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Deep learning models, which require abundant labeled data for training, are ex-
pensive and time-consuming to implement, particularly in medical imaging. Active
learning (AL) aims to maximize model performance with few labeled samples by
gradually expanding and labeling a new training set. In this work, we intend to
learn a "good" feature representation that is both sufficient and minimal, facilitating
effective AL for medical image classification. This work proposes an efficient AL
framework based on off-the-shelf self-supervised learning models, complemented
by a label-irrelevant patch augmentation scheme. This scheme is designed to re-
duce redundancy in the learned features and mitigate overfitting in the progress
of AL. Our framework offers efficiency to AL in terms of parameters, samples, and
computational costs. The benefits of this approach are extensively validated across
various medical image classification tasks employing different AL strategies. 1.

1. Introduction

Figure 1: Information diagram for in-
sufficient, sufficient, and minimally
sufficient ϕ(x). Ideally, AL can lead
sufficient ϕ(x) to be gradually closer
to minimally sufficient ϕ(x). How-
ever, the lack of labeled samples can
also result in an insufficient ϕ(x).

Deep learning models typically require training with abun-
dant labeled data. However, annotating medical images re-
quires prior domain expertise and is both costly and time-
consuming. A potential mitigation for this challenge is
through active learning (AL). AL aims to optimize model
performance using the smallest number of labeled samples
possible by incrementally expanding and labeling the train-
ing set. By prioritizing labeling informative samples rather
than random selections, AL significantly enhances sample
efficiency [1].
Recent advances in AL largely attribute to the development
of modern deep learning models (See reference therein [2–
8]). Given that large-scale deep learning models are even
more sample-demanding, it is urgent to develop effective and
efficient active learning strategies. These strategies are essential to minimize the opportunity cost
of labeling redundant samples, a significant concern in medical image classification where human
annotations are notably scarce and costly.
In this work, we argue that the key to successful AL is to learn a "good" feature representation
ϕ : x → ϕ(x). Ideally, this representation should ensure that label y is linearly separable in the
representation space. Such representation is preferable, since the process of AL for linearly separable
data is well-understood [1, 9]. As depicted in Fig. 1, establishing such a good representation requires
the following conditions: (a) the representation we learned should be sufficient to predict y. This
means ϕ(x) does not lose essential features in x that are relevant to y. Mathematically speaking, our
objective is to ensure P (y|x) in the classification task aligns with P (y|ϕ(x)), therefore constraining the
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Figure 2: To evaluate the quality of representations ϕ(x) for off-the-shelf SSL models in downstream
tasks, we employ k-nearest neighbors (KNN) and logistic regression (LR) to model P (y|ϕ(x)) based
on the off-the-shelf SSL models including ViT-B with checkpoints released by DINO [14], MoCo-
V3 [15], and MAE [16], and ResNet50 with checkpoint released by SimCLR [17]. The accuracy
of these classifiers serves as our metric for assessing the linear separability of the representations
produced by these off-the-shelf SSL models.
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Figure 3: We compared the representation quality of adapting or not adapting the off-the-shelf
ViT-B (MAE) to the unlabeled downstream tasks of medical images by reconstruction-based pre-
text training [16], where ViT-B (MAE)-Adapted/ViT-B (MAE)-Origin indicates the results of
adapted/unadapted off-the-shelf ViTs gaining from the checkpoints released by MAE [16], respec-
tively. Results show that ViT-B (MAE)-Origin can most times gain better representations than
ViT-B (MAE)-Adapted.

classifier from a function on x to a function on ϕ(x) introduces no additional bias. However, merely
fulfilling this condition does not guarantee tangible benefits. For instance, a naive choice of sufficient
ϕ such as identity mapping fails in feature reduction. Therefore another essential requirement is (b)
the representation should be minimal, in the sense that it preserves only the crucial information
necessary to predict y. By constraining the classifier to take in ϕ(x) instead of x, assuming ϕ(x)
excludes redundant features of x, the model becomes more sample-efficient andwill generalize better.
The less redundant information ϕ(x) contains, given its sufficiency, the more sample-efficient it is to
model the relationship between ϕ(x) to y [10, 11]. This concept will be especially beneficial in the
few-shot regime, aligned with the purpose of AL. (c) In line with AL’s principles, this representation
initially can only be approximated by off-the-shelf models that have been pretrained on large-scale
tasks with self-supervised learning (SSL) strategies, and gradually be corrected/fine-tuned with the
progress of labeling new training samples from downstream tasks. Integrating conditions (a)(b)
and (c), as proven in the theoretical work [12, 13] for SSL, an approximately minimally sufficient
representation established from the large-scale SSL tasks ensures our targets to be linearly separable
in the representation space for downstream tasks.
We investigate practical strategies to fulfill the above conditions and together propose an effective,
sample- and computationally efficient AL framework.
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First, as argued above, we employ off-the-shelf SSL models to gain approximately minimally suffi-
cient representations for medical images. Specifically, we choose off-the-shelf ViTs (checkpoints as
DINO [14], MoCo-V3 [15], and MAE [16]) as the backbone initially for AL.
Compared to other architectures for off-the-shelf SSL models like ResNets [18] (checkpoint as
SimCLR [17]), off-the-shelf ViTs explicitly contain detailed information like object shapes and tex-
tures [14] which are essential for analyzing medical images; we also show in Fig. 2 that they have
great potential to achieve linearly separable representations for medical images across different dis-
eases and modalities. Besides, we surprisingly find that adapting off-the-shelf ViTs to the unlabeled
downstream medical image tasks by pretext training can reduce but cannot improve the representa-
tion quality (Fig. 3). Therefore, utilizing off-the-shelf ViTs directly to AL on the downstream tasks of
medical images is both an effective and efficient choice.
With the increasing labeling information in AL, we need to accordingly design effective algorithms
to improve the feature representation (to gradually be closer to being minimally sufficient). This is
challenging since labeled samples are very limited, and thus it is unrealistic to fine-tune the whole
representation, with risks of distorting the originally good features and overfitting the little sam-
ples [19–21]. We resolve this problem by proposing label-irrelevant patch augmentations and by
learning only a subsequent layer as an adapter on top of the fixed pre-trained representation. By
investigating a diversity of label-irrelevant patches, we largely enrich the training set and amelio-
rate the overfitting issue in the early stages of AL. Unlike traditional data augmentations [22–24]
that tend to modify the semantics in medical domains [25, 26] and cause additional errors due to
misspecifications, our method utilizes the little labeling information to guarantee no semantics is
changed in the augmented data, leading to more reliable and robust feature learning.
Based on our proposed framework above, our contributions can be concluded as follows:

• We design a parameter-, sample- and computationally efficient AL framework based on
self-supervised pretrained ViTs, to initially gain nearly minimally sufficient representations.
Unlike existing deep AL baselines [6, 27] that train deepmodels or even introduce additional
discriminators [7, 28] in every data-selection round, our proposal only trains a light adapter,
yielding simplified procedure with less computation and memory costs.

