
4th Symposium on Advances in Approximate Bayesian Inference, 2021 1–15

Quantum Bayesian Neural Networks

Noah Berner
ETH Zürich

Vincent Fortuin
ETH Zürich

Jonas Landman
Université Paris Diderot

Abstract

Quantum machine learning promises great speedups over classical algorithms, but it often
requires repeated computations to achieve a desired level of accuracy for its point estimates.
Bayesian learning focuses more on sampling from posterior distributions than on point
estimation, thus it might be more forgiving in the face of additional quantum noise. We
propose a quantum algorithm for Bayesian neural network inference, drawing on recent
advances in quantum deep learning, and simulate its empirical performance on several
tasks. We find that already for small numbers of qubits, our algorithm approximates the
true posterior well, while it does not require any repeated computations and thus fully
realizes the quantum speedups.

1. Introduction

Quantummachine learning generally comes in two flavors: Variational quantum circuits that
mimic the training of neural networks (Cerezo et al., 2020), which run on noisy intermediate-
scale quantum (NISQ) devices (Preskill, 2018), and quantum algorithms aimed at replacing
classical training and prediction algorithms for neural networks (Allcock et al., 2020), which
run on (future) error-corrected quantum computers. The latter often use a quantum algo-
rithm for estimating the inner product calculations that occur when training and evaluating
neural networks. This inner product estimation (IPE) can evaluate inner products with
lower asymptotic complexity than classical algorithms but does so at lower accuracy. When
evaluating standard neural networks, this lowered accuracy in the inner product calcula-
tion has to be corrected by running the quantum algorithm multiple times to get a better
estimate.

However, for Bayesian neural networks (BNNs), the goal is not to get the best point
estimate of the parameters θ∗ = arg maxθ p(D | θ), as it would be in maximum-likelihood
learning. Instead, one wishes to obtain K samples from the Bayesian posterior over the
parameters θ given the data D, that is, θi ∼ p(θ | D) ∝ p(θ) p(D | θ). These samples can
then be used to approximate the posterior predictive for unseen data D∗, that is, p(D∗ | D) =∫
p(D∗ | θ) p(θ | D) dθ ≈ 1

K

∑K
i=1 p(D∗ | θi).

Since these samples are noisy by stipulation, they might allow for a larger margin of error
in the quantum computations. Ideally, under zero-mean quantum noise with sufficiently
small variance, one might achieve meaningful results with just running one single quantum

© N. Berner, V. Fortuin & J. Landman.

Berner Fortuin Landman

computation per sample, thus realizing the maximum possible quantum speedup. In this
work, we investigate this idea empirically and demonstrate a proof of concept for BNN
inference on quantum computers. We find that already for decently small numbers of qubits,
our quantum algorithm approximates the true posterior well with just one computation per
sample. A discussion of related work is deferred to Appendix A.

2. Quantum Bayesian Neural Networks

This paper focuses on reducing the asymptotic runtime of the inference and prediction in
BNNs using quantum algorithms. The algorithms described in this paper are derived from
the quantum deep learning algorithms introduced by Allcock et al. (2020) for feedforward
neural networks. We will describe the alterations made for BNNs and their consequences
in this section.

2.1. Quantum Inner Product Estimation

Figure 1: Noise pattern of the IPE quan-
tum algorithm. The noise is non-
isotropic and periodic.

The main quantum speedups are gained in
our algorithm by replacing the classical in-
ner product v⊤i vj of two vectors in Rd by its
quantum estimate. To this end, we use the
modified IPE algorithm, based on the work
by Kerenidis et al. (2018). It achieves an
asymptotic runtime of

Õ
(
T
∥vi∥∥vj∥

ϵ

)
, (1)

where T is the time to load the input vectors
into a superposition quantum state, which
becomes T = O(polylog(d)) if we assume
quantum random access memory (QRAM)
or an equivalent quantum memory model
(Kerenidis and Prakash, 2016). ϵ is an error
bound on the inner product estimate, which
in turn depends on the number of qubits n
used in the quantum phase estimation subroutine. Õ hides polylogarithmic factors.

Our modification for the usage in BNNs dispenses of median evaluation from the IPE
algorithm. Instead of evaluating the inner product multiple times, we use a single estimate.
Thus, the asymptotic runtime is reduced by a factor of log(1/∆), where ∆ ensured a specific
probability to attain the error ϵ in the inner product. Consequently, our IPE algorithm only
has a constant probability of estimating the inner product within an error ϵ.

2.1.1. Quantum Noise in the Inner Product Estimation

The periodicity and non-isotropy of the noise seen in Figure 1 stems mostly from the phase
estimation subroutine (see Section E.1). The representation of the inner products in the
n available qubits means there are only 2n possible values available for the inner product

2

Quantum Bayesian Neural Networks

estimate. Also, the IPE algorithm uses probabilistic subroutines to estimate the inner
product. Thus, the best estimate in the 2n possible values is not attained with certainty. For
a more thorough treatment of the noise characteristics of the IPE algorithm, see Section E.

