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ABSTRACT

This paper addresses the challenge of aligning Large Language Models (LLMs)
with diverse human preference within Federated Learning (FL) environments,
where standard methods often fail to adequately represent diverse viewpoints. We
introduce a comprehensive evaluation framework that systematically assesses the
trade-off between alignment quality and fairness when using different aggregation
strategies for human preferences. Specifically, we evaluate standard aggregation
techniques Min, Max, and Average 0and introduce a novel adaptive scheme that
dynamically adjusts preference weights based on a group’s historical alignment
performance. Our experiments on Q/A tasks using a Proximal Policy Optimization
(PPO)-based RLHF pipeline demonstrate that our adaptive approach consistently
achieves superior fairness, while maintaining competitive alignment scores. This
work offers a robust methodology for evaluating LLM behavior across diverse
populations and provides a practical solution for developing truly pluralistic and
fairly aligned models.

1 INTRODUCTION

The remarkable capabilities of LLMs have positioned them as a central technology across various
domains. However, their real-world utility and safety hinge on their ability to align with complex
and diverse human values and social normsYang et al. (2024); Sorensen et al. (2024). The prevailing
methodology for this alignment is Reinforcement Learning from Human Feedback (RLHF), which
fine-tunes models based on collected human preference data Ouyang et al. (2022). While effective,
the standard RLHF paradigm often operates on a centralized dataset, which is not only a privacy
concern but also risks embedding biases of a narrow demographic Casper et al. (2023).
To address this, the integration of RLHF with Federated Learning (FL) has emerged as a promising
avenue. FL allows for model training on decentralized data from numerous clients, thus preserving
data privacy and capturing a wider range of human preferences Wu et al. (2024); Srewa et al.
(2025). However, this fusion presents a critical and underexplored challenge: How to aggregate the
diverse and potentially conflicting preference signals from different user groups? The choice of
aggregation strategy is not merely a technical detail; it is an evaluation protocol that directly shapes
the model’s final behavior, determining whose preferences are prioritized and whose are marginalized.
This paper proposes a systematic evaluation framework to analyze the impact of different aggregation
techniques on both alignment performance and fairness. By comparing standard methods with our
proposed adaptive aggregation scheme, our goal is to define a more robust protocol to assess LLMs
in decentralized, pluralistic environments. We show that while simple aggregation methods can lead
to unintended biases, our adaptive approach strikes a superior balance between achieving strong
overall alignment and ensuring equitable representation across diverse groups, thus contributing
to the development of more reliable and justly aligned LLMs. Our approach follows a zero-shot
alignment paradigm, using only aggregated group reward signals without task demonstrations,
ensuring generalizable alignment.

2 BACKGROUND AND RELATED WORK

The alignment of LLMs with complex human preferences is a central goal in their development. Since
explicitly defining human values in a loss function is challenging, a robust paradigm has emerged in
which models learn directly from human preference data. RLHF has become a powerful technique
for this purpose, guiding LLMs toward desired behaviors like safety and helpfulness Ouyang et al.
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Figure 1: Federated RLHF for pluralistic alignment of group preferences in LLM.

(2022). The most common RL algorithm used in RLHF is PPO which fine-tunes the LLM by
receiving feedback from a reward model trained on human preference pairs Schulman et al. (2017).
An alternative, Direct Preference Optimization (DPO), simplifies this process by bypassing the need
for a separate reward model, instead directly optimizing the model to assign a higher probability to
preferred responses Rafailov et al. (2023).
Addressing the issue of diverse preferences and potential underrepresentation, methods like Group
Robust Policy Optimization (GRPO) Ramesh et al. (2024) and MaxMin-RLHF Chakraborty et al.
(2024) have been introduced to ensure robust alignment across various user groups. However, these
methods, like the traditional RLHF pipeline, are typically centralized, which poses significant privacy
risks by requiring the collection of user data on a central server. This privacy concern has spurred
the development of decentralized approaches. PluralLLM Srewa et al. (2025), for instance, uses
federated learning to train a transformer-based preference predictor, allowing different user groups to
collaboratively align a model without sharing their sensitive raw preference data. Our work builds
upon this foundation by moving beyond simple aggregation to systematically evaluate the impact of
different aggregation techniques on both alignment performance and fairness within a federated RLHF
framework. Further implementation details of the preferance predictor are provided in Appendix B

3 METHODOLOGY

System Setup and Training Groups: Our framework focuses on Q/A tasks with l training groups
Gtrain = {g1, g2, . . . , gl}, where each group gi maintains its private preference dataset Dgi =
{(xj , yj)} locally. Each preference sample consists of a query-response pair embedding xj and the
corresponding group preference probability yj . These datasets are distributed across groups and
never shared with the central server, ensuring privacy preservation.
As illustrated in Figure 1, the aggregation server is initialized with a base LLM model πbase

θ and
performs supervised fine-tuning (SFT) to adapt it for Q/A tasks, resulting in a policy model πpolicy

θ
suitable for PPO training. The server coordinates between policy optimization and distributed
preference learning.
At iteration t, the server generates rollouts consisting of queries (questions with multiple choice’s
options) and LLM responses using the current policy πpolicy

θ . These rollouts are distributed to all
training groups for preference evaluation.

