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Abstract
With the advent of automatic vectorization tools
(e.g., JAX’s vmap), writing multi-chain MCMC
algorithms is often now as simple as invoking
those tools on single-chain code. Whilst conve-
nient, for various MCMC algorithms this results
in a synchronization problem—loosely speaking,
at each iteration all chains running in parallel must
wait until the last chain has finished drawing its
sample. In this work, we show how to design
single-chain MCMC algorithms in a way that
avoids synchronization overheads when vectoriz-
ing with tools like vmap, by using the framework
of finite state machines (FSMs). Using a simpli-
fied model, we derive an exact theoretical form of
the obtainable speed-ups using our approach, and
use it to make principled recommendations for
optimal algorithm design. We implement several
popular MCMC algorithms as FSMs, including
Elliptical Slice Sampling, HMC-NUTS, and De-
layed Rejection, demonstrating speed-ups of up
to an order of magnitude in experiments.

1. Introduction
Automatic vectorization is the act of transforming a func-
tion to handle batches of inputs without user intervention.
Implementations of automatic vectorization algorithms are
now available in many mainstream scientific computing li-
braries, and have dramatically simplified the task of running
multiple instances of a single algorithm concurrently. They
are routinely used to train neural networks (Flax, 2023) and
in other scientific applications, e.g., Schoenholz and Cubuk
(2021); Oktay et al. (2023); Pfau et al. (2020).

This paper focuses on the use of automatic vectorization
for Markov chain Monte Carlo (MCMC) algorithms. Tools
like JAX’s vmap provide a convenient way to run multiple
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MCMC chains in parallel: one can simply write single-chain
MCMC code, and call vmap to turn it into vectorized, multi-
chain code that can run in parallel on the same processor.
Many state-of-the-art MCMC libraries have consequently
adopted machine learning frameworks with automatic vec-
torization tools as their backend.

One limitation with automatic vectorization tools is how
they handle control flow. Since all instructions must be
executed in lock-step, if the algorithm has a while loop,
all chains must wait until the last chain has finished its it-
erations. This can lead to large inefficiencies for MCMC
algorithms that generate each sample using variable-length
while loops. Roughly speaking, if vectorization executes,
say, 100 chains in parallel, all but one finish after at most
10 steps, and the remaining chain runs for 1000 steps, then
about 99% of the GPU capacity assigned to vmap is wasted
(and our simulations show the effect can indeed be this dras-
tic). For the No-U-Turn Sampler (HMC-NUTS) (Hoffman
et al., 2014), this problem is well-documented (BlackJax,
2019; Sountsov et al., 2024; Radul et al., 2020). It also af-
fects various other algorithms, such as variants of slice sam-
pling (Neal, 2003; Murray et al., 2010; Cabezas and Nemeth,
2023), delayed rejection methods (Mira et al., 2001; Modi
et al., 2024) and unbiased Gibbs sampling (Qiu et al., 2019).

In this work, we show how to transform MCMC algorithms
into equivalent samplers that avoid these synchronization
barriers when using vmap-style vectorization. In particular,

1. We develop a novel approach to transform MCMC
algorithms into finite state machines (FSMs), that can
avoid synchronization barriers with vmap.

2. We analyze the time complexity of our FSMs against
standard MCMC implementations and derive a theoret-
ical bound on the speed-up under a simplified model.

3. We use our analysis to develop principled recommen-
dations for optimal FSM design, which enable us to
nearly obtain the theoretical bound in speed-ups for
certain MCMC algorithms.

4. We implement popular MCMC algorithms as FSMs,
including Elliptical Slice Sampling, HMC-NUTS, and
Delayed-Rejection MH - demonstrating speed-ups of
up to an order of magnitude in experiments.
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2. Background and Problem Setup
In this section, we briefly review how MCMC algorithms
are vectorized, explain the synchronization problems that
can arise, and formalize the problem mathematically.

2.1. MCMC Algorithms and Vectorization

MCMC methods aim to draw samples from a target distri-
bution π (typically on a subset of Rd) which is challenging
to sample from directly. To do so, they generate samples
{x1, ...,xn} ∈ Rd×n from a Markov chain with transition
kernel P and invariant distribution π, by starting from an ini-
tial state x0 ∈ Rd and iteratively sampling xi+1 ∼ P (·|xi).
For aperiodic and irreducible Markov chains, as n → ∞
the samples will converge in distribution to π (Brooks et al.,
2011). In practice, P is implemented by a deterministic
function sample, which takes in the current state xi and
a pseudo-random state ri ∈ N, and returns new states xi+1

and ri+1. This procedure is given in Algorithm 1.

Algorithm 1 MCMC algorithm with sample function
1: Inputs: sample x0, seed r0
2: for i ∈ {1, ..., n} do
3: generate xi, ri ← sample(xi−1, ri−1)
4: end for
5: return x1, . . . ,xn

Practitioners commonly run Algorithm 1 on m different
initializations, producing m chains of samples. Given an
implementation of sample: Rd × N→ Rd × N, one way
to do this is to use an automatic vectorization tool like JAX’s
vmap1. vmap takes sample as an input and returns a new
program, vmap(sample): Rd×m×Nm → Rd×m×Nm,
which operates on a batch of inputs collected into tensors

x̃i−1 := (xi−1,1, . . . ,xi−1,m) ∈ Rd×m

r̃i−1 := (ri−1,1, . . . , ri−1,m) ∈ Nm

and returns the corresponding outputs from sample. One
can therefore turn Algorithm 1 into a multi-chain algo-
rithm by simply replacing sample with vmap(sample)
and replacing (x0, r0) by (x̃0, r̃0) (see Algorithm 6 in Ap-
pendix B). Under the hood, vmap transforms every instruc-
tion in sample (e.g., a dot product) into a corresponding
instruction operating on a batch of inputs (e.g., matrix-vector
multiplication); that is, it ‘vectorizes’ sample. These in-
structions are executed in lock-step across all chains. Using
vmap usually yields code that performs as well as manually-
batched code. For this reason, as well as its simplicity and
composability with other transformations like grad (for
automatic differentiation) and jit (for Just-In-Time compi-

1We use JAX and its vectorization map vmap throughout, since
this framework is widely adopted. Similar constructs exist in
TensorFlow (vectorized map) and PyTorch (vmap).

lation), vmap has been adopted by major MCMC libraries
such as NumPyro and BlackJAX.

2.2. Synchronization Problems with While Loops

Control flow (i.e., if/else, while, for, etc.) poses a
challenge for vectorization, because different batch mem-
bers may require a different sequence of instructions. vmap
solves this by executing all instructions for all batch mem-
bers, and masking out irrelevant computations. As a
consequence, if sample contains a while loop, then
vmap(sample) will execute the body of this loop for all
chains until all termination conditions are met. Until then,
no further instruction can be executed. As a result, if there is
high variation in the number of loop iterations across chains,
running Algorithm 1 with vmap(sample) introduces a
synchronization barrier across all chains: at every iteration,
each chain has to wait for the slowest sample call.

This issue arises in practice, because a number of impor-
tant MCMC algorithms have while loops in their sample
implementations: such as variants of slice sampling (Neal,
2003; Murray et al., 2010; Cabezas and Nemeth, 2023),
delayed rejection methods (Mira et al., 2001; Modi et al.,
2024), the No-U-Turn sampler (Hoffman et al., 2014), and
unbiased Gibbs sampling (Qiu et al., 2019).

Formalizing The Problem. Here we formalize the problem
through a series of short derivations. These will be made
precise in Section 4. Suppose we run a vmap’ed version
of Algorithm 1 using a sample function that has a while
loop. Let Ni,j denote the number of iterations required by
the jth chain to obtain its ith sample. If the while loop
has a variable length, Ni,j is a random number. Due to the
synchronization problem described above, the time taken to
run vmap(sample) at iteration i is approximately propor-
tional to the largest Ni,j out of the m chains, maxj≤m Ni,j .
If we ignore overheads, the total runtime after n samples,
C0(n), is then roughly proportional to

C0(n) ∝∼
n∑

i=1

max
j≤m

Ni,j (1)

By contrast, if the chains could be run without any synchro-
nization barriers, the time taken would instead be

C∗(n) ∝∼ max
j≤m

n∑
i=1

Ni,j (2)

The key difference is that the maximum is now outside the
sum. This reflects the fact that when running independently,
we only have to wait at the end for the slowest chain to
collect its n samples, rather than waiting at every iteration.
Clearly C∗(n) ≤ C0(n). Significant speed-ups are obtain-
able by de-synchronizing the chains when C∗(n)≪ C0(n).
If each Ni,j converges in distribution to some PN as we
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Figure 1. Statistics on the elliptical slice sampler for Gaussian Pro-
cess Regression on the Real Estate Dataset (Yeh, 2018). LHS: his-
togram of the number of slice shrinks per sample. RHS: smoothed
histogram of the average number of slice shrinks per sample across
m = 1024 chains, after n ∈ {100, 1000, 10000} samples.

draw more samples, and an appropriate central limit theo-
rem holds (so that the sums in (1) and (2) behave like scaled
means), we can expect for large enough n that:

C0(n) = Op(nEmax
j≤m

N∞,j) (3)

C∗(n) = Op(max
j≤m

nEN∞,j) = Op(nEN∞,1) (4)

where the last equality assumes (N∞,1, ..., N∞,m)
iid∼ PN .