• As AL incorporates more labeled samples, we design a label-irrelevant patch augmentation
scheme that preserves semantic information better than prior DAs. Together with our
proposed framework, it gradually reduces redundant features and alleviates overfitting. Our
DA scheme generally applies to different datasets and architectures and can potentially be
extended to other learning tasks besides active learning.

• We extensively verified the improved performance on medical image classification tasks
across various ViT architectures and AL strategies. Compared to existing widely-used AL
paradigms, our proposed parameter-efficient AL framework can boost the overall perfor-
mance of Few-shot AL by 5%− 7%. Based on this framework, our proposed label-irrelevant
patch augmentation methods can generally surpass existing DA methods by 1%− 4%.

2. Related Work
Self-supervised Learning (SSL). SSL is used to derive feature representations from unlabeled
samples [17, 29–31]. ExistingSSL tasks include predicting rotation angles [32], jigsaw puzzles [33],
contrastive learning [34–36], and reconstruction-based training [16, 29, 30, 37, 38]. In our study, we
broadly explored SSL and found the off-the-shelf ViTs to be superior (see Fig. 2), guiding our choice.
Data Augmentation (DA). DA is used to improve sample efficiency and mitigate overfitting [39,
40]. Traditional methods used simple transformations or augmentations altering the labels [41–
43]. Recent methods learn to combine existing strategies or add consistency regularization [23,
44]. Most existing works concentrate on developing strategies to effectively combine these various
transformations. AutoAug [23] uses a search algorithm to discover the optimal augmentation policies
for the training dataset. RandAug [24] provides a simple and efficient strategy by randomly selecting
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augmentation operations and magnitudes. However, none of them is designed to be label-irrelevant.
Their potential alteration of the original semantic information has raised concerns [25, 45].
Active Learning (AL). The AL labeling strategies can be categorized into uncertainty-based and
diversity-based methods. Uncertainty-based methods utilized the entropy [46], confidence [47],
margin [48], and standard deviation [49] to measure informativeness. Diversity-based methods seek
the most representative samples from the unlabeled dataset, such as Coreset [5] selected unlabeled
samples that are furthest to their closest labeled samples, andDeterminantal Point Process (DPP) [50]
quantifies diversity based on a pairwise (dis)similarity matrix.
Prior works have used SSL for AL representation learning, including SSLAL [51], MoBYv2AL [52],
and PT4AL [53]. These methods require SSL in each AL round, increasing time costs. We show that
an off-the-shelf ViT already offers a sufficient representation, reducing the need for repeated SSL
(Fig. 3). In integrating AL with DA, DAST-AL [54] and others [55–57] use various augmentation
techniques. Yet, these often neglect potential semantic loss and aren’t tailored for finetuning off-the-
shelf ViTs that can outperform CNNs [58, 59].

3. Methodology

3.1. Setup

For an off-the-shelf ViT as fenc (off-the-shelf ViT pretrained as MAE also equips a decoder as fdec),
we denote the patchified input as x ∈ RU×(P 2·C), where P and U is the width and number of patches.
For AL, in k-th round, we denote the labeled/unlabeled set asDlab

k /Dunl
k , respectively. The acquisition

function α(x,Mk) will output a value measuring the informativeness for x in Dlab
k according to the

trained predictive modelMk. Based on the outputted values, it can select a batch of b samples in
Dunl

k asBk, query their labels from human annotators and then move them fromDunl
k toDlab

k with the
queried labels. Such a process is illustrated as the blue lines in Fig. 4. As we introduced in section 2,
existing AL strategies mainly focus on how to design acquisition function α(x,Mk) to select the
most informative samples. For example, the least confidence such as maxŷ pMk

(ŷ|x) can be utilized
to be the acquisition function, where ŷ is the prediction with the highest probability.

3.2. Parameter-efficient AL on Off-the-shelf ViT

Encoder 
𝒇enc Adapter 𝒈

Frozen Parameters
Activated Parameters

Human Annotators Unlabeled Set 𝑫𝒌
unl

Labeled Set 𝑫𝒌
lab

New Labeled Batch	𝑩𝒌 𝓛𝒔𝒖𝒑

Figure 4: Parameter-efficient AL on off-the-
shelf ViTs, where Lsup denotes the loss func-
tion for supervised training (e.g. cross-
entropy)

As illustrated in Fig. 4, in every AL round, we train an
adapter g on top of a pretrained and frozen ViT fenc, where
g is designed to be a combination of a lightweightMLP genc
and a linear classification head gcls. Within the k-th round,
only g is optimized via Dlab

k while fenc is kept freezing,
much more efficient than existing AL works that optimize
the entire network [51–53] for each AL round. The AL
acquisition function α(x,Mk) is then conducted based on
the trained predictive model asMk(x) := g(fenc(x)). Here
genc is designed to gradually make the feature representa-
tions ϕ(x) := genc(fenc(x)) near minimally sufficient, and
gcls aims to predict the labels based on ϕ(x).

