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Abstract

In recent years, there has been significant work on increasing both interpretability
and debuggability of a Deep Neural Network (DNN) by extracting a rule-based
model that approximates its decision boundary. Nevertheless, current DNN rule
extraction methods that consider a DNN’s latent space when extracting rules,
known as decompositional algorithms, are either restricted to single-layer DNNs or
intractable as the size of the DNN or data grows. In this paper, we address these
limitations by introducing ECLAIRE, a novel polynomial-time rule extraction
algorithm capable of scaling to both large DNN architectures and large training
datasets. We evaluate ECLAIRE on a wide variety of tasks, ranging from breast
cancer prognosis to particle detection, and show that it consistently extracts more
accurate and comprehensible rule sets than the current state-of-the-art methods
while using orders of magnitude less computational resources. We make all of
our methods available, including a rule set visualisation interface, through the
open-source REMIX library (https://github.com/mateoespinosa/remix).

1 Introduction

As the field of Artificial Intelligence (AI) transitions from traditional symbolic methods into opaque
models like Deep Neural Networks (DNNs) [1], there has been a great amount of concern over the
potential consequences of using these methods in safety-critical environments [2, 3]. The use of
such “black-box” models in practice can not only lead to uncertainty and delays when debugging
and root-causing mistakes in a model’s behaviour (as in Uber’s infamous accident [4, 5]), but it also
goes against the long-held conventions of using transparent, interpretable models for life threatening
decisions [6, 7]. Furthermore, the lack of transparency in DNNs has been shown to lead to user
mistrust [8] and to models that misleadingly show promising results for the wrong reasons [9]. Such
opacity perpetuates a barrier for the practical use of DNNs despite their celebrated success in tasks
ranging from computer vision [10] and language modelling [11] to diagnosis [12].

As a reaction to these concerns, a new line of work in the field of eXplainable AI (XAI) has been
developed to explore ways of demystifying a DNN’s decision boundary and to facilitate debugging and
deployment of these models. A promising proposal in this direction is to make use of the latent space
learnt by a DNN to construct a rule-based model (a set or list of IF-THEN rules) that approximates
its decision boundary [13, 14]. Such approaches complement a DNN’s high performance by offering
transparency and debuggability in the form of both “local” interpretability (i.e., understanding how
a single prediction was made) as well as “global” interpretability (i.e., discovering global patterns
in the data that explain how the DNN acts). This is in contrast to existing XAI alternatives, such
as feature importance methods [15, 16], sample importance methods [17, 18] and counterfactual
explanations [19, 20], where a method only provides either local or global interpretability in their
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basic form. Moreover, aided by publicly available rule set visualisation tools [21, 22], as well as the
possibility of injecting expert hand-crafted rules into rule sets (e.g., as suggested in [23]), existing
work and open-source frameworks for deploying rule-based models can significantly assist model
developers, legal moderators, and model users with debugging and deploying a DNN by analysing its
approximating rule-based model.

Nevertheless, previous rule extraction methods that consider the inner workings of a DNN to construct
their rules, commonly referred to as “decompositional” methods [24], tend to have severe limitations.
First, with very few exceptions, most decompositional algorithms have been designed to work only
on shallow architectures [14, 13]. Second, to the best of our knowledge, all of the approaches that are
able to operate on non-trivial DNNs suffer from intractability issues and, therefore, are impractical
for tasks that require very deep architectures or have a large training dataset [25, 23]. Both of these
are in stark contrast with the current direction in DNN architecture design where deep models trained
on large datasets dominate over shallow models trained with small datasets [26].

In this paper we address these limitations by proposing ECLAIRE, a novel decompositional rule
extraction algorithm for DNNs. Our method, depicted in Figure 1, avoids the intractability common
to other decompositional methods by making use of a two-step process that efficiently uses a DNN’s
latent space to guide its rule extraction. Our main contributions can be summarised as follows:

• We introduce ECLAIRE, a novel decompositional rule extraction algorithm which, to the
best of our knowledge, is the first polynomial-time decompositional method applicable to
arbitrary DNNs.

• We show that ECLAIRE’s rule sets outperform those extracted by current state-of-the-art
decompositional methods in both predictive performance and comprehensibility (measured
as the number and length of extracted rules). Furthermore, we show that ECLAIRE is able to
achieve this while using significantly less computational resources than competing methods.

• We open-source our methods, together with a rule visualisation and interaction library, as
part of the REMIX package (https://github.com/mateoespinosa/remix).

Figure 1: Representation of how ECLAIRE extracts rules from a DNN that outputs a probability
distribution over classes {l1, l2, l3}. ECLAIRE uses a 2-step process in which it (i) extracts rules
mapping intermediate (layer-wise) activations to the DNN’s predictions and then (ii) performs a
clause-wise substitution to produce a rule set Rx7→ŷ mapping input activations to output predictions.

2 Related Work

Previous work on explaining a DNN’s prediction using rule-based explanations can be divided into
two lines of work: (i) rule-based model-agnostic local explainability methods and (2) DNN rule
extraction methods. While members of the former family of methods, which include algorithms such
as LORE [27] and Anchors [28], are able to generate rule-based explanations for the behaviour of a
DNN in a point’s local neighbourhood, they are unable to provide insights on any global patterns
captured by the DNN’s decision boundary. Hence, given that we are interested in extracting rule-based
models that provide both local and global interpretability in a DNN, in this section we focus on DNN
rule extraction methods.
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The design of DNN rule extraction methods can be divided following a taxonomy proposed by
Andrews et al. [24] in which a method is classified as being in one of three possible categories:
“pedagogical”, “decompositional”, and “eclectic”. Pedagogical methods, such as HYPINV [29],
TREPAN [30], and Validity Interval Analysis [31] extract rules from a DNN by treating it as a black
box. A limitation of these methods, however, is that by ignoring a DNN’s latent space, they do not
take advantage of different hierarchical representations that a DNN was able to learn from its training
set. In this work we are concerned with extracting rules from generic multi-layered architectures, and
thus in this section we focus on discussing only those decompositional methods that are able to extract
rules from arbitrary DNNs. This focus renders the majority of decompositional approaches, such as
those in [32, 33, 34, 35, 36], out of scope for our current work due to their restrictive application to
only a subset of architectures. Instead, we bring attention to the only two decompositional algorithms
applicable to arbitrary DNNs: DeepRED [25] and, an optimised version of it, REM-D [23].

Borrowing inspiration from CRED [37], an earlier single-layer decompositional method, both
DeepRED and REM-D use decision trees to induce rule sets that map input features to the truth value
of each of the DNN’s output classes. The crux of both methods lies in their substitution step in which
a set of rules Rhi 7→l mapping activations in the ith layer to the truth value of class l is rewritten to be
a function of activations in the (i− 1)th layer. This substitution is performed in a term-wise manner:
each term of a rule’s premise in Rhi 7→l is replaced by a set of new rules which depend on the hidden
activations of layer (i − 1). This substitution, however, requires an exponential post-processing
step in which rules substituted for a given term need to be distributed in a cartesian-product fashion
with rules that were substituted for all terms in the same premise. This results in both REM-D and
DeepRED having an exponential asymptotic runtime [23].

While algorithmically similar, these methods differ in two implementation-wise optimisations: (1)
REM-D uses C5.0 [38] for intermediate decision tree construction rather than C4.5 [39] (a less
efficient iteration of C5.0 with typically worse performance) and (2) REM-D reduces memory
consumption by substituting intermediate rules as soon as they have been extracted. REM-D’s use of
C5.0 for intermediate rule extraction, and its early substitution, allow it to empirically outperform
DeepRED in terms of its scalability as well as in the size and fidelity of its rule sets [40].

The last family of rule extraction methods are eclectic algorithms, a hybrid between pedagogical and
decompositional methods. While eclectic methods such as RX [41], MofN [42], and ERENN_MHL
[43] have been shown to extract competitive approximating rule sets, these algorithms either assume
that the underlying DNN has only one hidden layer or they require full control over the DNN’s
training pipeline (e.g., they require a specific training procedure to be used for the DNN).