Distributed Reward Generation: Each group gi first uses the PluraLLM GPO Srewa et al. (2025)
model to generate preference probabilities for the received rollouts. These probabilities are then con-
verted to rewards rgi in different ways. In our evaluation, we focus on two approaches: (1) preference
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probability prediction where rewards are calculated directly from the predicted probabilities, while
for (2) preference ranking, the probabilities are first converted to rankings before reward calculation.
These task-specific rewards {rg1 , rg2 , . . . , rgl} reflecting how well the generated responses align with
each group’s preferences are transmitted back to the aggregation server.

Adaptively Alpha Aggregation: The core of the federated RLHF framework is the aggregation of
local models. At each training round, the central server receives rewards updates from different groups
and combines them to form a new global reward model. We evaluated three standard aggregation
methods and proposed a novel adaptive scheme.
We have r = {rg1 , rg2 , rg3 , . . . , rgl} from N clients, where ri represents how good the LLM outputs
align with client i preference. Recent work in the literature introduced an aggregation method, namely
alpha aggregationPark et al. (2024) which achieves the consensus among heterogeneous feedback
in RLHF. This is highlighted in Equation 1. This consensus reward aggregation is controlled by α,
Aggα(r) = max(r), when α = ∞ and Aggα(r) = min(r), when α = −∞.

Aggα(r) =
{

1
α log( 1

N

∑
i∈N exp(αri)), α ̸= 0

1
N

∑
i∈N ri, α = 0

(1)

We propose an adaptive aggregation technique that uses this alpha aggregation.

Aggα(r) =

{
1
|G|
∑

g∈G rgi if FI ≈ 0.999

log
(

1
|G|
∑

g∈G exp(αt
g · rgi)

)
otherwise

(2)

To achieve a balanced accumulated alignment reward history h = {hg1 , hg2 , hg3 , . . . , hgl}, across
clients, the aggregation weights αi are dynamically adjusted in inverse proportion to each client’s
historical alignment performance(αi = softmax(1 − hi)). Specifically, a client i with a lower
accumulated alignment reward, hi, is assigned a higher weight, αi. As shown in Equation 2, a higher
αi value increases the dominance of the corresponding reward ri. Hence, the αi value for client i
changes adaptively based on the alignment history for this client hi.

PPO Training and Iteration: With the aggregated rewards rt, the server performs PPO optimiza-
tion to update the policy model πpolicy

θt → πpolicy
θt+1 . The updated policy generates new rollouts for the

next iteration, and the process continues until a predefined number of iterations or specific alignment
score is reached. This iterative approach ensures continuous adaptation to diverse group preferences
while maintaining fairness through our adaptive aggregation scheme.

4 EVALUATION

We evaluate our approach using Gemma-2B-it, a fine-tuned version of the Gemma model, as our
base LLM Team et al. (2024). Our experiments utilize the Pew Research Center’s Global Attitudes
Surveys dataset Durmus et al. (2023), which captures diverse public opinions across social, political,
and economic issues from various demographic groups. More details on the experiment setup and
configuration are summarized in Appendix A.
We assess performance using fairness metrics and alignment scores across two primary tasks: the
preference probability prediction task (see Figure 3) and the preference ranking task (see Figure 4).
Our evaluation framework encompasses various reward functions and aggregation strategies. We
compare our adaptive alpha aggregation against standard federated approaches (Min, Max, Average)
and a supervised fine-tuning (SFT) baseline.

4.1 EVALUATION FRAMEWORK

The LLM rollout X consists of questions and responses generated by the policy model πθ(qi) for
each question qi. We parse these responses to extract the relevant outputs and denote the parsed LLM
response as yllm

i for question i. This parsed response is then used to compute rewards across different
metrics.
Let qi denote a question, oi,j the j-th option for question i, and yllm

i the parsed LLM response
for question i. Each group generates rewards rgi by comparing the LLM output yllm

i against their
preference data (PluralLLM predictions Srewa et al. (2025)) pGPO.

3
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4.2 REWARD METRICS

Our evaluation employs two categories of reward metrics to assess alignment quality across different
aspects of preference modeling.

4.2.1 DISTANCE-BASED REWARD METRICS (PREFERENCE PREDICTION TASK)
These rewards capture alignment between LLM predicted and GPO target probability distributions:
Wasserstein Reward: Measures optimal transport cost between distributions.

rWas
gi =

W1(y
llm
i , pGPO

i )

n− 1
(3)

rWas
gi ∈ [0,+∞], where 0 indicates perfect distribution match. Lower values indicate better alignment

between LLM and group preferences.
Cosine Similarity Reward: Captures directional similarity between preference vectors.

rCos
gi =

yllm
i · pGPO

i

||yllm
i || · ||pGPO

i ||
(4)

rCos
gi ∈ [−1, 1], where 1 indicates identical direction, 0 indicates orthogonal, and -1 indicates opposite

direction. Higher values indicate better preference alignment.
KL Divergence Reward: Measures information-theoretic alignment.

rKL
gi = DKL(p

GPO
i ||yllm

i ) =
∑
j

pGPO
i,j log

pGPO
i,j

yllm
i,j

(5)

rKL
gi ∈ [0,∞), where 0 indicates identical distributions, more positive = greater divergence. Smaller

values indicate better alignment.