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(a) CICP

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(b) CIQP, n = 5

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(c) QICP, n = 5

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(d) QIQP, n = 5

Training Data
Mean Prediciton
90% Confidence Interval
of Predictions

(e) Legend

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(f) CIQP, n = 10

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(g) QICP, n = 10

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(h) QIQP, n = 10

Figure 2: Linear Regression with BNN.

2.2. Quantum Inference Algorithm for Bayesian Neural Networks

Markov Chain Monte Carlo (MCMC) methods, such as stochastic gradient Langevin dy-
namics (SGLD), Hamiltonian Monte Carlo (HMC), and No-U-Turn Sampler (NUTS), are
guided by gradients and thus they require backpropagation through the BNN. Current
software relies on computing these gradients using automatic differentiation and Jacobian-
vector products (JVPs). The JVP of an inner product contains two inner products (see
Section C.2). These can be replaced with our IPE algorithm to compute estimates of the
true gradient.

Our quantum inference algorithm differs only in, for the asymptotic runtime, negligible
parts from the quantum training algorithm described by Allcock et al. (2020). For a single
backpropagation, O(Ω) inner products have to be calculated, where Ω is the number of
neurons in the network. If we draw K samples from our posterior and our training dataset
D has a cardinality of N = |D|, we need to calculate KN backpropagations. Thus our
quantum inference algorithm for BNNs has an asymptotic runtime of

Õ
(
(KN)1.5Ω

1

ϵ
R

)
, (2)

where R is a variable defined in Equation (4) and can be expected to be reasonably small
for practical problems. The error component 1

ϵ of the IPE depends on the number of qubits
n used in the phase estimation subroutine. For a small qubit number n, 1

ϵ is also small.

The additional factor of
√
KN is a computational overhead of storing the weight matrices

implicitly (see Section 2.2.1).

3

Berner Fortuin Landman

A classical inference would incur a runtime of O(KNP), where P is the number of
weights inside the neural network and for a fully-connected BNN is proportional to Ω2.
The quantum algorithm has an advantage over the classical algorithm if

√
KN ≪ Ω, that

is, for large networks.

2.2.1. Low-Rank Initialization and Implicit Storage of Weight Matrices

2 0 2
X

2

0

2

Y

(a) CICP

2 0 2
X

2

0

2

Y

(b) CIQP, n = 5

2 0 2
X

2

0

2

Y

(c) QICP, n = 5

2 0 2
X

2

0

2

Y

(d) QIQP, n = 5

Class 0 Prediction Correct
Class 0 Prediction Incorrect
Class 1 Prediction Correct
Class 1 Prediction Incorrect

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Posterior Predictive Mean Probability
of Class Label = 1

(e) Legend

2 0 2
X

2

0

2

Y

(f) CIQP, n = 10

2 0 2
X

2

0

2

Y

(g) QICP, n = 10

2 0 2
X

2

0

2

Y

(h) QIQP, n = 10

Figure 3: Binary Classification with BNN.

After a backpropagation through the network, the updated weight matrices need to be
stored. QRAM allows for fast load times into a quantum state, but storing is linear in
the input size. Thus, if we were to store the weight matrices explicitly, we would incur a
runtime of O(Ω2) per backpropagation. This would negate the speedup seen in Section 2.2.
Allcock et al. (2020) propose to solve this problem via low-rank initialization and implicit
storage of the weight matrices.

As a caveat, it should be noted that the low-rank initialization of the weight matrices
needs to be compatible with the initialization using the prior p(θ). Moreover, the algorithm
for implicit storage of the weight matrices is dependent on the inference algorithm and its
feasibility needs to be evaluated on a case-by-case basis.

For our simulations, we operate in a full-rank prior regime. However, we also present
simulation results that show that if we move to a low-rank prior regime, the results are still
viable (see Appendix F). We do assume that the sampler allows for implicit storage of the
weight matrices. It will however be an exciting direction for future work to study how these
requirements could be relaxed.

2.3. Quantum Prediction Algorithm for Bayesian Neural Networks

The prediction algorithm presented in this paper follows the same outline as the evaluation
algorithm in Allcock et al. (2020), but with the modified IPE introduced in Section 2.1.
To get all predictions, the modified evaluation algorithm is executed KM times, where
K is the number of weight samples drawn from the posterior and M is the cardinality of

4

Quantum Bayesian Neural Networks

the prediction dataset. The quantum prediction algorithm for a BNN has an asymptotic
runtime of

Õ
(
K1.5

√
NMΩ

1

ϵ
Re

)
, (3)

Here, the additional factor of
√
KN is a consequence of storing the weight matrices

implicitly during the quantum inference algorithm. If we were to use classical inference,
this factor would disappear. Again, Re is a variable defined in Equation (5) and can be
expected to be reasonably small for practical problems. The rest of the runtime analysis is
analogous to the one in Section 2.2.

A classical algorithm for evaluating a BNN with the same inputs will have an asymptotic
complexity of Õ(KMP). Similarly to the case of training, the quantum algorithm thus
provides a speedup over the classical algorithm if

√
KM ≪ Ω, that is, for large networks.

If classical inference is used, the speedup occurs unconditionally.