3 ECLAIRE

Problem Setup Assume we are given a set of unlabelled training samples X = {x(i) ∈ Rm}Ni=1

and a pre-trained DNN fθ : Rm 7→ [0, 1]L such that for all x ∈ X , fθ(x) outputs a probability
distribution over labels in set Y = {l1, l2, · · · , lL}. Furthermore, assume fθ has d hidden layers and
let hi(x) be the output of the i-th layer of fθ when fed with input x. In this setup, we let h0(x) = x
be the input activation layer and hd+1(x) = fθ(x) be fθ’s output probability distribution. Our goal
is to use samples in X to construct a rule set Rx7→ŷ of IF-THEN rules of the form

IF
( term︷ ︸︸ ︷
(xi > vi)∧(xj ≤ vj) ∧ · · · ∧ (xn > vn)︸ ︷︷ ︸

premise/antecedent

)
THEN lk︸︷︷︸

conclusion

such that, when subjected to a majority voting1 with input x, it accurately predicts the result of
evaluating argmaxi fθ(x)i. In alignment with existing decompositional methods (e.g., REM-D and
DeepRED), in our work we constrain each rule’s premise to be a conjunction of terms of the form
(xi > vi) or (xi ≤ vi), where xi is the i-th input feature of sample x and vi ∈ R is a learnt threshold.

Efficient Clause-wise Rule Extraction In order to introduce our method, we begin with the
following observation: a neural network fθ with d hidden layers provides access to d distinct
representations for samples x ∈ X . This allows us to extend our support training set X by creating d
new labelled training sets

{
{
(
hi(x), argmaxi fθ(x)i

)
| x ∈ X}

}d
i=1

from which one can induce d

1If a sample does not satisfy any rule premise, then we assign it a default label.
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rule sets Rhi 7→ŷ that map each hidden layer’s output to fθ’s label predictions ŷ = argmaxi fθ(x)i.
The crux of our method consists of efficiently unifying all d rule sets {Rh1 7→ŷ, · · · , Rhd 7→ŷ} into
a single rule set Rx7→ŷ that maps input samples x ∈ X to fθ’s predicted labels. In the same way
that bagging and feature subsampling are key to the ability of random forests to reduce variance and
overfitting [44], making use of d different representations of the same dataset to construct Rx 7→ŷ can
significantly help reducing the variance and overfitting that would otherwise be present in vanilla rule
induction algorithms.

Motivated by these observations, we introduce Efficient CLAuse-wIse Rule Extraction (ECLAIRE).
Our method, summarised in Algorithm 1, uses an input DNN fθ and a set of training samples X to
incrementally construct a rule setRx7→ŷ which approximates fθ (line 1). More specifically, ECLAIRE
iterates over each hidden layer hi and uses a general rule induction algorithm ψ(·) to induce a rule
set Rhi 7→ŷ that maps hi’s activations to the DNN’s output predictions (lines 2 to 5). ECLAIRE then
proceeds to do a clause-wise substitution of rules in Rhi 7→ŷ. This substitution, depicted in Figure 2,
iterates over all of the rules in Rhi 7→ŷ (lines 6-7) and constructs a new temporary rule set Ix7→p
mapping input feature activations x to the truth value of each rule’s premise p (lines 8-9). Note that
in Algorithm 1 we use p(x(i)) to represent the result of evaluating premise p (which is a conjunction
of terms) on sample x(i). Finally, we add to Rx 7→ŷ all of the premises in Ix7→p that have TRUE as a
conclusion (lines 10-12). In other words, we add all the rules that approximate premise p as being
true and map those rules to the class which p originally predicted. This process is repeated for all
intermediate hidden layers and terminates by outputting Rx 7→ŷ as its result.

Algorithm 1 ECLAIRE
Input: DNN fθ with layers {h0, h1, ..., hd+1}
Input: Training data X = {x(1),x(2), . . . ,x(N)}
Hyperparameter: Rule extraction algorithm ψ(·) (e.g., rule induction on decision trees learnt via C5.0)
Output: Rule set Rx 7→ŷ

1: Rx 7→ŷ ← ∅
2: ŷ(1), ŷ(2), . . . , ŷ(N) ← argmax

(
hd+1(x

(1))
)
, argmax

(
hd+1(x

(2))
)
, . . . , argmax

(
hd+1(x

(N))
)

3: for hidden layer i = 1, . . . , d do
4: x′(1), x′(2), . . . , x′(N) ← hi(x

(1)), hi(x
(2)), . . . , hi(x

(N))

5: Rhi 7→ŷ ← ψ
(
{(x′(1), ŷ1), (x

′(2), ŷ2), ..., (x
′(N)

, ŷN )}
)

6: for rule r ∈ Rhi 7→ŷ do
7: p← getPremise(r)
8: ŷ

(1)
p , ŷ

(2)
p , . . . , ŷ

(N)
p ← p

(
x′(1)), p(x′(2)), . . . , p(x′(N))

9: Ih0→p ← ψ
(
{(x(1), ŷ

(1)
p ), (x(2), ŷ

(2)
p ), ..., (x(N), ŷ

(N)
p )}

)
10: for clause c ∈ getPremisesByConclusion

(
Ih0→p, TRUE

)
do

11: Rx 7→ŷ ← Rx7→ŷ ∪
{
IF c THEN getConclusion(r)

}
12: end for
13: end for
14: end for
15: return Rx7→ŷ

When using a polynomial-time rule extractor ψ(·), ECLAIRE’s clause-wise substitution allows it to
avoid the expensive and exponential term redistribution that is required in REM-D and DeepRED.
This manifests itself in ECLAIRE’s runtime which can be shown to be as follows:
Theorem 1 (ECLAIRE Runtime Complexity). Assume ECLAIRE’s intermediate rule extraction algo-
rithm ψ(·) operates by inducing rules from a decision tree that was learnt using a top-down impurity-
based algorithm (e.g., C5.0). Furthermore, assume that, when trained withN m-dimensional samples,
ψ(·)’s runtime grows as O(Npnmpm), for some pn, pm ∈ N. Given a training set with N samples
and a neural network with d hidden layers, such that there are at most m activations in any of its
layers, ECLAIRE’s runtime will grow as a function of O

(
dNmax(3,pn+1)mpm

)
.

Theorem 1, whose proof is in Appendix A, highlights a significant computational advantage in
ECLAIRE over previous decompositional methods: while both REM-D and DeepRED are known
to have an exponential runtime with respect to the training set and the depth of the network [23],
ECLAIRE exhibits a polynomial-time growth with respect to its input size when using a polynomial-
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time rule induction method for ψ(·). Furthermore, ECLAIRE’s use of a DNN’s intermediate repre-
sentations independently of their topological order in the network implies that, in stark contrast to
REM-D and DeepRED, it is agnostic to the DNN’s network topology and it can be easily parallelised,
something we take advantage of in practice by distributing the work in the main loop (lines 3-15)
across nthreads threads. Notice that this is not possible in both REM-D and DeepRED as they extract
rules in a sequential manner, processing the DNN’s layers in reverse topological order.

Figure 2: ECLAIRE’s substitution step when intermediate rule setRhi 7→ŷ has rules r1 := (t1∧ t2)⇒
l and r2 := (t1 ∧ t3 ∧ t4)⇒ l. We use {t1, · · · , t4} to represent different terms and we let p(k)j be
the premise of the j-th rule in Ix7→getPremise(rk) whose consequence is TRUE. In this example we
assume that the number of premises with TRUE as a conclusion in Ix7→(t1∧t2) and Ix 7→(t1∧t3∧t4) is
N1 and N2, respectively. This results in rule set Rx7→ŷ having N1 +N2 rules after substitution.

4 Experiments

Setup For all experiments we perform a 5-fold stratified cross-validation and, for each metric of
interest, we show both the mean and standard deviation errors across all 5 folds. Furthermore, all
experiments are carried on a 2016 MacBook Pro with a 2.7 GHz Quad-Core Intel i7 processor and 16
GB of RAM. Finally, we limit each individual experiment to span at most nthreads = 6 threads when
using ECLAIRE and we terminate an experiment if it takes longer than six hours to complete.

