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ABSTRACT

Despite the rapid advancements in domain generalization (DG), the majority of
DG studies center on establishing theoretical guarantee for generalization under
the assumption of sufficient, diverse or even infinite domains. This assumption
however is unrealistic, thus there remains no conclusive evidence as to whether the
existing DG algorithms can truly generalize in practical settings where domains
are limited. This paper aims to elucidate this matter. We first study the conditions
for the existence and learnability of an optimal hypothesis. As the sufficient condi-
tions are non-verifiable, our identified two necessary conditions become critical to
guaranteeing the chance of finding the global optimal hypothesis in finite domain
settings. In light of the theoretical insights, we provide a comprehensive review
of DG algorithms explaining to what extent they can generalize effectively. We
finally introduce a practical approach that leverages the joint effect of the two sets
of conditions to boost generalization. Our proposed method demonstrates superior
performance on well-established DG benchmarks.

1 INTRODUCTION

Domain generalization (DG) aims to train a machine learning model on multiple data distributions
so that it can generalize to unseen data distributions. Although challenging, DG is crucial for prac-
tical scenarios where there is a need to quickly deploy a prediction model on a new target domain
without access to target data. Various approaches have been proposed to address the DG problem,
which can be broadly categorized into 3 families: representation alignment, invariant prediction, and
data augmentation. Representation alignment focuses on learning domain-invariant representations
by reducing the divergence between latent marginal distributions (Long et al., 2017; Ganin et al.,
2016; Li et al., 2018b; Nguyen et al., 2021; Shen et al., 2018; Xie et al., 2017; Ilse et al., 2020)
or aligning conditional distributions (Gong et al., 2016; Li et al., 2018d; Tachet des Combes et al.,
2020). Invariant prediction ensures stable performance regardless of the domain by learning a con-
sistently optimal classifier (Arjovsky et al., 2020; Ahuja et al., 2020; Krueger et al., 2021; Rosenfeld
et al., 2020; Li et al., 2022a). Data augmentation applies predefined or learnable transformations on
the original samples or their features to create augmented data, thereby enhancing the model’s gen-
eralization capabilities (Mitrovic et al., 2020; Wang et al., 2022b; Shankar et al., 2018; Zhou et al.,
2020; 2021; Xu et al., 2021; Zhang et al., 2017; Wang et al., 2020b; Zhao et al., 2020; Yao et al.,
2022a; Carlucci et al., 2019; Yao et al., 2022b). Despite these developments, these methods have
not consistently outperformed Empirical Risk Minimization (ERM) on fair model selection criteria
(Gulrajani & Lopez-Paz, 2021; Idrissi et al., 2022; Ye et al., 2022; Chen et al., 2022a).

Several studies have sought to elucidate this phenomenon. In one line of research, the prevailing
theoretical models in DG are typically established based on domain adaptation (Ben-David et al.,
2010; Ben-Hur et al., 2001; Phung et al., 2021; Zhou et al., 2020; Johansson et al., 2019), which
mainly discuss the differences between source and target domains. In other approaches grounded in
causality, namely (Arjovsky et al., 2020; Mitrovic et al., 2020; Zhang et al., 2023), there is typically
an assumption of having prior knowledge of target domains. There are also studies on the optimality
conditions for generalization. Specifically, Ruan et al. (2021)1 require the optimal representation to
be discriminative for the task and the representation’s marginal support to be same across source and
target, which theoretically, (Ruan et al., 2021) also require knowledge of target domains.

1We further elaborate on the connection between (Ruan et al., 2021) and our work in Appendix B.
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Table 1: Summary of Conditions for Generalization

Condition Type Target DG approach
Label-identifiability (3.1) Assumption

Causal support (3.2) Assumption

Optimal hypothesis for Etr + Sufficient and diverse domains (3.4) Sufficient Data augmentation

Optimal hypothesis for Etr + Invariant representation function (3.5) Sufficient Representation alignment & Invariant prediction

Optimal hypothesis for Etr (3.3) Necessary

Sufficient Representation Function (3.7) Necessary Ensembles

While these analyses offer insights about DG from various perspectives, we argue that these conclu-
sions do not fully contribute to our understanding of generalization in practice where only a finite
number of training domains are available. Indeed, these frameworks establish generalization either
under the condition that target domains are known or diverse, or when sufficient number of training
domains are given. Consequently, it remains largely unknown regarding the extent to which domain
generalization can be attained in limited and finite number of domains, as well as the nature of the
representation required to achieve this. Our work seeks to fill in this gap with a comprehensive study
of DG landscape in light of the following aspects:

1. Conditions for Generalization. We first systematically develop a set of necessary and sufficient
conditions for generalization. We reaffirm that although existing DG methods strive to achieve the
sufficient conditions, these conditions remain non-verifiable, thus cannot guarantee the chance of
reaching a global optimal hypothesis when training domains are only finite (See Section 3).

2. DG through the lens of Necessity and Sufficiency. We then shed light on how the DG dynamics
is greatly reshaped in limited domain settings. Our analysis reveals that when a sufficient condition
(3.5 or 3.4 in Table 1) is met, it automatically results in the fulfillment of both necessary conditions
(3.3 and 3.7 in Table 1). DG literature thus tends to overlook the role of the necessary conditions
in real-world scenarios, particularly the condition of sufficient representation function (3.7). When
the sufficient conditions cannot be guaranteed, the necessary conditions in fact hold greater practical
value in determining how to maximize the likelihood of achieving generalization (See Section 4.1).
This licenses a new view to understanding why DG algorithms fail to outperform the fundamental
approach of empirical risk minimization (ERM) on standard benchmarks (See Section 4.2).

3. Learning Sufficient Invariant Representation. Finally, we empirically validate our theories
by proposing a practical method that promotes the sufficient representation constraint via ensemble
learning, while maintains the necessary conditions via a novel representation alignment strategy.
Our method demonstrates superior performance across all experimental settings (See Section 5).

2 PRELIMINARIES

We first introduce the notations and basic concepts in the paper. We use calligraphic letters (i.e., X )
for spaces, upper case letters (i.e. X) for random variables, lower case letters (i.e. x) for their values
and P for (observed) probability distributions.

2.1 PROBLEM SETUP

We consider a standard domain generalization setting with a potentially high-dimensional variable
X (e.g., an image), a label variable Y and a discrete environment (or domain) variable E in the
sample spaces X ,Y , and E , respectively. We consider the following family of distributions over
the observed variables (X,Y ) given the environment E = e ∈ E where environment space under
consideration E = {e | Pe ∈ P}:

P =

{
Pe(X,Y ) =

∫
zc

∫
ze

P(X,Y, Zc, Ze, E = e)dzcdze

}
The data generative process underlying every observed distribution Pe(X,Y ) is characterized by a
structural causal model (SCM) over a tuple ⟨V,U, ψ⟩ (See Figure 1). The SCM consists of a set of
endogenous variables V = {X,Y, Zc, Ze, E}, a set of mutually independent exogenous variables
U = {Ux, Uy, Uzc , Uze , Ue} associated with each variable in V and a set of deterministic equations

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ψ = {ψx, ψy, ψzc , ψze , ψe} representing the generative process for V . We note that this generative
structure has been widely used and extended in several other studies, including (Chang et al., 2020;
Mahajan et al., 2021; Li et al., 2022a; Zhang et al., 2023; Lu et al., 2021; Liu et al., 2021).

The generative process begins with the sampling of an environmental variable e from a prior dis-
tribution P(Ue)2. We assume there exists a causal factor zc ∈ Zc determining the label Y and a
environmental feature ze ∈ Ze spuriously correlated with Y . These two latent factors are gen-
erated from an environment e via the mechanisms zc = ψzc(e, uzc) and ze = ψze(e, uze) with
uzc ∼ P(Uzc), uze ∼ P(Uze). A data sample x ∈ X is generated from both the causal feature and
the environmental feature i.e., x = ψx(zc, ze, ux) with ux ∼ P(Ux).

Figure 1: A directed acyclic graph (DAG) describ-
ing the causal relations among different factors
producing data X and label Y in our SCM.
Observed variables are shaded.

Figure 1 dictates that the joint distribution over
X and Y can vary across domains resulting
from the variations in the distributions of Zc
and Ze. Furthermore, both causal and environ-
mental features are correlated with Y , but only
Zc causally influences Y . However because
Y ⊥⊥ E|Zc, the conditional distribution of Y
given a specific Zc = zc remains unchanged
across different domains i.e., Pe(Y |Zc = zc) =

Pe′(Y |Zc = zc) ∀e, e′ ∈ E . For readability, we
omit the superscript e and denote this invariant
conditional distribution as P(Y |Zc = zc).

2.2 REVISITING DOMAIN GENERALIZATION SETTING

Domain objective: Given a domain Pe, let the hypothesis f : X → ∆|Y| is a map from the data space
X to the the C-simplex label space ∆|Y| :=

{
α ∈ R|Y| : ∥α∥1 = 1 ∧ α ≥ 0

}
. Let l : Y∆×Y 7→ R

be a loss function, where ℓ (f (x) , y) with f (x) ∈ Y∆ and y ∈ Y specifies the loss (i.e., cross-
entropy) to assign a data sample x to the class y by the hypothesis f . The general loss of the
hypothesis f w.r.t. a given domain Pe is:

L (f,Pe) := E(x,y)∼Pe [ℓ (f (x) , y)] . (1)

Domain Generalization: Given a set of training domains Etr = {e1, ..., eK} ⊂ E , the objective of
DG is to exploit the ‘commonalities’ present in the training domains to improve generalization to
any domain of the population e ∈ E . For supervised classification, the task is equivalent to seeking
the set of global optimal hypotheses F∗ where every f ∈ F∗ is locally optimal for every domain:

F∗ :=
⋂
e∈E

argmin
f∈F

L(f,Pe) (2)

We here examine the widely used composite hypothesis f = h◦g ∈ F , where g : X → Z belongs to
a set of representation functions G, mapping the data space X to a latent space Z , and h : Z → ∆|Y|
is the classifier in the spaceH. For simplicity, we assume Zc,Ze ⊆ Z in the following analyses.

Presumption. While our work considers limited and finite domains, we follow recent theoretical
works (Wang et al., 2022a; Rosenfeld et al., 2020; Kamath et al., 2021; Ahuja et al., 2021; Chen
et al., 2022b) assuming the infinite data setting for every training environment. This assumption dis-
tinguishes DG literature from traditional generalization analysis (e.g., PAC-Bayes framework) that
focuses on in-distribution generalization where the testing data are drawn from the same distribution.

3 CONDITIONS FOR GENERALIZATION

In this section, we present the key assumptions about the data setting along with the necessary and
sufficient conditions on the hypothesis and representation functions for achieving generalization

2explicitly via the equation e = ψe(ue), ue ∼ P (Ue).
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defined in Eq. (2) (See Table 1 for summary). These conditions are critical to our analysis, where
we first reveal that the existing DG methods aim to satisfy one or several of these necessary and
sufficient conditions to achieve generalization. We thus thereafter theoretically assess whether a
method works effectively by to what extent the necessary conditions are met.