3. Results

We provide results for a linear regression task and a binary classification task. The BNN
we use in both tasks has two hidden layers with five neurons each. The results are obtained
using a simulation of the IPE algorithm on a classical computer. We vary the number of
qubits (n) used in the phase estimation algorithm for the IPE procedure. We expect a
higher accuracy on the inner product estimate for a larger number of qubits.

For both tasks, we compare the fully classical algorithm (i.e., classical inference and
classical prediction, CICP), classical inference with quantum prediction (CIQP), quantum
inference with classical prediction (QICP), and quantum inference with quantum prediction
(QIQP). While the QIQP setting promises the largest speedups, the other settings can also
be interesting in certain applications. For instance, CIQP could be used when a predictive
model is only trained once (offline), but then used for prediction repeatedly in real-time
(online).

3.1. Linear Regression

We see in Figure 2 that our expectation of greater precision for a higher qubit number n
holds. For n = 10 qubits, the results are already comparable to the completely classical
case. We also notice that quantum prediction seems to be more resilient to fewer qubits than
quantum inference. Specifically, if we compare the subfigures Figure 2(f) and Figure 2(g),
the difference becomes apparent. Further results are shown in Figure 8 in the Appendix.

In Figure 5 in the Appendix, we see the difference between low-rank initialization (rank
3) and full-rank initialization (rank 5). We observe that the low-rank initialization still
delivers acceptable results for 10 qubits when using quantum prediction. We also see that
quantum inference is more susceptible to low-rank initialization. Increasing the qubit num-
ber likely makes the low-rank initialization almost equivalent to full-rank initialization be-
cause higher qubit number simulations approach the classical results. When looking at the
completely classical simulations in Figure 5(a) and Figure 5(e), we notice that low- and
full-rank initialization are comparable.

5

Berner Fortuin Landman

3.2. Binary Classification

The binary classification in Figure 3 confirms the results of the linear regression task. Again,
there is greater precision with higher qubit numbers and quantum prediction is more resilient
to fewer qubits than quantum inference. These observations also qualitatively hold for the
predictive uncertainties on this task, as shown in Figure 4 in the Appendix. Further results
can be found Figure 9 and Figure 10.

Both Figure 6 and Figure 7 in the Appendix confirm the observations regarding low-
rank initialization. Here too, the low-rank initialization seems to provide sufficient results,
especially if one would increase the number of qubits for the phase estimation.

3.3. UCI Datasets

In Figure 11 (in Appendix F), we see the result of simulating the linear regression tasks in
the four UCI datasets on our version of a quantum BNN. The datasets are split 20 times
into different training and prediction sets. The mean of the log-likelihood and the standard
error are then used to create the plots. We simulate the linear regression for five different
qubit numbers and 2000 weight samples of the posterior.

Both the Boston dataset in Figure 11(a) and the Concrete dataset in Figure 11(b) show
us expected results. The precision of the classical predictions increases with the number
of hidden neurons. With the Boston dataset, the model stops improving after 10 hidden
neurons, while the Concrete dataset shows improvements even after 20 hidden neurons per
layer. As expected, the accuracy of the model increases with the number of qubits until it
almost reaches classical prediction capabilities with 13 qubits.

For the Energy dataset in Figure 11(d), the behavior seems unexpected. The quantum
prediction with the smallest number of neurons performs best. A possible explanation for
this behavior is that the accuracy in the classical predictions does not increase with a larger
number of hidden layer neurons. This suggests that the larger models do not capture more
features of the data, while still incurring more inner products. The larger number of inner
product calculations might lead to a larger overall error of these models when using quantum
IPE.

The Wine dataset in Figure 11(e) seems to punish larger models even while using classi-
cal prediction. Thus it does not seem surprising that the quantum prediction also performs
worse with the larger models.

4. Conclusion

We have shown that quantum deep learning techniques can be fruitfully combined with
Bayesian neural networks. In contrast to the standard point estimation setting, when
sampling from Bayesian posteriors, one can achieve high fidelity of the samples even without
repeating the quantum computations, already at small numbers of qubits. The promised
speedups of the quantum algorithms can thus be realized to their full extent in the Bayesian
learning setting. In future work, it will be exciting to extend these studies to more realistic
prediction tasks and potentially speed up the inference even further through the use of
quantum MCMC techniques.

6

Quantum Bayesian Neural Networks

References

Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum
algorithms for feedforward neural networks. ACM Transactions on Quantum Computing,
1(1):1–24, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude ampli-
fication and estimation. Contemporary Mathematics, 305:53–74, 2002.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al.
Variational quantum algorithms. arXiv preprint arXiv:2012.09265, 2020.

Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja Hofmann, and Richard Turner. Con-
servative uncertainty estimation by fitting prior networks. In International Conference
on Learning Representations, 2019.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. arXiv
preprint arXiv:2106.11642, 2021.

Francesco D’Angelo, Vincent Fortuin, and Florian Wenzel. On stein variational neural
network ensembles. arXiv preprint arXiv:2106.10760, 2021.

Erik Daxberger, Eric Nalisnick, James Urquhart Allingham, Javier Antorán, and
José Miguel Hernández-Lobato. Expressive yet tractable Bayesian deep learning via sub-
network inference. arXiv preprint arXiv:2010.14689, 2020.