Datasets and Tasks We evaluate our methods on six tasks. We begin by using a synthetic task to
contrast ECLAIRE’s rule sets to those extracted by the current state-of-the-art methods in a controlled
setting. We then evaluate ECLAIRE on two breast cancer prognosis tasks based on the METRABRIC
[45] dataset to highlight ECLAIRE’s applicability to real-world tasks in which transparency is crucial.
We proceed to evaluate ECLAIRE’s scalability to large datasets and architectures by extracting
rules from models trained on two large particle physics datasets (MAGIC [46, 47] and MiniBooNE
[48, 47]). Finally, we use the Letter Recognition [49, 47] dataset to explore ECLAIRE’s ability to
extend to non-binary classification tasks. A summary of each dataset, including its size and label
distribution, can be found in Appendix B.

Baselines and Metrics In our experiments, we compare ECLAIRE against the only other two
decompositional methods that share its applicability: REM-D and DeepRED. Due to a lack of an
up-to-date implementation of DeepRED, we follow the work in [40] and use a variation of DeepRED
where C5.0 is used instead of C4.5. This results in a variant of DeepRED that outperforms its C4.5
counterpart. For both this implementation of DeepRED, which we refer to as DeepRED*, and the
implementation of REM-D, we use as our starting point the code published by Shams et al. [23, 40].
When evaluating ECLAIRE, we use rule sets induced from C5.0 trees as our intermediate rule
extractor ψ(·) unless specified otherwise. Although this constraints our evaluation to a single rule
extractor (rather than using more recent rule extractors such as Bayesian rule sets [50] or Column
Generation [51]), this allows us to fairly evaluate the algorithmic design of ECLAIRE against that
of DeepRED* and REM-D without strongly biasing our results to our choice of intermediate rule
extractor. Nevertheless, notice that from Theorem 1, and the fact that C5.0’s runtime complexity grows
as O(N2m) [38], it follows that the runtime complexity of this instantiation of ECLAIRE grows as
O(dN3m). Finally, to highlight the benefits of using a DNN’s latent space for rule extraction, we
include two non-decompositional baselines: C5.0 as a baseline end-to-end rule induction method and
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PedC5.0 [23, 40] as a baseline pedagogical algorithm. The latter method uses C5.0 to induce a rule
set from a training set where each sample is labelled using the DNN’s prediction for that sample.

When comparing any two methods, we evaluate the fidelity of the extracted rule sets with respect
to the input DNN (defined as the predictive accuracy when sample x(i) is assigned label ŷ(i) =
argmaxj fθ(x

(i))j) and their comprehensibility as measured by their number of rules and their
average rule length. Furthermore, as a way to evaluate the tractability of our methods, we keep track
of the resources utilised by each method in terms of both wall-clock time and memory. Finally, given
that there may be a direct benefit from using the rule sets extracted from the DNN as standalone
interpretable models (e.g., as a form of model distillation that generates stronger rule-based models),
we include each rule set’s accuracy and AUC as part of our evaluation.

Model and Hyperparameter Selection Although ECLAIRE is applicable to arbitrary DNN archi-
tectures, in order for us to simplify architecture selection during evaluation, in our experiments we
focus on extracting rule sets from multilayer perceptrons (MLPs). Moreover, in order to simulate
ECLAIRE’s use case, we maintain a strict separation between fine-tuning the DNN we train for a
task and fine-tuning the rule extraction algorithm we apply to that model. More specifically, we
train several MLP architectures for each task and extract rules only from the best performing model.
During rule extraction, we control the growth of intermediate rule sets induced via C5.0 by varying
only the minimum number of samples µ that we require C5.0 to have before splitting a node. Because
µ requires different fine-tuning strategies across different tasks2, in this section we report only the
highest performing rule set we obtain after varying µ across a task-and-method-specific spectrum.
Unless specified otherwise, all other C5.0’s hyperparameters, with the exception of winnowing which
is always set to true, are left as their default values. We include all details of each task’s architecture
and hyperparameter selection, including the search spectrum used for µ for each task, in Appendix C.

4.1 XOR: Evaluating Rule Set Interpretability in Controlled Setup

In this section, we use a synthetic dataset to evaluate the performance of ECLAIRE and our baselines
in a controlled environment known to be challenging for vanilla rule induction algorithms and
pedagogical rule extraction methods. For this, we make use of a variant of the XOR classification
task, in a form commonly used for studying feature selection methods [7, 52, 53], in which we
generate a dataset {(x(i), yi)}1000i=1 with 1000 10-dimensional samples such that every data point
x(i) ∈ [0, 1]10 is constructed by independently sampling each dimension from a uniform distribution
in [0, 1]. In this dataset, we assign a binary label yi ∈ {0, 1} to each point x(i) by XOR-ing the result
of rounding its first two dimensions as yi = round

(
x
(i)
1

)
⊕ round

(
x
(i)
2

)
.

In order for a classifier to be able to achieve a high performance in this task, it must learn that only the
first two dimensions are meaningful for predicting the output label. This property makes this dataset
an illustrative example of a task in which decision trees are unable to obtain a high performance
without a large training dataset [54, 25]. In this section, we hypothesise that decompositional
methods will outperform both vanilla rule induction algorithms and pedagogical rule extraction
methods as their use of a DNN’s latent representations during training results in an implicit data
augmentation process. Furthermore, we hypothesise that within our decompositional baselines,
ECLAIRE will outperform other methods given that its two-step process avoids the need of nesting
multiple sequential approximations when merging rule sets as done in both REM-D and DeepRED*.
To test both hypothesises, we extract rules from an MLP with hidden layer sizes {64, 32, 16} trained
on this dataset and report our findings in the XOR rows of Table 1. The MLP’s test accuracy is
96.6%± 1.9% and its AUC is 96.6%± 1.9%.

As hypothesised, Table 1 shows that ECLAIRE outperforms all other decompositional methods in the
XOR task in terms of both accuracy and fidelity. We further observe that ECLAIRE uses significantly
less resources than REM-D and DeepRED* while generating significantly fewer rules than both.
Moreover, note that, as expected, we also observe that both C5.0 and PedC5.0 are unable to capture
any meaningful rules and instead generate an empty rule set that acts as a random classifier. Finally,
we observe that the standard deviation of ECLAIRE’s rule set sizes is relatively small compared to its
mean. This is in stark contrast with the observed standard deviations of rule set sizes in both REM-D
and DeepRED*, which tend to be even greater than their means. Such behaviour indicates that

2This is particularly important in REM-D and DeepRED* as low values of µ can easily lead to intractability.
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Table 1: Rule extraction results. For each dataset, we highlight the most competitive value obtained
for any metric across all decompositional methods. Furthermore, we use a single horizontal line to
visually separate decompositional and non-decompositional methods across all datasets. AUC is not
included in Letters dataset due to its multiclass nature.