4.2.2 RANKING-BASED REWARD METRICS (PREFERENCE RANKING TASK)
These rewards evaluate preference ordering consistency:
Kendall Tau Reward: Measures rank correlation between LLM and GPO orderings.

rKen
gi = τ(rank(yllm

i ), rank(pGPO
i )) (6)

rKen
gi ∈ [−1, 1], where 1 indicates perfect rank agreement, 0 indicates no correlation, and -1 indicates

perfect disagreement. Higher values indicate better ranking alignment.
Borda Reward: Position-weighted scoring based on ranking accuracy.

rBor
gi =

∑n
j=1(n− j + 1) · I[rank(yllm

i )j = rank(pGPO
i )j ]

n(n+ 1)/2
(7)

rBor
gi ∈ [0, 1], where 1 indicates perfect position-wise ranking match, 0 indicates no correct positions.

Higher values indicate better ranking quality.
Binary Reward: Simple correctness indicator.

rBin
gi = I[rank(yllm

i ) = rank(pGPO
i )] (8)

rBin
gi ∈ {0, 1}, where 1 indicates exact ranking match, 0 indicates any disagreement. Binary indicator

of perfect alignment.

4.3 AGGREGATION SCHEMES

Let G = {g1, g2, . . . , gl} be the set of training groups. For each question qi, the server aggregates the
rewards {rg1 , rg2 , . . . , rgl} across groups using different strategies:
Average Aggregation:

rtfinal =
1

|G|
∑
g∈G

rgi (9)

Provides balanced representation but may mask group-specific needs.
Min Aggregation:

rtfinal = min
g∈G

rgi (10)

Ensures no group is left behind but may be overly conservative, limiting overall performance.

4
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Max Aggregation:
rtfinal = max

g∈G
rgi (11)

Optimizes for best-case performance but may neglect underrepresented groups.
Adaptive Alpha Aggregation:

rtfinal =

{
1
|G|
∑

g∈G rgi if FI ≈ 0.999

log
(

1
|G|
∑

g∈G exp(αt
g · rgi)

)
otherwise

(12)

Dynamically balances fairness and performance by favoring historically underperforming groups.
The adaptive weights αt

g are computed using reversed softmax on historical alignment scores:

αt
g =

exp((1− ht−1
g )/T )∑

g′∈G exp((1− ht−1
g′ )/T )

(13)

with temperature T = 0.1 and ht−1
g being group g’s historical alignment score.

We provide an analysis and theoretical proof for convergence with the adaptive alpha aggregation in
Appendix C.

4.4 FAIRNESS EVALUATION METRICS

The Fairness Index (FI) measures reward variation across groups for the same question-response pair:

FI =
1

|Q|
∑
qi∈Q

1

1 + CoV2(qi)
(14)

where the Coefficient of Variation for question qi is:

CoV(qi) =
σ({rg,i}g∈G)

µ({rg,i}g∈G)
(15)

FI ∈ [0, 1], where 1 = perfect fairness (identical rewards across groups), 0 = maximum unfairness.
Higher FI values indicate more equitable treatment across demographic groups, while lower values
suggest systematic bias favoring certain groups over others.

4.5 PREFERENCE PROBABILITY PREDICTION TASK RESULTS AND ANALYSIS

The SFT baseline demonstrates suboptimal performance with fairness indices ranging from 0.83-
0.98 and consistently lower alignment scores, highlighting the need for preference-based alignment.
Detailed quantitative results are shown in Table 1 across multiple reward functions in the Value task.
Aggregation Strategy Comparison: Our adaptive alpha aggregation consistently achieves superior
fairness performance, reaching 0.99 across Wasserstein and Cosine metrics while maintaining
competitive alignment scores. Notably, alpha aggregation demonstrates remarkable consistency,
achieving the highest fairness indices across most reward types while preserving balanced average
and minimum alignment scores.
Reward Function Analysis: Distance-based rewards (Wasserstein, Cosine, KL) substantially out-
perform ranking-based approaches (Kendall, Borda, Binary). Wasserstein and Cosine rewards with
alpha aggregation achieve optimal fairness (0.99) while maintaining strong average alignment scores
(0.90-0.95). The minimum alignment scores, crucial for ensuring no group is left behind, remain
competitive (0.89-0.94), demonstrating effective fairness-performance balance.
Key Insights: The adaptive alpha approach effectively addresses the fairness-performance trade-off
by dynamically weighting groups based on historical alignment scores. While Max aggregation
occasionally achieves higher average alignment scores, it compromises fairness indices and minimum
group performance, potentially leaving underrepresented groups behind.