Michael W Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-an Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable Bayesian neural
nets with rank-1 factors. arXiv preprint arXiv:2005.07186, 2020.

Vincent Fortuin. Priors in bayesian deep learning: A review. arXiv preprint
arXiv:2105.06868, 2021.

Vincent Fortuin, Adrià Garriga-Alonso, Mark van der Wilk, and Laurence Aitchison. Bn-
npriors: A library for bayesian neural network inference with different prior distributions.
Software Impacts, page 100079, 2021a.

Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard Turner,
Mark van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited.
arXiv preprint arXiv:2102.06571, 2021b.

Adrià Garriga-Alonso and Vincent Fortuin. Exact langevin dynamics with stochastic gra-
dients. arXiv preprint arXiv:2102.01691, 2021.

Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical review letters, 103(15):150502, 2009.

7

Berner Fortuin Landman

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning,
pages 1861–1869. PMLR, 2015.

Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Xinyu Hu, Paul Szerlip, Theofanis Karaletsos, and Rohit Singh. Applying svgd to
bayesian neural networks for cyclical time-series prediction and inference. arXiv preprint
arXiv:1901.05906, 2019.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Moham-
mad Emtiyaz Khan. Scalable marginal likelihood estimation for model selection in deep
learning. arXiv preprint arXiv:2104.04975, 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian
neural nets via local linearization. In International Conference on Artificial Intelligence
and Statistics, pages 703–711. PMLR, 2021b.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What
are bayesian neural network posteriors really like? arXiv preprint arXiv:2104.14421,
2021.

Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. arXiv
preprint arXiv:1603.08675, 2016.

Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and
least squares. Physical Review A, 101(2):022316, 2020.

Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means:
A quantum algorithm for unsupervised machine learning, 2018.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep
convolutional neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component
analysis. Nature Physics, 10(9):631–633, 2014.

David J.C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Ashley Montanaro. Quantum speedup of monte carlo methods. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015.

Radford M. Neal. Bayesian training of backpropagation networks by the Hybrid Monte
Carlo method. Technical report, University of Toronto, 1992.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

8

Quantum Bayesian Neural Networks

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. In Advances in Neural
Information Processing Systems, pages 13991–14002, 2019.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Jakub Swiatkowski, Kevin Roth, Bastiaan S Veeling, Linh Tran, Joshua V Dillon, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. The k-
tied normal distribution: A compact parameterization of Gaussian mean field posteriors
in Bayesian neural networks. arXiv preprint arXiv:2002.02655, 2020.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization
for bayesian neural networks. In International Conference on Learning Representations,
2018.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dy-
namics. In Proceedings of the 28th International Conference on International Conference
on Machine Learning, pages 681–688, 2011.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świ atkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How
good is the Bayes posterior in deep neural networks really? In International Conference
on Machine Learning, 2020.

Yusen Wu, Chao-hua Yu, Sujuan Qin, Qiaoyan Wen, and Fei Gao. Bayesian machine
learning for boltzmann machine in quantum-enhanced feature spaces. arXiv preprint
arXiv:1912.10857, 2019.

Zhikuan Zhao, Alejandro Pozas-Kerstjens, Patrick Rebentrost, and Peter Wittek. Bayesian
deep learning on a quantum computer. Quantum Machine Intelligence, 1(1):41–51, 2019.

9

Berner Fortuin Landman

Appendix A. Related Work

Bayesian neural networks. Bayesian neural networks (MacKay, 1992; Neal, 1992) have
gained popularity recently (Wenzel et al., 2020; Fortuin et al., 2021a,b). They provide
many benefits compared to their non-Bayesian counterparts, including calibrated uncer-
tainties (Ovadia et al., 2019), principled inclusion of prior knowledge (Fortuin, 2021), and
automatic model selection (Immer et al., 2021a). While there has been work on BNN infer-
ence using variational methods (Hernández-Lobato and Adams, 2015; Blundell et al., 2015;
Swiatkowski et al., 2020; Dusenberry et al., 2020), Laplace approximation (Daxberger et al.,
2020; Immer et al., 2021b), and particle-based methods (Wang et al., 2018; Hu et al., 2019;
Ciosek et al., 2019; D’Angelo et al., 2021; D’Angelo and Fortuin, 2021), the gold-standard
inference methods are still MCMC methods (Izmailov et al., 2021), such as SGLD (Welling
and Teh, 2011), GG-MC (Garriga-Alonso and Fortuin, 2021), HMC (Neal et al., 2011), and
NUTS (Hoffman and Gelman, 2014). We use NUTS sampling, but our algorithm is readily
extensible to other inference settings.