3.1 ASSUMPTIONS ON DATA SETTING

We first establish crucial assumptions for the feasibility of generalization as described in Eq (2).
These assumptions are essential for understanding the conditions under which generalization can be
achieved. We also demonstrate that the first assumption is a necessary condition for the existence of
global optimal hypotheses (Appendix A.3).
Assumption 3.1. (Label-identifiability). We assume that for any pair zc, z

′

c ∈ Zc, P(Y |Zc = zc) =

P(Y |Zc = z
′

c) if ψx(zc, ze, ux) = ψx(z
′
c, z

′
e, u

′
x) for some ze, z′e, ux, u

′
x .

The causal graph indicates that Y is influenced by zc, making Y identifiable over the distribution
P(Zc). This assumption implies that different causal factors zc and z

′

c cannot yield the same x,
unless the condition P(Y |Zc = zc) = P(Y |Zc = z

′

c) holds, or the distribution P(Y | x) is stable.
This assumption also can be view as covariate shift setting in OOD (Shimodaira, 2000).
Assumption 3.2. (Causal support). We assume that the union of the support of causal factors
across training domains covers the entire causal factor space Zc: ∪e∈Etr

supp{Pe (Zc)} = Zc where
supp(·) specifies the support set of a distribution.

This assumption holds significance in DG theories (Johansson et al., 2019; Ruan et al., 2021; Li et al.,
2022b), especially when we avoid imposing strict constraints on the target functions. Particularly,
(Ahuja et al., 2021) showed that without the support overlap assumption on the causal features, OOD
generalization is impossible for such a simple model as linear classification. Meanwhile, for more
complicated tasks, deep neural networks are typically employed, which, when trained via gradient
descent however, cannot effectively approximate a broad spectrum of nonlinear functions beyond
their support range (Xu et al., 2020). It is worth noting that causal support overlap does not imply
that the distribution over the causal features is held unchanged.

3.2 CONDITIONS ON HYPOTHESIS

By definition, the global optimal hypothesis f ∈ F∗ must also be the optimal solution for all training
domains in Etr which is defined as
Definition 3.3. (Optimal hypothesis for training domains) Given FPe = argmin

f∈F
L(f,Pe) is set of

optimal hypothesis for Pe, the optimal hypothesis for all training domains f ∈ FEtr
=
⋂
e∈Etr

FPe .

It is evident that a hypothesis being optimal for all training domains is a necessary condition for
achieving a global optimal hypothesis (if f ∈ F∗ then f ∈ FEtr ). Since this condition is necessary,
the reverse does not hold i.e., f ∈ FEtr

does not guarantee f ∈ F∗. However, this condition remains
essential for our theoretical analysis as it is the only condition that can be verified during training.
We next present two sufficient conditions that lay the foundation for understanding DG algorithms.

3.3 CONDITIONS ON TRAINING DOMAINS

We are thus motivated to study the properties of the training domains Etr so that it is feasible to
capture the global optimal hypothesis from these domains.
Theorem 3.4. (Sufficient and diverse domains) Given sequence of training domains Etr =

{e1, ..., eK} ⊂ E , denote Fk∩ =
⋂k
i=1 FPei . We consider Etr to be diverse if for domain ek, there

exists at least one sample x = ψx(zc, ze, ux) ∈ supp{Pek (X)} such that ∃f ∈ Fk−1
∩ : f(x) ̸=

P(Y | zc). Given a set of diverse domains Etr, we have:

F1
∩ ⊃ F2

∩ ⊃ ... ⊃ FK∩
and the number of training domains Etr is sufficiently large:

lim
Etr→E

F |Etr|
∩ → F∗.

4
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(Proof in Appendix A.9)

Theorem 3.4 dictates that having a sufficiently large and diverse set of training domains is a sufficient
condition for attaining the global optimal hypothesis. However, our theorem does not explicitly
specify how large the number of training domains must be. For a more in-depth study on this
aspect, we refer readers to (Rosenfeld et al., 2020; Arjovsky et al., 2020). In this work, we focus
on the “diversity” property since it is generally difficult to determine how many domains is enough
but we can always attempt to make them diverse, as done by the family of augmentation-based DG
algorithms (refer to Section 4.2). These algorithms, such as (Mitrovic et al., 2020; Wang et al.,
2022b), create augmented data that preserve the causal factor zc while varying the environment
factor ze to encourage the classifier to focus on exploiting the causal factor zc. It is worth noting that
while these methods aim to achieve sufficient condition 3.4, the condition is, in fact, theoretically
non-verifiable without knowledge of the target domains.

3.4 CONDITIONS ON REPRESENTATION FUNCTION

Proposition 3.5. (Invariant Representation Function) Under Assumption.3.1, there exists a set
of deterministic representation function (Gc ̸= ∅) ∈ G such that for any g ∈ Gc, P(Y |
g(x)) = P(Y | zc) and g(x) = g(x′) holds true for all {(x, x′, zc) | x = ψx(zc, ze, ux), x

′ =

ψx(zc, z
′

e, u
′

x) for all ze, z
′

e, ux, u
′

x} (Proof in Appendix A.4).

Assumption 3.1 gives rise to a family of invariant representation function Gc, as stated in Proposition
3.5. This discovery points to the presence of global optimal hypotheses i.e., F∗ ̸= ∅. Furthermore,
in the subsequent theorem, we demonstrate that with an understanding of the invariant correlation
g ∈ Gc, it is possible to learn these global optimal hypotheses from any training dataset Pe ∼ P ,
given it exhibits sufficient causal support (e.g., a mixture of training domains under Assumption 3.2,
where ∪e∈Etr

supp{Pe (Zc)} = Zc).
Theorem 3.6. Denote the set of domain optimal hypotheses of Pe induced by g ∈ G:

FPe,g =

{
h ◦ g | h ∈ argmin

h′∈H
L (h′ ◦ g,Pe)

}
.

If supp{Pe(Zc)} = Zc and g ∈ Gc, then FPe,g ⊆ F∗. (Proof in Appendix A.6)

Theorem 3.6 demonstrate that under Assumption 3.1 and Assumption 3.2, g ∈ Gc is the sufficient
condition f∗ ∈ F∗ for learning global optimal hypothesis from finite number of training domains.
This condition is what the family of representation alignment and invariant prediction methods
strives at (refer to Section 4.2). However, achieving g ∈ Gc is often infeasible in practice, because
it requires the knowledge of all domains. We therefore shift the attention to studying a new class of
representation function that serves as a necessary condition for global optimal hypothesis, which is
defined as follows:
Definition 3.7. (Sufficient Representation Function) A set of representation functions Gs ∈ G is
considered as sufficient representation functions if for any g ∈ Gs, there exists a function ϕ : Z → Z
such that (ϕ ◦ g) ∈ Gc (i.e., given g ∈ Gs, g(x) retains all information about causal feature of x).

The following theorem shows that g ∈ Gs is necessary for achieving the global optimal hypothesis.
Theorem 3.8. Considering the training domains Pe and representation function g, let HPe,g =
argmin
h∈H

L (h ◦ g,Pe) represent the set of optimal classifiers on g#Pe (the push-forward distribution

by applying g on Pe), the best generalization classifier from Pe to P is defined as

FBPe,g =

{
h ◦ g | h ∈

⋂
e′∈E

argmin
h′∈HPe,g

L
(
h′ ◦ g,Pe

′
)}

(3)

Give representation function g : X → Z then ∀Pe ∼ P we have
(
FBPe,g ̸= ∅

)
⊆ F∗ if and only if

g ∈ Gs. (Proof in Appendix A.7)

This theorem demonstrates that if g is not a sufficient representation i.e., g /∈ Gs, the best attainable
hypothesis is surely not optimal i.e., FBPe,g ∩ F∗ = ∅, implying that it is impossible to find any
classifier h such that h ◦ g ∈ F∗. In other words, g ∈ Gs is necessary for f ∈ F∗. This property
plays a crucial role in understanding the generalization ability of DG algorithms.

5
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4 DOMAIN GENERALIZATION: A VIEW OF NECESSITY AND SUFFICIENCY

4.1 CAN DG ALGORITHMS GENERALIZE?

The majority of DG algorithms strive to satisfy one of the sufficient conditions to achieve gener-
alization. However, the sufficient conditions are nearly non-verifiable when training domains are
limited. Corollary 4.1 indicates that if a hypothesis f = h ◦ g satisfies all necessary conditions but
fails to meet any sufficient condition, it may still perform poorly in many target domains. That is,
there might exist f ∈

⋂
e∈Etr

Fg,Pe but f /∈ F∗ and if f /∈ F∗, there are many ”bad” domains PT

for which loss L(f, PT ) is arbitrary large (recall that F∗ is set of globally optimal hypotheses).
Corollary 4.1. Given g ∈ Gs, there exists f = h ◦ g ∈

⋂
e∈Etr

Fg,Pe such that for any 0 ≤ δ ≤ 1,
there are many undesirable target domains PT ∼ P such that:

E(x,y)∼PT [f(x) ̸= f∗(x)] ≥ 1− δ.

with f∗ ∈ F∗.3 (Proof in Appendix A.8)

A natural question is to what extent DG algorithms are generalizable when the sufficient conditions
cannot be guaranteed. In this case, generalizability depends on how well they can address the nec-
essary conditions. If a DG algorithm violates our necessary conditions, the chance of achieving
generalizing is in fact zero. Without considering these conditions, it remains undetermined whether
the algorithm can ever reach a global optimal hypothesis.

Let us denote FPe =
⋃
g∈Gs

FPe,g as the set of hypotheses induced by an algorithm A that satisfies
both necessary conditions i.e., optimal for domain e (Condition 3.3) and g ∈ Gs is a sufficient
representation (Condition 3.7). Given that a hypothesis f ∈ F∗ must also be the optimal solution
for all training domains in Etr, we deduce that F∗ ⊆ FPe , ∀e ∈ Etrain, consequently, F∗ ⊆⋂
e∈Etrain

FPe . This relationship is illustrated in the Venn diagrams of Figure 2.

Figure 2: The circles (brown, blue, red) denote the spaces of domain-optimal hypothesesFPe1 ,FPe2 ,
FPe3 of training domains e1, e2, e3 respectively. The grey area indicates the space of global optimal
hypotheses F∗. An algorithm A satisfying both conditions 3.3 and 3.7 induces a non-empty grey
area that lies within the green area - the joint space of domain-optimal hypotheses

⋂
i∈{1,2,3} FPei .

The Venn diagram reveals that any algorithm achieving Condition 3.3 can guarantee that its corre-
sponding global optimal set is bounded by the feasible hypothesis set induced by the algorithm; in
visual terms, the green area always cover the grey area. Apparently, ”bad” domains occur for any
learned hypothesis f that falls outside of the grey area. Therefore, the more the green area collapses
to the grey area, the higher chance generalization can be attained.