Method Accuracy (%) AUC (%) Fidelity (%) Runtime (s) Memory (MB) Rule Set Size Avg Rule Length
X

O
R

C5.0(µ = 2) 52.6 ± 0.02 50 ± 0 N/A 0.10 ± 0.01 38.35 ± 13.68 1 ± 0 0 ± 0
PedC5.0(µ = 2) 52.6 ± 0.2 50 ± 0 53 ± 0.15 0.19 ± 0.02 308.44 ± 27.14 1 ± 0 0 ± 0

DeepRed*(µ = 30) 87.3 ± 3.7 86.9 ± 3.9 88.1 ± 4 390.97 ± 542.12 20,393.19 ± 35,889.69 9,149.8 ± 16,009.6 4.78 ± 1.77
REM-D(µ = 33) 88.4 ± 2 88 ± 2.1 88.2 ± 3.1 116.12 ± 205.64 757.98 ± 14,173.63 3,337 ± 6,280.65 4.46 ± 1.55

ECLAIRE(µ = 2) 91.8 ± 2.6 91.4 ± 2.7 91.4 ± 2.4 4.15 ± 0.24 523.6 ± 172.72 87 ± 16.24 3.03 ± 0.23
C5.0(µ = 4) 91.1 ± 1.9 87.4 ± 2.7 N/A 20.33 ± 0.82 303.86 ± 89.05 17.6 ± 3.38 2.89 ± 0.29

PedC5.0(µ = 2) 92.7 ± 0.9 91 ± 0.6 93 ± 1.2 20.91 ± 1.83 1661.06 ± 2711.3 21.8 ± 2.99 3.32 ± 0.2
DeepRed*(µ = 5) 92 ± 1.2 89.2 ± 3 92.3 ± 2.4 328.67 ± 173.53 13,262.24 ± 22,246.47 4,141.4 ± 8,023.2 5.54 ± 2.78
REM-D(µ = 5) 91.9 ± 1.2 89.1 ± 2.9 92.3 ± 2.1 154.69 ± 772.87 7,345.99 ± 7,647.99 1,572.6 ± 2,935.72 5.36 ± 2.59M

B
-E

R

ECLAIRE(µ = 5) 94.1 ± 1.6 91.8 ± 2.5 94.7 ± 0.2 60.52 ± 12.1 9,518.72 ± 5,310.94 48.4 ± 15.28 2.84 ± 0.18

M
B

-H
IS

T C5.0(µ = 5) 89.7 ± 2 63.5 ± 8.5 N/A 16.06 ± 0.64 292.21 ± 67.82 8.2 ± 5.42 2.14 ± 1.16
PedC5.0(µ = 5) 87.9 ± 0.9 72.5 ± 4.5 89.3 ± 1 17.16 ± 0.56 310.79 ± 83.78 12.8 ± 3.12 2.75 ± 0.32

DeepRed*(µ = 5) 88.9 ± 4.3 73.6 ± 9.5 89.3 ± 4.6 523.24 ± 249.45 1,818.16 ± 881.14 598.8 ± 355.31 7.75 ± 2.47
REM-D(µ = 5) 89.4 ± 3.3 74.5 ± 6.6 89.4 ± 2.7 128.51 ± 25.89 11,711.12 ± 76.2 71.4 ± 50.07 4.98 ± 2.04

ECLAIRE(µ = 9) 88.9 ± 2.3 77.4 ± 3.7 89.4 ± 1.8 54.08 ± 5.68 4,754.45 ± 4,306.61 30 ± 12.36 2.49 ± 0.21
C5.0(µ = 30) 81.6 ± 4.6 75.6 ± 7.4 N/A 2.48 ± 0.12 81.54 ± 66.95 33.2 ± 1.94 3.21 ± 0.22

PedC5.0(µ = 15) 82.8 ± 0.9 77.8 ± 2.7 85.4 ± 2.5 2.67 ± 0.18 889.76 ± 44.23 57.8 ± 4.49 3.61 ± 0.28
DeepRed*(µ = 700) 78.7 ± 1 74.9 ± 3 81 ± 1.7 708.33 ± 762.56 11,730.22 ± 21,684.99 5,142.6 ± 9,799.13 5.43 ± 1.91
REM-D(µ = 700) 78.6 ± 1.1 74.9 ± 3 81.1 ± 1.7 355.82 ± 382.77 8,519.24 ± 15,301.8 3,616.8 ± 6,748.41 5.41 ± 1.88M

A
G

IC

ECLAIRE(µ = 50) 84.6 ± 0.5 80.2 ± 1 87.4 ± 1.2 58.26 ± 10.11 1,277.78 ± 411.14 396.2 ± 74.93 3.82 ± 0.18

M
in

iB
oo

N
E C5.0(µ = 25) 91.7 ± 0.2 89.3 ± 0.9 N/A 86.57 ± 4.45 326.19 ± 65.03 114.2 ± 12.42 6.04 ± 0.16

PedC5.0(µ = 15) 91.5 ± 0.2 90 ± 0.6 94.1 ± 0.4 86.76 ± 2.56 17,608.17 ± 8,597.74 150.6 ± 7.74 5.95 ± 0.26
DeepRed*(µ = 0.03N ) 84.2 ± 3.5 83.5 ± 1.1 86.4 ± 2.4 3,983.45 ± 1,497.53 22,378.28 ± 620.88 262.8 ± 298.31 4.44 ± 1.49
REM-D(µ = 0.025N ) 85.2 ± 2.3 84.6 ± 1.4 87.3 ± 2.1 2,981.38 ± 1,496.11 19,957.87 ± 5,879.18 1,182.6 ± 1,416.93 5.23 ± 1.5

ECLAIRE(µ = 0.0008N ) 91.4 ± 0.3 90.5 ± 0.8 94.6 ± 0.3 2,930.79 ± 160.02 3,555.71 ± 334.75 1,484.8 ± 131.9 5.81 ± 0.22
C5.0(µ = 5) 63.1 ± 2.5 N/A N/A 4.4 ± 0.42 1,254.97 ± 39.04 468.6 ± 6.95 7.51 ± 0.07

PedC5.0(µ = 5) 60.8 ± 3.6 N/A 60.3 ± 3.4 4.74 ± 0.627 1,509.73 ± 186.85 468 ± 10.06 7.5 ± 0.06
DeepRed*(µ = 0.3N ) 4.1 ± 0.4 N/A 4.1 ± 0.3 2,849.4 ± 487.31 46,059.52 ± 34,201.83 16,202.8 ± 11,208.12 10.06 ± 0.81
REM-D(µ = 0.3N ) 4.2 ± 0.6 N/A 4 ± 0.4 1,576.74 ± 248.19 37,917.65 ± 32,028.71 13,144.2 ± 10,368.82 10.11 ± 0.79
ECLAIRE(µ = 8) 55.7 ± 4.4 N/A 55.7 ± 4.3 473.18 ± 7.83 2,802.04 ± 165.92 1,219.4 ± 70.64 5.41 ± 0.17L

et
te

rs

ECLAIRE*(µ = 10) 64.9 ± 2.9 N/A 64.7 ± 2.7 487.7 ± 37.4 4,351.04 ± 62.05 1,842.4 ± 109 6.09 ± 0.07

ECLAIRE is more robust to changes in its training data and input DNN than REM-D and DeepRED*.
We conjecture a hypothesis to explain these results in Section 5.

Figure 3: Fraction of rules whose
premise thresholds a given feature.

Our results also indicate that ECLAIRE is better at extract-
ing rules that correctly capture the underlying generating
process of the XOR dataset, therefore providing better
global insights on what a DNN learnt from its training
data. This can be seen when analysing which features were
considered important in the rules extracted by ECLAIRE.
Such analysis, shown in Figure 3, indicates that rules in
ECLAIRE are able to identify the importance that the first
two features (i.e., x1 and x2) have on the resulting output
class by very rarely conditioning on other features. This is
at odds with what we see in rules extracted by REM-D and
DeepRED*, where a significant fraction of rule premises
heavily rely on features other than x1 and x2.

4.2 METABRIC: Medical Applications

In this section we evaluate ECLAIRE in real and safety-critical tasks in which interpretable models
are favoured. To achieve this, we evaluate our methods on two medical genomics tasks defined by
Shams et al. in [23] based on the METABRIC dataset. More specifically, we extract rules from
models trained to predict immunohistochenical subtypes (MB-ER) and histological tumour subtypes
(MB-HIST) from a sequence of mRNA expression profiles. For further details, refer to Appendix B.

Using the same DNN architecture and hyperparameters as in [23], we train two MLPs with hidden
layers {128, 16}, one trained on MB-ER and one trained on MB-HIST, and extract rules from
these models. In MB-ER, our MLP achieves a test accuracy of 97.9% ± 0.3% and test AUC of
95.6% ± 1.1% while in MB-HIST our MLP achieves a test accuracy of 91.2% ± 3.5% and a test
AUC of 88.4%± 3%. We summarise these results in the MB-ER and MB-HIST rows of Table 1.

