, given the parent and child solutions §* and §**, respectively, §** replaces its
parent §* if one of the following conditions is satisfied:

Definition 1 (Task 1 Domination) :

o L(6*)>0 and L(6*) <0 .
o Both L(§*) <0 and L(6**) <0 and D(g(x + §**)) < D(g(x + 0*))
o Both L(6*) > 0 and L(0*) > 0 and L(6**) < L(d*)

Definition 2 (Task 2 Domination) :

o L(6*) <0 and L(6*) >0 .
o Both L(6*) >0 and L(6*) > 0 and D(g(x + 6**) > D(g(x + 6*)
o Both L(§*) <0 and L(0*) <0 and L(6**) < L(5*).
These domination definitions are designed to guide our attack method in generating perturbation values that

either minimize (for task 1) or maximize (for task 2) the distortion to the explanation, while simultaneously
satisfying the respective classification constraints.
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4 Experiments

Most existing studies assess their methods by attacking explanation techniques applied to DNN classifiers
trained on ImageNet [Deng et al.| In contrast, our work concentrates on classification tasks within the medical
imaging domain, where the explainability of a DNN’s decisions is critically important |(Chaddad et al. (2023);
Hao et al.| (2024); [van der Velden et al.| (2022). Therefore, we target explanation methods used with DNN
classifiers trained on three distinct medical image datasets. The experimental setup is outlined in Section
which is followed by a comparative analysis of leading XAI attack methodologies, including SAFARI [Huang
et al. (2023) and NES |Tamam et al.| (2023)), detailed in Section Subsequently, we employ our proposed
method to rank the robustness of various XAI techniques, as presented in Section In Section (4.4} we
evaluate XAI methods applied to adversarially trained models that incorporate adversarial images generated
by our attack method within their training processes. Lastly, Section presents an ablation study that
examines the significance of different components and parameters of our proposed approach.

4.1 Experimental Setup

Datasets: Our experiments focus on evaluating XAI methods applied to DNN classifiers trained on three
distinct medical image datasets. First, we utilize the HAM10000 dataset [Ischandl et al. (2018]), which
comprises 10,000 images of common pigmented skin lesions categorized into seven types of cancerous lesions.
Second, we employ the Br35h dataset [Hamada (2020), containing 3,000 brain MRI scans that feature cases
with and without tumors. Lastly, we examine the COVID-QU-Ex dataset [Tahir et al.| (2021), which includes
33,920 chest X-rays classified into three categories: COVID-19, Pneumonia, and Normal. Consistent with the
setup used in existing literature, we perform attacks on 100 randomly selected, correctly classified images from
the test set of each dataset [Huang et al. (2023); [Tamam et al.| (2023). All images are resized to dimensions
(224 x 224 x 3) before being processed by the DNN.

Explanation and Classifier Settings: In this study, we explore seven XAI methods to assess their robust-
ness and efficiency. Specifically, we evaluate Grad-CAM |Selvaraju et al. (2017)), Grad-CAM++ |Chattopadhyay
et al.| (2017), Saliency Map [Simonyan et al.| (2014); Selvaraju et al.| (2017), DeepLIFT |[Shrikumar et al.| (2017,
GradientxInput Shrikumar et al.| (2017), LIME |Peng & Menzies (2021), and SHAPLEY |Lundberg & Lee
(2017). For the classifiers, we employ the architectures of MobileNet [Howard et al.| (2019), AlexNet Krizhevsky
et al| (2012), and VGG-16 |Simonyan & Zisserman (2015). Given the relatively small size of our medical
datasets, we fine-tune models pre-trained on ImageNet using the PyTorch library [Paszke et al. (2019). Each
model undergoes fine-tuning over 10 epochs, with a batch size of 32 and a learning rate of 1 x 10™%, utilizing
the ADAM optimizer Kingma & Ba/ (2015) and Cross Entropy Loss. The datasets are divided into training,
validation, and testing subsets with a ratio of 70%/10%/20%. Detailed performance metrics are provided
in Section[A.T in the Appendix. All experiments were executed on an NVIDIA RTX A6000 GPU system.