3.3. Exploring the Diversity of Label-Irrelevant Patches

Based on our framework (Fig. 4), we further design a diverse set of data augmentations A ∈ A
that are label-irrelevant. When A is label irrelevant, it means y|x d

= y|ϕ(x) d
= y|ϕ(x̂) (equivalent in

distribution), where x̂ := A(x) and A is randomly sampled from A. Therefore there is no bias when
assigning the same label y associated with x to x̂ and this ensures the representation ϕ to be sufficient.
As we investigate a more diverse set of A, the dependence between ϕ(x) and ϕ(x̂) is reduced, and
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the more sample-efficient the learning procedure will be. To see why this helps, one can think about
the most ideal case where ϕ(x) ⊥ ϕ(x̂)|y, meaning their dependence is only through y, and now
the representation ϕ is minimal and it only requires to learn y through ϕ(x) with order |Y | samples,
where |Y | is the number of classes [12].
The diverse set of label-irrelevant data augmentationsA enforces ϕ(x) := genc(fenc(x)) to be invariant
to the redundant information in x, producing features closer to the minimal sufficient representation.
Such representation nicely integrates with the AL procedure and the relationship between x and y
will be learned rapidly and concretely. However, existing heuristic DAmethods such as RandAug [24]
do not satisfy label-irrelevance, causing the learned feature representation ϕ(x) not near minimally
sufficient, which cannot learn the relation between x and y effectively during AL. We design a diverse
set of label-irrelevant DA strategies by exploring the diversity of label-irrelevant patches. Given the
patch-wise feature extraction approach taken by ViTs, enhancing the diversity of label-irrelevant
patches allows a better approximation of minimally sufficient ϕ(x). Our proposed DA consists of
two steps: (1) Localize the label-irrelevant patches, and (2) Augment the label-irrelevant patches.
The details of (1) and (2)will be introduced as follows.

3.3.1. Label-Irrelevant Patches Localization

We localize the label-irrelevant patches by computing a patch-wise correlation vector Cor ∈ RU

between x and y, where its i-th coordinate Cori indicates the correlation between the i-th patch and
y. Existing model explanation techniques such as DeepLIFT [60], Saliency [61], CosineAttention-
Map [62], and LastAttentionMap [63], can generate a saliency map that illuminates the semantic
regions of a raw image x regarding ground truth label y. Hence, we compute Cor by segmenting the
saliency map into patches, aggregating values at the patch level, and subsequently normalizing the
result. To establish a criterion for identifying irrelevant patches of x, we operationally select them
by masking the lowest r% (e.g. 75%) patches by MCor as x̄ = MCor ⊙ x, whereMCor is a patch-wise
0-1mask generated to mask the lowest r patches in x in regard to Cor. More discussions for these
localization methods are deferred to section 4.2 and appendix A.3.

3.3.2. Label-Irrelevant Patches Augmentation
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(b) SubstitutivePatchAug
Figure 5: We propose two different augmentation methods to explore the diversity of label-irrelevant
patches as (a) SelfPatchAug and (b) SubstitutivePatchAug. ① ④ ⑤ ⑥ indicate same operations in
both (a) and (b), where ① is the forward process, and ④ ⑤ ⑥ represent the training of adapter g.
② ③ are the core operations for (a) and (b), respectively.

For label-irrelevant DA as x̂ := A(x), we primarily emphasize two effective methods (SelfPatchAug
and SubstitutivePatchAug) in this section to augment the label-irrelevant patches localized by
MCor. Both of these two DA methods satisfy label-irrelevance since they only explore the diversity
of label-irrelevant patches while keeping label-relevant patches unchanged. Moreover, we present
Instance-adaptive Label Smoothing (IaLS) alongside these two label-irrelevant DA methods to
achieve better performance by alleviating the negative impact caused by patch augmentation.
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SelfPatchAug. For SefPatchAug (Fig. 5a), we augment the localized label-irrelevant patches by
reconstructing themvia an encoder-decoder structure. As shown in Fig. 5a①,② and③, the patchified
augmented sample x̂ can be produced as x̂ = A(x) = x̄ + fdec(fenc((1 −MCor) ⊙ x))). In each AL
round, training the adapter g on the augmented features fenc(x̂) enables the representations ϕ(x) :=
genc(fenc(x)) to be more minimally sufficient, leading to a classifier gcls with better generalizability.
However, the limitation of SelfPatchAug is that it can only be applied to the off-the-shelf ViTs
with checkpoints released by MAE due to the requirement of pretrained decoder fdec. Differently,
SubstitutivePatchAug is compatible with off-the-shelf ViTs pretrainedwith various SSL strategies (e.g.
DINO, MoCo-V3), which will be introduced as follows.
SubstitutivePatchAug. SubstitutivePatchAug is inspired by existing DA methods for text data [64,
65]. In the field of text classification, identifying suitable word substitutions and replacing the
original words with substitutions is a kind of prevalent DA strategy [66–68]. The structure of
Transformers is originally designed for NLP tasks [69], and ViTs treat an image as a sequence of
non-overlapping patches, just like how Transformers handle tokens in a sentence. Therefore, the
intuition of SubstitutivePatchAug is that we take the scope of ViTs and consider patches as words.
Thus this method augments the label-irrelevant patches by substituting them with semantically
related patches from t similar images from a query set Q selected from D = Dunl

k ∪Dlab
k .

As shown in Fig. 5b ②, we compute a pre-defined similarity matrix Ψ ∈ RN×N among D, where
Ψ(i, j) indicates the similarity between fenc(xi) and fenc(xj), and N is the number of samples in D.
With x as a key, we search the top-t samples as a query set Q = {(xi, yi)}ti=1 according to Ψ. In
Fig. 5b ③, by leveraging query setQ and key x, we construct a feature-level/raw-level patch similarity
matrix Φrep/Φraw ∈ RU×(t×U) based on fenc(x)/x, referring to the substitutive patches defined from
the features space and raw-data space, respectively. Subsequently, we use a trade-off factor λ ∈ [0, 1]
for linear combination asΦ = λΦraw+(1−λ)Φrep. Such linear combination aims to select substitutive
patches that can balance between the similarities in feature space and raw-data space. For every
patch in x, we can select the most similar patch from Q by Φ, hence produce the augmented image
x̂ = A(x) by filling in the masked patches of x̄with the selected substitutive patches.
Instance-adaptive Label Smoothing (IaLS) for AugmentedData Inspired by existing works [70, 71]
that utilize label smoothing [72] to alleviate the degradation of semantic information caused by DA,
we propose an instance-adaptive label smoothing (IaLS) strategy for the augmented image x̂. The
primary motivation behind IaLS is that, since label-irrelevant patches are selected by Cor with a
hard threshold ratio of r%, reconstructing (SelfPatchAug) or replacing (SubstitutivePatchAug) these
patches risks of losing some label-relevant information. In other words, ϕ(x) ⊥ ϕ(x̂)|y is merely
an idealized condition, and cannot be guaranteed with absolute certainty in practical applications,
particularly when (1−MCor)TCor is large.
To address this issue, we introduce an instance-adaptive factor βx to reduce the confidence of the
model’s prediction for the augmented image x̂. Specifically, the smoothed label vector of the aug-
mented sample x̂ is computed as ŷ = βx· 1

|Y |+(1−βx)·y. For each image xwith its correspondingMCor
and Cor, we smooth its ground truth vector by an instance-adaptive factor βx = (1−MCor)TCor.