De-synchronizing the chains will result in large speedups if

Emax
j≤m

N∞,j ≫ EN∞,1 (5)

We will see that Equation (5) holds in various situations.

Example. Consider the elliptical slice sampling algo-
rithm (Murray et al., 2010) which samples from distribu-
tions which admit a density with Gaussian components,
p(x) ∝ f(x)N (x|0,Σ). Its transition kernel (see Algo-
rithm 8 in Appendix B) draws each sample by (i) generating
a random ellipse of permitted moves and an initial proposal,
and (ii) iteratively shrinking the set of permitted moves and
resampling the proposal from this set until it exceeds a log-
likelihood threshold. The second stage uses a while loop
which requires a random number of iterations.

On Figure 1 we display results when implementing this
algorithm in JAX to sample from the hyperparameter pos-
terior of a Gaussian process implemented on a regression
task using a real dataset from the UCI repository (details
are in Section 7). On the LHS we can see the distribution
of the number of while loop iterations (i.e. slice shrinks)
needed to generate a sample. While the average is ∼6, the
average of the maximum across 1024 chains is >18, which
implies Emaxj≤1024 Nn,j ≈ 3ENn,1. On the RHS, we
can see that the differences across the chains do balance
out as more samples are drawn, which suggests a certain
central limit theorem may hold. In particular, after just 100
samples the distribution of the average number of iterations

per chain is contained in the interval [5, 8], and after 10,000
samples this shrinks to [6.2, 6.4]. This implies that if we
could vectorize the algorithm without incurring synchro-
nization barriers, we could improve the Effective Sample
Size per Second (ESS/Sec) by up to 3-fold. We will see
that for other algorithms (e.g., HMC-NUTS and delayed
rejection) the potential speed-ups are much larger than this.

3. Finite State Machines for MCMC
In this section we present an approach to implementing
MCMC algorithms, which avoids the above synchronization
problems when vectorizing with vmap. The basic idea is to
break down the transition kernel (sample) into a series of
smaller ‘steps’ which avoid iterative control flow like while
loops and have minimal variance in execution time. We then
define a runtime procedure that allows chains to progress
through their own step sequences in de-synchronized fash-
ion. To do this in a principled manner, we adapt the frame-
work of finite state machines (FSMs) (Hopcroft et al., 2001).
An FSM is a 5-tuple (S,Z, δ,B,F), where S is a finite set
of states,Z is a finite input set, δ : S×Z → S is a transition
function, B ∈ S is an initial state, and F is the set of final
states. We deviate from the usual definition by allowing
each state to be a function S : Z → Z that updates inputs
dynamically2. Below we show how to represent different
sample functions as an FSM.

3.1. sample-to-FSM conversion

At a high-level, we construct the FSM of an MCMC algo-
rithm as follows. The states S = (S1, ..., SK) are chosen
as functions Z → Z which execute contiguous code blocks
of the algorithm. The boundaries of each code block are
delineated by the start and end of any while loops. For
example, S1 executes all lines of code before the first while
loop, S2 executes all lines of code from the beginning of
the first while loop body to either the start of the next while
loop or the end of the current while loop, and so on. The
inputs z ∈ Z are all variables used in each code block. (e.g.
current sample x, proposal x′, log-likelihood log p(x))3,
whilst the transition function δ selects the next code block
to run according to the relevant loop condition and the re-
ceived output z′ after executing the current block (e.g. if a
while loop starts after the block S1 executes, δ will check
this loop’s condition using the output z′ = S1(z)). Below
we make this construction procedure more precise for three
kinds of sample functions which cover all MCMC algo-
rithms considered in the present work: (i) functions with a
single while loop, (ii) functions with two sequential while

2This essentially results in a so-called ‘Finite State Transducer’
with a different runtime than typical.

3Typically x ∈ Rd so Z is not finite. However, in practice all
samples lie in a finite subset of Rd (e.g. 32-bit floating points).
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loops, and (iii) functions with two nested while loops. An
automated construction process for more general programs
using a toy language is given in Appendix B.

code block 1 =: S1

while . . . do {

code block 2 =: S2

} end while

code block 3 =: S3

S1

S2

S3

Figure 2. FSM of an MCMC algorithm with a single while loop.

The Single While Loop Case. The simplest case is a
sample method with a single while loop. This covers
(for example) elliptical slice sampling (Murray et al., 2010)
and symmetric delayed rejection Metropolis-Hastings (Mira
et al., 2001). In this case, we break sample down into three
code blocks B1, B2, B3 (one before the while loop, one for
the body of the while loop, and one after the while loop) and
the termination condition of the loop. This is shown on the
LHS of Figure 2. Using these blocks, we define the FSM as
(S,Z, δ,B,F), where (1) Z is the set of possible values for
the local variables of sample (e.g., the current sample x,
seed r, and proposal etc.), (2) S = {S1, S2, S3} is a set of
three functionsZ → Z , where for each k ∈ {1, 2, 3}, Sk(z)
runs Bk on local variables z and returns their updated value,
(3) for each k ∈ {0, 1} and z ∈ Z , the transition function
δ(Sk, z) checks the while loop termination condition using
z, and returns S2 if False and S3 if True, (4) B = S1 and,
finally, (5) F = S3. The RHS of Figure 2 illustrates the
resulting FSM diagram. Note there is an edge Sk → Sk̃

between states if and only if δ(Sk, z) = Sk̃ for some z.

Two Sequential While Loops. We break down sample
into two blocks: B1 contains all the code up to the second
while loop. B2 contains the remaining code. In this case, B1

and B2 are now single while loop programs, and thus can
both be represented by FSMs F1 and F2 using the above rule.
The FSM representation of sample can then be obtained
by “stitching together” F1 and F2. The full construction
process is in Appendix B. The resulting FSM is provided
for the case of the Slice Sampler (Figure 3, top-right panel),
which contains two4 while loops: one for expanding the
slice, and one for contracting the slice.

Two Nested While Loops. In the case of two nested while

4For 1D problems, the slice expansion loop can be broken into
two loops (for the upper and lower bound of the interval).

loops, we break down sample into B1, B2, B3, where B1

(resp. B3) is the code before (resp. after) the outer while
loop and B2 is the outer while loop body. As B2 is a single-
while loop program, it admits its own FSM Fi. Building the
final FSM of sample then informally consists in obtaining
a first, “coarse” FSM by treating B2 as opaque, and then
refining it by replacing B2 with its own FSM. The full con-
struction process is given in Appendix B. The resulting FSM
is provided for the case of NUTS (Figure 3, bottom-right
panel), which—in its iterative form—uses the outer while
loop to determine whether to keep expanding a Hamiltonian
trajectory, and the inner while loop to determine whether to
keep integrating along the current trajectory.

3.2. Defining the FSM Runtime

Going forward, for convenience we assume the transition
function δ takes in and returns the label k of each block
Sk, rather than Sk itself. Now, given a constructed FSM,
in Algorithm 2 we define a function step, which when
executed performs a single transition along an edge in the
FSM graph. For reasons made clear shortly, we augment
step to return a flag indicating when the final block is run.

Algorithm 2 step function for FSM
Inputs: algorithm state k, variables z

1: set isSample← 1{k = K}
2: z ← switch(k, [{run S1(z)}, ..., {run SK(z)}])
3: k ← switch(k, [{run δ(1, z)}, ..., {run δ(K, z)}])
4: return (k, z,isSample)

Here switch uses the value of k to determine which
branch to run. If we start from some input (k, z) = (0, z0)
and call step repeatedly, we transition through a sequence
of blocks of sample, until we eventually reach the terminal
state. At this point, a sample is obtained (as indicated by
isSample=True). We can use this function to draw n
samples, by (i) adding a transition from the terminal state
F = SK back to the initial state B = S0, and (ii) defin-
ing a wrapper function which iteratively calls step until
isSample=True is obtained n-times (see Algorithm 3).

Algorithm 3 FSM MCMC algorithm
1: input: initial value x0, # samples n
2: initialize: z = init(x0), X = list(), B = list()
3: Set t = 0 and k = 0
4: while t < n do
5: (k, z,isSample)← step(k, z)
6: append current sample value x stored in z to X
7: append isSample to B
8: update sample counter t← t+ isSample
9: end while

10: return X[B]
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S1

INIT

S2

PROPOSE

S3

DONE

Delayed Rejection MH

S1 S2 S3

INIT SHRINK DONE

Elliptical Slice Sampling

S1 S2 S3 S4 S5

INIT E EXPAND INIT S SHRINK DONE

Slice Sampling

S1 S2 S3 S4 S5

INIT DOUBLE INTEGRATE CHECK DONE

HMC-NUTS

Figure 3. Finite state machines for the sample function of different MCMC algorithms: The symmetric delayed-rejection Metropolis-
Hastings algorithm (Mira et al., 2001), elliptical slice sampling (Murray et al., 2010), (vanilla) slice sampling (with single slice expansion
loop) (Neal, 2003), the No-U-Turn sampler for Hamiltonian Monte Carlo (Hoffman et al., 2014).