As in XOR, in both of these tasks we observe that ECLAIRE is able to efficiently extract rule sets
that are not only significantly smaller than those produced by DeepRED* and REM-D (up to 32x
fewer rules on MB-ER) but also higher-performing in their predictive accuracy. Only in MB-HIST
we see ECLAIRE underperforming in predictive accuracy when compared to REM-D. However,
given the high class imbalance in this dataset (91.3% of samples are of one class), AUC is a more
meaningful metric than accuracy. ECLAIRE’s superior AUC in MB-HIST indicates that it is able
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to extract higher-fidelity rule sets than our baselines in binary tasks with a high class imbalance, a
significant advantage for several real-world tasks. Finally, note that although we see similar benefits
in ECLAIRE’s runtime as in XOR, in these tasks ECLAIRE’s parallelism overhead leads to a higher
memory consumption than REM-D and DeepRED*. Nevertheless, although ECALIRE’s rule sets are
not as small as those produced by PedC5.0 and C5.0, they have fewer than 50 rules, making them
easy to inspect and debug for practitioners that may require such a model for prognosis purposes.

4.3 MiniBooNE and MAGIC: Scalability Study

In this section we discuss a series of experiments that evaluate how ECLAIRE and our baselines
scale when the number of samples and the depth of the architecture increase. For this, we use two
particle physics binary classification tasks that offer a large training set: MAGIC [46, 47], with
19,020 training samples, and MiniBooNE [55, 47], with 130,065 training samples. We train an MLP
with hidden layers {64, 32, 16} on MAGIC and an MLP with hidden layers {128, 64, 32, 16, 8} on
MiniBooNE and report those results in Table 1. The MLP trained on MAGIC achieves a test accuracy
of 86.3%± 1.8% and a test AUC of 86.3%± 1.8% while the MLP trained on MiniBooNE achieves
a test accuracy of 97.9% ± 0.3% and a test AUC of 93% ± 0.2%.

In these experiments, we came across significant difficulties when using REM-D and DeepRED*.
This was because most of their configurations led to runs that took more than 6 hours in total, either
due to intractable rule extraction or intractable inference caused by large extracted rule sets. Thus, we
increased the value of µ to be a significant fraction of N , the number of points in the dataset, and we
show the best value we obtain by varying µ as indicated in Appendix C.3.4. Nevertheless, notice that
although such amounts of pruning lead to smaller rule sets than ECLAIRE’s in MiniBooNE, these
are overpruned rule sets which underperform in the test set.

Our experiments show that ECLAIRE can scale to both large architectures and large datasets without
the need for excessively large values of µ (i.e., no need for excessive intermediate rule set pruning).
Furthermore, we can see that ECLAIRE outperforms all of the baselines in both tasks in terms of
its AUC and fidelity. Only in its accuracy it is marginally outperformed by C5.0 and PedC5.0 in the
MiniBooNE task. Nevertheless, given the class imbalance in this task, the benefit from ECLAIRE’s
AUC improvements out-weights its marginally worse accuracy.

4.4 Letter Recognition: Multiclass Classification

Although both REM-D and DeepRED were developed to be applicable to multiclass tasks, they have
never been formally evaluated in such tasks. In this section we fill this gap by extracting rules from a
model trained on the Letter Recognition Dataset [49, 47], a classification task with 26 target labels.
We proceed by extracting rules from a trained MLP with hidden layers {128, 64} which achieves a
test accuracy of 95%± 0.2%. We summarise our results in Table 1 and include further experiments
using an alternative tree induction algorithm in Appendix C.3.5.

As in other data-intensive tasks, we first observe a difficultly in tractably extracting rules using REM-D
and DeepRED* without large values of µ. Even when we find a configuration for these methods
that terminates in the allotted time, we are unable to observe results that are significantly better than
random. Second, although ECLAIRE is able to outperform both DeepRED* and REM-D, it struggles
to outperform PedC5.0 and C5.0. We believe this to be the case due to possible class imbalance in
intermediate rule sets: when performing a clause-wise substitution in intermediate rules, and as the
number of classes increases, the number of samples that satisfy the premise of an intermediate rule
becomes smaller. This implies that when using C5.0 to substitute an intermediate clause, it has to face
a highly imbalanced binary classification task, something known to be problematic for decision trees
[56]. While we are able to slightly alleviate this in our results through C5.0’s support for independent
class weights, it remains as future work to explore better mechanisms for handling this imbalance.

An interesting observation is that when we include the input features as one of the representations
which ECLAIRE can use to extract intermediate rule sets, it results in a rule set that outperforms
C5.0 and PedC5.0. This result, shown at the bottom of Table 1 as ECLAIRE*, suggests that using a
DNN’s input features as one of the representations that ECLAIRE has access to can be beneficial for
the performance of its end rule set. This can be thought of as an eclectic variation of ECLAIRE and
we leave it as future research to explore whether this improvement generalises across domains.
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5 Discussion

Variance Reduction in ECLAIRE In [23], Shams et al. observe a very high variance in the
size of rule sets extracted with REM-D and postulate that this is due to different neural network
initialisations leading to latent spaces that vary in interpretability properties. Nevertheless, our results
in Table 1 suggest that this may not be the case, as ECLAIRE’s variance is significantly smaller
than that observed in both REM-D and DeepRED*. Inspired by results on convergence learning
[57, 58], in this paper we challenge this hypothesis by arguing that the variance observed in REM-D,
and therefore in DeepRED, is not the result of different initialisations leading to different levels of
interpretability in a DNN’s latent space, but it is rather the result of a crucial design factor in REM-D:
REM-D uses rule sets induced from decision trees to substitute terms in its intermediate rule sets,
forcing the need of a cartesian-product redistribution of terms afterwards. Decision trees, being high-
variance classifiers [59], are highly sensitive to their training sets. This implies that when REM-D
substitutes the same term in an intermediate rule using two different datasets (as it would happen
across two different training folds), it can generate vastly different rule sets. Hence, because during its
term-wise substitution REM-D replaces each term in an intermediate rule’s premise with a set of rules
extracted from a decision tree, the variance in the number of rules after one substitution grows in a
multiplicative fashion. This is because all newly substituted terms in a clause need to be redistributed
in a cartesian-product (a visual representation of this process can be found in Appendix D). Therefore,
we argue that the significant reduction in variance we observe in our evaluation of ECLAIRE is due
to the fact that ECLAIRE performs a clause-wise substitution rather than a term-wise substitution,
hence avoiding a multiplicative growth in the number of rules. This hypothesis explains the results in
Table 1 and highlights a significant advantage of ECLAIRE over other decompositional methods.

Growth Coping Mechanisms Despite ECLAIRE’s superior performance compared to our baselines,
Table 1 shows that ECLAIRE can still take a considerable amount of time to extract high-performing
rule sets in large datasets and architectures. Furthermore, we observe a growth in the number of rules
extracted by ECLAIRE as the amount of data and the model size increase. As a way to alleviate this
growth, we explore four different coping mechanisms: (1) intermediate rule pruning, where, as in
[23], we increase the value of µ to generate smaller intermediate rule sets, (2) hidden representation
subsampling, where we generate intermediate rule sets only from a subset of the DNN’s intermediate
representations, (3) training set subsampling, where, as in [25], only a fraction of the DNN’s training
set is used for rule extraction, and (4) intermediate rule ranking, where the lowest p% of rules
in intermediate rule sets, as ranked by their confidence levels, are dropped. We summarise these
experiments in Appendix E.

Our results indicate that the performance of ECLAIRE’s rule sets is robust to heavy training data
subsampling as well as significant intermediate representation subsampling and intermediate rule
pruning via confidence ranking. Specifically, we observe that ECLAIRE is very data efficient: one can
subsample up to 50% of the training set during rule extraction, causing a ∼ 50% drop in extraction
time and rule set size, without observing an absolute loss of more than 0.5% in the resulting rule set
fidelity. Similar results are observed when one subsamples every other two hidden representations
when generating intermediate rule sets or drops the lowest 25% of rules in intermediate rule sets.
Nevertheless, our experiments also highlight a clear limitation in ECLAIRE: for achieving optimal
performance, ECLAIRE requires significant task-specific fine tuning of its µ hyperparameter. While
in practice we observe that selecting µ from [10−5N, 10−4N ] yields good results, we leave the
exploration of more systematic strategies for selecting µ to future work.