4. Experiments

4.1. Experimental Setups
Datasets. We evaluate ourmethods onMedMNIST [73], an ensembled evaluation benchmark encom-
passing various classification tasks for medical imaging. MedMNIST is a widely adopted collection
of standardized biomedical image datasets designed for image classification tasks. We conduct our
methods on DermaMNIST, BloodMNIST, PneumoniaMNIST, OrganAMNIST, OrganCMNIST, and
OrganSMNIST, respectively.
AL Settings. We conduct our experiments with various AL strategies to demonstrate that our method
can achieve promising performance consistently across different AL strategies. Our work investigates
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Figure 6: The AUBC results of comparing existing AL model structures (ResNet) and our efficient
model structures (ViT-B + Adapter) via AL strategies as Least Confidence andMargin. Mean here
denotes the averaged values of results among 6 different datasets.

DermaMNIST BloodMNIST PneumoniaMNIST OrganAMNIST OrganCMNIST OrganSMNIST Mean Avg Rank
Least Confidence

ViT-B (MAE) 0.6513 0.5790 0.8350 0.6740 0.6420 0.5140 0.6492 4.17
+ RandAug 0.6400 0.5800 0.8410 0.6840 0.6760 0.5290 0.6583 3.00
+ AutoAug 0.6410 0.6090 0.8160 0.7050 0.6410 0.5120 0.6540 3.83

+ NormalAug 0.6330 0.6220 0.8400 0.5440 0.5410 0.5110 0.6152 4.83
+ SubstitutivePatchAug 0.6700 0.6340 0.8280 0.6850 0.6710 0.5360 0.6707 2.33

+ SelfPatchAug 0.6920 0.6270 0.8330 0.6840 0.6390 0.5170 0.6653 2.67
ViT-B (MoCo-V3) 0.6620 0.6540 0.8570 0.6650 0.6160 0.5380 0.6653 3.83

+ RandAug 0.6420 0.7020 0.8610 0.6790 0.6380 0.5430 0.6775 2.67
+ AutoAug 0.6690 0.6960 0.8490 0.6870 0.6140 0.5510 0.6777 2.83

+ NormalAug 0.6720 0.6750 0.8220 0.5560 0.5740 0.5460 0.6408 3.50
+ SubstitutivePatchAug 0.6640 0.6890 0.8270 0.6930 0.6480 0.5830 0.6840 2.17

ViT-B (DINO) 0.6510 0.6900 0.8420 0.6760 0.6220 0.5590 0.6733 3.83
+ RandAug 0.6590 0.6920 0.8670 0.6980 0.6490 0.5340 0.6832 2.67
+ AutoAug 0.6440 0.6920 0.8700 0.6900 0.6490 0.5510 0.6827 3.17

+ NormalAug 0.6740 0.6980 0.8250 0.5670 0.5540 0.5260 0.6407 3.83
+ SubstitutivePatchAug 0.6760 0.6940 0.8600 0.7020 0.6750 0.5770 0.6973 1.50

Margin
ViT-B (MAE) 0.6517 0.6020 0.8350 0.6980 0.6670 0.5400 0.6656 4.50
+ RandAug 0.6737 0.6240 0.8410 0.7200 0.6980 0.5500 0.6845 2.50
+ AutoAug 0.6463 0.6170 0.8160 0.7190 0.6690 0.5400 0.6679 4.83

+ NormalAug 0.6427 0.6230 0.8400 0.6427 0.5940 0.5270 0.6449 5.00
+ SubstitutivePatchAug 0.6640 0.6410 0.8280 0.7240 0.7270 0.5850 0.6948 2.17

+ SelfPatchAug 0.6880 0.6470 0.8330 0.7220 0.7000 0.5650 0.6925 2.00
ViT-B (MoCo-V3) 0.6700 0.6800 0.8570 0.6920 0.6320 0.5350 0.6777 3.50

+ RandAug 0.6610 0.7100 0.8560 0.7280 0.6670 0.5700 0.6987 2.50
+ AutoAug 0.6570 0.7150 0.8490 0.7160 0.6610 0.5590 0.6928 3.17

+ NormalAug 0.6660 0.6970 0.8320 0.5500 0.5910 0.5500 0.6477 4.17
+ SubstitutivePatchAug 0.6940 0.7230 0.8270 0.7500 0.6880 0.5880 0.7117 1.67

ViT-B (DINO) 0.6740 0.6690 0.8420 0.7090 0.6290 0.5250 0.6747 4.33
+ RandAug 0.6610 0.7110 0.8470 0.7220 0.6670 0.5450 0.6922 3.33
+ AutoAug 0.6760 0.7070 0.8690 0.7280 0.6680 0.5640 0.7020 2.33

+ NormalAug 0.6770 0.7090 0.8250 0.5740 0.5780 0.5560 0.6532 3.83
+ SubstitutivePatchAug 0.6810 0.7200 0.8560 0.7610 0.7040 0.6050 0.7212 1.17
Table 1: Results of the comparison between our proposed label-irrelevant patch augmentation
methods and other DA methods across 6 datasets for medical image classification by utilizing
Least Confidence andMargin as the AL strategy. We conduct those DA methods on our efficient AL
framework via different off-the-shelf ViTs. Note that Mean represents the averaged AUBC across 6
datasets, while Avg Rank is computed by ranking the AUBC performance on each dataset and then
taking the average.

two AL paradigms: Few-shot AL (N lab
0 = 10,K = 50, b = 5) and Many-shot AL (N lab

0 = 1000,K =
5, b = 500). Notably, Few-shot AL poses a sterner challenge due to its greater potential of overfitting,
induced by the paucity of labeled data especially at the early stage of AL. Besides, Few-shot AL is
more practical in performing medical image classification due to the high labeling cost. Due to the
page limitation, all the results posted in tables and figures in section 4.2 are produced under the
paradigm of Few-shot AL, and the results of Many-shot AL will be presented in the Appendix.
Evaluation Metrics. To evaluate the performance of AL, we report area under the budget
curve (AUBC) [74] in our experimental results, where the AUBC value is calculated by the trapezoid
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Figure 7: The AUBC curve for DermaMNIST and OrganSMNIST based on the AL strategies of Least
Confidence and Margin. The lines marked with ’-o-’ denote the widely used baselines in AL, and
the lines marked with’-x-’ represent existing DA methods while the lines with ’-*-’ indicate various
label-irrelevant patch augmentation methods based on our efficient AL framework.

method over a given budget curve, and higher AUBC values indicate better overall performances for
varying budgets during the AL process.