Quantum machine learning. Quantum machine learning has gained a lot of interest
in recent years, providing hope to enhance machine learning on a fault-tolerant universal
quantum computer. It builds on several fundamental algorithms such as linear system
solving (Harrow et al., 2009), optimization (Kerenidis and Prakash, 2020), recommendation
systems (Kerenidis and Prakash, 2016), dimensionality reduction (Lloyd et al., 2014), and
many more. The quantum algorithms for neural networks by Allcock et al. (2020) and
Kerenidis et al. (2020) were inspired by Kerenidis et al. (2018), who defined a fast quantum
inner product estimation algorithm. We also build on this algorithm in our work. Recently,
quantum Bayesian machine learning such as Gaussian Processes (Zhao et al., 2019) or
Boltzmann machines (Wu et al., 2019) have also been explored. Moreover, Quantum Monte
Carlo algorithms, such as the ones by Montanaro (2015), could be an interesting direction
for use in BNNs in future work.

Appendix B. Source Code and Data

The source code and additional data from the simulations presented in this paper is on
GitHub: ANONYMIZED URL.

Appendix C. Method details

C.1. R Terms in Quantum Inference and Prediction Algorithm

The R terms appearing in the runtime of both quantum algorithms are a new phenomenon,
not observed in classical algorithms. The variable R in Equation (2) is defined as

10

Quantum Bayesian Neural Networks

R = Ra +Rδ +RW ,

Ra =
1

KN(Ω− n1)

∑
k,n

L∑
ℓ=2

nℓ∑
j=1

∥X [k,ℓ,j]∥F ∥ak,n,ℓ−1∥,

Rδ =
1

KN(Ω− n1)

∑
k,n

L−1∑
ℓ=1

nℓ∑
j=1

∥X̃ [k,ℓ+1,j]∥F ∥δk,n,ℓ+1∥,

RW =
1

KN(Ω− n1)

L∑
ℓ=2

nℓ∑
j=1

(
∥X [k,ℓ,j]∥F
∥W k,ℓ

j ∥
+

∥X̃ [k,ℓ,j]∥F
∥(W k,ℓ)⊤j ∥

)
,

(4)

where nℓ is the number of neurons in the ℓ-th layer, the BNN consists of L layers, the weight
matrix W ℓ is associated between layers ℓ− 1 and ℓ, W k,ℓ

j is the k-th sample of the j-th row

of the weight matrix W ℓ, X [k,ℓ,j] is the implicitly stored version of W k,ℓ
j , ak,n,ℓ is the output

for the n-th datapoint of the ℓ-th layer using the k-th weight sample, δk,n,ℓ is the output
for the n-th datapoint of the ℓ-th layer using the k-th weight sample in the backward pass
and ∥∥F is the Frobenius norm.

The variable Re used in Equation (3) is defined as

Re =
1

(Ω− n1)

L∑
ℓ=2

nℓ∑
j=1

∥W ℓ
j ∥∥aℓ−1∥. (5)

As argued by Allcock et al. (2020), both these values are expected to be small for
practical parameter regimes, which we also expect to hold for BNNs.

C.2. Jacobian-Vector Product of an Inner Product

The JVP of an inner product contains itself two inner products between vectors:

∇(v⊤i vj) · (t1, t2) = vj · t1 + vi · t2, (6)

where t1 and t2 are the tangent vectors. In our simulation, we replace the exact calculation
of these inner products with the estimate of the IPE routine. This gives us an estimate of
the JVP (and thus of the gradient), instead of the true JVP value. This allows for a faster
runtime of the backpropagation algorithm.

Appendix D. Preliminaries in Quantum Computing

We present a succinct broad-audience quantum information background necessary for this
work. See the book by Nielsen and Chuang (2002) for a detailed course.

Qubits: In classical computing, a bit can be either 0 or 1. From a quantum information
perspective, a quantum bit or qubit can be in state |0⟩ or |1⟩. We use the braket notation
|·⟩ to specify the quantum nature of the bit. The qubits can be in superposition of both
states α |0⟩ + β |1⟩ where α, β ∈ C such that |α|2 + |β|2 = 1. The coefficients α and β are

11

Berner Fortuin Landman

called amplitudes. The probabilities of observing either 0 or 1 when measuring the qubit
are linked to the amplitudes:

p(0) = |α|2, p(1) = |β|2 (7)

As quantum physics teaches us, any superposition is possible before the measurement,
which gives special abilities in terms of computation. With n qubits, 2n possible binary
combinations (e.g. |01 · · · 1001⟩) can exist simultaneously, each with its own amplitude.

A n qubits system can be represented as a normalized vector in a 2n dimensional Hilbert
space. A multi-qubit system is called a quantum register. If |p⟩ and |q⟩ are two quantum
states or quantum registers, the whole system can be represented as a tensor product |p⟩⊗|q⟩,
also written as |p⟩ |q⟩ or |p, q⟩.

Quantum Computation: As logical gates in classical circuits, qubits or quantum reg-
isters are processed using quantum gates. A quantum gate is a unitary mapping in the
Hilbert space, preserving the unit norm of the quantum state vector. Therefore, a quantum
gate acting on n qubits is a matrix U ∈ C2n such that UU † = U †U = I, with U † being the
adjoint, or conjugate transpose, of U .

Common single qubit gates include the Hadamard gate 1√
2

(
1 1
1 −1

)
that maps |0⟩ 7→

1√
2
(|0⟩ + |1⟩) and |1⟩ 7→ 1√

2
(|0⟩ − |1⟩), creating a quantum superposition, the NOT gate(

0 1
1 0

)
that permutes |0⟩ and |1⟩, or Ry rotation gate parametrized by an angle θ, given

by

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
.