At a high level, a strategy to encourage both areas coincide is thus by reducing the size of the
green area with additional constraints that can be met by all hypotheses in the grey area. Especially
when either of the sufficient conditions is met, according to Theorem 3.4, the green area can al-
ways converge to the grey area under perfect optimization. Existing DG approaches are essentially
seeking to reduce the green area. The augmentation-based methods strive to achieve sufficient and
diverse domains (a sufficient condition) by generating augmented domains to challenge the hypothe-
sis. Meanwhile, Representation alignment or invariant prediction strategies implicitly narrow down
the green space by constraining the representation function space G.

3This coincides with the “no free lunch” conclusion for learning representations in DG (Ruan et al., 2021).
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While attempting to restrict the set of feasible solutions, a DG algorithm, with its extra constraints,
may as well reduce the grey area, by restricting the global optimal set to only solutions that also meet
the constraints. With arbitrary constraints, there is a possibility that the grey area shrinks to null.
Interestingly, a key insight from Theorem 3.8 is that, under the Condition 3.3, as long as the solution
of an algorithm fulfills the sufficient representation function constraint (Condition 3.7), there exists
a non-empty F∗ ⊆ FEtr

; otherwise F∗ = ∅. In fact, that an algorithm meets a sufficient condition
implies the satisfaction of Condition 3.7 by default.

In summary, an algorithm should be effectively designed to minimize the space FEtr
while main-

taining the coverage of F∗. Condition 3.3 ensures the green area is non-empty i.e., FEtr
̸= ∅ while

Condition 3.7 ensures the grey one is non-empty i.e., F∗ ̸= ∅. Satisfying both conditions further
guarantees the existence of the global optimal solutions inF∗ ⊆ FEtr

. In contrast, if both conditions
are violated, the algorithm has zero chance of achieving generalization. Despite its significance, ex-
isting DG algorithms tends to overlook Condition 3.7. From finite training domains, they thus cannot
guarantee the possibility of searching for global optimal hypotheses.

4.2 UNDERSTANDING DG LITERATURE VIA NECESSITY

It is clear that in order to be considered a globally optimal candidate, a learned hypothesis from finite
domains must meet the necessary conditions 3.3 and 3.7. Following the previous analysis, we here
review the popular classes of DG methods and discuss when they meet or fail these conditions.

Representation Alignment. These approaches aim to learn a representation function g for data X
such that g(X) is invariant or consistent across different domains. Key studies like (Long et al.,
2017; Ganin et al., 2016; Li et al., 2018b; Nguyen et al., 2021; Shen et al., 2018; Xie et al., 2017;
Ilse et al., 2020) focus on learning such domain-invariant representations by reducing the divergence
between latent marginal distributions E[g(X)|E] where E represents a domain environment. Other
methods seek to align the conditional distributions E[g(X)|Y = y,E] across domains as seen in (Li
et al., 2018c; Tachet des Combes et al., 2020). However, achieving true invariance is challenging
and can be excessively limiting. In some instances, improved alignment of features leads to greater
joint errors (Johansson et al., 2019; Zhao et al., 2019; Phung et al., 2021).
Theorem 4.2. (Johansson et al., 2019; Zhao et al., 2019; Phung et al., 2021) Distance between two
marginal distribution PeY and Pe′Y can be upper-bounded:

D
(
PeY ,Pe

′

Y

)
≤ D

(
g#Pe, g#Pe

′
)
+ L (f,Pe) + L

(
f,Pe

′
)

where g#P(X) denotes representation distribution on representation space Z induce by applying
encoder with g : X 7→ Z on data distribution P, D can be H-divergence (Zhao et al., 2019),
Hellinger distance (Phung et al., 2021) or Wasserstein distance (Le et al., 2021) (Appendix A.2).

Theorem 4.2 suggests that a substantial discrepancy in the label marginal distribution D
(
PeY ,Pe

′

Y

)
across training domains may result in strong representation alignment D

(
g#Pe, g#Pe

′
)

while in-

creasing domain-losses
(
L (f,Pe) + L

(
f,Pe′

))
. It’s important to recognize that while the rep-

resentation alignment strategy could challenge Condition 3.3, this alignment constraint can help
reduce the cardinality of

⋂
e∈Etr

FPe . Thus, performance improvement is still attainable with care-
ful adjustment of the alignment weight by exploiting the oracle knowledge of the target domain.

Invariant Prediction. These methods aim to learn a consistent optimal classifier across domains.
For example, Invariant Risk Minimization (IRM) (Arjovsky et al., 2020) seeks to learn a represen-
tation function g(x) with invariant predictors E[Y |g(x), E]. This goal aligns with Condition 3.7
and encourages using invariant representations, without imposing restrictions that could affect Con-
dition 3.3. VREx (Krueger et al., 2021) relaxes the IRM’s constraint to enforce equal risks across
domains, assuming that the optimal risks are similar across domains. If, however, the optimal solu-
tions exhibit large loss variations, balancing risks could result in suboptimal performance for some
domains, violating Condition 3.3. Furthermore, with a limited number of training domains, both
IRM and VREx may struggle to identify the optimal invariant predictor, as discussed by Rosenfeld
et al. (2020) and may not offer advantages over ERM, especially when representations from differ-
ent domains occupy distinct regions in the representation space, as noted by (Ahuja et al., 2020).
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IIB (Li et al., 2022a) and IB-IRM (Ahuja et al., 2021) integrate the information bottleneck principle
with invariant prediction strategies. However, similar to IRM, these approaches only show benefits
with a sufficient and diverse number of training domains. Otherwise, the information bottleneck
even makes it susceptible to violating Condition 3.7. See Appendix B for further discussion.

Augmentation. Data augmentation (Mitrovic et al., 2020; Wang et al., 2022b; Shankar et al., 2018;
Zhou et al., 2020; 2021; Xu et al., 2021; Zhang et al., 2017; Wang et al., 2020b; Zhao et al., 2020;
Yao et al., 2022a; Carlucci et al., 2019; Yao et al., 2022b) have long been applied to DG. This strategy
is to utilize predefined or learnable transformations T on the original sample X or its features g(x)
to create augmented data T (X) or T (g(x)). Applying various transformations during training effec-
tively increases the training dataset, which, according to Theorem 3.4, should narrow the hypothesis
space. However, it’s crucial that transformation T maintains the integrity of the causal factors. This
implies a necessity for some knowledge of the target domain to ensure the transformations do not
alter the causal/invariant information (Gao et al., 2023), otherwise it risks violating Condition 3.7
(e.g., augmentation possibly introduces misleading information (Zhang & Ma, 2022)).

Ensemble Learning. Ensemble learning (Zhou, 2012) refers to training multiple copies of the
same architecture with different initializations or splits of the training data, then ensembling the
individual models for prediction. This straightforward technique has been shown to outperform a
single model across various applications, including DG (Zhou et al., 2021; Ding & Fu, 2017; Zhou
et al., 2021; Wang et al., 2020a; Mancini et al., 2018; Cha et al., 2021; Arpit et al., 2022). Unlike
explicit ensemble methods where multiple models (or model components) need to be trained, Cha
et al. (2021); Rame et al. (2022); Wortsman et al. (2022) demonstrate that averaging model weights
(WA) at different time steps during training to form a single model at test time (Izmailov et al.,
2018) can significantly enhance robustness under domain shift. Different from the previous works,
our analysis in Section 5.1) provides a new insight that ensemble-based methods can also encourage
the learning of sufficient representation (Condition 3.7) to promote generalizability.

5 SUFFICIENT INVARIANT REPRESENTATION LEARNING

Section 4.2 highlights that existing DG strategies attempt to maximize the likelihood of seeking a
global optimal hypothesis from different directions yet with several drawbacks. Furthermore, that
they all overlook Condition 3.7 poses a risk of landing in regions with empty solution set. Generally,
an effective DG algorithm is one that strives to attain the sufficient conditions while guarantees the
necessary conditions. Here we propose a method that exploits the joint effect of the two sets of
conditions to boost generalization.

In the following, we explain how to incorporate the sufficient representation constraint via ensemble
learning and present a novel representation alignment strategy that can enforce the necessary condi-
tions. We particularly do not consider invariant prediction since it cannot substantiate its superiority
over ERM with a potential of violating both necessary conditions. Meanwhile, data augmentation
typically provides significant benefits and can be integrated in a plug-and-play fashion. Since it
requires prior knowledge, users should apply it carefully based on their expertise.

5.1 SUFFICIENT REPRESENTATION CONSTRAINTS

Figure 3: Information diagrams of X,Y, Zc and
Z = g(X). Learning multiple representations
Zi, ..., Zj through ensemble learning where Zi =
gi(X) s.t gi ∈ {argmaxgi I(gi(X);Y )} to max-
imize the shared information with Zc.

By definition, a representation function g is
considered as sufficient representation if there
exists a function ϕ ∈ Φ such that: ϕ ◦ g ∈ Gc.
Our task can thus be translated into learning
the representation Z = g(X) that captures the
most information about the causal factor Zc.
This motivates us to find Z that maximizes the
mutual information I(Z;Zc).

Given a specific domain, recall our model Z ←
X ← Zc → Y , where Y is influenced by Zc
(the latent cause) and Zc also affects X . Note
that X is also under the influence of Ze, which
we omit here for simplicity. Since Zc is unob-
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served, we cannot directly measure or learn from it. However, we can leverage Y , which inherits
the causal information of Zc. This intuition can be best understood via an information diagram.

Let us examine Figure 3.(Left) that illustrates the mutual information of the 4 variables. We have
I(X,Y | Zc) = 0, meaning the causal features Zc must capture the shared information I(X;Y ).
By Assumption 3.2 and Proposition 3.5, it follows that X contains all information about Zc.

By the chain rule of mutual information, we have that I(Z;Zc) ≥ I(Z;Y ). Thus, we resort to
maximizing the lower bound I(Z;Y ) to increasing the chance of learning Z that contains causal
information Zc. Recall that we use the cross-entropy loss ℓ : Y∆ × Y 7→ R to optimize the hypoth-
esis for training domains. It is well-known that minimizing the cross-entropy loss is equivalent to
maximizing the lower bound of I(Z;Y ) (Qin et al., 2019; Colombo et al., 2021). In other words,
hypotheses that are optimal on training domains (Condition 3.3) also promote the sufficient repre-
sentation function condition (Condition 3.7). However, maximizing the lower bound I(Z;Y ) only
ensures that Z captures the shared information I(X;Y ) and potentially some additional information
about Zc (as illustrated in Figure 3 (Right)).

To encourage the representation Z to capture more information from Zc, this approach can be ex-
tended to learn multiple versions of representations through ensemble learning. Specifically, we can
learn an M -ensemble of representations ZM :

ZM =

{
Zi = gi(X) | gi ∈ argmax

gi
I(gi(X);Y )

}M
i=1

,

to capture as much information as possible about Zc. This intuition aligns with the analysis of
ensembles for OOD generalization presented in Rame et al. (2022).