Parameter Settings: To ensure that perturbations result in minimal semantic alterations to the images,
we adopt settings from previous adversarial attack research targeting image classification DNNs Rusu et al.
(2022). For RGB images from the ImageNet and HAM10000 datasets, we set € = 8/255, whereas for greyscale
images from the Br35h and COVID-QU-Ex datasets, e = 6/225 |Dong et al. (2025). Consistent with prior
studies focused on efficient adversarial attacks on DNN classifiers, we set K = 5000 [Williams & Li| (2023ajb)
for all attacks. As elaborated in Section [3, our approach involves three adjustable parameters: o, N, and
Max Diameter. Here, o governs the exploration of the method, N signifies the number of shapes used to
create the perturbation, and Max Diameter determines the largest possible size of the perturbation circles.
The specific values for these parameters are listed in Table [§] with justification provided in Section [4.5

Performance Metrics: For evaluating the effectiveness of the proposed method, we adopt the Pearson
Correlation Coefficient (PCC) as a measure of the distortion caused to the attribution maps, following
previous research [Huang et al. (2023). PCC values near 1 indicate strong positive correlation, values close
to 0 imply no correlation, and values approaching —1 suggest strong negative correlation. Additionally, we
report the percentage of generated adversarial images that meet the constraints specified in and . To
ensure fair comparison, distortion measurements are only conducted on images that satisfy their respective
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Table 1: Table presents the Pearson Correlation Coefficient (PCC) along with the percentage of images that
satisfy the respective task constraint when attacking images from the HAM10000, Br35h and COVID-QU-Ex
datasets. We provide the mean and variance of each metric over 10 runs.

DeepLIFT Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC (1)
EvoAttack 80.4%(15.528)F 0.7(0.034)" 75.81%(4.88)" 0.04(0.138)F
NES 32.44%(8.265)* 0.19(0.054)* 55.9%(16.028)* 0.34(0.186)*
SAFARI 40.11%(12.184)* 0.38(0.141)* 64.37%(8.04)* 0.49(0.207)%
Saliency Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC (1)
EvoAttack 81.07%(14.756)" 0.6(0.096)" 83.1%(3.319)F —0.0(0.11)F
NES 34.11%(8.108)* 0.16(0.128)* 54.9%(17.283)* 0.27(0.227)*
SAFARI 36.8%(14.534)* 0.31(0.173)* 63.83%(6.72)* 0.35(0.25)*
Grad-CAM Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC (1)
EvoAttack 82.4%(13.258)F 0.9(0.021)F 87.05%(8.31)F —0.55(0.338)F
NES 35.11%(8.338)* 0.19(0.033)* 54.23%(18.132)* 0.39(0.217)*
SAFARI 39.13%(16.982)F 0.31(0.087)F 65.7%(6.236)* 0.49(0.228)F
Shapley Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC (})
EvoAttack 85.07%(10.771)F 0.71(0.033)f 77.14%(3.037)" 0.08(0.134)F
NES 35.11%(8.338)* 0.2(0.106)* 56.23%(15.616)* 0.37(0.216)*
SAFARI 37.47%(15.201)* 0.41(0.126)* 60.17%(8.287)* 0.49(0.214)%
Input x Gradient Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ({)
EvoAttack 81.08%(13.627)F 0.58(0.074)F 75.47%(5.346)T 0.08(0.133)F
NES 35.44%(8.466)* 0.14(0.082)* 56.56%(15.207)* 0.27(0.2)*
SAFARI 39.77%(11.836)* 0.38(0.118)* 63.2%(5.467)* 0.4(0.221)F
Grad-CAM++ Task 1 Task 2
Method Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ({)
EvoAttack 83.07%(11.757)F 0.88(0.111)F 83.05%(13.764)F —0.44(0.436)"
NES 35.77%(8.618)* 0.19(0.18)* 55.56%(16.444)* 0.38(0.248)*
SAFARI 40.77%(12.631)* 0.56(0.209)* 63.76%(4.64)% 0.53(0.283)*
LIME Task 1 Task 2
Method Constraint Satisfied (7) PCC (1) Constraint Satisfied (1) PCC (})
EvoAttack 72.69%(12.176)1 0.89(0.039)1 82.61%(10.283)" —0.54(0.318)f
NES 39.33%(8.225)* 0.17(0.026)* 60.84%(17.84)* 0.36(0.212)*
SAFARI 39.66%(16.296)* 0.29(0.096)* 66.12%(12.988)F 0.51(0.245)*

 denotes the performance of the method significantly outperforms the compared methods according to
the Wilcoxon signed-rank test Wilcoxon (1992) at the 5% significance level; ¥ denotes the corresponding
method is significantly outperformed by the best performing method (shaded).