4.2. Experimental Results and Analysis
ResNet18 ResNet34 ResNet50 Adapter (Ours)

Parameters Size (109) 1.8240 3.6787 4.1337 0.0006

Table 2: Comparison of parameters size between
existing AL structures (ResNet) and our proposed
framework (Adapter).

Effectiveness and Efficiency of Our AL Frame-
work. As Fig. 6 illustrated, to show the su-
periority of our proposed efficient AL frame-
work (Fig. 4), we employ ResNet18/34/50 as the
baseline models for comparison across various
AL strategies. We choose ResNet18/34/50 as
baselines due to their varying degrees of parameter complexity and widespread use in the AL field.
Results illustrated in Fig. 6 show that our proposed efficient AL framework on off-the-shelf ViTs can
surpass the selected baselines via various AL methods across six datasets selected from MedMNIST.
Comparing the results of off-the-shelf ViTs (MAE/MoCo-V3/DINO) between Fig. 6 and Fig. 2, it
obviously supports our claim in section 1 that sufficient feature representations are the key to a
successful AL, since the relative magnitude of AUBC shown in Fig. 6 is almost consistent with the
relative magnitude of LR/KNN Accuracy shown in Fig. 2, demonstrating that sufficient representa-
tions lead the AL acquisition function to select promising informative samples. Besides, in Table 2,
we provide a comparative analysis of the parameter size for several widely-used AL architectures,
where our framework demonstrates a significant reduction in the number of parameters.
Effectiveness of SelfPatchAug & SubstitutivePatchAug. Based on our proposed efficient frame-
work (Fig. 4), we further compare the performance of our label-irrelevant patch augmentation
methods against existing data augmentation techniques, such as AutoAug and RandAug. Addi-
tionally, we design a practical DA strategy as a baseline named NormalAug by simply combining
random horizontal and vertical flips.
Our label-irrelevant patch augmentations (SubstitutivePatchAug and SelfPatchAug), as shown in
Table 1, markedly outperform existing DA methods in Few-shot AL across various medical datasets.
This success, reflected in theMean andAvg Rankmetrics, underscores the significant and consistent
enhancement our methods bring to our efficient AL framework. The Mean metric together with the
Avg Rank offers a comprehensive evaluation of the DA methods. While our SubstitutivePatchAug
and SelfPatchAug methods excel in most datasets, they falter in cases like PneumoniaMNIST where
lesions pervade the entire image, making almost all patches label-relevant and risking the loss of
semantic information through any patch augmentation. However, in datasets like DermaMNIST,
where lesions are localized in some specific regions, our methods demonstrate effectiveness by safely
augmenting label-irrelevant patches.
Flexibility of Label-irrelevant Patch Augmentation. Besides the label-irrelevant DA methods we
mentioned in section 3.3.2, our label-irrelevant patch augmentation approach exhibits high flexibility
for various DAmethods. We can plug some other DAmethods including color jitter (ColorPatchAug),
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ViT-B (MAE) Least Confidence Margin
LastAtt CosineAtt Saliency DeepLIFT LastAtt CosineAtt Saliency DeepLIFT

r = 25% 0.675 0.678 0.648 0.668 0.640 0.653 0.646 0.613
r = 50% 0.655 0.665 0.654 0.657 0.687 0.671 0.663 0.658
r = 75% 0.643 0.670 0.675 0.638 0.672 0.664 0.662 0.681

Table 3: AUBC results for SubstuitiveAug via ViT-B (MAE) for different r and label-irrelevant patch
localization methods on DermaMNIST. The values marked as blue are the results presented in Table 1

.

RandAug (RandPatchAug), and zero-masking (ZeroMaskPatchAug) to explore the diversity of
the localized label-irrelevant patches. These methods are called as extended label-irrelevant patch
augmentation methods as follows.
Fig. 7 illustrates the curve for AUBC results for varying budgets during the AL process, where
extended patch augmentation methods perform competitively. In most cases like Fig. 7(a)(b)(d),
most extended patch augmentation methods perform better AUBC results on varying budgets than
existing DA methods (RandAug/AutoAug/NormalAug), but underperform SubstitutivePatchAug
and SelfPatchAug. However, as shown in Fig. 7(c), some of the extended patch augmentation
methods like RandPatchAug and ZeroMaskPatchAug can even surpass our carefully designed label-
irrelevant patch augmentation methods (SelfPatchAug & SubssituitivePatchAug), showing the great
potential of the way to plug different DA methods in the flexible label-irrelevant patch augmentation
approach.

Least Confidence Margin Least Confidence MC Coreset
ViT-B (MAE)-Origin 0.6513 0.6517 0.6653 0.6387
ViT-B (MAE)-Adapted 0.6147 0.616 0.6153 0.607

Table 4: AUBC results on DermaMNIST with different AL strate-
gies for ViT-B (MAE)-Origin and ViT-B (MAE)-Adapted.

Do We Need Pretext SSL Training
for the Downstream Task? As we
claimed in section 1 and section 2, one
key difference between our work and
existing AL+SSL works is that our
method does not require SSL pretext
training on the downstream datasetD.
The reason is that conducting pretext SSL training on the medical image dataset is not efficient (cost-
ing time for training) and can even distort the representations (Fig. 3). This statement was further
demonstrated by Table 4, where ViT-B (MAE)-Adapted performed worse than ViT-B (MAE)-Origin
with respect to AUBC for various AL strategies on DermaMNIST.
Different r and Localization Methods. The ablation study for different r and localization methods
are shown in Table 3. We report the results marked as blue (not the best) in Table 1 since we need to
maintain consistent hyperparameters across datasets for fair comparison. It’s important to note that
dataset-specific hyperparameter tuning could further enhance the performance of the label-irrelevant
patch augmentation. As shown in Table 3, in most cases, CosineAttentionMap and LastAttentionMap
can outperform DeepLIFT and Saliency with respect to the AUBC results. However, for Margin
sampling with r = 75%, DeepLIFT performs much better than others.
In terms of efficiency, CosineAttentionMap and LastAttentionMap outperform DeepLIFT and
Saliency for localizing label-irrelevant patches, as they are produced simultaneously during the
forward process without additional computational costs, while DeepLIFT and Saliency require
multiple backward propagations, significantly increasing time cost.