6 Conclusion

With the ubiquitous use of DNNs, it has become increasingly important to be able to explain, as
well as debug, the decisions made by production-sized DNNs. In this work we aim to fill this gap
by proposing ECLAIRE, a novel decompositional rule extraction algorithm, which, to the best of
our knowledge, is the first polynomial-time decompositional algorithm able to scale to both large
training sets and deep architectures. In contrast to previous work which focuses on using intermediate
representations in a sequential manner, ECLAIRE exploits these representations in parallel to build
an ensemble of classifiers that can then be efficiently combined into a single rule set. We evaluate
ECLAIRE on six different tasks and show that it consistently outperforms the previous state-of-the-art
decompositional methods and vanilla rule induction methods in terms of the accuracy and fidelity of
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its output rule set. At the same time, ECLAIRE uses orders of magnitude less resources and produces
fewer rules than current state-of-the-art decompositional methods. Excited with the prospects that can
arise from this work, and to encourage the use of our algorithms in both industry and research, we
make all of our methods, together with an extensive set of visualisation and inspection tools, publicly
available as part of the REMIX library. Follow up research could explore generalising ECLAIRE to
regression tasks, as well as to RNN architectures, and could include work on alleviating the effects of
class imbalance in multiclass settings.
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A ECLAIRE’s Asymptotic Bounds

A.1 Notation

Throughout this section, we let |R| be the number of rules in a rule set R, T (R) be the set of all
unique terms in rules in R, and Tmax(R) be the set of terms in the longest rule in R.

A.2 Lemmas

Before showing Theorem 1, we introduce two useful lemmas related to rule induction:

Lemma 1. If R is a rule set induced from a decision tree trained with N samples using a recursive
top-down impurity-based algorithm (e.g., C5.0), then the following must hold:∣∣T (R)∣∣ ≤ 2(N − 1) and

∣∣Tmax
(
R
)∣∣ ≤ (N − 1)

Proof. First, notice that a tree generated by any top-down tree induction algorithm cannot have more
than N leaf nodes. This is because, in the worst-case scenario, any top-down algorithm may reach
its base case N times with each leaf having one training sample in it. Therefore, this implies that a
tree cannot have more than (N − 1) split nodes in it. If this would not be true, then it is trivial to
see that the binary tree would have to have at least N + 1 leaf nodes, a contradiction to our previous
observation.

Furthermore, notice that during rule induction each split node can contribute with at most two unique
terms to the rule set (one per branch) and with at most one term to a single rule (one per root-to-leaf
path). Because of this, a single rule cannot have more than (N − 1) unique terms in it and the rule set
cannot have more than 2(N − 1) unique total terms in it. Finally, note that these bounds can be tight.
This can be seen in the decision tree shown in Figure 4 where each split node must be unique as no
gains can be obtained from partitioning the training set twice in the same way in any given path.

This lemma can be extended to provide an asymptotic bound on the number of rules induced from a
decision tree:

Lemma 2. If R is a rule set induced from an impurity-based top-down decision tree trained on N
data samples, then it must be the case that |R| = O(N).

Proof. An immediate result of our proof of lemma 1 is that the number of leaf nodes in a decision
tree grows as O(N). Therefore, because after rule induction there is a one-to-one correspondence
between leaves in the decision tree and rules in the output rule set, the number of rules induced from
a decision tree must also grow as O(N).
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Figure 4: Depiction of an imbalanced decision tree with N leaves and a path with length (N − 1).

Having built an understanding of how rule induction is affected by its training data, we now use these
results to analyse ECLAIRE’s asymptotic behaviour.

Theorem 1 (ECLAIRE Runtime Complexity). Assume ECLAIRE’s intermediate rule extraction algo-
rithm ψ(·) operates by inducing rules from a decision tree that was learnt using a top-down impurity-
based algorithm (e.g., C5.0). Furthermore, assume that, when trained withN m-dimensional samples,
ψ(·)’s runtime grows as O(Npnmpm), for some pn, pm ∈ N. Given a training set with N samples
and a neural network with d hidden layers, such that there are at most m activations in any of its
layers, ECLAIRE’s runtime will grow as a function of O

(
dNmax(3,pn+1)mpm

)
.

Proof. We begin our proof with a high-level summary of ECLAIRE’s approach: for each layer i in our
network, ECLAIRE extracts an intermediate rule set Rhi 7→ŷ using rule extractor ψ(·) on intermediate
activations hi and the labels predicted by the input DNN. It then iterates over all premises in Rhi 7→ŷ ,
extracts a rule set mapping input activations x to each premise’s truth value, and adds the relevant
rules into the output set. This procedure implies that the total amount of work done by ECLAIRE to
process hidden layer i grows asymptotically as

O

(
(complexity of ψ(·) when trained with N samples and m features)

+ (number of rules in Rhi 7→ŷ)× (complexity of evaluating a rule in Rhi 7→ŷ N times)
+ (number of rules in Rhi 7→ŷ)× (complexity of ψ(·) when trained with N samples and m features)

+ (number of rules in Rhi 7→ŷ)× (complexity of post-processing and adding new rules)

)
Which can be rewritten as:

O

(
(Npnmpm) +

∣∣Rhi 7→ŷ
∣∣× (∣∣Tmax(Rhi 7→ŷ

)∣∣N + (Npnmpm) +
∣∣Tmax

(
I(t)x 7→p

)∣∣∣∣I(r)x7→p′
∣∣))

where we define I(t)x7→p to be the temporary rule set (approximating premise p) with the longest rule
and we define I(r)x 7→p′ as the temporary extracted rule set with the largest number of rules in it. Note
that we used the fact that, by assumption, ψ(·)’s worst case runtime grows asO(Npnmpm). Applying
lemmas 1 and 2 to this expression gives us

O

(
(Npnmpm) +N ×

(
(N − 1)N + (Npnmpm) + (N − 1)N

))
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Finally, using the fact that (N − 1) = O(N) and (N3) = O(Nmax(3,pn+1)mpm) as both pn and pm
are natural numbers, and recalling that ECLAIRE performs this much work for each hidden layer, we
get that ECLAIRE’s total runtime grows as a function of

O

(
d
(
(Npnmpm) + 2(N3) + (Npn+1mpm)

))
= O

(
dNmax(3,pn+1)mpm

)

B Dataset Details

In this section we include a brief description of all the non-synthetic datasets used for the tasks
described in Section 4.

METABRIC [45] This dataset consists of a collection of anonymized features extracted from breast
cancer tumours in a cohort of 1, 980 patients. It includes clinical traits, gene expression patterns,
tumour characteristics, and survival rates for a period of 4 years. The specific tasks we consider in
METABRIC, taken from [23], are:

• Immunohistochemical subtype prediction (MB-ER): for this task we predict immunohis-
tochemical subtypes in breast cancer patients using 1000 mRNA expression patterns. Each
sample can be classified as one of two types, ER+ or ER-, which are crucial for determining
a patient’s treatment.

• Histological tumour subtype prediction (MB-HIST): for this task we predict histological
subtypes of breast cancer tumours using 1004 mRNA expression profiles. Each sample
can be classified as either Invasive Lobular Carcinoma (ILC) or Invasive Ductal Carcinoma
(IDC), two most common breast cancer histological subtypes [23].

MAGIC [46, 47] This is a particle physics dataset in which a signal needs to be classified as being a
high-energy gamma ray or some background hadron cosmic radiation. Each of the 19,020 training
samples consists of 10 real-valued features that are generated via a Monte Carlo program and a binary
label indicating whether the observation corresponds as a high-energy gamma ray (signal) or some
background hadron radiation.