task constraints. For ranking the robustness of XAI methods, we utilize the dominance relations described in
Definitions [[] and 2] to evaluate and rank the considered XAI methods.

Given the stochastic nature of our method, each experiment is repeated over 10 different random seeds. For
each metric, we aggregate its value across all model architectures. For each metric, we combine the results
across model architectures and report its mean and variance. To statistically verify whether the improvements
achieved by our method are significant relative to other algorithms, we employ the Wilcoxon signed-rank test
Wilcoxon| (1992) at a 5% significance level, as is standard practice within the Evolutionary Optimization
field Williams & Li| (2023a)); [Storn & Price| (1997)); [Deb| (2001)).

4.2 Result Analysis

To ensure a fair comparison between the proposed EvoAttack, SAFARI, and NES methods, we set the
population size for both SAFARI and NES to 50. This configuration allows for 100 iterations of their
respective optimization cycles.
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HAM10000 Br35h COVID-QU-Ex
‘ XAI Method Task 1 ‘ Task 2 Task 1 ‘ Task 2 Task 1 ‘ Task 2
DeepLIFT 4.19 (0.982) | 4.15 (1.269) 4.02 (1.535) 4.9 (1.368) 4.04 (1.043) | 2.71(0.825)
Grad-CAM 5.48 (1.095) | 5.88 (1.649) 4.14 (1.529) 5.84 (1.839) 6.2 (0.965) 5.71 (1.285)
SHAPLEY 4.87 (0.875) | 3.12 (0.968) 4.69 (1.467) 5.0 (1.535) 4.31 (1.012) | 3.04 (0.943)
Input x Gradient | 2.43(0.86) | 2.82(0.948) | 3.93(1.437) | 4.15(1.637) | 3.34 (0.947) 2.9 (1.02)

Grad-CAM++ 6.17 (1.516) | 5.49 (1.669) 4.42 (1.373) 5.16 (2.013) | 6.52 (0.726) | 5.89 (1.489)
Saliency 3.38 (0.963) | 2.93 (1.037) 4.51 (1.34) 4.95 (1.367) 2.54(0.79) | 4.35 (1.262)

Table 2: Table presents the robustness ranking of XAI methods across each task and dataset using the
proposed EvoAttack as the attack method. We provide the mean and variance of each metric over 10 runs.

Constraint satisfaction: The statistical outcomes for the proposed method and comparison attacks are
presented in Table |1} with arrows indicating whether better metric values are larger or smaller. The constraint
in Task 1, is defined as the misclassification of the image, whereas the constraint in Task 2 is defined as
the correct classification of the image. For the EvoAttack and SAFARI methods, the constraint satisfaction
rates of below 100% indicate that even random perturbations cause the underlying DNN to misclassify, with
the attacks unable to generate perturbations leading to correct predictions. For NES, the weights used for
summing the to objectives also impacts its ability to satisfy the constraint.

The proposed EvoAttack method significantly outperforms both SAFARIHuang et al.| (2023) and NES [Tamam
et al. (2023) across all XAI methods and datasets. As discussed in Section |1} existing methods often rely on the
assumption of ample computational query budgets; constraining the number of queries leads to considerable
performance degradation. Specifically, both NES and SAFARI struggle to fulfill the task 1 constraint of
inducing adversarial classifications across all datasets. This aligns with previous findings that highlight the
difficulty in generating adversarial images, specifically when the number of queries is limited. Conversely, the
EvoAttack method shows greater success in generating adversarial images. When evaluating performance
related to the task 2 condition, the differences are less pronounced, particularly when compared to SAFARI.
With the task 2 constraint being satisfied when added perturbations do not cause misclassification, this result
can be attributed to the robustness of the underlying DNN classifiers against pixel-level perturbations.