5. Conclusion
In this paper, we argue that the key to successful AL is to learn a minimally sufficient representation.
We presented an efficient AL framework leveraging off-the-shelf ViTs to gain a relatively good repre-
sentation at the initial stage of AL. We further propose a DA method for localizing and augmenting
label-irrelevant patches, to gradually train a lightweight encoder to transfer the representation closer
to minimally sufficient. The effectiveness and efficiency of our framework are widely evaluated
across various datasets and AL strategies.
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A. Details

In the appendix, we present the details of datasets, hyperparameters, metrics, and our algorithm
in appendix A.1 and appendix A.2. Details of the label-irrelevant patch location methods can be
found in appendix A.3, and other patch augmentation methods besides SelfPatchAug and Substi-
tutivePatchAug can be found in appendix A.4. For additional experimental results, appendix B.1
contains results for more comparison and ablation studies, and appendix B.2 includes the results for
visualization studies.

A.1. Details of Experimental Settings

Data Modality Number of Class Training / Test
DermaMNIST Dermatoscope 7 7007 / 2005
BloodMNIST Blood Cell Microscope 8 11959 / 3421

PneumoniaMNIST Chest X-Ray 2 4708 / 624
OrganAMNIST Abdominal CT 11 34581 / 17778
OrganCMNIST Abdominal CT 11 13000 / 8268
OrganSMNIST Abdominal CT 11 13940 / 8829

Table 5: Details of Datasets

Details of Datasets. The details of
the datasets we used in our experi-
ments are presented in Table 5. These
datasets comprise medical imaging
data from diverse modalities, varying
numbers of classes, distinct patholog-
ical conditions, and different anatom-
ical regions, providing a comprehen-
sive evaluation of our proposed framework.
Details ofHyperprameter Settings. For Tables 1 and 4, and Figs. 6 and 7. The results of SelfPatchAug
are produced by fixed r = 75%, and the results of SubstitutivePatchAug are produced by r = 75%,
t = 5, and λ = 0.5.
Details of Computing Resources. All the experiments can be run on a single NVIDIA A100 (80GB)
Details of Metrics. In this section, we will introduce the metrics evaluating the representation
quality presented in Fig. 2 and Fig. 3.

• LR Accuracy. This metric is utilized to verify the linear separability of the learned feature
representation space by modeling P (y|ϕ(x)) with LR. For the implementation details of the
LR classifier, we use LogisticRegression(random_state=66,solver=’sag’) from sklearn.

• KNN Accuracy. Similar to LR Accuracy, it measures the representation quality by modeling
P (y|ϕ(x)) with KNN. We use the KNeighborsClassifier(n_neighbors=5,algorithm=’auto’) from
sklearn as the KNN classifier.

• Representation Metric. We denote a matrix as M ∈ Rc×c, where c is the number of classes.
For Mi,j , it represents a score measuring the distance between the representations from
i− th class and j − th class center, which is computed as eq. (1)

Mi,j =
1

Ni

∑
z∈{z|y=i}

S(z;uj), uj =
1

Nj

∑
z∈{z|y=j}

z (1)

where S(a; b) denotes the Euclidean distance between vector a and b. Generally, we compute
the intra-class and inter-class distance based on M , and then the representation metric τ
shown in Fig. 3 is defined as eq. (2).

τintra =
Trace(M)

C
, τinter =

Sum(M)− Trace(M)

C
, τ =

τinter
τintra + τinter

(2)

where a larger τ indicates a better feature representation space.
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A.2. Algorithm of Our Framework

Algorithm 1 AL with Label-irrelevant Patches Augmentation
Input: Initial Labeled/Unlabeled Dataset Dlab

0 /Dunl
0 , AL Rounds K, Off-the-shelf Encoder/Decoder

fenc/fdec, Adapter g,
1: r ← a mod b
2: for k = 0 to K do
3: for {x, y} ∈ Dlab

k do
4: Cor = Localize(x, y; fenc, fdec, g)
5: x̄p = MCor ⊙ xp /*Localize the Label-irrelevant Patches*/
6: x̂ = A(x) /*Argument the Label-irrelevant Patches*/
7: βx = (1−MCor)TCor
8: ŷ = βx · 1

|Y | + (1− βx) · y /*Instance-adaptive Label Smoothing*/
9: D̂lab

k = Dlab
k ∪ {x̂, ŷ}

10: end for
11: Train g on D̂lab

k

12: B = α(Dunl
k , [fenc, fdec, g])

13: Dlab
k+1 = Dlab

k ∪B /*Acquire Unlabeled Samples*/
14: Dunl

k+1 = Dunl
k+1 \B

15: end for
Output: Adapter g

The overall algorithm of our efficient AL framework with label-irrelevant augmentation is shown in
algorithm 1, where α(Dunl

k , [fenc, fdec, g]) denotes selecting batchB fromDunl
k based on the acquisition

function α.

A.3. Details of Label-Irrelevant Patches Localization Methods
• LastAttentionMap: This method generates attentionmaps using the last layer of the network.

These maps are useful in visualizing and understanding where the network is focusing its
attention while making predictions.

• CosineAttentionMap: This technique generates attention maps using cosine similarity,
which measures the cosine of the angle between two vectors. It can highlight the most
influential regions in the input for the output prediction.

• Saliency: Saliency maps are a common approach in visualizing and interpreting neural
networks. These maps show the gradient of the output with respect to the input image,
giving an indication of which pixels contribute most to the network’s decision.

• DeepLIFT: DeepLIFT is a method for computing the contributions of inputs to outputs,
given a neural network. It assigns contribution scores by comparing the activation of each
neuron to its activations and computing the differences. This helps to identify which parts
of the input are important for prediction.

The results of the ablation study for these four different localization methods are presented in the
Table 3.