Both Algorithm 3 and Algorithm 1 call sample n-times
and can be easily vectorized with vmap. For Algorithm 3,
we just call vmap on step and modify the outer loop to
terminate when all chains have collected n samples each
(see Algorithm 7 in Appendix B). The crucial difference is:
(i) by defining a ‘step’ to be agnostic to which block each
chain is currently on, Algorithm 3 enables chains to simulta-
neously progress their independent block sequences, and (ii)
by moving all while loops to the outer layer, Algorithm 3
only requires chains to synchronize after n samples.

4. Time Complexity Analysis of FSM-MCMC
One limitation with our FSM design is the step function
relies on a switch to determine which block to run. When
vectorized with vmap or an equivalent transformation, all
branches in switch are evaluated for all chains, with irrel-
evant results discarded. This means the cost of a single call
of step is the cost of running all state functions S1, ..., SK .
To obtain a speedup, the FSM must therefore sufficiently
decrease the expected number of steps to obtain n samples
from each chain. In this section we quantitatively derive con-
ditions under which this occurs in the simplified setting of
an MCMC algorithm with a single while loop. This enables
us to subsequently optimize the FSM design in Section 5.

4.1. Long Run Costs of FSM and Non-FSM MCMC

To this end, consider a sample function with a single while
loop. Suppose it is broken down into K blocks {S1, ...SK},
by our FSM construction procedure, where Sk (for some
k ∈ [K]) executes the body of the loop. Note our procedure
yields K ≤ 3 for one while loop, but we relax this here to
analyze the effect of the number of blocks on performance.
A single call of vmap(sample) executes Sl once if l ̸= k,
and maxj Nj-times if l = k, where Nj = # loop iterations

for chain j. We assume the cost of executing each block Sl

with vmap is cl(m) for m chains (here the dependence on
m reflects underlying GPU vectorization efficiency). The
average cost per sample of Algorithm 1 after n samples,
when vectorized for m chains, is then

C0(m,n) := A0(m) +B0(m)
1

n

n∑
i=1

max
j∈[m]

Ni,j (6)

where A0(m) :=
∑

j ̸=k cj(m), B0(m) = ck(m), and Ni,j

= # calls of the loop body Sk for chain j and sample i. The
max reflects the synchronization barrier across chains.

In this case, for the FSM (vmap’ed Algorithm 3), the
cost of calling each block Sl is

∑K
j=1 cj(m), since

vmap(step) executes all switch branches for all chains.
We will assume this cost can be scaled by some α ∈
[maxk∈[K] ck(m)/

∑K
k=1 ck(m), 1], since we will later re-

design step to reduce α < 1. This gives an average cost
per sample for m chains after n samples of,

CF (m,n) = AF (m) +BF (m) max
j∈[m]

1

n

n∑
i=1

Ni,j (7)

where AF (m) = α(K − 1)(c¬k(m) + ck(m)), BF (m) =
α(ck(m) + c¬k(m)), and c¬k(m) :=

∑
j ̸=k cj(m).

Let Xi,j be the ith random sample obtained by chain
j. If the joint sequence (Xi,j , Ni,j)i≥1 is an appropriate
Markov chain, we have the following concentration result
for C0, CF , which formalizes our derivations in Section 2.2.
Theorem 4.1 (Long Run Costs). Let Ni,j ∈ [0, B],Xi,j ∈
X ⊆ Rd, (Xi,j , Ni,j)i≥1 be a Markov Chain with station-
ary distribution π with absolute spectral gap 1− λ ∈ [0, 1).
Then with probability 1− δ we have the inequalities:

|C0(m,n)− C0(m)| ≤ MB0(m)n− 1
2 ln(2/δ) (8)

|CF (m,n)− CF (m)| ≤ MBF (m)n− 1
2 ln(2m/δ) (9)
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Where, for some (N1, .., Nm)
iid∼ πN , the long run costs are

C0(m) := A0(m) +B0(m)Eπ max
j∈[m]

Nj (10)

CF (m) := AF (m) +BF (m)EπN1 (11)

The result says that as n→∞, the cost per sample of the
standard MCMC design converges to the expected time for
the slowest chain to draw a sample, whilst the FSM design
converges to the expected time for a single chain to draw
a sample, scaled by the additional cost of control-flow in
step (i.e. AF (m) and BF (m)). Both rates are O(n− 1

2 ).

4.2. The Relative Long-Run Cost of the FSM

Using the form of the constants in Theorem 4.1, the ratio of
the long-run costs, E(m) := C0(m)/CF (m), is given by

E(m) =
c¬k(m) + ck(m)Emaxj∈[m] Nj

α(c¬k(m) + ck(m))(K − 1 + EN1)
(12)

In Proposition A.3 in Appendix A we prove that:

E(m) ≤ R(m) :=
Emaxj∈[m] Nj

EN1
(13)

and that this bound is tight. We refer to R(m) as the ‘theoret-
ical efficiency bound’ for the FSM. Note from Equation (12)
that minimizing α and K improves the efficiency E(m) of
the FSM. In Section 5 we introduce two techniques to mini-
mize α and K in practice, which enable us to nearly obtain
the efficiency bound R(m) for certain MCMC algorithms.

Scale of Potential Speed-ups. The size of R(m) depends
(only) on the underlying distribution of N1 (since Ni =d Nj

∀i, j ∈ [m]). Whenever N1 is sub-exponential, it is known
that R(m) = O(ln(m)) (Vershynin, 2018). Although
this implies a slow rate of increase in m, R(m) can be
still be very large for small values of m. For example, if
Nj/B ∼ Bern(p) (i.e., one either needs zero or B iter-
ations to get a sample), then R(m) = (1 − (1 − p)m)/p
and converges to 1/p exponentially fast as m increases. For
small p this can be very large even for small m. In gen-
eral R(m) is sensitive to the skewness of the distribution:
distributions on [0, B] with zero skewness have R(m) = 2,
whilst distributions with skew of 10 can have R(m) ≈ 100;
see Figure 4. Intuitively, these are the distributions where
chains are slow only occasionally, but at least one chain
is slow often. In such cases, our FSM-design can lead to
enormous efficiency gains, as we show in experiments.

5. Optimal FSM design for MCMC algorithms
In this section we provide two strategies to modify the func-
tion step to (effectively) reduce α and K. These strategies
enable us to develop MCMC implementations which nearly
obtain the theoretical bound R(m) in some experiments.

Figure 4. R(m) =
Emaxj∈[m] Nj

EM1
for different distributions with

skewness γ1 ≈ 1 (LHS) and γ1 ≈ 10 (RHS).

5.1. Step Bundling to Reduce K

Given an FSM with step defined by code blocks
S1, ..., SK and transition function δ, one can ‘bundle’
multiple steps together using a modified step function,
bundled_step, which replaces the switch over the al-
gorithm state k in step with a series of separate condi-
tional statements. This is shown in Algorithm 4 for an
example with two state functions. Note that under the “run
all branches and mask” behaviour of vmap, vmap(step)
and vmap(bundled_step) have the same cost. How-
ever, whenever bundled_step runs S1 and δ returns
k = 2, it immediately also runs S2. This reduces the ‘effec-
tive’ number of states K and/or the overall number of steps
needed to recover a sample, increasing efficiency. In princi-
ple, the block ordering can be optimized for sequences that
are expected to occur with higher probability. However, we
found chronological order a surprisingly effective heuristic.

Algorithm 4 bundled step for FSM with S1, S2

Inputs: algorithm state k, variables z
1: set isSample← 1{k = 2}
2: if k = 1 then
3: run block S1 with local variables z
4: update state k ← δ(1, z)
5: end if
6: if k = 2 then
7: run block S2 with local variables z
8: update state k ← δ(2, z)
9: end if

10: return (k, z,isSample)

5.2. Cost Amortization to Reduce α

If a function g is called on a variable θ ∈ z inside
M ≤ K state functions, a single call of vmap(step)
(or vmap(bundled_step)) will execute g M -times.
To prevent this, we (i) augment step to return a
flag doComputation indicating if g executed in the
next code block, and (ii) define a new step function
amortized_step around step which calls step once,
and executes g if doComputation=True. The resulting
step function is shown in Algorithm 5 (note if g is called in
step S1, we assume it is already pre-computed in z).
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Note the function g is now only called once per step when
using vmap on amortized_step. In particular, if the
executions of g cost (in total) β ∈ [0, 1] fraction of the to-
tal cost of all blocks, amortization will reduce this fraction
to β

M + (1 − β) We indeed observe this when amortizing
g = log p for the elliptical slice sampler in Section 7.1. In
that scenario, M = 2 and β ≈ 1 as the log-likelihood is
very expensive, resulting in a 2× speed-up over no amorti-
zation. One issue is that amortization only allows steps to
be bundled which do not require calls of g. We adapt the
algorithm to handle this in Appendix B.