When analysing the constraint satisfaction rates across datasets (see Tables[10} [12|and [11] within the Appendix)
all attack methods exhibit performance degradation on the Br35h dataset. Despite clear regions of interest in
images from all datasets, the diagnostic information in Br35h images is more explicit (presence of a tumor
within the image). Consequently, the classifiers may have learned robust features such as tumor presence
rather than non-robust spurious correlations, also known as shortcut learning [Wang et al.| (2024)).

Finally, we observe only minor discrepancies in constraint satisfaction rates across XAI methods. This
uniformity is expected for EvoAttack and SAFARI as both prioritize task constraints before focusing on
explanation distortion.

Explanation distortion: In assessing the distortions in explanations caused by the attack methods,
EvoAttack consistently outperforms both SAFARI and NES across all experimental scenarios, demonstrating
significant superiority in the majority of cases (see Figure |z for visuali comparison). Notably, there is a
pronounced performance disparity when targeting XAI methods that generate less granular, more region-
focused explanations, such as Grad-CAM, Grad-CAM++, and LIME. Conversely, when attacking more
granular XAI methods like DeepLIFT, Saliency maps, SHAPLEY, and Input x Gradient, the performance
gap between EvoAttack and the other attack methods narrows. This outcome is anticipated due to the less
granular perturbation strategy employed by EvoAttack, emphasizing the importance of accounting for the
granularity of XAI explanations when designing perturbations. However, it also underscores the adaptability
of the proposed method to effectively target both granular and non-granular XAI methods.

Comparing task performances, the attack methods generally achieve greater success in maximizing the
distortion of explanations for correctly classified images rather than minimizing distortion for misclassified
ones. This indicates that XAl-generated explanations are more susceptible to task 2 attacks, where the
classification remains accurate, but the explanation is distorted. Although this scenario poses less risk to
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Figure 7: Original COVID-QU-Ex and adversarial images constructed by the proposed EvoAttack, SAFARI
and NES attacks, along with attribution maps generated by the respective XAI method. Adversarial images
are generated by attacks deployed within the Task 1 scenario. For the majority of the images, the proposed
method is able cause larger distortions to the original explanation, compared to explanations on SAFARI and
NES generated adversarial images.

patient safety due to correct disease classification, it could undermine trust in Al systems among medical
practitioners, potentially reducing their willingness to rely on Al for assistance Rosenbacke et al. (2024al).

Additionally, performances vary across different XAI methods among the attack strategies. EvoAttack notably
manipulates less granular explanations, such as Grad-CAM, Grad-CAM++, and LIME, more effectively
in all experimental setups compared to the granular methods, underscoring their specific vulnerabilities to
structured perturbations. Among granular XAI methods, the greatest challenge appears in attacking Saliency
maps and Input x Gradient, particularly for task 1. For example, when targeting images from the HAM10000
and COVID-QU-Ex datasets, no attack achieves an average PC'C value above 0.6, which is a benchmark for
consistency between explanations. Conversely, for task 2, EvoAttack is able to reduce the average PCC' of
those XAI values below 0.4, indicating inconsistent explanations Huang et al.| (2023), highlighting the greater
vulnerability of XAI methods when distorting correctly classified images.

More visual comparisons of adversarial images and explanations is provided in Section |A.5 in the Appendix.

4.3 XAl Robustness Comparison

The findings in Section highlight the superior performance of the proposed method over existing attack
techniques, showcasing its utility for robustness evaluations. However, the combination of the task’s objective
and constraint (as detailed in Section [3)) makes it difficult to use a single metric value for ranking. Therefore,
to rank the robustness of the targeted XAI methods, we employ the task-specific domination relations defined

in[ and 2

For each attacked image, we utilize non-dominated sorting to rank each XAI method based
on the performance of EvoAttack in targeting the image, where lower ranks correspond to poorer attack
results, indicating greater robustness of the XAI method. This procedure is repeated across all 100 images
for each model architecture. We repeat this procedure over the 10 different random seeds, with the average
rank serving as a measure of the XAI method’s overall performance.
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Table 3: Table presents the Pearson Correlation Coefficient (PCC) along with the percentage of images that
satisfy the respective task constraint when attacking XAI method applied to adversarial trained classifiers.
We provide the mean and variance of each metric over 10 runs.