MiniBooNE [55, 47] This is a particle physics dataset in which one is interested in discriminating
electron neutrino events from background events in interactions collected in the MiniBooNE experi-
ment. Each of the 130,065 training samples consists of 50 real-valued features empirically collected
in the MiniBooNE experiment and a binary label indicating whether the sample represents a electron
neutrino event (signal) or a background event.

Letter Recognition [49, 47] This dataset consists of 20, 000 representations of black-and-white
English capital letters labelled with one of 26 classes (A to Z). Each sample is generated by extracting
16 statistical features from the images of each letter.

A summary of the properties of all tasks spanning from these datasets can be found in Table 2.

Table 2: Summary of classification tasks used for evaluation.

Dataset Samples Classes Features Majority Class (%) Domain
XOR [7, 52] 1,000 2 10 52.6 Synthetic

MB-ER [45, 23] 1,980 2 1,000 76 Healthcare
MB-HIST [45, 23] 1,695 2 1,004 91.3 Healthcare
MAGIC [46, 47] 19,020 2 10 64.8 Particle Physics

MiniBooNE [48, 47] 130,065 2 50 71.9 Particle Physics
Letter Recognition [49, 47] 20,000 26 16 11.7 Recognition
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C Model & Hyperparameter Selection

C.1 Model Selection Details

For each of our tasks, we select a DNN architecture by iterating over several possible architectures and
selecting the one with the highest testing performance for rule extraction. For the sake of simplicity,
this search process consists of first fixing the number of hidden layers in the network for each task,
and then performing a grid-search over different hyperparameters of MLPs with that many hidden
layers. In our search, we allow intermediate activations sizes to be chosen from {8, 16, 32, 64, 128}
and activation functions to be chosen from {tanh, relu, elu}. Furthermore, to constrain the search
space further, we force the number of activations in hidden layer (i+ i) to be less than the number of
activations in layer i. This goes in line with several traditional encoding architectures [26].

Unless specified otherwise, we train each model to minimise its weighted classification cross-entropy
loss for epochs ∈ {50, 100, 150, 200} using stochastic gradient descent [60] (batch size in {16, 32})
and use an Adam optimiser [61] with its default parameters (β1 = 0.9, β2 = 0.999, ε = 10−7, and
lr = 10−3) for computing weight updates. To speed this process up, we made use of GPU clusters
offered by Google’s colab services.

C.2 Rule Extraction Fine Tuning

For all of the rule extraction methods we experiment with in our evaluation, we attempt several values
for the minimum number of samples per split (i.e., µ) and report only on the rule set that performed
the best on the testing dataset. Because this search is very task-specific (due to different dataset
sizes and/or architectures), in all of our tasks we define three evaluation parameters for each rule
extraction algorithm, namely µmin, µmax, and δµ, and evaluate the performance of rules extracted via
that method using values of µ ∈ {µmin, (µmin + δµ), (µmin + 2δµ), · · · , µmax}. The values defining
the search space for each algorithm in our different tasks are described in the following section.

C.3 Task-specific Configurations

In this section we describe the configuration that our grid search produces for each of the tasks we
discuss in Section 4. We also include a description of the search space used for µ when evaluating
different rule extraction methods.

C.3.1 XOR

Given the simplicity of the XOR task, we constrain the architecture search space to be only over
MLPs using 3 hidden layers. This results in the best performing model having hidden layers with
sizes {64, 32, 16} and tanh activation between them. This model is then trained for 150 epochs
using a batch size of 16.

When fine-tuning the different rule extractors, we use µmin = 2, µmax = 15, and δµ = 1 for
ECLAIRE, C5.0, and PedC5.0 as they all terminate relatively quickly and obtain good performance
without much pruning. REM-D and DeepRED*, however, fail to terminate before their allotted times
when using values of µ below 25. Because of this, we evaluate them using values of µ in the range
defined by µmin = 25, µmax = 35, and δµ = 1.

C.3.2 METABRIC

For both METABRIC tasks described in Section 4.2, we use the exact same architecture and training
process used by Shams et al. in [23], which was determined through a similar grid search process.
This architecture consists of an MLP with hidden layers with sizes {128, 16} and tanh activations in
between them. For both tasks we train the model for 150 epochs using a batch size of 16.

In our rule extraction fine-tuning, we use µmin = 2, µmax = 15, and δµ = 1 for C5.0, PedC5.0, and
ECLAIRE. As suggested by [23], and due to their longer run times, we use µmin = 5, µmax = 15, and
δµ = 5 for REM-D and DeepRED*.
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C.3.3 MAGIC

In the MAGIC dataset results reported in Section 4.3, we search over architectures with 3 hidden
layers and our grid-search results in the best model having layers of size {64, 32, 16} with ReLU
activations in between them. The best training configuration found is then trained for 200 epochs
with a batch size of 32.

In our rule extraction fine-tuning, for ECLAIRE we use µmin = 50, µmax = 200, and δµ = 25 while
for both REM-D and DeepRED* we use µmin = 500, µmax = 1000, and δµ = 50. Note that we
use large values of µ for REM-D and DeepRED* as we found it extremely hard to get reasonable
extraction times when using less than 500 samples for µ. Finally, for C5.0 and PedC5.0 we search
over all µ values defined by µmin = 5, µmax = 50, and δµ = 5.

C.3.4 MiniBooNE

We found the MiniBooNE task to require the most capacity to obtain good results compared to
others experiments in this paper. We force our model architecture to use 5 hidden layers and search
for models trained with epochs ∈ {20, 30, 40} given the large training size. This gives us a best
performing architecture that uses hidden units {128, 64, 32, 16, 8} with an ELU activation in between
them which is trained for 30 epochs with a batch size of 16.

In our rule extraction fine-tuning, this task proved to be more complicated than the rest given its
training size. For ECLAIRE we use µmin = 0.0005N , µmax = 0.0015N , and δµ = 0.0001N (where
N is the number of training samples) as values below 0.0005N result extraction times longer than 6
hours. For both REM-D and DeepRED*, we increase the minimum value of µ significantly to get
runs that terminate in their allotted times and use µmin = 0.02N , µmax = 0.1N , and δµ = 0.005N .
Finally, given their fast extraction times, for C5.0 and PedC5.0 we search over all µ values defined by
µmin = 5, µmax = 50, and δµ = 5.

C.3.5 Letter Recognition

For the results we report on the Letter Recognition dataset in Section 4.4, we search over architectures
with 2 hidden layers and obtain a best performing model that has layers of size {128, 64} with ELU
activations in between them. The best training configuration is trained for 150 epochs with a batch
size of 32.

In our rule extraction fine-tuning, we use µmin = 5, µmax = 15, and δµ = 1 for ECLAIRE, C5.0,
and PedC5.0. As in the physics datasets, both DeepRED* and REM-D struggle to terminate in a
reasonable amount of time unless µ is significantly high. This is exacerbated by the large number of
classes in this task. Because of this, we use µmin = 0.25N , µmax = 0.5N , and δµ = 0.05N during
their fine-tuning process.

CART as Intermediate Rule Extractor in Letters While in all of our binary tasks we are able
to construct high-performing rule sets with C5.0, we fail to observe this same trend in the Letters
dataset, our task of choice for multi-class evaluation. More specifically, Table 1 shows that end-to-end
C5.0 rule sets are unable to achieve a high performance compared to that previously reported for
other induction algorithms [62]. Therefore, in this section we explore the use of CART [63] trees
for intermediate rule induction and show these results in Table 3. In these experiments, we compare
the performance of rule sets induced from end-to-end CART trees, as well as rule sets induced from
CART trees learnt from data that was labelled using the DNN’s predictions (which we refer to as
PedCART), against that of rule sets extracted with ECLAIRE when CART is used as its intermediate
rule extractor. Furthermore, for the sake of obtaining a fair comparison between our baselines that is
unbiased with respect to the choice of rule extraction algorithm, we also compare ECLAIRE against
versions of both REM-D and DeepRED that use CART as an intermediate rule extractor. For clarity,
we refer to these versions of our baselines as ECLAIRECART, REM-DCART, and DeepREDCART,
respectively.