5.2 SUBSPACE REPRESENTATION ALIGNMENT

Representation Alignment strategy helps reduce the cardinality of F∩ but may compromise Con-
dition 3.3 due to the potential trade-off between alignment constraints and domain losses (Theo-
rem 4.2). However, we now show that with a more careful design, we can address the trade-off
effectively. Our proposed strategy, called Subspace Representation Alignment (SRA), involves orga-
nizing training domains into distinct subspaces and aligning representations within these subspaces.
This aims to diminish or completely remove differences in the marginal label distributions across
these domains so that the search space can be reduced.

We consider subspace projector Γ : X → M, given a subspace index m ∈ M, we denote
Am = Γ−1(m) = {x : Γ(x) = m} is the region on data space which has the same index m.
Let Pem be the distribution restricted by Pe over the set Am. Eventually, we define Pem (y | x)
as the probabilistic labeling distribution on the subspace (Am,Pem), meaning that if x ∼ Pem,
Pem (y | x) = Pe (y | x). Since each data point x ∈ X corresponds to only a single Γ(x), the
data space is partitioned into disjoint sets, i.e., X =

⋃M
m=1Am, where Am ∩ An = ∅,∀m ̸= n.

Consequently, Pe :=
∑
m∈M πemPem where πem = Pe (Am) /

∑
m′∈M Pe (Am′).

Theorem 5.1. Given a subspace projector Γ, if the loss function ℓ is upper-bounded by a positive
constant L, then: (i) The target general loss is upper-bounded:

|Etr|
∑
e∈Etr

L (f,Pe) ≤
∑
e∈Etr

∑
m∈M

πemL (f,Pem) + L
∑

e,e′∈Etr

∑
m∈M

πemD
(
g#Pem, g#Pe

′

m

)
,

(ii) Distance between two label marginal distribution Pem(Y ) and Pe′m(Y ) can be upper-bounded:

D
(
PeY,m,Pe

′

Y,m

)
≤ D

(
g#Pem, g#Pe

′

m

)
+ L (f,Pem) + L

(
f,Pe

′

m

)
where g#P denotes representation distribution on Z induce by applying g with g : X 7→ Z on data
distribution P,D can beH-divergence, Hellinger or Wasserstein distance. (Proof in Appendix A.12)

In Theorem 5.1, (i) illustrates that domain-specific losses can be broken down into losses and rep-
resentation alignments within individual subspaces. Optimizing the subspace-specific losses across
domains ensures optimizing the overall loss within the original domains are optimized. Meanwhile,
(ii) demonstrates that the distance between the marginal label distributions is now grounded within
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subspaces, denoted as d1/2
(
PeY,m,Pe

′

Y,m

)
. Theorem 5.1 suggests that appropriately distributing

training domains across subspaces can reduce both the upper and lower bounds. Particularly, for
a given subspace index m, if D

(
PeY,m,Pe

′

Y,m

)
= 0, we can jointly optimize both domains losses

L (f,Pem) + L
(
f,Pe′m

)
and representation alignment D

(
g#Pem, g#Pe

′

m

)
. Consequently, optimiz-

ing the RHS of (ii) for all supspaces is equivalent to minimizing the RHS of (i).

The question now is how we can manage the training distribution into a subspace such that
D
(
PeY,m,Pe

′

Y,m

)
is reduced, potentially even to zero. Fortunately, working within training do-

mains, we anticipate that f ∈ ∩e∈Etr
FPe will predict the ground truth label f(x) = f∗(x)

where f∗ ∈ F∗.We can define a projector Γ = f , which induces a set of subspace indices
M = {m = ŷ | ŷ = f(x), x ∈

⋃
e∈Etr

suppPe} ⊆ ∆|Y|. As a result, given subspace index
m ∈ M, ∀i ∈ Y,PeY,m(Y = i) = Pe′Y,m(Y = i) =

∑
x∈f−1(m) P(Y = i | x) = m[i]. Conse-

quently, D
(
PeY,m,Pe

′

Y,m

)
= 0 for all m ∈ M, allowing us to jointly optimize both domain losses

and representation alignment.

The final optimization objective, encapsulating the constraints of optimal hypothesis for all training
domain, ensemble for sufficient representation, and subspace representation alignment is given by:

min
f

∑
e,e′∈Etr

∑
m∈M

D
(
g#Pem, g#Pe

′

m

)
︸ ︷︷ ︸

Subspace Representation Alignment

s.t. f ∈
⋂
e∈Etr

argmin
f
L (f,Pe)︸ ︷︷ ︸

Training domain optimal hypothesis

(4)

where M = {ŷ | ŷ = f(x), x ∈
⋃
e∈Etr

suppPe} and D can be H-divergence, Hellinger dis-
tance, Wasserstein distance. We provide the details on the practical implementation of the proposed
objective in Appendix C.

5.3 EXPERIMENTS

In this section, we present empirical evidence validating our theoretical takeaways, that is enforcing
good sufficient conditions (SRA) while encouraging necessary conditions (Ensemble) can improve
generalization. For the ensemble component, we utilize the weight averaging strategy from the
SWAD method (Cha et al., 2021) for efficient inference. Importantly, our analysis highlights that
using ensembles for targeting the sufficient representation constraint can provide crucial benefits
for generalization. This strategy should therefore not be viewed as merely post-processing or an
orthogonal technique in DG setting.

Table 2 compares our method against two popular representation alignment strategies: DANN and
CDANN, on 5 datasets from DomainBed benchmark Gulrajani & Lopez-Paz (2021). Note that
we also useH-divergence for alignment in DANN and CDANN. The only difference is that DANN
aligns the whole domain representation, CDANN aligns class-conditional representation, while SRA
employs subspace-conditional alignment. First, it is seen that both DANN and CDANN cannot sur-
pass ERM overall with and without SWAD. This supports our analysis in Section 4.2 that these
methods violate the necessary condition. In contrast, our method consistently achieves better per-
formance than the baseline approaches on all datasets. We further demonstrate the benefit of an en-
semble approach by averaging the predictions of models trained with different random seeds (SRA
+ SWAD + Ensemble), resulting in a performance boost. Full experimental results and detailed
settings are provided in Appendix D.

6 LIMITATIONS AND CONCLUSION

This paper presents a comprehensive study of existing DG algorithms under various conditions
towards achieving global optimal hypothesis. While the condition of sufficient representation is
often overlooked in DG literature, its role is critical to understanding whether a DG algorithm truly
generalizes, underscoring several facets of generalization that current benchmarking fails to factor
in. Providing a theoretical guarantee for the verifiability of many of the conditions under analysis is
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Table 2: Classification accuracy (%) for all algorithms across datasets.
Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM (Gulrajani & Lopez-Paz, 2021) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
DANN (Ganin et al., 2016) 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN (Li et al., 2018b) 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
Ours (SRA) 76.4 ± 0.7 86.3 ± 1.1 66.4 ± 0.7 49.5 ± 1.0 44.5 ± 0.3 64.6

SWAD (Cha et al., 2021) 79.1 ± 0.4 88.1 ± 0.4 70.6 ± 0.3 50.0 ± 0.4 46.5 ± 0.2 66.9
SWAD + DANN 79.2 ± 0.0 87.9 ± 0.5 70.5 ± 0.1 50.6 ± 0.6 45.7 ± 0.1 66.8
SWAD + CDANN 79.3 ± 0.2 87.7 ± 0.3 70.4 ± 0.1 50.7 ± 0.1 45.7 ± 0.2 66.8
Ours (SRA + SWAD) 79.4 ± 0.4 88.7 ± 0.2 72.1 ± 0.5 51.6 ± 1.2 47.6 ± 0.1 67.9

Ours (SRA + SWAD + Ensemble) 79.8 ± 0.0 89.2 ± 0.0 73.2 ± 0.0 52.2 ± 0.0 48.7 ± 0.6 68.6

beyond the scope of the current work. We here at best draw insights from our analysis to translate the
conditions into practical constraints for optimization. Our future works will also focus on designing
an evaluation framework that can characterize necessary and sufficient conditions as well as quantify
the likelihood of achieving generalization.
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A THEORETICAL DEVELOPMENT

In this section, we present all the proofs of our theoretical development.

A.1 NECESSARY AND SUFFICIENT CONDITIONS FOR ACHIEVING GENERALIZATION

For readers’ convenience, we recapitulate our definition and assumptions:

Domain objective: Given a domain Pe, let the hypothesis f : X → ∆|Y| is a map from the data space
X to the the C-simplex label space ∆|Y| :=

{
α ∈ R|Y| : ∥α∥1 = 1 ∧ α ≥ 0

}
. Let l : Y∆×Y 7→ R

be a loss function, where ℓ (f (x) , y) with f (x) ∈ Y∆ and y ∈ Y specifies the loss (i.e., cross-
entropy) to assign a data sample x to the class y by the hypothesis f . The general loss of the
hypothesis f w.r.t. a given domain Pe is:

L (f,Pe) := E(x,y)∼Pe [ℓ (f (x) , y)] . (5)

Assumption A.1. (Label-identifiability). We assume that for any pair zc, z
′

c ∈ Zc, P(Y |Zc = zc) =

P(Y |Zc = z
′

c) if ψx(zc, ze, ux) = ψx(z
′
c, z

′
e, u

′
x) for some ze, z′e, ux, u

′
x .

Assumption A.2. (Causal support). We assume that the union of the support of causal factors
across training domains covers the entire causal factor space Zc: ∪e∈Etr

supp{Pe (Zc)} = Zc where
supp(·) specifies the support set of a distribution.
Corollary A.3. F ̸= ∅ if and only if Assumption A.1 holds.

Proof. The ”if” direction is directly derived from the Proposition A.4. We prove ”only if” direction
by contraction.

If Assumption A.1 does not hold, there a pair x = x′ such that x = ψx(zc, ze, ux) x
′ =

ψx(z
′
c, z

′
e, u

′
x) for some ze, z′e, ux, u

′
x and P(Y |Zc = zc) ̸= P(Y |Zc = z

′

c).

By definition of f ∈ F∗, f(x) = P(Y |Zc = zc) ̸= P(Y |Zc = z
′

c) = f(x′) = f(x) which is a
contradiction. (It is worth noting that a domain containing only one sample x is also valid within
our data-generation process depicted in Figure 1.).

Proposition A.4. (Invariant Representation Function) Under Assumption.A.1, there exists a set
of deterministic representation function (Gc ̸= ∅) ∈ G such that for any g ∈ Gc, P(Y |
g(x)) = P(Y | zc) and g(x) = g(x′) holds true for all {(x, x′, zc) | x = ψx(zc, ze, ux), x

′ =

ψx(zc, z
′

e, u
′

x) for all ze, z
′

e, ux, u
′

x}

Proof. Under Assumption.A.1, we can always choose a deterministic function gc : X → Zc such
that the outcome of gc(x), can be any zc ∈ {zc | x = ψx(zc, ze, ux)} and P(Y | gc(x)) = P(Y |
zc), will consistently provide an accurate prediction of Y . In essence, Y is identifiable over the
pushforward measure gc#P(X).