Algorithm 5 amortized step for FSM with function g

1: Input: Algorithm state k, variables z
2: (k, z,isSample,doComputation)← step(k, z)
3: if doComputation then
4: Unpack state (z′, θ) = z
5: Do computation θ ← g(z)
6: Re-pack state z ← (z′, θ)
7: end if
8: Return (k, z,isSample)

6. Related work
FSMs in Machine Learning. Previous work in machine
learning has used the framework of FSMs to design image-
based neural networks (Ardakani et al., 2020) and Bayesian
nonparametric time series models (Ruiz et al., 2018), as well
as extract representations from Recurrent-Neural-Networks
(RNNs) (Muškardin et al., 2022; Cechin et al., 2003; Tiňo
et al., 1998; Zeng et al., 1993; Koul et al., 2018; Svete and
Cotterell, 2023). To our knowledge, our work is the first that
uses FSMs as a framework to represent MCMC algorithms,
and design novel implementations.

Efficient MCMC on Modern Hardware. Given the recur-
sive nature of HMC-NUTS, previous work has reformulated
the algorithm for compatibility with machine learning frame-
works that cannot naively support recursion (Abadi et al.,
2016; Phan et al., 2019; Lao et al., 2020). However, these
implementations do not address synchronization inefficien-
cies caused by automatic vectorization tools. Our work
bears some similarities with a general-purpose algorithm
proposed in the High-Performance-Computing literature for
executing batched recursive programs (Radul et al., 2020).
Both their method and ours breaks programs down into
smaller blocks for efficient vectorization, but there are sev-
eral major differences. Our approach provides a recipe for
implementing single-chain iterative MCMC algorithms and
is fully compatible with automatic vectorization tools like
vmap. In contrast, their algorithm is designed for recursive
programs and requires code which is already batched. Cru-
cially, to avoid synchronization barriers due to while loops,
this code cannot have been batched with a vmap-equivalent
vectorization tool, since vmap converts while loops into

a single batched primitive that cannot be broken down by
their algorithm. Additionally, our method uses the fewest
(while-loop-free) blocks possible and allows for control flow
within blocks (which we showed is crucial for optimal per-
formance under the “run and mask” paradigm). By contrast,
their algorithm does not allow blocks to contain any control-
flow, yielding many small blocks. We also obtain provable
speed-ups for MCMC via theoretical analysis.

7. Experiments
The following experiments evaluate FSMs for different
MCMC algorithms with while loops against their stan-
dard (non-FSM) implementations, as well as other MCMC
methods in one experiment. All methods consist of sin-
gle chain MCMC algorithms written in JAX, turned into
multi-chain methods with vmap, and compiled using jit.
All experiments are run in JAX on an NVIDIA A100 GPU
with 32GB CPU memory. Code can be found at https:
//github.com/hwdance/jax-fsm-mcmc.

7.1. Delayed-Rejection MH on a Simple Gaussian

We first illustrate basic properties of the FSM conversion
on a toy example. The MCMC algorithm used is symmet-
ric Delayed-Rejection Metropolis Hastings (DRMH) (Mira
et al., 2001), which is a simple example of a delayed rejec-
tion method. Symmetric DRMH modifies the Random-Walk
Metropolis-Hastings algorithm by iteratively re-centering
the proposal distribution on the rejected sample and resam-
pling until either acceptance occurs or a maximum number
of tries M is reached. To ensure detailed balance, the accep-
tance probability is adjusted to account for past rejections.

Experimental setup. We implement symmetric DRMH
using (vmap’ed) Algorithm 1 (baseline) and Algorithm 3
(ours) to sample from a univariate Gaussian N (0, 1), vary-
ing the number of chains. We use a N (x, 0.1) proposal dis-
tribution with M = 100 tries per sample and draw 10,000
samples per chain. Although DRMH has 3 state functions
by default (see Figure 3), the INIT and DONE states are
essentially empty, and so just a single state function can be
used for the while loop body. This means an appropriate
FSM implementation should be able to get close to R(m),
up to overheads. To illustrate the importance of designing
FSMs with as few (effective) state functions as possible, we
implement an FSM which unrolls the while loop body into
four different state functions, as well as a (condensed) FSM
with a single state function (i.e. effectively uses bundling).

Results. As the number of chains m increases, the FSM
implementations increasingly outperform the standard im-
plementation (see Figure 6). This reflects the increasing
synchronization cost of waiting for the slowest chain. The
speedups are near an order of magnitude when m = 1024
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Figure 5. Average results using 10 random seeds (standard deviations too small to show) from drawing 10k posterior samples for the
covariance hyperparameters (τ, θ, σ) of a Gaussian Process Y (x) = f(x) + ϵ on the Real Estate UCI dataset (n = 411, d = 6). Blue =
BlackJAX elliptical slice, Red = FSM elliptical slice sampler (red). LHS: the average number of sub-iterations (i.e., ellipse contractions)
needed to draw a single sample increases from 6 (1 chain) to 18 (1024 chains) for the standard implementation due to synchronization
barriers, but remains constant for our FSM. Middle two plots: The FSM can run ∼3x faster by avoiding synchronization barriers, as shown
by the Walltime (left-middle) and ESS/S (right-middle). RHS: the ratio of average iterations per sample (i.e. R(m)) (green) bounds the
obtainable ‘efficiency gain’ using our FSM, but is nearly obtained in relative walltime when amortizing log-pdf calls (red).

Figure 6. Mean and standard deviation walltimes (LHS) and ESS
(RHS) of the symmetric Delayed-Rejection Algorithm (Mira et al.,
2001) using Algorithm 1 and our FSM implementation Algo-
rithm 3 (both with vmap), on a univariate Gaussian (10 random
seeds). FSM uses step with the while loop body (PROPOSE in
Figure 3) split into 4 states, whilst FSM-condensed uses a single
step. Using a single step leads to a ∼ 3x efficiency gain.

for the condensed FSM. Bundling sees nearly a 3x efficiency
gain and enables no performance loss when m = 1 and there
is no synchronization barrier. Note Standard DR tracks the
profile of the estimated E[maxj∈[m] N1,j ], whilst the FSMs
track the profile of E[N1,j ] (which is flat). This implies the
condensed FSM (i.e. with step bundling) has been able to
approximately obtain R(m) up to a constant factor.

7.2. Elliptical Slice Sampling on Real Estate Data

The elliptical slice sampler (introduced in the example in
Section 2.2) has a single while loop, resulting in three state
functions (see Figure 3). We compare BlackJAX’s imple-
mentation to our FSM implementation.

Experimental setup. We apply the sampler to infer poste-
riors on covariance hyperparameters in Gaussian Process
Regression, using the UCI repository Real Estate Valuation
dataset (Yeh, 2018). This dataset is comprised of n = 414
input and output pairs Dn = {xi, yi}ni=1, where yi is the
house price of area i, and xi ∈ R6 are house price predic-
tors including house age, spatial co-ordinates, and number
of nearby convenience stores. We model y = f(x) + ϵ

and assume ϵ ∼ N (0, σ2), f ∼ GP(0, k) with kernel
k(x, x′) = τ2 exp(−λ2|x − x′∥2). We use Normal priors
σ, τ, λ ∼ N (0, 1), (so the ellipse is drawn using N (0, I))
and use the sampler to draw 10k samples per chain from the
posterior p(σ, τ, λ|Dn), for varying # chains m.

Results are shown in Figure 5. As expected, the BlackJAX
implementation suffers from synchronization barriers at ev-
ery iteration due to using vmapwith while loops: its average
number of iterations per sample increases roughly logarith-
mically from 6 (1 chain) to 18 (1024 chains), whereas the
FSM implementation remains constant. As a result, the
FSM significantly improves walltime and ESS/second per-
formance (Figure 5/middle). For instance, when 1024 chains
are used, the FSM reduces the time to draw 10k samples per
chain from over half an hour to about 10 minutes. The effi-
ciency gain can be measured by the ratio (BlackJAX/FSM)
of wall-times (shown in Figure 5/right). As expected, FSM
efficiency increases with the number of chains. The greatest
efficiency gain occurs precisely where the best ESS/second
can be obtained via GPU parallelism. The analysis in Sec-
tion 4 shows that the efficiency gain is upper-bounded by
the ratio of average # iterations per sample for both methods
(i.e., R(m)). This bound is almost achieved here by amor-
tizing log-pdf calls. This is because (i) roughly 80% of the
time is spent in the iterative ‘SHRINK’ state, and (ii) log-pdf
calls dominate computational cost here, so amortizing them
ensures the state function cost is similar to the standard im-
plementation. Since the log-pdf is needed in two states, not
amortizing it results in two log-pdf calls per step, and so we
lose roughly a factor 2 in relative performance (orange line
in Figure 5). These results change with data set size, which
determines the cost of log-pdf calls (see Appendix B).