4.6 PREFERENCE RANKING TASK RESULTS AND ANALYSIS

The Order task evaluation focuses on ranking-based metrics (Kendall Tau, Borda, Binary). More
details are shown in Table 1. The SFT baseline, trained on population-averaged preferences, shows
particularly poor performance in ranking tasks with fairness indices of 0.83-0.89 and substantially
lower alignment scores (0.31-0.50 average, 0.25-0.41 minimum). This performance degradation in

5
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Table 1: Fairness evaluation of pluralistic alignment across tasks, rewards, and aggregation strategies. FI =
Fairness Index. Alignment scores are reported under multiple metrics (higher is better unless noted). Both
average (Avg AS) and minimum (Min AS) alignment scores are shown. Highest values in each column are
shown in bold, except for KL and Was columns where lowest values are highlighted.

Task Client
Reward Method Server Agg.

Fairness Index (FI) Avg Alignment Score (Avg AS) Min Alignment Score (Min AS)

Was. Cos. KL Ken. Bor. Bin. Was. Cos. KL Ken. Bor. Bin. Was. Cos. KL Ken. Bor. Bin.

Pr
ef

er
en

ce
Pr

ed
ic

tio
n

Ta
sk

— SFT — 0.98 0.97 0.88 0.85 0.83 0.97 0.10 0.82 0.4 0.28 0.38 0.23 0.08 0.77 0.55 0.13 0.34 0.23

WassersteinReward PPO

Alpha 0.99 0.99 0.94 0.91 0.86 1.00 0.05 0.90 0.26 0.30 0.42 0.22 0.06 0.89 0.26 0.21 0.37 0.22
Min 0.98 0.99 0.93 0.87 0.79 0.90 0.05 0.91 0.22 0.42 0.44 0.27 0.06 0.89 0.27 0.34 0.41 0.28
Avg 0.99 0.99 0.94 0.91 0.86 1.00 0.05 0.90 0.26 0.30 0.42 0.22 0.06 0.89 0.26 0.21 0.37 0.22
Max 0.99 0.99 0.90 0.88 0.80 0.85 0.03 0.91 0.23 0.45 0.51 0.31 0.07 0.89 0.27 0.43 0.47 0.31

CosineReward PPO

Alpha 0.99 0.99 0.89 0.88 0.89 0.91 0.05 0.92 0.21 0.28 0.42 0.21 0.06 0.90 0.27 0.19 0.32 0.19
Min 0.99 0.99 0.90 0.88 0.89 0.80 0.05 0.92 0.22 0.34 0.45 0.28 0.06 0.90 0.28 0.21 0.34 0.22
Avg 0.99 0.99 0.89 0.88 0.89 0.91 0.05 0.92 0.21 0.28 0.42 0.21 0.06 0.90 0.27 0.19 0.32 0.19
Max 0.99 0.99 0.91 0.87 0.88 0.88 0.05 0.93 0.19 0.31 0.42 0.22 0.06 0.91 0.24 0.20 0.34 0.19

KLReward PPO

Alpha 0.99 0.99 0.92 0.92 0.90 0.78 0.06 0.92 0.19 0.40 0.50 0.29 0.07 0.90 0.24 0.18 0.38 0.22
Min 0.99 0.99 0.91 0.90 0.89 0.84 0.06 0.91 0.17 0.43 0.51 0.33 0.07 0.89 0.22 0.33 0.43 0.31
Avg 0.99 0.99 0.91 0.89 0.90 0.76 0.05 0.91 0.19 0.40 0.48 0.27 0.06 0.89 0.26 0.29 0.40 0.25
Max 0.99 0.99 0.91 0.90 0.86 0.75 0.04 0.91 0.19 0.33 0.40 0.20 0.05 0.88 0.24 0.22 0.33 0.19

KendallTauReward PPO

Alpha 0.99 0.99 0.96 0.90 0.71 0.91 0.07 0.75 0.48 0.43 0.38 0.29 0.08 0.72 0.55 0.34 0.36 0.28
Min 0.99 0.99 0.95 0.90 0.75 0.91 0.07 0.73 0.49 0.45 0.39 0.29 0.08 0.71 0.54 0.37 0.36 0.28
Avg 0.99 0.99 0.94 0.90 0.76 0.91 0.07 0.74 0.48 0.45 0.39 0.29 0.08 0.71 0.54 0.38 0.37 0.28
Max 0.99 0.99 0.94 0.92 0.73 0.91 0.06 0.76 0.44 0.44 0.38 0.28 0.07 0.73 0.50 0.37 0.35 0.28

BordaReward PPO

Alpha 0.99 0.99 0.96 0.89 0.71 0.91 0.08 0.73 0.50 0.43 0.39 0.29 0.09 0.69 0.57 0.35 0.36 0.28
Min 0.99 0.99 0.98 0.86 0.69 0.92 0.09 0.73 0.52 0.44 0.39 0.28 0.10 0.70 0.58 0.37 0.36 0.28
Avg 0.99 0.99 0.97 0.89 0.71 0.91 0.09 0.73 0.51 0.42 0.38 0.29 0.10 0.70 0.58 0.35 0.36 0.28
Max 0.99 0.99 0.97 0.89 0.71 0.90 0.08 0.74 0.49 0.44 0.39 0.29 0.09 0.70 0.56 0.36 0.36 0.28