DeepLIFT Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ()
HAMI0000 98.06 (2.04) 0.71 (0.118) 97.01 (2.544) 0.08 (0.162)
Br35h 56.00 (2.376) 0.66 (0.148) 56.99 (2.182) 0.56 (0.158)
COVID-QU-Ex 98.01 (2.577) 0.57 (0.154) 61.08 (2.508) 20.0 (0.235)
Saliency Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ()
HAM10000 98.07 (2.214) 0.54 (0.112) 98.91 (2.782) 0.17 (0.16)
Br35h 59.29 (2.816) 0.65 (0.124) 59.0 (2.218) 0.51 (0.146)
COVID-QU-Ex 98.95 (2.46) 0.46 (0.11) 67.01 (2.86) 0.1 (0.083)
Grad-CAM Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC (1)
HAM10000 98.07 (2.034) 0.77 (0.238) 99.94 (2.531) -0.36 (0.391)
Br35h 0.0 (2.46) 0.60 (0.209) 18.0 (2.334) 0.68 (0.365)
COVID-QU-Ex 98.92 (2.31) 0.78 (0.268) 75.06 (2.367) -0.73 (0.481)
Shapley Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ()
HAMTI0000 97.9 (2.185) 0.76 (0.11) 96.01 (2.139) 0.13 (0.176)
Br35h 41.0 (2.687) 0.63 (0.154) 42.0 (2.385) 0.56 (0.139)
COVID-QU-Ex 98.96 (2.866) 0.59 (0.151) 60.93 (2.174) 0.0 (0.223)
Input x Gradient Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ()
HAMTI0000 97.94 (2.476) 0.48 (0.123) 96.99 (2.005) 0.12 (0.147)
Br35h 52.03 (2.82) 0.67 (0.131) 1.0 (2.913) 0.56 (0.118)
COVID-QU-Ex 97.05 (2.708) 052 (0.1) 60.9 (2.6) 0.01 (0.087)
Grad-CAM++ Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ()
HAMTI0000 98.02 (2.541) 0.86 (0.154) 99.9 (2.416) 20.33 (0.401)
Br35h 16.0 (2.105) 0.49 (0.259) 16.0 (2.344) 0.60 (0.34)
COVID-QU-Ex 97.92 (2.327) 0.87 (0.154) 75.06 (2.933) -0.73 (0.482)
LIME Task 1 Task 2
Dataset Constraint Satisfied (1) PCC (1) Constraint Satisfied (1) PCC ({)
HAMTI0000 99.31 (1.400) 0.77 (0.101) 99.4 (0.18) 20.41 (0.392)
Br35h 38.11 (1.201) 0.49 (0.259) 16.0 (2.344) 0.69 (0.34)
COVID-QU-Ex 97.02 (2.327) 0.87 (0.154) 75.06 (2.933) 0.73 (0.482)

The final robustness ranking of XAI methods, as presented in Table [2, indicates that Input x Gradient
frequently achieves better average rankings across most attack instances. Despite the Saliency method
attaining better average PCC values, it achieves higher overall rankings on 2 out of 3 datasets. This
discrepancy arises because the metric values in Section focused solely on attack instances that satisfied
the constraints, whereas this ranking accounts for all evaluated images. For example, during Task 1 attacks
on images from the HAM10000 dataset (see Table E within the Appendix), the Saliency method shows
greater resistance to attacks, resulting in a higher average PC'C value. By employing the domination relation,
the ranking considers the attack’s ability to satisfy the constraint, demonstrating that EvoAttack achieves
lower constraint satisfaction when targeting Input x Gradient compared to Saliency, leading to Input x
Gradient’s superior average rank. Finally, in Task 1 attacks on COVID-QU-Ex images, the Saliency method
demonstrates superior robustness, while DeepLIFT proves most resilient against Task 2 attacks.