Corollary A.5. (Invariant Representation Function Properties) For any g ∈ Gc, the following prop-
erties hold:

1. g is a mapping function directly from the sample space X to the causal feature space Zc,
such that g : X → Zc.

2. Given a deterministic equivalent causal transformation mapping T : Zc → Zc,
which maps a causal factor zc to another equivalent causal factor T (zc), such that
P(Y | zc) = P(Y | T (zc)), then we have g(x) = T (zc) holds for all {x | x =
ψx(zc, ze, ux), for all ze, ux}.

3. Given ℓ is the Cross-Entropy Loss i.e., ℓ(h(zc), y) = −
∑
y∈Y P(Y = y | zc) log h(zc)[y],

there exists h∗ such that:

h∗ ∈
⋂

zc∈Zc

argmin
h∈H

Ey∼P(Y |zc)ℓ (h(zc), y) ,
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Proof. We prove each property as follows:

Proof of property-1: Suppose there exists g : X → Z such that P(Y | g(x)) = P(Y | zc) holds true
for all {(x, zc) | x = ψx(zc, ze, ux) for all ze, ux}.
If g is not a function from X to Zc, then g(x) may include spurious features ze, or both zc and ze
for x = ψ(zc, ze, ux).

Based on the structural causal model (SCM) depicted in Figure 1, it follows that Ze ⊥̸⊥ Y , meaning
that the environmental feature Ze is spuriously correlated with Y . Consequently,

P(Y | g(x = ψ(zc, ze, ux))) ̸= P(Y | g(x = ψ(zc, z
′
e, ux)))

for some ze ̸= z′e, which is a contradiction.

Proof of property-2: Since g : X → Zc and P(Y | g(x)) = P(Y | zc) holds true for all {(x, zc) |
x = ψx(zc, ze, ux) for all ze, ux}, the outcome of g(x) have to be any z

′

c ∈ Zc such that P(Y |
zc) = P(Y | z′

), which means g(x) = T (zc) holds for {x | x = ψx(zc, ze, ux)}
This highlights the flexibility of the family of invariant representation functions Gc, as they allow
the model to map a sample x = ψ(zc, ze, ux) to a set of equivalent causal factors {z′c ∈ Zc | P(Y |
zc) = P(Y | z′c)}, rather than requiring an exact mapping to zc.

Finally, since g(x) = g(x′) holds true for all {(x, x′, zc) | x = ψx(zc, ze, ux), x
′ =

ψx(zc, z
′

e, u
′

x) for all ze, z
′

e, ux, u
′

x}, g(x) = T (zc) holds for all {x | x =
ψx(zc, ze, ux), for all ze, ux}
Proof of property-3:

Given zc ∈ Zc and ℓ(h(zc), y) = −
∑
y∈Y P(Y = y | zc) log h(zc)[y], it is easy to show that the

optimal
h∗ = argmin

h∈H
Ey∼P(Y |zc)ℓ (h(zc), y)

is the conditional probability distribution h∗(zc) = P(Y | zc).
Based on structural causal model (SCM) depicted in Figure 1, P(Y | zc) remains stable across all
domains. Therefore, there exists an optimal function h∗ such that:

h∗ ∈
⋂

zc∈Zc

argmin
h∈H

Ey∼P(Y |zc)ℓ (h(zc), y) ,

where h∗(zc) = P(Y | zc) for all zc ∈ Zc
Theorem A.6. (Theorem 3.6 in the main paper) Denote the set of domain optimal hypotheses of
Pe induced by g ∈ G:

FPe,g =

{
h ◦ g | h ∈ argmin

h′∈H
L (h′ ◦ g,Pe)

}
.

If supp{Pe(Zc)} = Zc and g ∈ Gc, then FPe,g ⊆ F∗.

Proof. Given supp{Pe(Zc)} = Zc and gc ∈ Gc, it suffices to prove that for any fc = hc ◦ gc ∈
FPe,gc , we have:

fc ∈
⋂

Pe∈P

argmin
f∈F

L (f,Pe) . (6)

To prove (6), we only need to show that for any f = h ◦ gc ∈ F and Pe′ ∈ P:

L
(
f,Pe

′
)
≥ L

(
fc,Pe

′
)
, (7)
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which is equivalent to:

E(x,y)∼Pe′ [ℓ (f (x) , y)] ≥ E(x,y)∼Pe′ [ℓ (fc (x) , y)] . (8)

Step 1: Simplifying the general loss using the invariant representation function gc.

Based on structural causal model (SCM) depicted in Figure 1 we have a distribution (domain) over
the observed variables (X,Y ) given the environment E = e ∈ E :

Pe(X,Y ) =

∫
Zc

∫
Ze

Pe(X,Y, Zc = zc, Ze = ze)dzcdze

=

∫
Zc

∫
Ze

Pe(X,Y, zc, ze)dzcdze

=

∫
Zc

∫
Ze

Pe(X | zc, ze)Pe(Y | zc)Pe(zc)Pe(ze)dzcdze

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
X
Pe(X = x | zc, ze)Pe(Y | zc)dzcdzedx

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
X
Pe(X = x | zc, ze)

∫
Y
Pe(Y = y | zc)dzcdzedxdy

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
X

∫
Ux

Pe(X = x | zc, ze, ux)Pe(ux)
∫
Y
Pe(Y = y | zc)dzcdzedxdydux

(1)
=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
X

∫
Ux

Ix=ψx(zc,ze,ux)P
e(ux)

∫
Y
Pe(Y = y | zc)dzcdzedxdydux

We have
(1)
= by definition of SCM, x is the deterministic function of (zc, ze, ux).

Therefore we have:

E(x,y)∼Pe(X,Y ) [ℓ (f (x) , y)]

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
X

∫
Ux

Ix=ψx(zc,ze,ux)P
e(ux)

∫
Y
Pe(Y = y | zc)ℓ (f (x) , y) dzcdzedxdydux

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

∫
Y
Pe(Y = y | zc)

∫
X
Ix=ψx(zc,ze,ux)ℓ (f (x) , y)P

e(ux)dzcdzedxdydux

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

∫
Y
Pe(Y = y | zc)

∫
X
Ix=ψx(zc,ze,ux)ℓ (f (ψx(zc, ze, ux)) , y)P

e(ux)dzcdzedxdydux

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

∫
Y
Pe(Y = y | zc)ℓ (f (ψx(zc, ze, ux)) , y)Pe(ux)dzcdzedydux

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

Ey∼P(Y |zc) [ℓ (f (ψx(zc, ze, ux)) , y)]P
e(ux)dzcdzedux

=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

Ey∼P(Y |zc) [ℓ ((h ◦ gc) (ψx(zc, ze, ux)) , y)]P
e(ux)dzcdzedux

(1)
=

∫
Zc

∫
Ze

Pe(zc)Pe(ze)
∫
Ux

Ey∼P(Y |zc) [ℓ (h (T (zc)) , y)]P
e(ux)dzcdzedux

=

∫
Zc

Pe(zc)Ey∼P(Y |zc) [ℓ (h (T (zc)) , y)] dzc

=

∫
Zc

Pe(zc)Ey∼P(Y |T (zc)) [ℓ (h (T (zc)) , y)] dzc

(2)
=

∫
Zc

T#Pe(zc)Ey∼P(Y |zc) [ℓ (h (zc) , y)] dzc
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We have:

•
(1)
= by property-2 of gc (Corollary A.5);

•
(2)
= because T : Zc → Zc and T#Pe(zc) =

∫
z′c∈T−1(zc)

Pe(z′

c)dz′c

Now, to prove (8), we only need to show:

∫
Zc

T#Pe
′
(zc)Ey∼P(Y |zc) [ℓ (hc (zc) , y)] dzc ≤

∫
Zc

T#Pe
′
(zc)Ey∼P(Y |zc) [ℓ (h (zc) , y)] dzc (9)

Step 2: Generalization of hc. Step-1 Demonstrate that hc only needs to make predictions for the set
of causal factors zc ∈ Zc. Therefore, it is sufficient to show that hc is optimal for every z ∈ Zc.
Recall that fc = hc ◦ gc ∈ FPe,gc , therefore,

hc ∈ argmin
h∈H

∫
Zc

T#Pe(zc)Ey∼P(Y |zc) [ℓ (h (zc) , y)] dzc

By property-3 of gc (Corollary A.5), there exists an optimal function h∗ such that:

h∗ ∈
⋂

zc∈Zc

argmin
h∈H

Ey∼P(Y |zc)ℓ (h(zc), y) ,

Property-3 of gc ensures the existence of an optimal h∗ for every causal factor zc ∈ Zc, it follows
that hc must also be optimal for every causal feature zc within its support, suppPe(Ze). This implies
that hc(zc) = h∗(zc) for every zc where Pe(ze) > 0.

Moreover, since suppPe(Ze) = Zc, this implies that hc(zc) = h∗(zc) for every zc ∈ Zc.
Step-3: Proof of (9).

∫
Zc

T#Pe
′
(zc)Ey∼P(Y |zc) [ℓ (hc (zc) , y)] dzc ≤

∫
Zc

T#Pe
′
(zc)Ey∼P(Y |zc) [ℓ (h (zc) , y)] dzc

From step-2, we have

Ey∼P(Y |zc) [ℓ (hc (zc) , y)] ≤ Ey∼P(Y |zc) [ℓ (h (zc) , y)]

for all zc ∈ Zc. By taking the expectation and applying the law of iterated expectation, inequality
(9) follows. This concludes the proof.

Theorem A.7. (Theorem 3.8 in the main paper) Considering the training domains Pe and rep-
resentation function g, let HPe,g = argmin

h∈H
L (h ◦ g,Pe) represent the set of optimal classifiers on

g#Pe (the push-forward distribution by applying g on Pe), the best generalization classifier from
Pe to P is defined as

FBPe,g =

{
h ◦ g | h = argmin

h′∈HPe,g

sup
e′∈E
L
(
h′ ◦ g,Pe

′
)}

(10)

Give representation function g : X → Z then ∀Pe ∼ P we have FBPe,g ⊆ F∗ if and only if g ∈ Gs.

Proof. We first proof “if” direction. If g ∈ Gs, we have:
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1. There exists a function ϕ such that ϕ ◦ g ∈ Gc, which implies the existence of a gc ∈ Gc
such that ϕ ◦ g = gc.

2. By the definition of gc ∈ Gc, we can always find a classifier h such that h ◦ gc ∈ F∗.

Recall that the definition of FBPe,g implies that, given g, we perform an oracle search for a classifier
h′ ∈ HPe,g such that h′ ◦ g achieves the best generalization across any domain e′ ∈ E .

From (1) and (2) we have h◦gc = h◦ϕ◦g ∈ F∗. Therefore, we can construct classifier hϕ = h◦ϕ,
then hϕ ◦ g = h ◦ ϕ ◦ g = h ◦ gc ∈ F∗.