7.3. HMC-NUTS on High-Dimensional Correlated MoN

The NUTS variant of Hamiltonian Monte Carlo (Hoffman
et al., 2014) adaptively chooses how many steps of Hamil-
tonian dynamics to simulate when drawing a sample, by
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Figure 7. Left: contours of the first two dimensions of a correlated mixture of Gaussians, along with a single chain of HMC-NUTS and
MALA. Middle Left: Histogram of the number of integration steps taken per sample for a single NUTS chain. Middle Right: histogram
of the maximum number of integration steps taken per sample across 500 chains. Right: Effective samples per minute for the standard
BlackJAX HMC-NUTS implementation, and our FSM implementation of HMC-NUTS (average and standard error bars from 5 seeds).
The FSM achieves speed ups of nearly an order of magnitude for 100 chains, and more than half an order of magnitude for 500 chains.

checking whether the trajectory has turned back on itself or
has diverged due to numerical error. Its iterative implemen-
tation in BlackJAX involves two nested while loops: An
outer loop that expands the proposal trajectory, and an inner
loop that monitors for U-turns and divergence. Converting
these while loops into an FSM using our procedure results
in five states (Figure 3). We again compare BlackJAX’s
implementation to our own (using vmap for both methods).

Experimental setup. We implement NUTS on a 100-
dimensional correlated mixture of Gaussians (ρ = 0.99),
with the mixture modes placed along the principal direction
at (−10 · 1,0, 10 · 1). We use a pre-tuned step-size with
acceptance rate ∼ 0.85 and identity mass matrix. We draw
n = 1000 samples per chain and vary # chains m.

Results. The trajectory of a single NUTS chain (1000
samples) are displayed on the LHS of Figure 7 (one dot
= one sample). The typical distance traveled by NUTS is
small (few integration steps), with the occasional large jump
(many integration steps) when the momentum sample aligns
with the principal direction. In particular, the probability
a sample requires less than 20 integration steps is ∼ 0.95
and needs > 1000 steps is ∼ 0.01, but the probability that
at least one chain needs more than 1000 steps is ∼ 0.99
(Middle Figure 7). This results in FSM speed-ups of nearly
an order of magnitude for m = 100, and about half an or-
der of magnitude for m = 500 (RHS Figure 7). Note that
one can avoid sychronization barriers and obtain very high
ESS/Sec using a simpler algorithm like MALA, but this
fails to explore the distribution (LHS Figure 7).

7.4. Transport Elliptical Slice Sampling and NUTS on
Distributions with Challenging Local Geometry

Transport elliptical slice sampling (TESS), due to Cabezas
and Nemeth (2023), is a state-of-the-art variant of elliptical
slice sampling designed for challenging local geometries. It
uses a normalizing flow T to ‘precondition’ the distribution
π into an approximate Gaussian, does elliptical slice sam-

Table 1. Left: ESS/sec for baselines on Predator Prey (PP), Google
Stock (GS), German Credit (GC), Biochemical Oxygen Demand
(BOD) distributions. Right: FSM speed-ups for NUTS/TESS.

ESS/sec (non-FSM) FSM Speed-up

Dist. MEADS CHEES NUTS TESS NUTS TESS

PP 1.5 nan 0.02 2.3 1.5× 1.7×
GS 480.8 60.2 0.15 1116 3.5× 2.2×
GC 141.5 199.0 1.71 58.95 1.2× 1.0×
BOD 64.85 247.0 0.56 2978 0.8× 1.1×

pling on the transformed distribution T#π, and then pushes
generated samples through T−1 to recover samples from
π. TESS achieves particularly good results on distributions
with ‘funnel’ geometries, on which gradient-based methods
like HMC-NUTS tend to struggle (Gorinova et al., 2020).
TESS is similar to the elliptical slice sampler and so the
FSM has the same ‘single loop’ structure (see Figure 3).

Experimental setup We examine the speed-ups using FSMs
for TESS and NUTS on the four benchmark distributions in
Cabezas and Nemeth (2023), which are chosen for their chal-
lenging geometries. As baselines we use two state-of-the-art
adaptive HMC variants (MEADS (Hoffman and Sountsov,
2022), and CHEES (Hoffman et al., 2021)). We expect
NUTS to perform poorly on these problems (as observed
in Cabezas and Nemeth (2023)), but implementing it lets
us at least examine the FSM speed-ups. For all methods,
we average results over 128 chains of 1000 samples, with
hyperparameters pre-tuned over 400 warm-up steps.

Results are in Table 1. TESS-FSM improved ESS/sec over
TESS in all cases (in 2/4 cases by ∼ 2×) and in 3/4 cases
improved the best ESS/sec. NUTS performed poorly as
expected, but the FSM improved ESS/sec in 3/4 cases, and
> 3× in one case. Speed-ups for NUTS and TESS were
larger for tasks with an expensive log-pdf (PP, GS). This
is because most time is spent in the loop states where the
log-pdf is called, and a more costly log-pdf reduces the gap
between the cost of executing these states for non-FSMs (ck)
and FSMs (

∑m
j=1 cj) (see Section 4), improving efficiency.

9



Efficiently Vectorized MCMC on Modern Accelerators

Acknowledgements
HD, PG and PO are supported by the Gatsby Charitable
Foundation. This work was partially supported by NSF
OAC 2118201.

Impact Statement
This work improves the execution efficiency of MCMC
algorithms. Our method has the potential to significantly
reduce time, cost, and energy expenditure for a range of
scientific applications.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
et al. (2016). Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Ardakani, A., Ardakani, A., and Gross, W. (2020). Training
linear finite-state machines. Advances in Neural Informa-
tion Processing Systems, 33:7173–7183.

BlackJax (2019). Sample with multiple chains in parallel.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011).
Handbook of markov chain monte carlo. CRC press.

Cabezas, A., Corenflos, A., Lao, J., Louf, R., Carnec, A.,
Chaudhari, K., Cohn-Gordon, R., Coullon, J., Deng,
W., Duffield, S., et al. (2024). Blackjax: Com-
posable bayesian inference in jax. arXiv preprint
arXiv:2402.10797.

Cabezas, A. and Nemeth, C. (2023). Transport elliptical
slice sampling. In International Conference on Artificial
Intelligence and Statistics, pages 3664–3676. PMLR.

Cechin, A. L., Regina, D., Simon, P., and Stertz, K. (2003).
State automata extraction from recurrent neural nets using
k-means and fuzzy clustering. In 23rd International Con-
ference of the Chilean Computer Science Society, 2003.
SCCC 2003. Proceedings., pages 73–78. IEEE.

DeRemer, F. L. (1969). Practical translators for LR (k)
languages. PhD thesis, Massachusetts Institute of Tech-
nology.

Fan, J., Jiang, B., and Sun, Q. (2021). Hoeffding’s inequality
for general markov chains and its applications to statis-
tical learning. Journal of Machine Learning Research,
22(139):1–35.

Flax (2023). Flax: A neural network library for jax.
https://github.com/google/flax. Accessed:
2025-01-30.

Gorinova, M., Moore, D., and Hoffman, M. (2020). Auto-
matic reparameterisation of probabilistic programs. In
International Conference on Machine Learning, pages
3648–3657. PMLR.

Hoffman, M., Radul, A., and Sountsov, P. (2021). An
adaptive-mcmc scheme for setting trajectory lengths in
hamiltonian monte carlo. In International Conference
on Artificial Intelligence and Statistics, pages 3907–3915.
PMLR.

Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn
sampler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593–1623.

Hoffman, M. D. and Sountsov, P. (2022). Tuning-free gener-
alized hamiltonian monte carlo. In International confer-
ence on artificial intelligence and statistics, pages 7799–
7813. PMLR.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001).
Introduction to automata theory, languages, and computa-
tion. Acm Sigact News, 32(1):60–65.

Koul, A., Greydanus, S., and Fern, A. (2018). Learning
finite state representations of recurrent policy networks.
arXiv preprint arXiv:1811.12530.

Lao, J., Suter, C., Langmore, I., Chimisov, C., Saxena, A.,
Sountsov, P., Moore, D., Saurous, R. A., Hoffman, M. D.,
and Dillon, J. V. (2020). tfp. mcmc: Modern markov
chain monte carlo tools built for modern hardware. arXiv
preprint arXiv:2002.01184.

Magnusson, M., Torgander, J., Bürkner, P.-C., Zhang,
L., Carpenter, B., and Vehtari, A. (2025). \texttt
{posteriordb}: Testing, benchmarking and developing
bayesian inference algorithms. In The 28th International
Conference on Artificial Intelligence and Statistics.

Mira, A. et al. (2001). On metropolis-hastings algorithms
with delayed rejection. Metron, 59(3-4):231–241.

Modi, C., Barnett, A., and Carpenter, B. (2024). Delayed
rejection hamiltonian monte carlo for sampling multiscale
distributions. Bayesian Analysis, 19(3):815–842.

Murray, I., Adams, R., and MacKay, D. (2010). Elliptical
slice sampling. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics,
pages 541–548. JMLR Workshop and Conference Pro-
ceedings.
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A. Mathematical Appendix
A.1. Proof of Theorem 4.1

Proof. The result broadly follows from known Hoeffding bounds for Markov chains. For clarity we restate the relevant
result below5, using our notation and set-up.

We first define formally the notion of an absolute spectral gap, from (Fan et al., 2021).