4.4 Evaluation of Adversarial Training

The results in Section demonstrated the effectiveness of the proposed attack method in successfully
compromising XAI methods, outperforming existing attacks. Given that adversarial training has been
recognized as a promising approach to mitigating the vulnerabilities posed by adversarial attacks, this section
evaluates its potential for enhancing the robustness of XAI methods against the EvoAttack.
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Adversarial Training Setup: In this study, we implement an adversarial training procedure similar to
those used in prior research, which incorporates image perturbations during the training phase Madry et al.
(2017); |Chernyak et al.| (2021). Specifically, each training iteration involves augmenting all images with
random EvoAttack perturbations, resulting in batches composed of both benign and adversarial images,
thereby doubling the batch size. To ensure the DNN is exposed to various forms of the EvoAttack perturbation
structures, we randomly sample parameters (N) and Maximum Diameter for each perturbation from the grid
used within our ablation study. A detailed description of the employed adversarial training process along with
the performance metrics of the adversarially trained classifiers is provided in Section [A.3 in the Appendix.

Task 1: The results presented in Table [ illustrate the impact of adversarial training on different XAI
methods. First, we see that adversarially trained HAM10000 DNN classifiers become more vulnerable to
adversarial attacks. This phenomenon is likely attributed to the large class imbalance in the HAM10000
dataset, which has shown to be an issue for adversarial training |Wang et al. (2022)). Comparing with Br35h
and COVID-QU-Ex classifiers, we see the use of adversarial training improved their robustness against the
proposed EvoAttack.

Comparing the performance of the different XAI methods’ we see the overall use of adversarial training has
improved the robustness across all XAI methods. In particular, we see greater jumps in robustness for the
less granular XAI methods, Grad-CAM, Grad-CAM++ and LIME. Despite these results demonstrating the
potential of adversarial training, these methods are still the least vulnerable across the different XAI methods.
Comparing the the more granular XAI methods, the improved robustness of Saliency maps and Input x
Gradient XAI methods brings their respective PC'C' values near or below 0.6 across all three datasets. This
indicates that, although adversarial explanations are not perfectly inconsistent with their benign counterparts,
they remain close to or below the threshold of consistency. As a result, the distortions in the attribution
maps could become noticeable.

Task 2: Similar to Task 1, we witness an enhancement in robustness across all XAI methods which can
be described by the increased average PCC values. In the case of Br35h images, EvoAttack’s ability to
meet the constraint is diminished, reflecting improved robustness across XAl methods, with all average PCC
values exceeding 0.5. This suggests that EvoAttack faces challenges in altering the original explanation to be
inconsistent while ensuring the classifier predicts accurately.

Similar observations arise with the COVID-QU-Ex dataset, where EvoAttack’s success in meeting the
constraint is reduced, while average PCC values for most XAI methods increase. This indicates that
adversarial training has degraded EvoAttack’s ability to distort explanations while retaining accurate classifier
predictions.

Despite the impact of adversarial training in improving the robustness across XAI methods, EvoAttack is still
able to distort attribution maps to PCC' values of below 0.4, which indicates that inconsistency was achieved.

4.5 Ablation Study

The proposed method incorporates three tunable parameters: (N), (o), and the maximum circle diameter
(Max Diameter) expressed as a percentage of the image. We employ a grid search over the parameter space
to determine their optimal values. Specifically, we explore (N € 100, 300), (¢ € 0.1,0.2,0.3), and maximum
circle diameters ranging from (20%, 30%, 40%, 50%) of the original image size. These parameter ranges are
based on commonly set values used in the evolutionary |Skiscim & Golden| (1983) and computational art Tian
& Ha (2022) fields. To evaluate the performance of each parameter configuration, we conduct attacks on
each explanation for each task using a VGG-16 ImageNet classifier with 100 correctly classified images from
the validation set. To compare the performance of different parameter configurations, we employ the same
methodology as described in Section