Since hϕ ◦ g ∈ F∗ is the optimal hypothesis across all domains, it is also the optimal hypothesis for
the specific domain Pe, i.e., hϕ ◦ g ∈ FPe,g . This implies that hϕ ∈ HPe,g . Consequently, the set
FBPe,g ⊆ F∗.

We will prove “only if” direction by contraction. We show that if g is not sufficient-representation,
there exists multiple target domains where learned classifier h ∈ F∗

g on g performs arbitrarily bad.

If there does not exist a function ϕ such that ϕ ◦ g ∈ Gc, then for any ϕ and ∀(h, hc) where h ◦ g ∈
F∗
g,Pe , hc ◦ gc ∈ F∗

gc , there is a set B = {x | h(ϕ(g(x))) ̸= h(gc(x))} ≠ ∅.

We can construct undesirable target domains Pei with arbitrary loss L(h ◦ g,Pei) by giving (1− δ)
percentage mass to that examples in B and (δ) percentage mass that examples in X \ B. This is
equivalent to

E(x,y)∼Pei [h(g(x)) ̸= hc(gc(x))] ≥ 1− δ. (11)

with (0 ≤ δ ≤ 1).

Corollary A.8. (Corollary 4.1 in the main paper) Given g ∈ Gs, there exists f = h ◦ g ∈⋂
e∈Etrain

Fg,Pe such that for any 0 < δ < 1, there are many undesirable target domains PT ∼ P
such that:

E(x,y)∼PT [f(x) ̸= f∗(x)] ≥ 1− δ.

with f∗ ∈ F∗.

Proof. Denote PEtr is the mixture of training domains, then supp{PEtr (Zc)} =
∪e∈Etr supp{Pe (Zc)} = Zc. Additionally, given g ∈ Gs, then there exists ϕ such that
gc = ϕ ◦ g ∈ Gc.
Based on structural causal model (SCM) depicted in Figure 1, we have Ze ⊥̸⊥ Y i.e., the environ-
mental feature Ze spuriously correlated with Y . Hence, there exist h ̸∈ {hc ◦ϕ | hc ◦gc ∈ Fgc,PEtr }
e.g., h can rely on spurious feature ze (or both zc and ze) to make predict for some {x | x =
ψx{zc, ze, ux} for some zc such that P(Y |ze= ze) = P(Y | zc = zc)}.

There is a set B = {x | x = ψx{z
′

c, ze, ux} for some z
′

c such that P(Y |ze= ze) ̸= P(Y | zc =

z
′

c)} ≠ ∅. Consequently, h(ϕ(g(x))) ̸= hc(gc(x)) for all x ∈ B
We can construct undesirable target domains Pei with arbitrary loss L(h ◦ g,Pei) by giving (1− δ)
percentage mass to that examples in B and (δ) percentage mass that examples in X \ B. This is
equivalent to

E(x,y)∼Pei [h(g(x)) ̸= hc(gc(x))] ≥ 1− δ.
with (0 ≤ δ ≤ 1).

By Theorem 3.6, hc ◦ gc ∈ Fgc,PEtr implies hc ◦ gc ∈ F∗. This concludes the proof.

Theorem A.9. (Theorem 3.4 in the main paper) Given sequence of training domains Etr =

{e1, ..., eK} ⊂ E , denote Fk∩ =
⋂k
i=1 FPei . We consider Etr to be diverse if for domain ek, there

exists at least one sample x = ψx(zc, ze, ux) such that ∃f ∈ Fk−1
∩ : f(x) ̸= P(Y | zc). Given a set

of diverse domains Etr, we have:
F1

∩ ⊃ F2
∩ ⊃ ... ⊃ FK∩
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and the number of training domains Etr is sufficiently large:

lim
Etr→E

F |Etr|
∩ → F∗.

Proof. We prove the first statement by induction. Consider the case F∩
k−1 and F∩

k , we will show
that if Etr is considered as diverse F∩

k−1 ⊃ F∩
k .

We have F∩
k−1 ⊇ F∩

k is obvious by definition. By definition of ”diverse” training domains Etr, there
exists at least one sample x = ψx(zc, ze, ux) such that ∃f ∈ Fk−1

∩ : f(x) ̸= P(Y | zc). This means
f /∈ F∩

k , hence, F∩
k−1 ⊃ F∩

k .

For the second statement, we need to show that if Etr = E then F |Etr|
∩ = F∗. This holds true by the

definition of F∗.

A.2 REPRESENTATION ALIGNMENT TRADE-OFF

As a reminder, P denotes data distribution on data space X , while g#P denotes latent distribution
on full latent space Z , with g : X 7→ Z is the encoder.

In the following, we recap the theoretical results for Hellinger distance as presented by Phung et al.
(2021). Similar results for H-divergence can be found in Zhao et al. Zhao et al. (2019), and for
Wasserstein distance in Le et al. Le et al. (2021).

A.2.1 UPPER BOUND

Theorem A.10. Consider the source domain Pe′ and the target domain Pe. Let ℓ be any loss
function upper-bounded by a positive constant L. For any hypothesis f : X 7→ Y∆ where f = h ◦ g
with g : X 7→ Z and h : Z 7→ Y∆, the target loss on input space is upper bounded

L (f,Pe) ≤ L
(
f,Pe

′
)
+ L
√
2 d1/2

(
Peg,Pe

′

g

)
, (12)

This Theorem is directly adapted from the result of Trung et al. Phung et al. (2021). The upper
bound for target loss above relates source loss, target loss and data shift on feature space, which is
different to other bounds in which the data shift is on input space.

A.2.2 LOWER BOUND

Theorem A.11. Phung et al. (2021) Consider a hypothesis f = h◦g, the Hellinger distance between
two label marginal distributions Pe′ and Pe can be upper-bounded as:

d1/2

(
Pe

′

Y ,PeY
)
≤ L

(
f,Pe

′
)1/2

+ d1/2

(
g#Pe

′
, g#Pe

)
+ L (f,Pe)1/2 (13)

where the general loss L is defined based on the Hellinger loss ℓ which is define as ℓ (f(x)) =

D1/2 (f(x),P(Y | x)) = 2
∑C
i=1

(√
f(x, i)−

√
P(Y = i | x)

)2
.

A.3 SUBSPACE REPRESENTATION ALIGNMENT

In the following, we prove the theoretical results for Hellinger distance based on the findings of
Trung et al. Phung et al. (2021). A similar strategy can be directly applied to H-divergence Zhao
et al. (2019) and Wasserstein distance Le et al. (2021).
Theorem A.12. (Theorem 5.1 in the main paper) Given a subspace projector Γ, if the loss function
ℓ is upper-bounded by a positive constant L, then:

(i) The subspace target general loss is upper-bounded:
1

|Etr|
∑
e∈Etr

L (f,Pe) ≤
∑

e,e′∈Etr

∑
m∈M

πemL
(
f,Pe

′

m

)
+

∑
e,e′∈Etr

L
√
2
∑
m∈M

πemd1/2

(
g#Pem, g#Pe

′

m

)
,
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(ii) The Hellinger distance between two label marginal distributions on subspace Pe′Y,m and PeY,m
can be upper-bounded:

d1/2

(
Pe

′

Y,m,PeY,m
)
≤ d1/2

(
g#Pe

′

m, g#Pem
)
+ L

(
f,Pe

′

m

)1/2
+ L (f,Pem)

1/2

where g#P denotes representation distribution on representation space Z in-
duce by applying encoder with g : X 7→ Z on data distribution P,

D1/2

(
P1(W ),P2(W )

)
= 2

∫ (√
p1(w)−

√
p2(w)

)2
dw is the Hellinger divergence

Hellinger (1909) between two distributions. The squared d1/2 =
√
D1/2 is a proper

metric, the general loss L is defined based on the Hellinger loss ℓ which is define as

ℓ (f(x)) = D1/2 (f(x),P (Y | x)) = 2
∑C
i=1

(√
f(x, i)−

√
P (Y = i | x)

)2
.

Proof. We consider sub-space projector Γ : X →M, given a sub-space index m ∈ M, we denote
Am = Γ−1(m) = {x : Γ(x) = m} is the region on data space which has the same indexm. Let Pem
be the distribution restricted by Pe over the set Am and Pem as the distribution restricted by Pe over
Am. Eventually, we define Pem (y | x) as the probabilistic labeling distribution on the sub-space
(Am,Pem), meaning that if x ∼ Pem, Pem (y | x) = Pe (y | x). Similarly, we define if x ∼ Pe′m,
Pe′m (y | x) = Pe′ (y | x). Due to this construction, any data sampled from Pem or Pe′m have the same
index m = Γ(x). Additionally, since each data point x ∈ X corresponds to only a single Γ(x), the
data space is partitioned into disjoint sets, i.e., X =

⋃M
m=1Am, where Am ∩ An = ∅,∀m ̸= n.

Consequently, the general loss of the target domain becomes:

L (f,Pe) :=
∑
m∈M

πemL (f,Pem) , (14)

whereM is the set of all feasible sub-spaces indexing m and πem = Pe(Am)∑
m′∈M Pe(Am′ )

.

We obtain point (i) directly by applying the results from Theorem A.11 to each individual sub-space,
denoted by the index m.

Using the same proof for a single space in Theorem A.10, we obtain:

L (f,Pem) ≤ L
(
fm,Pe

′

m

)
+ L
√
2d1/2

(
g#Pem, g#Pe

′

m

)
(15)

Since L (f,Pe) :=
∑
m π

e
mL (f,Dem), taking weighted average over m ∈M, we reach (ii):

L (f,Pe) ≤
∑
m

πemL
(
fm,Pe

′

m

)
+ L
√
2
∑
m

πemd1/2

(
g#Pem, g#Pe

′

m

)
(16)

By summing over the training domains on the left-hand side, we obtain:

∑
e∈Etr

L (fM,Pe) ≤
∑
e∈Etr

∑
m

πemL
(
fm,Pe

′

m

)
+
∑
e∈Etr

L
√
2
∑
m

πemd1/2

(
g#Pem, g#Pe

′

m

)
Summing over the training domains on the left-hand side again:

∑
e′∈Etr

∑
e∈Etr

L (fM,Pe) ≤
∑
e′∈Etr

∑
e∈Etr

∑
m

πemL
(
fm,Pe

′

m

)
+
∑
e′∈Etr

∑
e∈Etr

L
√
2
∑
m

πemd1/2

(
g#Pem, g#Pe

′

m

)
Finally, we obtain:

|Etr|
∑
e∈Etr

L (f,Pe) ≤
∑

e,e′∈Etr

∑
m∈M

πemL
(
f,Pe

′

m

)
+

∑
e,e′∈Etr

L
√
2
∑
m∈M

πemd1/2

(
g#Pem, g#Pe

′

m

)
(17)
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B ADDITIONAL DISCUSSION WITH RELATED WORKS

Optimal Representation (Ruan et al., 2021) While at first glance, (Ruan et al., 2021) and our
work share the same goal of identifying the necessary and sufficient conditions for generalization,
the two studies fundamentally differ in the following aspects:

Ruan et al. (2021) aim to identify the set of conditions that are both necessary and sufficient, which
provide theoretical guarantee essentially by assuming some knowledge of target domains. Without
accessing target information, generalization is provably impossible. Meanwhile, we focus on ana-
lyzing generalizability from limited domains without assuming any additional information from the
target.