Definition A.1 (Absolute Spectral Gap). Let Z and π denote the state space and the invariant measure of a Markov chain
{Zi}i≥1. For a function f : Z → R, write π(h) :=

∫
h(z)π(dz). Let L2(π) = {h : π(h2) < ∞} be the Hilbert

space consisting of π-square-integrable functions, and L0
2(π) = {h ∈ L2(π) : π(h) = 0} be its subspace of π-meanzero

functions. The transition probability kernel of the Markov chain, denoted by P , is viewed as an operator acting on L2(π).
Let λ ∈ [0, 1] be the operator norm of P acting on L0

2(π). Then, 1− λ is the absolute spectral gap of the Markov chain.

Proposition A.2 (Hoeffding Bound for Markov Chains - Theorem 1 in Fan et al. (2021)). Let (Zi)i≥1 be a Markov Chain
with measurable state space Z , stationary distribution π, and absolute spectral gap 1− λ ∈ (0, 1]. Let f : Z → [0, B] be
measurable and bounded. Then, for any ϵ > 0,

Pπ

(∣∣∣∣∣
n∑

i=1

f(Zi)− nEπf(Z1)

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−1− λ

1 + λ

2ϵ2

B2

)
(14)

where 1− λ is the absolute spectral gap of π.

Now we are ready to prove our results. We start with C0(m,n). First, note that since (Xi,j , Ni,j)i≥1 is a Markov
chain with stationary distribution π for every chain j, then ({Xi,j , Ni,j}mj=1)i≥1 is also a Markov chain with stationary
distribution πm := π ⊗ π⊗...⊗︸ ︷︷ ︸

m−1

π, because the chains are independent. Therefore, if we set Zi := {Xi,j , Ni,j}mj=1 and

f(Zi) := maxj∈[m](Ni,j) ∈ [0, B], we get by an application of Proposition A.2 that

Pπ

(∣∣∣∣∣
n∑

i=1

max
j∈[m]

(Ni,j)− nEπ max
j∈[m]

(N1,j)

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−1− λ

1 + λ

2ϵ2

nB2

)
(15)

Setting δ = 2 exp
(
− 1−λ

1+λ
2ϵ2

nB2

)
and re-arranging, we get that with probability 1− δ (under the stationary distribution π),

∣∣∣∣∣
n∑

i=1

max
j∈[m]

(Ni,j)− nEπ max
j∈[m]

(N1,j)

∣∣∣∣∣ ≤ B

√
n(1 + λ)

2(1− λ)
ln

(
2

δ

)
(16)

Multiplying by B0(m) and dividing by n on both sides, and adding and subtracting A0(m) from the LHS gives us the result
for C0

∣∣∣∣∣B0(m)
1

n

n∑
i=1

max
j∈[m]

(Ni,j)−B0(m)Eπ max
j∈[m]

(N1,j)

∣∣∣∣∣ ≤ B0(m)B

√
(1 + λ)

2n(1− λ)
ln

(
2

δ

)
(17)∣∣∣∣∣B0(m)

1

n

n∑
i=1

max
j∈[m]

(Ni,j)±A0(m)−B0(m)Eπ max
j∈[m]

(N1,j)

∣∣∣∣∣ ≤ B0(m)B

√
(1 + λ)

2n(1− λ)
ln

(
2

δ

)
(18)

∣∣∣∣C0(m,n)−A0(m)−B0(m)Eπ max
j∈[m]

(N1,j)

∣∣∣∣ ≤ B0(m)B

√
(1 + λ)

2n(1− λ)
ln

(
2

δ

)
(19)

5We note that Fan et al. (2021) only present a one-sided bound, but by standard symmetry arguments this immediately implies the
above two-sided bound.
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Now we follow similar steps for CF (m,n). To start, we bound the distance from maxj∈m
1
n

∑n
i=1 Ni,j and Eπ[N11] in

terms of a sum of individual distances using the union bound.

Pπ

(∣∣∣∣∣max
j∈m

1

n

n∑
i=1

Ni,j − EπN11

∣∣∣∣∣ ≥ ϵ

)
= Pπ

(
max
j∈m

1

n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

)

+ Pπ

(
max
j∈m

1

n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

)
(20)

= Pπ

 m⋃
j=1

{
1

n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

}
+ Pπ

 m⋃
j=1

{
1

n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

} (21)

≤
m∑
j=1

[
Pπ

(
1

n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

)

+ Pπ

(
1

n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

)]
(22)

=

m∑
j=1

Pπ

(∣∣∣∣∣ 1n
n∑

i=1

Ni,j − EπN11

∣∣∣∣∣ ≥ ϵ

)
(23)

= mPπ

(∣∣∣∣∣ 1n
n∑

i=1

Ni,1 − EπN11

∣∣∣∣∣ ≥ ϵ

)
(24)

= mPπ

(∣∣∣∣∣
n∑

i=1

Ni,1 − nEπN11

∣∣∣∣∣ ≥ nϵ

)
(25)

Applying Proposition A.2 on the Markov Chain (X1,i, N1,i)i≥1 with f(X1,i, N1,i) = N1,i ∈ [0, B] and following the same
steps as for C0(m,n), we similarly recover∣∣∣∣CF (m,n)−AF (m)−BF (m)Eπ max

j∈[m]
(N1,j)

∣∣∣∣ ≤ BF (m)B

√
(1 + λ)

2n(1− λ)
ln

(
2m

δ

)
(26)

which is the result in the Theorem.

Proposition A.3. Fix m,K ∈ N\{0} and let PN be a probability measure on R+ strictly positive first moment. Suppose (i)

N1, ..., Nm
iid∼ PN , (ii) c1(m), ..., cK(m) ≥ 0 and (iii) α ∈ [maxj∈[K] cj(m)/

∑
j∈[K] cj(m), 1]. Then, we have

E(m) :=
c¬k(m) + ck(m)Emaxj∈[K] Nj

α(c¬k(m) + ck(m))(K − 1 + EN1)
≤

Emaxj∈[K] Nj

EN1
=: R(m) (27)

where c¬k(m) =
∑

j ̸=k cj(m). The bound is tight.

Proof. Note a+b
c+d = a

c γ + b
d (1− γ) where γ = c

c+d for any a, b, c, d ∈ R. Applying this to our case, we get

E(m) =
c¬k(m)

α(c¬k(m) + ck(m))(K − 1)
w +

ck(m)

α(c¬k(m) + ck(m))
R(m)(1− w) (28)

where w = α(c¬k(m)+ck(m))
α(c¬k(m)+ck(m))(K−1+EN1)

∈ [0, 1]. Now we split into two cases for K = 1 and K > 1. For the case K = 1

we only have a single iterative state and so C¬k(m) = 0, α = 1. In this case we trivially have E(m) = R(m). Now

13
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suppose K > 1. In this case, since α(c¬k(m) + ck(m)) ≥ maxj∈[K] cj(m), we have

ck(m)

α(c¬k(m) + ck(m))
≤ ck(m)

maxj∈[K] cj(m)
≤ 1 (29)

Which means we can bound E(m) by removing the term in front of R(m),

E(m) ≤ c¬k(m)

α(c¬k(m) + ck(m))(K − 1)
w +R(m)(1− w) (30)

By the same logic, we have

c¬k(m)

α(c¬k(m) + ck(m))(K − 1)
≤ c¬k(m)

maxj∈[K] cj(m)(K − 1)
=

∑
j ̸=k cj(m)

maxj∈[K] cj(m)(K − 1)
≤ 1 (31)

which means

E(m) ≤ w +R(m)(1− w) (32)
≤ R(m) (33)

Where the last line uses the fact that R(m) ≥ 1 since N1 ≥ 0. The bound is tight because when K = 1 we have
E(m) = R(m). This completes the proof
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B. Additional Details
B.1. Algorithms

Note here we use x̃ to denote a batch of inputs [x1, ...,xm] for m different chains, and the same for other variables.

Algorithm 6 Vectorized MCMC algorithm with vmap(sample) function
1: Inputs: sample x̃0, seed r̃0
2: for i ∈ {1, ..., n} do
3: generate x̃i, r̃i ← vmap(sample)(x̃i−1, r̃i−1)
4: end for
5: return x̃1, . . . , x̃n

Algorithm 7 Vectorized FSM MCMC algorithm with vmap(step) function
1: input: initial value x̃0, # samples n
2: initialize: z̃ = vmap(init)(x̃0), X̃ = list(), B̃ = list()
3: Set t̃ = 0 and k̃ = 0
4: while mint̃i∈t̃{t̃i} < n do
5: (k̃, z̃, ˜isSample)← vmap(step)(k̃, z̃)
6: append current sample value x̃ stored in z̃ to X̃
7: append ˜isSample to B̃
8: update sample counter t̃← t̃+ ˜isSample
9: end while

10: return X̃[B̃]

Algorithm 8 Transition kernel for elliptical slice sampler with log-pdf log p, covariance matrix Σ.
1: Input: Sample x
2: Choose ellipse ν ∼ N (0,Σ)
3: Set threshold log y ← log p(x) + log u : u ∼ U [0, 1]
4: Set bracket [θmin, θmax]← [θ − 2π, θ] : θ ∼ U [0, 2π]
5: Make proposal x′ ← x cos θ + ν sin θ
6: while log p(x′) > log y do
7: Shrink bracket and update proposal:
8: if θ < 0 then
9: θmin ← θ

10: else
11: θmax ← θ
12: end if
13: x′ ← x cos θ + ν sin θ : θ ∼ U [θmin, θmax]
14: end while
15: Return x′

Algorithm 9 bundled step as input to amortized step.
1: Input: Algorithm state k, variables z
2: doComputation = False
3: while not doComputation do
4: (k, z,isSample,doComputation)← step(k, z)
5: end while
6: Return (k, z,isSample,doComputation)
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B.2. FSM Construction Procedure for Programs Considered in Main Text

Detailed Construction in the two sequential while loops case Here, we describe the FSM construction for programs
with two sequential while loops in detail. Following the constructions introduced in the main body, let us note

• F1 := ({S11, S12, S13},Z, δ1, S11, S13) the FSM associated to B1

• F2 := ({S21, S22, S23},Z, δ2, S21, S23) the FSM associated to B2

By construction, S21 is empty. Both FSMs share the same input space, which is the set of local variables values associated
to the original sample function.