BinaryReward PPO

Alpha 0.99 0.99 0.96 0.89 0.68 1.00 0.08 0.74 0.52 0.42 0.38 0.28 0.10 0.70 0.60 0.34 0.35 0.28
Min 0.99 0.99 0.98 0.86 0.66 1.00 0.10 0.70 0.70 0.37 0.37 0.28 0.11 0.66 0.77 0.30 0.35 0.28
Avg 0.99 0.99 0.97 0.89 0.67 1.00 0.09 0.73 0.54 0.42 0.38 0.29 0.10 0.70 0.59 0.35 0.36 0.28
Max 0.99 0.99 0.97 0.89 0.68 1.00 0.08 0.73 0.56 0.41 0.38 0.28 0.10 0.70 0.64 0.33 0.34 0.28

Pr
ef

er
en

ce
R

an
ki

ng
Ta

sk

— SFT — — — — 0.89 0.87 0.83 — — — 0.38 0.50 0.31 — — — 0.25 0.41 0.27

KendallTauReward PPO

Alpha — — — 0.92 0.81 0.97 — — — 0.58 0.47 0.36 — — — 0.47 0.42 0.31
Min — — — 0.92 0.81 0.99 — — — 0.52 0.46 0.30 — — — 0.43 0.41 0.28
Avg — — — 0.92 0.82 0.90 — — — 0.50 0.48 0.33 — — — 0.40 0.40 0.28
Max — — — 0.91 0.88 0.80 — — — 0.47 0.53 0.35 — — — 0.35 0.44 0.28

BordaReward PPO

Alpha — — — 0.94 0.95 0.86 — — — 0.53 0.61 0.39 — — — 0.34 0.45 0.28
Min — — — 0.92 0.91 0.89 — — — 0.47 0.53 0.30 — — — 0.36 0.44 0.28
Avg — — — 0.93 0.92 0.86 — — — 0.49 0.58 0.39 — — — 0.35 0.47 0.31
Max — — — 0.91 0.92 0.78 — — — 0.45 0.54 0.32 — — — 0.34 0.45 0.28

BinaryReward PPO

Alpha — — — 0.91 0.89 0.79 — — — 0.49 0.53 0.35 — — — 0.33 0.42 0.25
Min — — — 0.90 0.83 0.90 — — — 0.49 0.49 0.34 — — — 0.39 0.41 0.28
Avg — — — 0.91 0.90 0.79 — — — 0.49 0.53 0.35 — — — 0.37 0.44 0.28
Max — — — 0.91 0.91 0.79 — — — 0.47 0.54 0.35 — — — 0.35 0.44 0.28

ranking tasks underscores how averaged preference training fails to capture the nuanced ordering
preferences that vary significantly across demographic groups.
Ranking Reward Performance: Alpha aggregation with Kendall Tau rewards achieves the highest
fairness index (0.92) and superior average alignment scores (0.58) compared to the SFT baseline
(0.38). Borda rewards demonstrate the strongest overall performance, reaching fairness indices up to
0.95 with alpha aggregation, and achieving the highest average alignment scores (0.61).
Figure 2 demonstrates that ALPHA aggregation (blue circles) consistently provides the best
fairness–performance trade-off, occupying or approaching the upper-right quadrant (FI > 0.9,
MinAS > 0.3) in all panels. For KendallTauReward, ALPHA attains high FI and strong worst-
group performance across metrics (Kendall: FI≈0.92, MinAS≈0.47; Borda: 0.81, 0.42; Binary:
0.97, 0.31), whereas MIN pushes FI high on Binary (≈ 0.99) but hurts Min AS (≈ 0.28). For
BordaReward, ALPHA achieves the highest Min AS across metrics (Kendall ≈0.53, Borda ≈0.61,
Binary ≈0.39) with top/tied FI (Kendall ≈0.94, Borda ≈0.95, Binary ≈0.86). For BinaryReward,
ALPHA again yields the largest Min AS (Kendall ≈ 0.49, Borda ≈ 0.53, Binary ≈ 0.35) with
competitive FI, outperforming MIN/AVG/MAX in protecting the worst-served group. Across panels,
the SFT baseline underperforms, reinforcing the need for federated preference alignment. Overall,
the visualization shows that ALPHA most effectively resolves the fairness–performance tension by
maximizing worst-group (Min AS) performance at high FI.
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Figure 2: Order task — FI vs. Min AS (worst–group performance) with reward-as-aggregation. Each
subplot fixes one reward as the main aggregation metric on the server— KendallTauReward (left), BordaReward
(middle), and BinaryReward (right)— and then measures its effect on the three ranking metrics (Kendall, Borda,
Binary). Points are server aggregation strategies (ALPHA, MIN, AVG, MAX); SFT baselines are purple crosses.
We use the minimum alignment score (Min AS) on the y-axis because it reflects the performance of the
worst-served group, while the x-axis shows the Fairness Index (FI).