Configuration Performance Analysis: As illustrated in Table [, the optimal configuration varies
significantly across XAI methods and tasks. Similar to previous studies that highlight the lack of consensus
among XAI methods, this suggests that the vulnerabilities between them may differ. Nonetheless, some
patterns emerge across different XAI methods. Firstly, for Task 1, which aims to induce misclassification
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Task 1 Task 2
XAI Method N | Max Diameter (%) | o N | Max Diameter (%) | o
DeepLIFT 100 80.0 0.1 | 300 60.0 0.3
Saliency 100 80.0 0.3 | 200 70.0 0.2
Grad-CAM 100 80.0 0.3 | 100 80.0 0.2
LIME 100 80.0 0.3 | 100 80.0 0.2
Shapley 100 80.0 0.3 | 300 60.0 0.3
Input x Gradient | 100 80.0 0.1 | 300 60.0 0.3
Grad-CAM+-+ 100 80.0 0.1 | 100 80.0 0.3

Figure 8: Chosen EvoAttack parameters for attacking the considered XAI methods.

while preserving the explanation, the best-performing configurations consistently feature a maximum circle
diameter of 80% of the image size. Conversely, configurations with smaller circle diameters perform worse.
This indicates that utilizing larger local perturbations (i.e., larger circles) is more effective in influencing the
DNN classifier while minimizing distortion in the attribution map.

Another observed pattern is that all optimal configurations use (N = 100) circles. A likely explanation for
this is that adding more shapes increases the number of variables involved, which might demand a larger
computational budget for effective optimization |Williams et al. (2021); [Eltaeib & Mahmood (2018). Keeping
a constant budget might lead to prematurely halting the optimization process, thus affecting performance
negatively.

For Task 2, which aims to distort the explanation while maintaining correct classification, we observe greater
variation in the best performing configurations. However, similar configuration performance are seen across
different XAI methods. Specifically, the results indicate that XAI methods that produce similar granularity
in attribution maps are effectively attacked with comparable parameter setups. For example, when targeting
highly granular attribution maps from DeepLIFT, Input x Gradient, and SHAPLEY (see Figure , the
proposed method achieves superior performance using smaller diameter circles. Conversely, XAI methods like
Grad-CAM, Grad-CAM++, and SHAPLEY, which highlight broader regions rather than individual pixels,
are more susceptible to larger circular perturbations. This behaviour stems from altering the perturbations’
granularity by changing circle size, with smaller circles constructing perturbations more closely resembling
pixel-level perturbations.

A surprising result from the ablation study was the performance of parameter configurations when targeting
the Saliency XAI method. Unlike other granular methods, the Saliency method proved more vulnerable
to medium to large circle perturbations, while remaining robust against smaller circles. This difference
might be attributed to its level of granularity. Whereas SHAPLEY and DeepLIFT produce sparse maps
emphasizing specific pixels, Saliency maps highlight broader regions. Although the Input x Gradient method
also emphasizes broader areas, its multiplication with the input image may also have an impact, requiring
smaller circle diameters.

These results underscore the advantages of the proposed attack method, EvoAttack. By adjusting the size
of the circular shapes, EvoAttack effectively manages the trade-off related to granularity when targeting
explanation methods—an aspect that existing strategies lack. In conclusion, we recommend adopting the
optimal configurations detailed in Table [ for the XAI methods considered in this study. We provide the
performance across all configurations in Figure [9] within the Appendix. .

5 Conclusion, Limitations and Future Work

Conclusion: This research introduces a novel adversarial attack specifically designed to target XAI
methods in computer vision. Unlike most existing approaches that modify each pixel of the benign image,
our method constructs adversarial perturbations by concatenating RGB-valued circular shapes. We optimize
the parameters of these shapes using a (1+1)-evolutionary strategy, a widely used optimization heuristic
in evolutionary computation. To enhance the attack’s efficacy, we conducted an ablation study assessing
the influence of various parameters on performance across several XAl methods. The results demonstrate
that larger circles effectively manipulate less granular XAI methods like Grad-CAM, Grad-CAM++, and
Lime, while smaller circles yield better results against granular XAI methods such as DeepLIFT and Input x

14



Under review as submission to TMLR

Gradient. Compared to state-of-the-art attack techniques, the proposed method consistently outperforms
them in all attack setups, showcasing its efficiency and effectiveness.