Then, the resulting FSM representation of sample is (S,Z, δ, S11, S23), where

• S = {S11, S12, S13, S22, S23}.

• Transition function δ defined as

δ(S, z) =


δ1(S, z) if S ∈ {S11, S12}
δ2(S21, z) if S = S13

δ2(S, z) if S = {S22, S23},
(34)

whose construction illustrates the “FSM stitching” operation performed.

Detailed Construction in the two nested while loop case Here, we describe the FSM construction for programs with two
nested while loops. Following the constructions introduced in the main body, let us note

Fi := ({Si1, Si2, Si3},Z, δi, Si1, Si3) the (inner) FSM associated to B2.

Then, the resulting FSM representation of sample is (So,Z, δo, S1, S3), where

• So = {S1, Si1, Si2, Si3, S3}.

• Transition function δo defined as

– δo(S1, z) = δo(Si3, z) runs the outer while loop condition on z, goes to Si1 if True, and S3 otherwise.
– δo(S, z) = δi(S, z) if S ∈ {Si1, Si2}

B.3. FSM Construction Procedure for General Programs.

The FSM construction procedures in ?? for specific programs can be automated to handle programs with any finite number
of sequential and/or nested while loops. We show how this works using a simple programming language defined by the
following grammar:

Operation op ::= op1 | op2 | · · · | opn
Simple Block SB ::= ⟨op⟩ | ⟨op⟩ ⟨SB⟩
While Block WB ::= W { ⟨Bs⟩ }

Block B ::= ⟨SB⟩ | ⟨WB⟩
Blocks Bs ::= ⟨B⟩ | ⟨Bs⟩ ⟨B⟩

This grammar contains just enough to describe non-trivial programs containing any finite number of (possibly nested) while
loops. Given a program generated with this grammar, we construct an FSM variant of it by:

1. Parsing the program into a parse tree.

2. “Coarsening” the parse tree into a tree where each node is a block.

3. Applying a recursively-defined function which transforms the program into an FSM.

4. Collapsing any spurious empty states.
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B.3.1. STEP 1: PARSING THE PROGRAM INTO A PARSE TREE.

First, note that as this grammar is context-free, every program P can be represented by the yield of a parse tree (e.g. Theorem
5.12 (Hopcroft et al., 2001)). Consequently, one can use any context-free parser to obtain a parse tree of the program. We
choose the look-ahead, left-to-right, rightmost derivation (LALR) parser (DeRemer, 1969). Figure 8 shows the resulting
parse tree associated with the program “op1W{op1W{op1}}”.

Token('OP1', 'op1')operationsimple_block

block

blocks
Token('W', 'W')

Token('LBRACE', '{')

Token('OP1', 'op1')operationsimple_block

blockblocks

Token('W', 'W')

Token('LBRACE', '{')

Token('OP1', 'op1')operationsimple_blockblockblocks

Token('RBRACE', '}')

while_blockblockblocks

Token('OP1', 'op1')

operation

simple_block
blockblocks

Token('RBRACE', '}')

while_blockblockblocks

Token('OP1', 'op1')

operation

simple_block
block

blocks

Figure 8. Parse tree of the program “op1W{op1W{op1}}”.

B.3.2. STEP 2: COARSENING THE PARSE TREE.

To convert the parse tree into an FSM, we first derive a simplified version of it with: (i) no operation nodes (e.g. content of
simple blocks), (ii) no block markers (e.g. While tokens and braces), (iii) no “blocks” and “block” nodes (these are helpful
to clarify the grammar’s definition, but do not carry information about a given program). The first two properties can be
achieved by simply pruning the tree of all nodes that are not blocks, which is a well-known operation and not shown here.
The output of this procedure is guaranteed to be a tree, as all such nodes (i) and (ii) are terminal. The second property can be
achieved by applying the procedure in Algorithm 11.

Algorithm 10 Gathering meaningful children
1: function GATHER CHILDREN(node) returns list of Node
2: all children←∪ MAP(GATHER CHILDREN, node.children)
3: all children←∪ FILTER(NON TERMINAL, all children) {Discard “op” nodes and markers}
4: if node.type is “block” or “blocks” then
5: return all children {Discard the node, and only return the children}
6: else
7: return [Node(node.type, all children)]
8: end if
9: end function

Algorithm 11 Coarsening the parse tree
1: function COARSEN TREE(node) returns Node
2: all children←∪ MAP(GATHER CHILDREN, children(node))
3: return Node(“blocks”, all children)
4: end function

After applying the coarsening procedure to the parse tree of the same program “op1W{op1W{op1}}”, we obtain the
coarsened parse tree shown in Figure 9. The algorithm has been modified to return block labels in order to track the graph
manipulation operations done in the next steps.

B.3.3. STEP 3: TRANSFORMING THE COARSENED PARSE TREE INTO AN FSM.

Now we transform the coarsened parse tree into an FSM. Our approach leverages the fact that any subtree of the parse tree is
itself a valid (sub)program6, and should thus be handle-able by the conversion procedure we define. Each (sub)program

6It is a “subprogram” of the original program in the sense that it is contained in the original program.
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simple_block_1 simple_block_2

simple_block_3while_block_2

simple_block_4

while_block_1

simple_block_5

blocks

Figure 9. Coarsened parse tree of the program “op1W{op1W{op1}}”.

is either a single simple block, an arbitrary while block (looping over a sequence of blocks), or the root program (e.g. a
sequence of blocks).

This suggests a recursive conversion procedure which computes a single-state FSM for the block at the leaf nodes, and
then (recursively) combines these FSMs into larger FSMs at each layer of the parse tree, until we reach the root node, at
which point the final FSM is returned. The FSM at leaf nodes (i.e. simple blocks) is a simple single state FSM. The FSM at
non-leaf nodes (e.g. while blocks or the entire program) is constructed by (i) connecting the terminal state of the ith child’s
FSM to the initial state of the (i+ 1)th child’s FSM, for every child i of the non-leaf node except the last, and (ii) if the
node is a while block, (a) adding an edge from the last child’s FSM to the first child’s FSM, and (b) assigning the initial and
terminal state of the current node’s FSM to empty states with an edge between them. Additions (a) and (b) account for the
fact that unlike standard blocks, while blocks have bodies that may be looped over, or skipped.

Using empty states as initial and terminal FSM of while blocks allows our FSM conversion procedure to be “context-free”—
each subFSM is obtained by assembling sub-subFSMs, without knowledge about the nature of the blocks being connected.
Without these empty states, we would require more complicated logic to perform the connection. For instance, in a program
of the form “op1W{op1}W{op1}op2”, one needs to connect the first op1 to the last op2 to encode the fact that both while
loops may be skipped.

The full algorithm is given in Algorithm 12. The resulting FSM for the program “op1W{op1W{op1}}” is shown in Figure
10. The nodes starting with an “I” (resp. “T”) are the (empty) initial (resp. terminal) states of each while block. The
transitions are labeled using the following convention:

• “E⟨n⟩” means “enter loop number n”

• “C⟨n⟩” means “continue loop number n”

• “S⟨n⟩” means “skip loop number n”

• “F⟨n⟩” means “exit loop number n”

• “N” means “next block” (which are created when connecting the different subFSMs of the root program)

B.3.4. STEP 4: COLLAPSING THE EMPTY STATES.

The empty states produced by the step above are side effects of the conversion procedure used: the final FSM should not
contain them. To this end, we next describe a post-processing, iterative procedure which removes them from the FSM. At
each iteration, the procedure selects (if any) an empty state, and—unless it transitions into itself—(i)removes from the list of
FSM nodes and (ii) adds edges connecting the parents of the empty state to its children.
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S1 I1 S2 T1I2 S3 T2 S4 S5

S1
 

E1
 

S2
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F1
 

N
 

N
 

Figure 10. Intermediate FSM obtained from the coarsened parse tree of the program “op1W{op1W{op1}}”. This intermediate FSM
contains empty states, which are collapsed to obtain the final FSM.