Aggregation Strategy Impact: Across all ranking rewards, alpha aggregation maintains competitive
performance while consistently achieving better fairness indices than alternative aggregation strategies.
Importantly, our evaluation of minimum alignment scores reveals that alpha aggregation successfully
prevents the marginalization of lowest-performing groups, maintaining minimum scores (0.31-0.47)
that are competitive with or superior to other approaches, while simultaneously achieving higher
average performance.
Recommendations: For order-based tasks, we recommend Borda rewards with alpha aggregation,
which provides the optimal balance between fairness (0.94-0.95) and alignment performance (0.53-
0.61 average). This combination effectively captures group ranking preferences while maintaining
equitable treatment across demographic groups.

4.7 OVERALL ASSESSMENT

Our adaptive alpha aggregation demonstrates superior performance across both task types, consistently
achieving the highest fairness indices while maintaining competitive alignment scores. The approach
successfully addresses the critical challenge of preventing any group from being left behind, as
evidenced by competitive minimum alignment scores across all evaluation scenarios. These results
validate our hypothesis that adaptive weighting based on historical alignment performance provides
an effective mechanism for achieving equitable federated learning in preference alignment tasks.

5 LIMITATIONS AND FUTURE WORK

While our study demonstrates the effectiveness of adaptive alpha aggregation for pluralistic alignment,
several areas present natural directions for further research.
Underlying RL Framework. Our current implementation relies on PPO. While effective, PPO can
be computationally expensive. Future work should explore more resource-efficient alternatives such
as GRPO or DPO, which would allow testing the aggregation strategy across different optimization
paradigms and at larger scales.
Model and Dataset Scope. We evaluate on Gemma-2B-it using the Pew Research Global Attitudes
dataset, which may be relatively conducive to cross-group alignment. Broader validation on base
models and domains with more adversarial or conflicting preferences would provide a stronger stress
test of the method’s robustness.
Task Generalization. Our experiments focus on multiple-choice Q&A tasks, which offer a controlled
setting for evaluation. Extending the framework to diverse tasks such as summarization, dialogue, or
code generation would demonstrate its wider applicability and highlight how aggregation impacts
more open-ended alignment scenarios.
These considerations do not detract from our main contribution—a systematic evaluation framework
with a novel adaptive aggregation scheme—but rather open exciting avenues for expanding its
applicability across models, datasets, and tasks.
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6 CONCLUSION

In conclusion, our work addresses the critical challenge of evaluating LLM alignment in decentralized,
federated environments. We have demonstrated that the choice of aggregation technique is not a trivial
detail but a fundamental evaluation protocol that directly shapes a model’s fairness and performance.
Our systematic evaluation of standard aggregation methods, alongside the introduction of an adaptive
scheme, provides a clear framework for assessing the trade-offs between alignment and fairness. The
results show that our proposed Adaptive Alpha Aggregation achieves a superior balance, offering
a practical path toward developing truly pluralistic and equitably aligned LLMs. This research
contributes a valuable evaluation methodology to the field and opens up new avenues for future work,
including applying this framework to a broader range of tasks and model architectures.
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A EXPERIMENT CONFIGURATIONS AND HYPERPARAMETERS

Table 2: SFT configuration and hyperparameters.

Hyperparameter Value
Model
Base model google/gemma-2-2b-it
Precision BF16
Data / Task
Train/valid split 80/20
Max sequence length 500 (include prompt and response)
LoRA Adapter
Rank (r) 16
Alpha 32
Dropout 0.05
Optimization
Batch size (per device) 16
Gradient accumulation steps 4
Learning rate 5× 10−5

Scheduler cosine
Warmup steps 150
Weight decay 0.01
Training
Epochs 1

Our experimental setup begins with supervised fine-tuning (SFT) as outlined in Table 2. We use the
Gemma-2-2b-it model as our base, employing LoRA adaptation with rank 16 for efficient parameter
updates. The SFT training utilizes a cosine learning rate scheduler with warmup and is conducted for
a single epoch to establish our baseline model.
As summarized in Table 3, both the policy and value models in PPO are initialized from the SFT model.
During training, we employ two distinct prompt formats for evaluation: a preference probability
prediction task requiring models to assign probability scores to all options, and a preference ranking
task requiring complete ordinal ranking from most to least preferred (see Figures 3 and 4). Our
implementation builds upon the Hugging Face TRL library von Werra et al. (2022). All experiments
were conducted on 3 nodes, each equipped with A100 GPUs, Intel(R) Xeon(R) Gold 6326 CPUs @
2.90GHz, and 256GB RAM.

B GROUP PREFERENCE OPTIMIZATION (GPO)
Group preference alignment refers to techniques designed to adapt LLM outputs to reflect the distinct
preferences, values, or judgments of different groups or demographics. GPO Zhao et al. (2023) was
introduced as a few-shot alignment framework that steers LLMs toward group-specific preferences.
GPO augments the base LLM with an independent transformer module, trained via in-context
supervised learning with only a handful of samples to predict group preferences and refine model
outputs. This module acts as a preference model for different groups, learning distinct alignment
patterns across diverse communities. By leveraging an in-context autoregressive transformer, GPO
enables flexible and efficient alignment, allowing LLMs to adapt dynamically to varying user
preferences. In PluralLLM, GPO is used as a preference predictor.