Common two-qubits gates include the CNOT gate


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 which is a NOT gate

applied on the second qubit only if the first one is in state |1⟩.
The main advantage of quantum gates is their ability to be applied to a superposition

of inputs. Indeed, given a gate U such that U |x⟩ 7→ |f(x)⟩, we can apply it to all possible
combinations of x at once U(1

C

∑
x |x⟩) 7→

1
C

∑
x |f(x)⟩.

Appendix E. Error Analysis of the Quantum Inner Product Estimation
Algorithm

The inner product estimation routine takes as input two vectors as quantum states |vi⟩
and |vj⟩. It outputs an estimate of the inner product ⟨vi|vj⟩. The vectors are amplitude
encoded, meaning that |vi⟩ is defined as

|vi⟩ =
d∑

l=0

vi,l |l⟩ , (8)

where vi,l is the l-th element of the vector vi and for the dimension d = 2n has to hold,
where n is the number of qubits of state |vi⟩. Note, that amplitude encoding enforces

12

Quantum Bayesian Neural Networks

that the vectors vi and vj are normalized. Thus also for the IPE the input vectors are
normalized. Their norms are stored during the quantum inference and prediction algorithms
to unnormalize the inner product estimate after the IPE computation. This means that the
error of the IPE is also multiplied by the norms ∥vi∥ and ∥vj∥.

IPE calculates the inner product estimate by preparing a state |ψ⟩. |ψ⟩ has an amplitude
on one of the measurable basis states that is proportional to the inner product ⟨vi|vj⟩. It then
uses amplitude estimation, which was introduced by Brassard et al. (2002), as a subroutine
to compute the value of this amplitude. Amplitude estimation uses phase estimation as a
subroutine, so we will first look at phase estimation and cascade the error backward.

E.1. Phase Estimation

Phase estimation receives as input the following quantum state:

1√
2n

2n−1∑
y=0

e2πiωy|y⟩, (9)

where n is the number of qubits. The desired output is a good estimate of the phase
parameter ω.

In general, the output of the phase estimation algorithm will be a superposition

|ω̃⟩ =
∑
x

αx(ω)|x⟩ (10)

of all possible integer states |x⟩, where x ∈ {0, . . . , 2n − 1}. We are interested in the
amplitudes |αx(ω)|2 which define the output distribution of the phase estimation algorithm.

Let b be the integer in the range 0 to 2n − 1 such that b
2n = 0.b1 . . . bn is the best

n bit approximation of ω which is less than ω. Then, the difference δ ≡ ω − b
2n satisfies

0 ≤ ω ≤ 2−n. Applying the phase estimation algorithm, also known as the inverse Quantum
Fourier Transform, yields the state

1

2n

2n−1∑
k,l=0

e
−2πikl

2n e2πiωk|l⟩ (11)

The amplitude αl of the state |(b+ l)(mod 2n)⟩ is

αl =
1

2n

2n−1∑
k=0

(
e2πi(ω−(b+l)/2n)

)k
=

1

2n

(
1− e2πi(2

nω−(b+l))

1− e2πi(ω−(b+l)/2n)

)

=
1

2n

(
1− e2πi(2

nδ−l)

1− e2πi(δ−l/2n)

) (12)

Here, the second equality stems from the closed-form formula for the geometric series.

13

Berner Fortuin Landman

The probability to measure the integer b+ l mod 2n is

|αl|2 =
1

22n

∣∣∣∣∣
(

1− e2πi(2
nδ−l)

1− e2πi(δ−l/2n)

)∣∣∣∣∣
2

=
1

22n

∣∣∣∣ 2 sin(π(2nδ − l))

2 sin(π(δ − l/2n))

∣∣∣∣2
=

1

22n
sin2(π(2nδ − l))

sin2(π(δ − l/2n))
,

(13)

where we used the fact that |1 − e2ix|2 = 4| sin(x)|2. Note that the distribution in Equa-
tion (13) depends (through the variable δ) on the phase ω, which is the variable that the
phase estimation algorithm is trying to estimate. This means that it will not be possible to
predict the exact output distribution of the phase estimation algorithm, since that would
require knowledge of ω.

E.2. Amplitude Estimation

The amplitude of the state |ψ⟩ given by the IPE as an input to the amplitude estimation
algorithm is

a =
1

2

(
⟨vi|vj⟩

∥vi∥ ∥vj∥
+ 1

)
(14)

Phase estimation can obtain an estimate of ω for an amplitude of the form sin2(πω).
Thus the phase we try to estimate using phase estimation is

ω =
1

π
arcsin(

√
a) (15)

Using the results from Section E.1, we know that the phase estimate will be

ωl =
(b+ l) mod 2n

2n
, l ∈ {0, 1, . . . , 2n − 1}, (16)

where b = argmini| i
2n − ω|, i ∈ {0, 1, . . . , 2n}, with a probability of

pl =
1

22n
sin2(π(2nδ − l))

sin2(π(δ − l/2n))
, δ = ω − b/2n. (17)

The output of the amplitude estimation will be

al = sin2(πωl) (18)

and the final output of the IPE algorithm is

(2al − 1)∥vi∥∥vj∥. (19)

as an estimate of the inner product ⟨vi|vj⟩ between the vectors vi and vj .