In all of these experiments, we control the growth of CART-generated trees using Cost Complexity
Pruning (CCP) [64] and by varying the number of minimum samples per split µ as in our previous
tasks. For CART, PedCART, and ECLAIRECART we search over the spectrum defined by µmin =
0.0001N , µmax = 0.0051N , and δµ = 0.0005N . As it was the case when using C5.0 as an
intermediate rule extractor, for both DeepREDCART and REM-DCART we require significantly higher

17



values of µ to terminate in the allotted time. Because of this, we limit our search over µ to be over the
spectrum defined by µmin = 0.1N , µmax = 0.3N , and δµ = 0.05N . This results in overpruned rule
sets in DeepREDCART which, although small in size, take orders of magnitude more time to extract
than those generated by ECLAIRE.

Table 3: Results of extracting rules from the model used in Section 4.4 in the Letters dataset when
using CART as an intermediate rule extractor.

Method Accuracy (%) Fidelity (%) Runtime (s) Memory (MB) Rule set size Avg Rule Length
CART(µ = 0.0001N ) 86 ± 0.4 N/A 0.89 ± 0.05 3,216.94 ± 55.05 909.2 ± 18.54 11.65 ± 0.04

PedCART(µ = 0.0001N) 86.3 ± 0.5 85.2 ± 0.5 1.7 ± 0.1 4,122.42 ± 226.65 1,093.6 ± 19.23 11.89 ± 0.1
DeepREDCART(µ = 0.2N) 8.9 ± 1 9 ± 1 3,901.35 ± 155.47 601.02 ± 262.75 66 ± 6 3.08 ± 0.21
REM-DCART(µ = 0.1N) 11.1 ± 2.2 11.1 ± 2.3 1,851.07 ± 1859.9 25,992.66 ± 7,527.34 8,835.6 ± 2,399.13 11.08 ± 0.34

ECLAIRECART(µ = 0.0001N) 85.9 ± 0.5 85.3 ± 0.7 100.18 ± 8.17 13,629.1 ± 393.97 3,706 ± 127.47 12.34 ± 0.18
ECLAIRE∗CART(µ = 0.0001N) 89.8 ± 0.4 88.8 ± 0.4 107.92 ± 16.46 16,874.72 ± 282 4,799.6 ± 120.85 12.16 ± 0.14

Our results show a significant increase in accuracy when using end-to-end CART trees for rule
induction over C5.0 trees (86% ± 0.4% vs 63.1% ± 2.5%). However, we note that this increase
comes with a significant rise in the number of rules extracted from CART trees compared to rule
sets extracted from C5.0 trees. Regardless, our results also show that the same relative ranking
we observe across our baselines in Table 1 holds when using CART as intermediate rule extractor:
both ECLAIRECART and ECLAIRE∗CART are able to extract rule sets with higher fidelity than those
extracted by PedCART, while ECLAIRE∗CART extracts rule sets that achieve a higher predictive
accuracy than those extracted by both end-to-end CART trees and PedCART. Similarly, we observe
that DeepREDCART and REM-DCART are unable to extract rule sets that perform better than random.

D DeepRED’s and REM-D’s Substitution Step

Figure 5: Visual representation of REM-D’s and DeepRED’s substitution step showing an explosive
growth. In this example, REM-D/DeepRED is substituting all terms inside an intermediate rule set
Rhi+1 7→l which contains a single rule (t1 ∧ t2)⇒ l whose premise has two different terms t1 and t2.
The algorithm produces temporary rule sets Ihi 7→tk to map activations in layer hi to the binary truth
value of term tk. It then replaces each term tk in Rhi+1 7→l with the set of rules in Ihi 7→tk that have
TRUE as a conclusion. Similarly to Figure 2, we let p(k)j be the premise of the j-th rule in Ihi 7→tk
whose consequence is TRUE. For this example, we assume that the number of premises with TRUE as
a conclusion in Ihi 7→t1 and Ihi 7→t2 is N1 and N2, respectively. This results in rule set Rhi 7→l having
N1N2 rules after substitution.
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E Growth Coping Mechanisms

Although ECLAIRE can scale to large datasets and models, its cubic growth factor implies that it
can suffer from slow extraction times. In this section, we include results of experiments in which
we explore whether it is possible to alleviate these scaling issues without significantly sacrificing
performance. Specifically, we explore four different mechanisms:

Intermediate Rule Pruning

The simplest mechanism for controlling both runtime and comprehensibility is to constrain the size
of intermediate rule sets by increasing the value of µ. As seen in Figure 6, varying this parameter can
result in a drastic drop in the number of output rules. However, this may come at the cost of fidelity.
This behaviour underlines one of the biggest limitations of ECLAIRE: its sensitivity to µ makes
ECLAIRE hard to use in large tasks without the need for extensive fine-tuning. Nevertheless, in
most tasks we observe that values of µ in the [10−5N, 10−4N ] range tend to give good performance.
Moreover, these experiments also suggest that if one can afford a small drop in performance in favour
of a more comprehensible rule set, then increasing µ to be in the range [2× 10−4N, 5× 10−4N ] can
lead to a very comprehensible yet still high-performing rule set.

Figure 6: Effects of varying the minimum number of samples required for a split (i.e., µ) in ECLAIRE
for MiniBooNE (Section 4.3). These plots, as those in all the figures that follow, are produced by
averaging results over 5 folds and show the standard error in shading.

Hidden Representation Subsampling

When dealing with networks with multiple layers in them, one can alleviate ECLAIRE’s scalability
by extracting intermediate rule sets Rhi 7→ŷ only for a subset of hidden layers i ∈ S ⊂ {1, 2, . . . , d}.
This forces ECLAIRE to use fewer intermediate representations to build its rule set and results in the
algorithm effectively operating on a DNN with |S| < d hidden layers in it. We explore this possibility
in our MiniBooNE network by sampling intermediate layers with different frequencies. Our results,
shown in Figure 7, suggest that one can sample hidden layers at very high frequencies (i.e., every 3
hidden layers) at a very small cost to fidelity; all while halving both the runtime and rule set size.
One may therefore benefit from subsampling hidden layers if the input network is deep enough to
support this mechanism.

Training Set Subsampling

If the scalability issue comes from the number of training samples, one can use only a fraction of
the available training data for ECLAIRE’s rule construction. Our experiments in MiniBooNE show
that ECLAIRE is very data efficient, maintaining its performance in low-data regimes. These results,
shown in Figure 8, indicate that one can subsample up to 50% of the training data while incurring a
very small drop in fidelity and reducing the extraction time in half. This behaviour is in line with
empirical evidence by Zilke et al. suggesting that other decompositional methods can maintain their
performance while using a fraction of the DNN’s training set [25].
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Figure 7: Effects of sampling hidden layers with a given frequency when constructing ECLAIRE’s
intermediate rule sets in MiniBooNE (Section 4.3).

Figure 8: Effects of subsampling the training set when extracting rules with ECLAIRE in MiniBooNE
(Section 4.3).

Intermediate Rule Ranking

It has been previously observed that one can drop significant portions of a rule set while incurring
only in small performance costs [40, 65]. Inspired by this observation, we explore whether ECLAIRE
can benefit from dropping the lowest p% of rules in intermediate rule sets Rhi 7→ŷ as ranked by their
confidence level3. Our results, shown in Figure 9, suggest that ECLAIRE is robust to substantial
pruning of its intermediate rules without loosing much of its performance. For example, one can drop
about 25% of all intermediate rules while experiencing a very small cost in fidelity; all while using
less resources and generating fewer rules. Both of these results suggest that dropping a small fraction
of rules can help scaling ECLAIRE to large tasks.

Figure 9: Effects of dropping rules, ranked by their confidences levels, in intermediate rule sets
generated by ECLAIRE in MiniBooNE (Section 4.3).

3A rule’s confidence is defined as the ratio between (a) the number of training samples that satisfy the rule’s
premise and have the same class as its conclusion and (b) the overall number of training samples that satisfy the
rule’s premise.
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