1Rewards are whitened over each rollout before PPO updates.
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Table 3: PPO configuration and hyperparameters (policy and value models initialized from the SFT model).

Hyperparameter Value
General
Policy model Gemma 2 SFT model
Value model Gemma 2 SFT model
Model / Quantization
Quantization 4-bit (nf4, double-quant = True)
Compute dtype BF16
Attention implementation eager
LoRA (PEFT)
Rank (r) 32
Alpha 32
Dropout 0.05
Optimization
Per-device train batch size 4
Gradient accumulation steps 24
Learning rate 1× 10−5

Optimizer AdamW
Weight decay 0.0
Scheduler linear
PPO Trainer
PPO epochs 2
Mini-batches 8
Per-device eval batch size 32
Response length 42
Temperature 0.6
KL coefficient 0.05
Clip range 0.2
Clip range (value) 0.2
Value loss coefficient (vf ) 0.2
Discount factor (γ) 1.0
GAE lambda (λ) 0.95
Reward whitening Per rollout (before PPO update)1

C THEORETICAL JUSTIFICATION AND CONVERGENCE ANALYSIS

This section provides a formal theoretical justification for the adaptive alpha formulation and analyzes
its convergence properties. We demonstrate that our proposed algorithm, when applied to a non-
convex optimization landscape, converges to a stationary point.

C.1 PROBLEM FORMULATION

We consider the federated learning problem of aligning a global model θ with a set of N user groups,
where each group g ∈ 1, . . . , N has its own objective function Lg(θ). The goal is to minimize a
weighted sum of these local objectives, where the weights are dynamically adjusted:

min
θ

F (θ) =

N∑
g=1

αt
gLg(θ) (16)

At each iteration t, the adaptive weight αt
g is a function of the historical alignment score ht−1

g of
group g. We define the update rule for the global model as a federated gradient descent step:

θt+1 = θt − η∇F (θt) = θt − η

N∑
g=1

αt
g∇Lg(θ

t) (17)

where η is the learning rate.
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Preference Probability Prediction Prompt
<bos><start_of_turn>user
You are an expert in modelling group preferences. You will receive a question and exactly
4 options.
Your task

• Assign a preference score to each and every option
• Produce 4 scores—no option may be skipped or combined
• Each score must be a decimal between 0 and 1, and the rounded scores must

sum to 1.00
• Higher scores represent options a typical group is more likely to choose

Output format
• One line, comma-separated decimal numbers, no spaces
• Round each to 2 decimal places
• No extra text, labels, or symbols
• Example: 0.65,0.20,0.10,0.05

Return ONLY the 4 scores in the same order as options.
Question: Germany’s influence in the EU Options: A: Has too much influence B: Has too
little influence C: Has about the right amount of influence D: DK/Refused
<end_of_turn> <start_of_turn>model

Figure 3: Preference Probability Prediction Prompt

Preference Ranking Prompt
<bos><start_of_turn>user
You are an expert in ranking group preferences. You will receive a question and exactly 4
options.
Your task

• Rank all 4 provided options from most to least preferred
• Process every option—no skipping or combining
• Order options based on what a typical group would most likely choose
• Higher preference options appear first

Output format
• One line, comma-separated option letters, no spaces
• Use the exact provided letters
• No extra text, labels, or symbols
• Example: B,C,A,D

Return ONLY the 4-letter ranking.
Question: Germany’s influence in the EU Options: A: Has too much influence B: Has too
little influence C: Has about the right amount of influence D: DK/Refused
<end_of_turn> <start_of_turn>model

Figure 4: Preference Ranking Prompt

C.2 ASSUMPTIONS

To prove convergence, we make the following standard assumptions on the local objective functions
Lg(θ):
Assumption 1: Smoothness. Each local loss function Lg(θ) is L-smooth, meaning that for any
θ,θ′ ∈ Rd, we have:

Lg(θ
′) ≤ Lg(θ) +∇Lg(θ)

T (θ′ − θ) +
L

2
∥θ′ − θ∥2 (18)

This implies that the gradients are bounded.
Assumption 2: Bounded Gradients. The gradients of the local loss functions are bounded. There
exists a constant M such that for any group g and iteration t:

∥∇Lg(θ
t)∥2 ≤ M2 (19)

12
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Assumption 3: Bounded Historical Scores. The historical alignment scores ht
g are bounded within

a positive range, 0 < ϵ ≤ ht
g ≤ H for all g,t. This is a reasonable assumption given that alignment

scores are typically normalized metrics.