14

Quantum Bayesian Neural Networks

Appendix F. Additional results

The additional results from the simulation of both the linear regression and binary classifi-
cation task can be found in this section. Figure 4 shows the standard deviation of the BNN
in the binary classification task.

Figure 5, Figure 6 and Figure 7 show a comparison between low-rank and full-rank
initialization of the linear regression and binary classification task.

Figure 8 are further results for the linear regression task for a larger set of qubits.
Figure 9 and Figure 10 show the mean prediction and standard deviation of the binary
classification task respectively, both for a larger set of qubits.

2 0 2
X

2

0

2

Y

(a) CICP

2 0 2
X

2

0

2

Y

(b) CIQP, n = 5

2 0 2
X

2

0

2

Y

(c) QICP, n = 5

2 0 2
X

2

0

2

Y

(d) QIQP, n = 5

Class 0 Prediction Correct
Class 0 Prediction Incorrect
Class 1 Prediction Correct
Class 1 Prediction Incorrect

0.06 0.18 0.30 0.42 0.54

Posterior Predictive Standard Deviation
(Uncertainty)

(e) Legend

2 0 2
X

2

0

2

Y

(f) CIQP, n = 10

2 0 2
X

2

0

2

Y

(g) QICP, n = 10

2 0 2
X

2

0

2

Y

(h) QIQP, n = 10

Figure 4: Posterior Predictive Standard Deviation of Binary Classification with BNN: C
and Q stand for Classical and Quantum respectively. I and P stand for Inference
and Prediction. The Figure shows the expected increase in accuracy for higher
qubit numbers n.

15

Berner Fortuin Landman

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(a) CICP, FR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(b) CIQP, FR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(c) QICP, FR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(d) QIQP, FR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(e) CICP, LR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(f) CIQP, LR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(g) QICP, LR

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(h) QIQP, LR

Figure 5: Comparison between Full-Rank Initialization (Rank 5) and Low-Rank Initializa-
tion (Rank 3) for the Linear Regression Task on a BNN for 10 qubits. FR stands
for Full-Rank Initialization and LR stands for Low-Rank Initialization.

2 0 2
X

2

0

2

Y

(a) CICP, FR

2 0 2
X

2

0

2

Y

(b) CIQP, FR

2 0 2
X

2

0

2

Y

(c) QICP, FR

2 0 2
X

2

0

2

Y

(d) QIQP, FR

2 0 2
X

2

0

2

Y

(e) CICP, LR

2 0 2
X

2

0

2

Y

(f) CIQP, LR

2 0 2
X

2

0

2

Y

(g) QICP, LR

2 0 2
X

2

0

2

Y

(h) QIQP, LR

Figure 6: Comparison between Full-Rank Initialization (Rank 5) and Low-Rank Initializa-
tion (Rank 3) for the Binary Classification Task on a BNN for 10 qubits. FR
stands for Full-Rank Initialization and LR stands for Low-Rank Initialization.

16

Quantum Bayesian Neural Networks

2 0 2
X

2

0

2

Y

(a) CICP, FR

2 0 2
X

2

0

2

Y

(b) CIQP, FR

2 0 2
X

2

0

2

Y

(c) QICP, FR

2 0 2
X

2

0

2

Y

(d) QIQP, FR

2 0 2
X

2

0

2

Y

(e) CICP, LR

2 0 2
X

2

0

2

Y

(f) CIQP, LR

2 0 2
X

2

0

2

Y

(g) QICP, LR

2 0 2
X

2

0

2

Y

(h) QIQP, LR

Figure 7: Comparison between Full-Rank Initialization (Rank 5) and Low-Rank Initializa-
tion (Rank 3) for the Posterior Predictive Standard Deviation of Binary Classi-
fication with BNN for 10 qubits. FR stands for Full-Rank Initialization and LR
stands for Low-Rank Initialization.

17

Berner Fortuin Landman

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(a) CICP

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(b) CIQP, n = 5

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(c) QICP, n = 5

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(d) QIQP, n = 5

Training Data
Mean Prediciton
90% Confidence Interval
of Predictions

(e) Legend

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(f) CIQP, n = 7

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(g) QICP, n = 7

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(h) QIQP, n = 7

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(i) CIQP, n = 9

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(j) QICP, n = 9

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(k) QIQP, n = 9

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(l) CIQP, n = 11

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(m) QICP, n = 11

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(n) QIQP, n = 11

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(o) CIQP, n = 13

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(p) QICP, n = 13

1.0 0.5 0.0 0.5 1.0
X

4

2

0

2

4

Y

(q) QIQP, n = 13

Figure 8: Additional Results for Linear Regression with BNN: C and Q stand for Classical
and Quantum respectively. I and P stand for Inference and Prediction. The
Figure shows the expected increase in accuracy for higher qubit numbers n.