More concretely, Ruan et al. (2021) propose the idealized domain generalization hypothesis (IDG),
which is the expected worst-case target risk over source risk minimizers:

RIDG = Eei,ej∼P

[
sup

f∈FPei

L(f,Pei)

]

RIDG is an expectation over all possible pairs of domains (ei, ej) ∼ P where P is the distribution
over domain space E . During training, they sample any two domains from the domain distribution,
assigning one as the source and the other as the target, to determine the worst-case target risk.

The representation Z = g(X) deemed optimal for IDG must satisfy two conditions (by Theorem 1
therein):

• Sufficient representation: the representation needs to be task-discriminative, allowing a
predictor to minimize risk across all domains. In the presence of all domains, this condition
can be simply satisfied by learning a hypothesis optimal for all training domains.

• The representation’s marginal support must be consistent across all pairs of source and
target domains. This condition generally coincides with our assumption of causal support,
which is a common assumption across DG literature.

It is clear from the formulation RIDG that all possible domains should be known to achieve gen-
eralization. Ruan et al. (2021) also point out the challenge in generalization without data from the
target domain and recommends incorporating data augmentation from pre-trained models such as
CLIP. To our best knowledge, using augmentation in DG is not new. Various studies have shown
that access to all label-preserving augmentations (which is generally unfeasible) would reveal true
causal factors (Mitrovic et al., 2020; Gao et al., 2023). To satisfy this condition, Ruan et al. (2021)
assume augmentation is Bayes-preserving augmentation (Assumption 10 therein).

Figure 4: Information diagrams of X,Y, Zc and Zmin := g(X) s.t g ∈ {argmaxg I(g(X);Y ) −
I(g(X);X)}. In limited training domains, learning such minimal representation Zmin would capture
the least information about Zc.
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Information Bottleneck Theory. We here elucidate our claim in Section 4.2 that minimizing
I(g(X);X) can subject the model to violating Condition 3.7. Whereas Ahuja et al. (2021) posits
that information bottleneck aids generalization, such methods in fact assume sufficient and diverse
domains, that is when a sufficient condition is met. In this case, the information about Zc is fully
covered by the region I(X;Y ) and any g = argming I(g(X);X) s.t g ∈ {argmaxg I(g(X);Y )}
could guarantee all spurious features are discarded.

When the training domains are limited, the learned representations is however more likely to contain
spurious correlations bad for prediction on unseen domains. Thus, minimizing I(g(X);X) in fact
would at most capture the shared information of X and Y , thus yielding representations with the
least information about Zc. Therefore, such minimal representations are the least likely to meet
the sufficient representation constraint in practice. Figure 4 illustrates the difference between two
learning scenarios.

C PRACTICAL METHODOLOGY

In this section, we present the practical objectives to achieve Eq. (4):

min
f

∑
e,e′∈Etr

∑
m∈M

D
(
g#Pem, g#Pe

′

m

)
︸ ︷︷ ︸

Subspace Representation Alignment

s.t. f ∈
⋂
e∈Etr

argmin
f
L (f,Pe)︸ ︷︷ ︸

Training domain optimal hypothesis

(18)

whereM = {ŷ | ŷ = f(x), x ∈
⋃
e∈Etr

suppPe} and D can be H-divergence, Hellinger distance,
Wasserstein distance.

In the following, we consider the encoder g, classifier h, domain discriminator hd and set of K
empirical training domains Dei = {xeij , y

ei
j }

Nei
j=1 ∼ [Pei ]Nei , i = 1...K.

C.1 OPTIMAL HYPOTHESIS ACROSS TRAINING DOMAINS

For optimal hypothesis across training domains condition, we simply adopting the objective set forth
by ERM:

min
f

K∑
i=1

L (f,Dei) (19)

C.2 SUBSPACE REPRESENTATION ALIGNMENT

Subspace Modelling and Projection. Our objective is to map samples x from training domains
with identical predictions f(x) = m into a unified subspace, where m ∈ M = {ŷ | ŷ = f(x), x ∈⋃
e∈Etr

suppPe}. Given that the cardinality ofM can be exceedingly large, potentially equal to the
total number of training samples if the output of f(x) is unique for each sample, this makes the
optimization process particularly challenging.

Drawing inspiration from the concept of prototypes Snell et al. (2017), we suggest representingM
as a set of prototypesM = {mi}Mi=1, where eachmi is an element ofZ . Consequently, a sample x is
assigned to a subspace by selecting the nearest prototypemi i.e., i = argmin

i′
ρ(g(x),mi′). Note that

prototypes act as condensed representations of specific prediction outcomes. Consequently, samples
assigned to the same prototype will receive the same prediction. Although this approach streamlines
the subspace projection, it may lead to local optima as the mapping might favor a limited number
of prototypes early in training Vuong et al. (2023). To mitigate this issue, we adopt a Wasserstein
(WS) clustering approach Vuong et al. (2023) to guide the mapping of latent features from each
domain into the designated subspace more effectively. We first endow a discrete distribution over
the prototypes as PM,π =

∑M
i=1 πiδmi

with the Dirac delta function δ and the weights π ∈ ∆M =
{π′ ≥ 0 : ∥π′∥1 = 1}.
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Then we project each domain Pei in subspaces indexed by prototypes as follows:

min
M,π

min
g

{
LP =

K∑
i=1

λWρ (g#Pei ,PM,π)

}
, (20)

where:

• Cost metric ρ(z,m) = z⊤m
∥z∥∥c∥ is the cosine similarity between the latent representation z

and the prototype c.
• Wasserstein distance between source domain representation distribution and distribution

over prototype PM,π:

Wd (g#Peix ,Pc,π) =Wd

(
B∑
n=1

1

B
g (xn) ,

M∑
i=1

πiδmi

)
(21)

=
1

B
min

Γ:Γ#(g#Pei
x )=Pc,π

B∑
n=1

ρ (g (xn) ,Γ (g (xn))) (22)

Where B is the batch size. This Wasserstein distance can be effectively compute by linear
dynamic programming method, entropic dual form of optimal transport (Genevay et al.,
2016) or Sinkhorn algorithm Cuturi (2013).

Subspace Alignment Constraints Subspace alignment is achieved through a conditional adver-
sarial training approach Gan et al. (2016); Li et al. (2018b). In this framework, the subspace-
conditional domain discriminator hd aims to accurately predict the domain label “ei” based on the
combined feature [z,m], where {z = g(x),m = Γ(x)}. Concurrently, the objective for the rep-
resentation function g is to transform the input x into a latent representation z in such a way that
hd is unable to determine the domain “ei” of x. We employ the Gradient Reversal Layer (GRL) as
introduced byGanin et al. (2016), thereby simplifying the optimization process to:

min
g,hd

{
LD = −

K∑
i=1

Ex∼Dei [ei log hd ([R (g(x)) ,m])]

}
(23)

whereR is gradient reversal layer.

FINAL OBJECTIVE

Putting all together, we propose a joint optimization objective, which is given as

min
M,π

min
g,h,hd

{LH + λPLP + λDLD} , (24)

where λP , λD are regularization hyperparameters.

C.3 ABLATION STUDY ON THE NUMBER OF SUBSPACES

Considering our data generation process, the number of distinct labels P(Y | x) reflects the number
of distinct causal factors (denoted as |Z|). If M ≤ |Z|, samples with different labels may be
projected into the same subspace, leading to discrepancies in the marginal label distribution within
that subspace.

We revisit the two key points in the previous discussion:

• Theorem 5.1 implies that projecting samples into the correct subspaces can significantly
reduce or entirely eliminate marginal label shifts within those subspaces, assuming optimal
projection for the sake of simplicity.

• As mentioned earlier, projecting samples with the same label P(Y | x) eliminates the
discrepancy d1/2

(
PeiY,m,P

ei
Y,m

)
, reducing it to zero.
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IncreasingM reduces the likelihood of differently labeled samples being mapped to the same sub-
space, thus decreasing the discrepancy outlined in Theorem 5.1 (ii). It’s notable that the upper bound
in (i) can be optimized to the limit defined by (ii) when the focus is only on training domains. This
optimization, in turn, minimizes the bound (i).

Rather than treating |Z|merely as a parameter for tuning, we delve further into analyzing the impact
of varying |Z| values. In this ablation study, we test |Z| values of [4, 8, 16, 32] × |C|, where |C|
denotes the number of classes.

Table 3: Classification Accuracy on PACS using ResNet50 with different number of subspaces
(NoS) per class.

NoS |M| A C P S Avg
ERM 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
4 90.2 ± 0.3 83.2 ± 0.7 97.9 ± 0.2 82.3 ± 1.5 88.2
8 90.5 ± 0.8 83.8 ± 0.6 97.6 ± 0.3 82.1 ± 1.8 88.7
16 90.5 ± 0.5 83.4 ± 0.2 97.8 ± 0.1 83.2 ± 0.2 88.7
32 90.2 ± 0.5 83.8 ± 0.8 97.3 ± 0.4 82.0 ± 1.2 88.4

Table 3 reveals that performance generally improves with an increase in the number of prototypes.
Nonetheless, a decline in performance is noted when K becomes excessively large. We speculate
this behavior is tied to the dataset’s underlying causal factors; specifically, if a limited number of
causal factors generate the data, assigning a large number of prototypes to capture discriminative
information might result in one causal factor being associated with multiple prototypes, thereby
introducing ambiguity. This hypothesis, however, requires further investigation for confirmation,
and we earmark it for future research.

C.4 COMPARE TO OTHER BASELINES

One of our key contributions is offering a new perspective on why domain generalization (DG)
algorithms often fail to outperform the fundamental empirical risk minimization (ERM) approach on
standard benchmarks, through an analysis of sufficient and necessary conditions. In the main paper,
we compare our proposed SRA method with the two most related methods, DANN and CDANN,
as they represent specific cases of our approach where the number of subspaces per class is set to 0
and 1, respectively.

In this section, we provide additional experimental results from various baselines, both with and
without SWAD, on five datasets from the DomainBed benchmark Gulrajani & Lopez-Paz (2021), to
further support our discussion and analysis.