A.4. Label-Irrelevant Patches Augmentation Methods
Many augmentation methods have been used for image classification tasks. We compared our
augmentation methods with the following state-of-the-art methods:

• AutoAug: AutoAug first adopts a search phase that uses reinforcement learning to do the
choose best operations of augmentation.
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• RandAug: RandAug reduces the complexity of the augmentation process by removing the
research phase, which reduces the parameter space to a fixed uniform possibility for every
operation of transformation and a universal magnitude parameter.

• NormalAug: NormalAug applies a combination of random horizontal and vertical flips to
the images.

We also plugged some other DA methods, which we call extended patch augmentation methods:

• ColorPatchAug: Color jitter is applied to label irrelevant patches.
• RandPatchAug: RandAug is applied to the label irrelevant patches.
• ZeroMaskPatchAug: Mask the label irrelevant patches with zeros.

A.5. Details of AL Strategies
We conducted our experiments with different acquisition functions α(x,Mk) utilized as the query
strategies in active learning as follows:

• LeastConfidence: Least Confidence method chooses samples whose predicted labels the
current model is least certain with. The acquisition function for Least Confidence method
can be denoted as αLeastConfidence(x,Mk) = −maxŷ pMk

(ŷ|x), where ŷ is the prediction with
the highest probability.

• Margin: Margin Sampling Looks into the first and second most likely predicted labels of
unlabeled samples, and selects those where the difference in probability between the top
two predicted labels is relatively small. The acquisition function for Margin Sampling can be
denoted as αMargin(x,Mk) = −(pMk

(ŷ1|x)− pMk
(ŷ2|x)), where ŷ1, ŷ2 is the two most likely

labels of x.
• Entropy: Maximum Entropy Sampling selects samples with the most significant en-

tropy loss. The acquisition function for Maximum Entropy Sampling can be denoted as
αMaximumEntropy(x,Mk) = −

∑
c pMk

(y = c|x)logpMk
(y = c|x), where c denotes the classes.

• CoreSet: CorrSet methods select the most representative samples by selecting a set of center
points and minimizing the distance from any point in the dataset to its closest center point.
This is equivalent to minimizing the difference between the average loss calculated over the
selected center points and the average loss calculated over the entire dataset. The acquisi-
tion function for Coreset can be denoted as αCoreset(x,Mk) = maxxi∈Dlab

k
d(Mk(x),Mk(xj),

where d(·, ·) is distance metric andMk(x) denotes the representation of x encoded byMk.

B. Additional Experimental Results

B.1. More Ablation Studies
Results for Many-shot AL. The results of Many-shot AL are shown in Table 6 and Fig. 8. Compared
to Few-shot AL, our DA method delivers more modest enhancements, but it continues to outshine
existing DA techniques.
More Results for Few-shot AL.More results for different AL strategies under the setting of Few-shot
AL are presented in Table 7 and Fig. 9. It shows the effectiveness of our method for boosting the
performances for various AL strategies consistently.
Effectiveness of Instance-adaptive Label Smoothing. The ablation study of Instance-adaptive
Label Smoothing (IaLS) are shown in Table 8 conducted on ViT-B (MAE), which demonstrate the
effectiveness of IaLS.
Structure of Adapter g. We also explore different structures for the adapter g shown in Table 9,
where the ResAdapter is designed as adding a skip connection between genc and gcls.
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DermaMNIST PneumoniaMNIST OrganAMNIST OrganCMNIST OrganSMNIST Mean
Least Confidence

ViT-B (MAE) 0.7353 0.8460 0.8820 0.8757 0.7230 0.8124
+ RandAug 0.7450 0.8810 0.9020 0.8903 0.7350 0.8307
+ AutoAug 0.7367 0.8600 0.8960 0.8860 0.7400 0.8237

+ NormalAug 0.7397 0.8440 0.7730 0.7887 0.7190 0.7729
+ SubstitutivePatchAug 0.7447 0.8530 0.9050 0.8940 0.7530 0.8299

+ SelfPatchAug 0.7420 0.8480 0.8890 0.8910 0.7400 0.8220
ViT-B (MoCo-V3) 0.7310 0.8600 0.8970 0.8530 0.7340 0.8150

+ RandAug 0.7380 0.8830 0.8930 0.8680 0.7530 0.8270
+ AutoAug 0.7430 0.8760 0.8970 0.8660 0.7500 0.8264

+ NormalAug 0.7410 0.8710 0.7530 0.7660 0.7370 0.7736
+ SubstitutivePatchAug 0.7430 0.8670 0.9070 0.8800 0.7610 0.8316

ViT-B (DINO) 0.7470 0.8770 0.8920 0.8630 0.7370 0.8232
+ RandAug 0.7530 0.8820 0.9040 0.8780 0.7560 0.8346
+ AutoAug 0.7510 0.8810 0.9060 0.8830 0.7510 0.8344

+ NormalAug 0.7500 0.8620 0.7530 0.7730 0.7270 0.7730
+ SubstitutivePatchAug 0.7620 0.8680 0.9160 0.8870 0.7590 0.8384

Margin
ViT-B (MAE) 0.7373 0.8390 0.8860 0.8770 0.7240 0.8127
+ RandAug 0.7433 0.8770 0.9020 0.8917 0.7450 0.8318
+ AutoAug 0.7417 0.8670 0.8960 0.8910 0.7410 0.8273

+ NormalAug 0.7427 0.8420 0.7670 0.7893 0.7190 0.7720
+ SubstitutivePatchAug 0.7433 0.8620 0.9080 0.8960 0.7490 0.8317

+ SelfPatchAug 0.7440 0.8510 0.8950 0.8850 0.7340 0.8218
ViT-B (MoCo-V3) 0.7340 0.8600 0.8860 0.8550 0.7300 0.8130

+ RandAug 0.7410 0.8750 0.8930 0.8640 0.7520 0.8250
+ AutoAug 0.7200 0.8770 0.8950 0.8710 0.7500 0.8226

+ NormalAug 0.7350 0.8730 0.7500 0.7620 0.7440 0.7728
+ SubstitutivePatchAug 0.7410 0.8670 0.8960 0.8850 0.7580 0.8294

ViT-B (DINO) 0.7380 0.8770 0.8940 0.8670 0.7340 0.8220
+ RandAug 0.7490 0.8810 0.9090 0.8790 0.7520 0.8340
+ AutoAug 0.7510 0.8800 0.9060 0.8790 0.7510 0.8334

+ NormalAug 0.7500 0.8650 0.7550 0.7690 0.7300 0.7738
+ SubstitutivePatchAug 0.7550 0.8700 0.9160 0.8880 0.7590 0.8376
Table 6: Results of the comparison between our proposed label-irrelevant patch augmentation
methods and other DA methods across 6 datasets for medical image classification by utilizing Least
Confidence andMargin as the AL strategy, under the setting of Many-shot AL.