18

Quantum Bayesian Neural Networks

2 0 2
X

2

0

2

Y

(a) CICP

2 0 2
X

2

0

2

Y

(b) CIQP, n = 5

2 0 2
X

2

0

2

Y

(c) QICP, n = 5

2 0 2
X

2

0

2

Y

(d) QIQP, n = 5

Class 0 Prediction Correct
Class 0 Prediction Incorrect
Class 1 Prediction Correct
Class 1 Prediction Incorrect

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Posterior Predictive Mean Probability
of Class Label = 1

(e) Legend

2 0 2
X

2

0

2

Y

(f) CIQP, n = 7

2 0 2
X

2

0

2

Y

(g) QICP, n = 7

2 0 2
X

2

0

2

Y

(h) QIQP, n = 7

2 0 2
X

2

0

2

Y

(i) CIQP, n = 9

2 0 2
X

2

0

2

Y

(j) QICP, n = 9

2 0 2
X

2

0

2

Y

(k) QIQP, n = 9

2 0 2
X

2

0

2

Y

(l) CIQP, n = 11

2 0 2
X

2

0

2

Y

(m) QICP, n = 11

2 0 2
X

2

0

2

Y

(n) QIQP, n = 11

2 0 2
X

2

0

2

Y

(o) CIQP, n = 13

2 0 2
X

2

0

2

Y

(p) QICP, n = 13

2 0 2
X

2

0

2

Y

(q) QIQP, n = 13

Figure 9: Additional Results for Binary Classification with BNN: C and Q stand for Clas-
sical and Quantum respectively. I and P stand for Inference and Prediction. The
Figure shows the expected increase in accuracy for higher qubit numbers n.

19

Berner Fortuin Landman

2 0 2
X

2

0

2

Y

(a) CICP

2 0 2
X

2

0

2

Y

(b) CIQP, n = 5

2 0 2
X

2

0

2

Y

(c) QICP, n = 5

2 0 2
X

2

0

2

Y

(d) QIQP, n = 5

Class 0 Prediction Correct
Class 0 Prediction Incorrect
Class 1 Prediction Correct
Class 1 Prediction Incorrect

0.06 0.18 0.30 0.42 0.54

Posterior Predictive Standard Deviation
(Uncertainty)

(e) Legend

2 0 2
X

2

0

2

Y

(f) CIQP, n = 7

2 0 2
X

2

0

2

Y

(g) QICP, n = 7

2 0 2
X

2

0

2

Y

(h) QIQP, n = 7

2 0 2
X

2

0

2

Y

(i) CIQP, n = 9

2 0 2
X

2

0

2

Y

(j) QICP, n = 9

2 0 2
X

2

0

2

Y

(k) QIQP, n = 9

2 0 2
X

2

0

2

Y

(l) CIQP, n = 11

2 0 2
X

2

0

2

Y

(m) QICP, n = 11

2 0 2
X

2

0

2

Y

(n) QIQP, n = 11

2 0 2
X

2

0

2

Y

(o) CIQP, n = 13

2 0 2
X

2

0

2

Y

(p) QICP, n = 13

2 0 2
X

2

0

2

Y

(q) QIQP, n = 13

Figure 10: Additional Results for Posterior Predictive Standard Deviation of Binary Clas-
sification with BNN: C and Q stand for Classical and Quantum respectively.
I and P stand for Inference and Prediction. The Figure shows the expected
increase in accuracy for higher qubit numbers n.

20

Quantum Bayesian Neural Networks

5 7 9 11 13
n

1.5

1.0

0.5

0.0

Lo
g

Lik
el

ih
oo

d

(a) Boston

5 7 9 11 13
n

1.5

1.0

0.5

0.0
Lo

g
Lik

el
ih

oo
d

(b) Concrete

Classical Prediction
Quantum Prediction
5 Neurons per Hidden Layer
10 Neurons per Hidden Layer
15 Neurons per Hidden Layer
20 Neurons per Hidden Layer

(c) Legend

5 7 9 11 13
n

2

1

0

1

Lo
g

Lik
el

ih
oo

d

(d) Energy

5 7 9 11 13
n

1.8

1.6

1.4

1.2

Lo
g

Lik
el

ih
oo

d

(e) Wine

Figure 11: UCI Data Regression with a BNN Using Quantum IPE. It shows the log-
likelihood of classical prediction and quantum prediction for different qubit num-
bers n. Note that the y-axis is at different scales in the subplots.

21

	Introduction
	Quantum Bayesian Neural Networks
	Quantum Inner Product Estimation
	Quantum Noise in the Inner Product Estimation

	Quantum Inference Algorithm for Bayesian Neural Networks
	Low-Rank Initialization and Implicit Storage of Weight Matrices

	Quantum Prediction Algorithm for Bayesian Neural Networks

	Results
	Linear Regression
	Binary Classification
	UCI Datasets

	Conclusion
	Related Work
	Source Code and Data
	Method details
	R Terms in Quantum Inference and Prediction Algorithm
	Jacobian-Vector Product of an Inner Product

	Preliminaries in Quantum Computing
	Error Analysis of the Quantum Inner Product Estimation Algorithm
	Phase Estimation
	Amplitude Estimation

	Additional results