C.3 PROOF OF CONVERGENCE

Our proof relies on constructing a Lyapunov function and showing that it decreases with each iteration.
We use the objective function value F (θt) as our Lyapunov function.
Lemma 1. Under Assumption 1, the objective function F (θ) is also L-smooth.
Proof:

F (θ′) =

N∑
g=1

αt
gLg(θ

′) (20)

≤
N∑

g=1

αt
g

(
Lg(θ) +∇Lg(θ)

T (θ′ − θ) +
L

2
∥θ′ − θ∥2

)
(21)

≤
N∑

g=1

αt
gLg(θ) +

(
N∑

g=1

αt
g∇Lg(θ)

)T

(θ′ − θ) +
L

2

(
N∑

g=1

αt
g

)
∥θ′ − θ∥2 (22)

Since the weights are a softmax-like distribution,
∑N

g=1 α
t
g = 1

F (θ′) ≤ F (θ) +∇F (θ)T (θ′ − θ) +
L

2
∥θ′ − θ∥2 (23)

Thus, F (θ) is L-smooth.
Proposition 1. Let θt be the sequence of model parameters generated by the adaptive alpha federated
learning algorithm. Under Assumptions 1-3, if the learning rate η ≤ 1

L , the algorithm converges to a
stationary point, i.e., limt→∞ E[∥∇F (θt)∥2] = 0.

Proof. From the L-smoothness of F (θ), we have:

F (θt+1) ≤ F (θt) +∇F (θt)T (θt+1 − θt) +
L

2
∥θt+1 − θt∥2 (24)

Substitute the update rule θt+1 − θt = −η∇F (θt) :

F (θt+1) ≤ F (θt)− η∥∇F (θt)∥2 + L

2
η2∥∇F (θt)∥2 (25)

F (θt+1) ≤ F (θt)− η

(
1− Lη

2

)
∥∇F (θt)∥2 (26)

Rearranging the terms, we get:

η

(
1− Lη

2

)
∥∇F (θt)∥2 ≤ F (θt)− F (θt+1) (27)

Summing over T iterations:
T−1∑
t=0

η

(
1− Lη

2

)
∥∇F (θt)∥2 ≤ F (θ0)− F (θT ) (28)

Since F (θ) is bounded below (as loss functions are non-negative), F (θT ) ≥ 0, so F (θ0)− F (θT ) is
bounded.

∑T−1
t=0 ∥∇F (θt)∥2 ≤ F (θ0)−F (θT )

η(1−Lη
2 )

Dividing by T and taking the limit as T → ∞:

lim
T→∞

1

T

T−1∑
t=0

∥∇F (θt)∥2 ≤ lim
T→∞

F (θ0)− F (θT )

Tη(1− Lη
2 )

= 0 (29)

This proves that the average squared norm of the gradient converges to zero, which implies that the
algorithm converges to a stationary point. This holds regardless of the specific form of the weights
αt
g, as long as they sum to 1. The adaptive nature of the weights ensures that the stationary point

found is one that balances the individual group objectives, aligning with the core motivation of the
adaptive alpha formulation.
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C.4 ADAPTIVE ALPHA AS A DYNAMIC REGULARIZATION MECHANISM

The adaptive alpha formulation is not merely a static weighting scheme; it introduces a dynamic
regularization mechanism that facilitates both exploration in divergent preference landscapes and
convergence to a fair, robust solution. We formalize this property as a proposition.
Proposition 2. The adaptive alpha formulation introduces a dynamic regularization term that
perturbs the gradient direction towards groups with historically low alignment, thus promoting
exploration and mitigating local minima that marginalize specific groups.

Proof Sketch. The global gradient at iteration t is given by ∇F (θt) =
∑N

g=1 α
t
g∇Lg(θ

t). The
adaptive alpha weight for a group g is inversely proportional to its historical performance ht−1

g .

αt
g =

exp(−βht−1
g )∑N

j=1 exp(−βht−1
j )

(30)

where β is a hyperparameter controlling the sensitivity of the adaptation.
Consider a scenario where the model has converged to a solution that is optimal for a majority of
groups but performs poorly on a single group, say k. In this case, the historical alignment score ht−1

k
for group k would be significantly lower than the other groups’ scores. Consequently, the adaptive
weight αt

k for this group will be disproportionately high.
The gradient update for the next step, ∇F (θt), will be heavily influenced by ∇Lk(θ

t). This effectively
means the model is “pulled” in the direction that reduces the loss for the under-aligned group k, even
if it slightly increases the loss for other groups. This dynamic adjustment acts as a regularization term,
preventing the optimization from settling into a sub-optimal local minimum that ignores minority
preferences.
We can view the global gradient as the sum of two components:

∇F (θt) =
∑
g ̸=k

αt
g∇Lg(θ

t) + αt
k∇Lk(θ

t) (31)

The second term, αt
k∇Lk(θ

t), serves as a dynamic regularization signal that guides the model away
from an unfair solution. As the model improves its alignment with group k, its historical score ht−1

k
will increase, and the weight αt

k will decrease, effectively reducing the influence of this regularization
term. This process repeats dynamically for all groups, ensuring a continuously fair and balanced
convergence path. This mechanism is crucial for navigating non-convex landscapes where simple
averaged gradients can lead to poor local minima.
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