B.2. Visualization Studies
The visualization results of our proposed label-irrelevant DA methods are shown in Fig. 10 and
Fig. 11.
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Figure 8: The AUBC results of comparing existing AL model structures (ResNet) and our efficient
model structures (ViT-B + Adapter) via various AL strategies, including Least Confidence and Margin
Mean here denotes the averaged values of results among 6 different datasets. The results are
produced under the setting of Many-shot AL.
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Figure 9: The AUBC results of comparing existing AL model structures (ResNet) and our efficient
model structures (ViT-B + Adapter) via AL strategies as Coreset and Entropy under the setting of
Few-shot AL. It can be viewed as the extension for Fig. 6.

DermaMNIST BloodMNIST PneumoniaMNIST OrganAMNIST OrganCMNIST OrganSMNIST Mean
Coreset

ViT-B (MoCo-V3) 0.6170 0.6660 0.7950 0.6630 0.6100 0.5260 0.6462
+ RandAug 0.6520 0.6570 0.8170 0.6920 0.6130 0.5410 0.6620
+ AutoAug 0.6290 0.6900 0.8390 0.6990 0.6170 0.5390 0.6688

+ NormalAug 0.6280 0.6340 0.7720 0.5560 0.5800 0.5470 0.6195
+ SubstitutivePatchAug 0.6610 0.7190 0.8260 0.7170 0.6860 0.5480 0.6928

ViT-B (DINO) 0.6310 0.6470 0.8380 0.6880 0.6060 0.5560 0.6610
+ RandAug 0.6640 0.6440 0.8210 0.6790 0.6220 0.4700 0.6500
+ AutoAug 0.6430 0.6500 0.8340 0.7200 0.6490 0.5410 0.6728

+ NormalAug 0.6320 0.6720 0.8310 0.5570 0.5640 0.5170 0.6288
+ SubstitutivePatchAug 0.7120 0.6940 0.8350 0.7140 0.6360 0.5940 0.6975

Entropy
ViT-B (MoCo-V3) 0.6730 0.6460 0.8570 0.6290 0.5970 0.5120 0.6523

+ RandAug 0.6560 0.6650 0.8320 0.6810 0.6130 0.5230 0.6617
+ AutoAug 0.6460 0.6760 0.8420 0.6700 0.6140 0.5160 0.6607

+ NormalAug 0.6550 0.6980 0.8240 0.5580 0.5540 0.5390 0.6380
+ SubstitutivePatchAug 0.6860 0.6920 0.8240 0.6410 0.6450 0.5450 0.6722

ViT-B (DINO) 0.6670 0.6690 0.8510 0.6690 0.6170 0.5440 0.6695
+ RandAug 0.6440 0.6960 0.8610 0.6800 0.6370 0.5240 0.6737
+ AutoAug 0.6380 0.6590 0.8680 0.6720 0.6170 0.5270 0.6635

+ NormalAug 0.6510 0.6790 0.8250 0.5430 0.5370 0.5450 0.6300
+ SubstitutivePatchAug 0.6830 0.6920 0.8560 0.6660 0.6620 0.5550 0.6857
Table 7: More Results for the comparison study for DA methods under the setting of Few-shot AL. It
can be viewed as the extension for Table 1.
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ViT-B (MAE) + Adapter Least Confidence Margin LeastConfidence MC MeanSTD
With LaLS Without LaLS With LaLS Without LaLS With LaLS Without LaLS With LaLS Without LaLS

BloodMNIST 0.6270 0.6040 0.6470 0.5970 0.6200 0.5970 0.5650 0.5950
DermaMNIST 0.6920 0.6570 0.6880 0.6540 0.6570 0.6540 0.6260 0.6370

PneumoniaMNIST 0.8330 0.8230 0.8330 0.8230 0.8530 0.8230 0.8070 0.8320
OrganAMNIST 0.6840 0.6930 0.7220 0.7260 0.6750 0.7100 0.5680 0.6030
OrganCMNIST 0.6390 0.6530 0.7000 0.6810 0.6470 0.6740 0.6050 0.6040
OrganSMNIST 0.5170 0.5410 0.5650 0.5620 0.5230 0.5460 0.4620 0.4500

Mean 0.6653 0.6618 0.6925 0.6738 0.6625 0.6673 0.6055 0.6202
Table 8: Results of the Ablation Study on Instance-adaptive Label Smoothing (IaLS) conducted on
ViT-B (MAE)

DermaMNIST BloodMNIST PneumoniaMNIST OrganAMNIST OrganCMNIST OrganSMNIST Mean
Least Confidence

Adapter 0.6513 0.5790 0.8350 0.6740 0.6420 0.5140 0.6492
ResAdapter 0.6263 0.5790 0.8210 0.6660 0.6570 0.5180 0.6446

Adapter + SubstitutivePatchAug 0.6700 0.6340 0.8280 0.6850 0.6710 0.5360 0.6707
ResAdapter + SubstitutivePatchAug 0.6410 0.6230 0.8160 0.7060 0.6570 0.5420 0.6642

Margin
Adapter 0.6517 0.6020 0.8350 0.6980 0.6670 0.5400 0.6656

ResAdapter 0.6593 0.5970 0.8260 0.6790 0.6580 0.5320 0.6586
Adapter + SubstitutivePatchAug 0.6640 0.6410 0.8280 0.7240 0.7270 0.5850 0.6948

ResAdapter + SubstitutivePatchAug 0.6620 0.6490 0.8440 0.7330 0.7290 0.5830 0.7000
Table 9: Results for Different Model Structures of the Adapter g.

Key Top 5 Matched Samples in Query

(a)

𝜆 = 0

𝜆 = 0.5

𝜆 = 1

Masked

(b)
Figure 10: Fig. 10b:Visualization Results for the Query Set Qwhen applying SubstitutivePatchAug.
Fig. 10b: Visualization Results for SubstitutivePatchAug among different λ.
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Figure 11: Visualization Results for Augmenting Label-irrelevant Patches with Different Methods
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