Algorithm 12 FSM creation from a coarsened parse tree
1: function COARSE TREE TO FSM(node) returns FSM
2: if node.type is “while block” or “blocks” then
3: c fsms← MAP(COARSE TREE TO FSM, node.children)
4: nodes← ∪ MAP(GET NODES, c fsms)
5: edges← ∪ MAP(GET EDGES, c fsms)
6: labels← ∪ MAP(GET LABELS, c fsms)
7: // Connect the different subFSMs
8: conn edges← {(c fsms[i-1].terminal, c fsms[i].initial) for i = 1, . . . , len(c fsms)− 1}
9: conn labels← {“N”, . . . , “N”}

10: edges, labels← edges ∪ conn edges, labels ∪ conn labels
11: i← COUNTER()
12: if node.type == “while block” then
13: terminal state, initial state← Node(“terminal”), Node(“initial”)
14: enter loop edge← (initial state, c fsms[0].initial)
15: exit loop edge← (c fsms[-1].terminal, terminal state)
16: continue loop edge← (c fsms[-1].terminal, c fsms[0].initial)
17: skip loop edge← (terminal state, initial state)
18: nodes← nodes ∪ {terminal state, initial state}
19: edges← edges ∪ {continue loop edge, skip loop edge, enter loop edge, exit loop edge}
20: labels← labels ∪ {“E” + i, “F” + i, “C” + i, “S” + i}
21: return FSM(nodes, edges, labels)
22: else
23: return FSM([simple block], [ ], [ ])
24: end if
25: end if
26: end function
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The labels of the new edges are obtained by concatenating the “parent-to-empty state” and “empty state-to-children” edges.
The procedure is given in Algorithm 13, and the resulting FSM for the program “op1W{op1W{op1}}” is shown in Figure
11. The procedure results in FSMs that agree those in the main text for single while loops, two nested while loops, and two
sequential while loops. There are two minor caveats, which we discuss below.
Remark B.1 (Handling empty states with self-transitions). The procedure above removes all empty states, apart from those
with self-transitions. These self-transitions are not present before collapsing the empty states, and arise in the midst of the
procedure, after collapsing a subset out of all the FSM empty state. Importantly, such self-transitions are pathological: as the
state of the program does not change when performing a self-transition into an empty node, if such a self-transition occurs,
it must keep occurring indefinitely afterwards. Thus, programs resulting into FSM with self-recurring empty states form a
class of “potentially non-halting” programs.
Remark B.2 (Handling impossible transitions). The node collapsing process results in the creation of “multistep” edges.
These transitions involve evaluating multiple conditions in a single step. Sometimes, these conditions are mutually exclusive:
in that case, this multistep transition is impossible, and can be removed from the graph. By removing such transitions after
each step of the procedure, the routine can be shown to not add any duplicated edges to the FSM, as proved in the next
proposition.

Algorithm 13 Collapsing empty states
1: function COLLAPSE EMPTY STATES(fsm) returns FSM
2: edges← fsm.edges
3: labels← fsm.labels
4: for all node in FILTER(EMPTY | NOT INITIAL | NOT FINAL, fsm.nodes) do
5: if node ∈ node.children then
6: continue
7: end if
8: for all parent, child in PRODUCT(node.parents, node.children) do
9: new edge← (parent, child)

10: if new edge ∈ edges then
11: error {Edge already exists}
12: end if
13: new label← AND(parent.label, child.label)
14: if IMPOSSIBLE(new label) then
15: continue
16: end if
17: edges← edges ∪ {new edge}
18: labels← labels ∪ {new label}
19: end for
20: end for
21: nodes← FILTER(NON EMPTY, fsm.nodes)
22: return FSM(nodes, edges, labels)
23: end function
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S1 S2 S5S3 S4

C2
 

C1
 

(N + E1)
 

(N + E2)
 

(N + S2 + N)
 

(F2 + N)
 

(N + S1 + N)
 

(F1 + N)
 

Figure 11. FSM for the program “op1W{op1W{op1}}”, with empty states collapsed, using the automatic procedure. Note that this
matches the structure of the FSM for the No-U-Turn sampler in Figure 2, which was produced using (essentially) a special case of this
procedure for programs with two nested while loops.
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B.4. Implementation Details

FSM Step Function Design. At each step of the FSM, one always executes a block Sk : z 7→ z′ which updates the inputs,
before calling the transition function δ on (k, Sk(z)) to determine which block should be run next. One can therefore
combine these into a single (state) function T : (k, z) 7→ (δ(k, Sk(z)), Sk(z)), or equivalently, a collection of functions
T1, ..., TK where Tk : z 7→ (δ(k, Sk(z)), Sk(z)). In practice, our implementation of Algorithm 2 calls a single switch
over these composite state functions to streamline the code. The same composite state functions are also used in our
implementation of bundled_step in Algorithm 4.

FSM Runtime Design. In our experiments, we use a native Python while loop in Algorithm 3 (and its vmap-ed variant
in Algorithm 7). Inside the loop, we use a (JIT compiled) jax.lax.scan to run the FSM step function for blocks of
t = 100 steps, when drawing n > 100 samples. This gives us the flexibility to store the results in dynamically shaped
lists/arrays and transport to the CPU for faster array slicing when CPU memory is available, whilst still reaping the benefits
of JIT compilation.

Compilation. We JIT compile both vmap(step) and vmap(sample) functions for each MCMC algorithm implementa-
tion (here step refers to any of the basic variant Algorithm 2, bundled variant Algorithm 4, amortized variant Algorithm 5,
or the bundled and amortized variant Algorithm 9). For Delayed Rejection and the Elliptical Slice Sampler (with n = 25)
we remove compilation time to get more accurate results or the runs with small numbers of chains m, due to the low cost of
the computations involved.

JAX implementation. When comparing to non-FSM implementations, we used BlackJAX (Cabezas et al., 2024) for fair
comparison with our method, since we use BlackJAX primitives for the key computations in some of our algorithms (e.g.
HMC-NUTS). Where a BlackJAX implementation was not available (e.g. Delayed Rejection), we wrote our own for fair
comparison with our FSM implementation.

Bundling with Amortized Step. As discussed in Section 5, one cannot non-trivially use bundled_step as the step
function inside amortized_step, because a given sequence of states may require the amortized computation to be
updated in the middle, and nothing in bundled_step flags this. To reap some of the benefits of step bundling when
amortizing an expensive computation g (e.g. expensive log-pdf calculations), we use another step function defined in
Algorithm 9, as the ‘step’ function called inside amortized_step. This step function iteratively runs step (modified to
return the doComputation flag) until doComputtion = True - ironically, using a while loop. When vmap-ed, each
‘step’ inside amortized_step now executes sequences of cheap states that do not require g, until g is required again for
all chains. This works effectively when g is called inside the iterative state, which is typically the case when g = log p.

B.5. Additional Results

Figure 12. Efficiency Ratio of our elliptical slice FSM against BlackJAX’s elliptical slice algorithm (as measured by estimated R(m) =
E[maxj∈[m] Nj ]/E[N1] (i.e. iters per sample) and walltime) on the Real Estate Dataset described in Section 7 when restricting the
dataset to the first n ∈ {25, 100, 400} datapoints. The relative efficiency of the FSM improves as the number of chains used increase, and
as the log-likelihood cost increases. When n = 400, we almost achieve the theoretical bound R(m) in speed-ups.
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Figure 13. Walltimes and ESS per second using the Elliptical Slice Sampler (non-FSM vs FSM implementation) on the Real Estate
Dataset described in Section 7, when restricting the dataset to the first n ∈ {25, 100, 400} datapoints. For each dataset size, the best
walltime and ESS/second is obtained by both implementations when using m = 1024 chains. Our FSM implementation can obtain the
greatest efficiency for all dataset sizes. As the log-likelihood cost increases (the log-likelihood in GPR regression costs O(n3)), we see
the FSM efficiency gain increase, reflecting the benefits of amortization.

Distribution NUTS-FSM Standard NUTS FSM Speed-up

Real-Estate GPR 863.6 274.1 3.15x
Soil 0.014 0.006 2.43x
Pilots 3.538 3.869 0.91x

Table 2. ESS/sec comparison for NUTS with and without FSM acceleration on Real-Estate GPR sampling problem considered in
Section 7.2, and two sampling problems (Soil and Pilots) from the PosteriorDB database (Magnusson et al., 2025). Results are averaged
over 1000 samples and 128 chains. As with Section 7.4 in the main text, we use 400 warm-up steps to tune the mass matrix and step size
of our FSM implementation, and the BlackJAX (non-FSM) implementation. We find substantial speed-ups in 2/3 problems. Both of these
problems (Real-estate GPR and Soil) have an expensive log-pdf (and gradient) whilst the log-pdf in Pilots is much cheaper. In general,
when the number of integration steps taken by NUTS is moderate to high on average (so that most time is spent integrating along the
trajectory), an expensive log-pdf makes the additional cost of executing all other blocks in the FSM step function (when integrating)
relatively smaller. That is, the gap between E(m) and R(m) (as defined in Section 4) is smaller, hence increasing the relative efficiency
of the FSM. The opposite happens when the log-pdf is cheap (as in Pilots). We also note that computational resources did not balance out
across chains in Soil and Pilots after 1000 samples. We therefore would expect to see larger speed-ups when running for longer.
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