Table 4: Classification accuracy (%) for all algorithms across datasets.
Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM (Gulrajani & Lopez-Paz, 2021) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
GroupDRO (Sagawa et al., 2019) 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
Mixup (Wang et al., 2020b) 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG (Li et al., 2018a) 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
MTL (Blanchard et al., 2021) 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
SagNet (Nam et al., 2021) 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
ARM (Zhang et al., 2021) 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
RSC (Huang et al., 2020) 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
IRM (Arjovsky et al., 2020) 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
MMD (Li et al., 2018b) 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
CORAL (Sun & Saenko, 2016) 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
VREx (Krueger et al., 2021) 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
DANN (Ganin et al., 2016) 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN (Li et al., 2018b) 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0

Ours (SRA) 76.4 ± 0.7 86.3 ± 1.1 66.4 ± 0.7 49.5 ± 1.0 44.5 ± 0.3 64.6

As observed in both Table 4 and Table 5, the baselines fail to consistently surpass the simple ERM
baseline across all settings. While some methods perform well on certain datasets, they perform
worse on others. However, the combination of our proposed method (SRA), which enforces strong
sufficient conditions, and SWAD, which promotes necessary conditions, significantly improves gen-
eralization. This combination outperforms ERM and other baselines in all settings. These results
support our analysis in Section 4.2, indicating that existing methods often violate the necessary
condition for effective domain generalization.
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Table 5: Classification accuracy (%) for all algorithms across datasets.
Algorithm VLCS PACS OfficeHome TerraIncognita Avg
SWAD (Cha et al., 2021) 79.1 ± 0.4 88.1 ± 0.4 70.6 ± 0.3 50.0 ± 0.4 72.0
SWAD + IRM (Arjovsky et al., 2020) 78.8 ± 0.2 88.1 ± 0.4 70.4 ± 0.2 49.6 ± 1.7 71.7
SWAD + VREx (Krueger et al., 2021) 78.1 ± 1.3 85.4 ± 0.5 69.9 ± 0.1 50.0 ± 0.2 70.9
SWAD +CORAL (Sun & Saenko, 2016) 78.9 ± 0.6 88.3 ± 0.5 71.4 ± 0.1 51.1 ± 0.9 72.4
SWAD +MMD (Li et al., 2018b) 78.7 ± 0.1 88.3 ± 0.1 70.6 ± 0.4 49.6 ± 0.5 71.8
SWAD + DANN 79.2 ± 0.0 87.9 ± 0.5 70.5 ± 0.1 50.6 ± 0.6 72.2
SWAD + CDANN 79.3 ± 0.2 87.7 ± 0.3 70.4 ± 0.1 50.7 ± 0.1 72.2

Ours (SRA + SWAD) 79.4 ± 0.4 88.7 ± 0.2 72.1 ± 0.5 51.6 ± 1.2 73.0
Ours (SRA + SWAD + Ensemble) 79.8 ± 0.0 89.2 ± 0.0 73.2 ± 0.0 52.2 ± 0.0 73.3

D FULL EXPERIMENTAL RESULTS

Metrics. We adopt the training and evaluation protocol as in DomainBed benchmark (Gulrajani
& Lopez-Paz, 2021), including dataset splits, hyperparameter (HP) search, model selection on the
validation set, and optimizer HP. To manage computational demands more efficiently, as suggested
by (Cha et al., 2021), we narrow our HP search space. Specifically, we use the Adam optimizer, as
detailed in (Gulrajani & Lopez-Paz, 2021), setting the learning rate to a default of 5e−5 and forgoing
dropout and weight decay adjustments. The batch size is maintained at 32. For DomainNet, we run a
total of 15,000 iterations, while for other datasets, we limit iterations to 5,000, deemed adequate for
model convergence. Our method’s unique parameters, including the regularization hyperparameters
(λP , λD), undergo optimization within the range of [0.01, 0.1, 1.0], and the number of prototypes
|Z| is fixed at 16 times the number of classes. It is worth noting that while we conduct ablation study
on PACS dataset, we utilize the number of prototypes |Z| is fixed at 16 times the number of classes
for all datasets. SWAD-specific hyperparameters remain unaltered from their default settings. The
evaluation frequency is set to 300 for all dataset.

Our code is anonymously published at https://anonymous.4open.science/r/
submisson-FCF0.

D.1 DATASETS

To evaluate the effectiveness of the proposed method, we utilize five datasets: PACS (Li et al., 2017),
VLCS (Torralba & Efros, 2011), Office-Home (Venkateswara et al., 2017), Terra Incognita (Beery
et al., 2018) and DomainNet (Peng et al., 2019) which are the common DG benchmarks with multi-
source domains.

• PACS (Li et al., 2017): 9991 images of seven classes in total, over four do-
mains:Art painting (A), Cartoon (C), Sketches (S), and Photo (P).

• VLCS (Torralba & Efros, 2011): five classes over four domains with a total of 10729
samples. The domains are defined by four image origins, i.e., images were taken from the
PASCAL VOC 2007 (V), LabelMe (L), Caltech (C) and Sun (S) datasets.

• Office-Home (Venkateswara et al., 2017): 65 categories of 15,500 daily objects from 4
domains: Art, Clipart, Product (vendor website with white-background) and Real-World
(real-object collected from regular cameras).

• Terra Incognita (Beery et al., 2018) includes 24,788 wild photographs of dimension (3,
224, 224) with 10 animals, over 4 camera-trap domains L100, L38, L43 and L46. This
dataset contains photographs of wild animals taken by camera traps; camera trap locations
are different across domains.

• DomainNet (Peng et al., 2019) contains 596,006 images of dimension (3, 224, 224) and
345 classes, over 6 domains clipart, infograph, painting, quickdraw, real and sketch. This
is the biggest dataset in terms of the number of samples and classes.

D.2 RESULTS

In this section, we present the extended results of Table 2 in the main text. The following tables
report the domain-specific performance of each method on 5 datasets: VLCS (Table 6), PACS (Table
7), OfficeHome (Table 8), TerraIncognita (Table 9) and Domain Net (Table 10).
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Standard errors are computed over three trials. Our models are run on 4 RTX 6000 GPU cores of
32GB. One full training routine takes roughly 2 hours.

Table 6: Classification Accuracy on VLCS using ResNet50

Algorithm C L S V Avg
ERM (Zhang et al., 2020) 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
DANN (Ganin et al., 2016) 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN (Li et al., 2018b) 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
Ours (SRA) 97.1 ± 1.5 63.8 ± 2.3 70.5 ± 2.2 74.1 ± 1.8 76.4

SWAD Cha et al. (2021) 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD + DANN 99.2 ± 0.1 63.0 ± 0.8 75.3 ± 1.8 79.3 ± 0.5 79.2
SWAD + CDANN 99.1 ± 0.1 63.3 ± 0.7 75.1 ± 0.7 80.1 ± 0.2 79.3
Ours (SRA + SWAD) 98.9 ± 0.2 63.7 ± 0.3 75.6 ± 0.4 79.4 ± 0.8 79.4

Ours (SRA + SWAD + Ensemble) 99.1 ± 0.0 63.9 ± 0.0 76.3 ± 0.0 79.9 ± 0.8 79.8

Table 7: Classification Accuracy on PACS using ResNet50

Algorithm A C P S Avg
ERM (Gulrajani & Lopez-Paz, 2021) 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
DANN (Ganin et al., 2016) 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN (Li et al., 2018b) 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
Ours (SRA) 86.4 ± 0.2 82.0 ± 0.8 96.7 ± 1.1 80.2 ± 4.4 86.3

SWAD Cha et al. (2021) 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD + DANN 90.7 ± 1.2 82.2 ± 0.4 97.3 ± 0.1 81.6 ± 0.4 87.9
SWAD + CDANN 90.5 ± 0.3 82.4 ± 1.0 97.6 ± 0.1 80.4 ± 0.3 87.7
Ours (SRA + SWAD) 90.5 ± 0.5 83.4 ± 0.2 97.8 ± 0.1 83.2 ± 0.2 88.7

Ours (SRA + SWAD + Ensemble) 91.2 ± 0.0 83.8 ± 0.0 97.8 ± 0.0 83.9 ± 0.0 89.2

Table 8: Classification Accuracy on OfficeHome using ResNet50

Algorithm A C P R Avg
ERM (Gulrajani & Lopez-Paz, 2021) 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
DANN (Ganin et al., 2016) 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN (Li et al., 2018b) 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
Ours (SRA) 62.2 ± 1.4 52.3 ± 1.7 74.5 ± 0.8 76.6 ± 1.3 66.4

SWAD Cha et al. (2021) 66.1 ± 0.4 57.7 ± 0.4 78.4 ±0.1 80.2 ± 0.2 70.6
SWAD + DANN 67.2 ± 0.1 56.2 ± 0.1 78.6 ±0.2 80.0 ± 0.5 70.5
SWAD + CDANN 66.8 ± 0.4 56.4 ± 0.8 78.4 ±0.5 80.1 ± 0.2 70.4
Ours (SRA + SWAD) 69.1 ± 0.6 58.4 ± 0.8 79.5 ± 0.2 81.4 ± 0.3 72.1

Ours (SRA + SWAD + Ensemble) 70.5 ± 0.0 59.5 ± 0.0 80.4 ± 0.0 82.1 ± 0.0 73.2

Table 9: Classification Accuracy on TerraIncognita using ResNet50

Algorithm L100 L38 L43 L46 Avg
ERM (Gulrajani & Lopez-Paz, 2021) 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
DANN (Ganin et al., 2016) 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN (Li et al., 2018b) 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
Ours (SRA) 52.9 ± 3.5 45.8 ± 5.1 57.2 ± 4.6 42.3 ± 1.1 49.5

SWAD Cha et al. (2021) 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD + DANN 56.3 ± 2.6 44.9 ± 0.4 60.0 ± 0.7 41.4 ± 0.3 50.6
SWAD + CDANN 55.2 ± 2.2 45.3 ± 0.2 61.4 ± 0.7 40.9 ± 2.0 50.7
Ours (SRA + SWAD) 56.2 ± 0.8 45.5 ± 2.6 60.4 ± 1.0 44.4 ± 0.6 51.6

Ours (SRA + SWAD + Ensemble) 57.4 ± 0.0 45.3 ± 0.0 60.9 ± 0.0 45.2 ± 0.0 52.2
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Table 10: Classification Accuracy on DomainNet using ResNet50

Algorithm clip info paint quick real sketch Avg
ERM (Gulrajani & Lopez-Paz, 2021) 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
DANN (Ganin et al., 2016) 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN (Li et al., 2018b) 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
Ours (SRA) 64.2 ± 0.3 21.6 ± 0.9 50.8 ± 1.1 13.3 ± 0.8 64.4 ± 0.1 53.0 ± 0.4 44.5

SWAD Cha et al. (2021) 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD + DANN 64.3 ± 0.1 21.9 ± 0.6 52.6 ± 0.2 15.5 ± 0.2 65.3 ± 0.1 54.5 ± 0.1 45.7
SWAD + CDANN 64.3 ± 0.2 21.9 ± 0.4 52.5 ± 0.0 15.6 ± 0.0 65.3 ± 0.1 54.4 ± 0.2 45.7
Ours (SRA + SWAD) 67.4 ± 0.1 23.5 ± 0.2 55.0 ± 0.1 15.9 ± 0.2 67.2 ± 0.2 56.6 ± 0.1 47.6

Ours (SRA + SWAD + Ensemble) 68.7 ± 0.0 24.0 ± 0.2 56.3 ± 0.0 16.7 ± 0.0 68.5 ± 0.0 57.8 ± 0.0 48.7
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