We leveraged the EvoAttack method to evaluate and rank the robustness of XAI methods. Given the
complexity of assessing XAI methods using both PCC and constraint metrics, we employed the EvoAttack
domination relation for each task to rank the resistance of XAI methods with respect to each attacked
image. By averaging the rank of each XAI method across all attacked images and underlying classifiers,
we formulated a comprehensive ranking. This approach allowed us to incorporate all data regarding XAI
distortion alongside constraint satisfaction, culminating in a unified ranking table for each dataset.

To counter the proposed attack, we developed an adversarial training procedure that incorporates random
EvoAttack-style perturbations into the training process. Attacking adversarially trained models revealed
enhanced robustness in most XAI methods; however, we noted a decrease in classifier robustness on the
HAM10000 dataset, accompanied by improved XAI robustness. In the Task 2 attack scenario, adversarially
trained classifiers decreased EvoAttack’s effectiveness in redirecting the DNN classifier towards correct
predictions, suggesting that while the classifier became more susceptible to random EvoAttack perturbations,
it also developed a stronger resistance to subsequent manipulations. This study underscores the potential
of adversarial training as a crucial strategy for defending against attacks, in addition to the utility of
considering both classifier and XAI performance when evaluating the robustness of human-in-the-loop systems.
Nevertheless, our study highlights the need for further exploration, marking this as a vital area for future
research.

Limitations and Future Work: This study focuses on enhancing the robustness of XAI techniques, with
an emphasis on medical imaging datasets. While the proposed method demonstrates promising results, there
are limitations and avenues for future research. Firstly, the hyper-parameters were optimized using a basic
grid-search approach, aimed at analysing the impact of varying parameter values. In future work, more
advanced hyper-parameter optimization frameworks, such as Bayesian Optimization or methods assisted by
large-language models, should be explored. [Snoek et al.| (2012)); |Zhang et al.| (2023).

Additionally, this study employed a predefined [, constraint € based on existing recommendations. Exploring
minimum-norm attacks, which identify the minimal e value necessary to compromise an Al system, could
provide deeper insights into the XAI and classifier vulnerabilities [Williams & Li (2023a)). Future work should
investigate these types of attacks to better understand the weaknesses of current approaches. Moreover,
while this research examined perturbations that modify all pixels, future studies should consider alternative
perturbations, such as sparse attacks, where only a limited number of pixels are altered.

Our experiments highlight the potential of adversarial training in reducing the impact of EvoAttack on
classifier and XAI robustness. However, they also reveal EvoAttack’s capability to manipulate explanations
to remain consistent or inconsistent, depending on the task, while satisfying respective constraints. Future
research should focus on developing more sophisticated adversarial training methodologies to bolster the
robustness of both DNN classifiers and XAI methods. For example, rather than using random perturbations
during adversarial training, executing the proposed attack with a limited number of queries could pinpoint
more vulnerable regions of images, thereby exposing the model to more harmful perturbations and potentially
improving its robustness. Alternatively, defence strategies like adding random noise to output probabilities
have been suggested to reduce the efficacy of malicious attacks. We anticipate that methods like these will be
employed as overall DNN robustness is enhanced.

To foster continued research in this domain, we plan to publicly release our implementation, datasets, and
evaluation scripts upon acceptance of the paper.

Broader Impact Statement

In this work, we introduce a novel adversarial attack method against explainable AT (XAI) techniques that
can account of the varying granularities in explanations, as well as reducing the dimension of the search
space. We apply our proposed attack to the robustness ranking of various XAI methods across three different
medical image datasets. This study underscores the necessity of evaluating both classifier and XAI system
robustness.
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With the healthcare domain, our research demonstrates two significant risks: first, the possibility of medical
professionals trusting incorrect Al diagnoses due to seemingly plausible explanations, potentially endangering
patient safety; and second, the risk of decreasing trust between healthcare practitioners and Al systems due
to distorted explanations of accurate diagnoses, which could slow down the diagnostic process by necessitating
additional human evaluations. To address these risks, we explore different mitigation strategies, such as
adversarial training, which showed promise in enhancing the resilience of XAl systems against adversarial
threats.

We hope our work will lead to further research into adversarial training strategies and encourage practitioners
to rigorously test the robustness of XAl systems before deployment. Our ultimate goal is to advance the safe
and effective integration of Al in critical domains like healthcare.
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