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Abstract

Comparing two images in terms of Commonalities and Differences (CaD ) is a1

fundamental human capability that forms the basis of advanced visual reasoning2

and interpretation. It is essential for the generation of detailed and contextually3

relevant descriptions, performing comparative analysis, novelty detection, and4

making informed decisions based on visual data. However, surprisingly, little5

attention has been given to these fundamental concepts in the best current mimic6

of human visual intelligence - Large Multimodal Models (LMMs). We develop7

and contribute a new two-phase approach CaD-VI for collecting synthetic visual8

instructions, together with an instruction-following dataset CaD-Inst containing9

349K image pairs with CaD instructions collected using CaD-VI . Our approach10

significantly improves the CaD spotting capabilities in LMMs, advancing the SOTA11

on a diverse set of related tasks by up to 17.5%. It is also complementary to ex-12

isting difference-only instruction datasets, allowing automatic targeted refinement13

of those resources increasing their effectiveness for CaD tuning by up to 10%.14

Additionally, we propose an evaluation benchmark with 7.5K open-ended QAs to15

assess the CaD understanding abilities of LMMs.16

1 Introduction17

Image 1: In this picture I can see a man standing and in the back I can see few 
people standing and looks like a building and I can see a pillar on the left side of the 
picture.
Image 2: In this image there is a bench on which there are two women sitting and 
there is a man walking on the floor in front of them. Beside the bench there is a 
trolley. In the background there is a wall.

Summarize the commonalities and differences about the visual content of the two 
images, including the object types, object attributes, counting the objects, 
object action, object locations, relative positions between objects, etc. 

Commonalities: 
Both images contain the presence of a man and a building or a wall in the 
background. There is also a sense of being outdoors in both pictures.

Differences:
1. Object types: Image 1 contains a man standing and a pillar, while Image 2 
includes a bench, two women sitting, a man walking, a trolley, and a wall.
2. Object actions: In Image 1, there are no specific actions mentioned, but Image 2 
has a man walking and two women sitting. The man in Image 1 is standing, while the 
man in Image 2 is walking on the floor. 
3. Object locations: The pillar in Image 1 is located on the left side, whereas the 
bench, women, and trolley in Image 2 are grouped together on the right side.
4. Relative positions between objects: In Image 1, the people are standing apart 
from each other, and the pillar is to the left of the image. In Image 2, the bench, 
women, and trolley are on the right side, and the walking man is in front of the bench 
and women.
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Commonalities:
Both images contain a cat as the main object. The cats are the only main objects in the images, 
and they are both located on some kind of furniture.

Differences:
1. Color: The cats have different colors. The cat in the first image is black and white, while the 
cat in the second image is gray and black.
2. Furniture: The cats are on different types of furniture. The cat in the first image is on a 
banister, wooden chair, or table, while the cat in the second image is on a picnic table.
3. Location: The cats are in different locations. The cat in the first image is indoors, while the 
cat in the second image is outdoors in a park.
4. Background: The backgrounds of the two images are different. The first image has a wall in 
the background, while the second image has grass in the background.
5. Objects: The first image has a flower pot in the background, while the second image has no 
additional objects.
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“The first image shows a black and white cat while the 
second image shows a gray striped cat. In the first 
image, the cat is sitting or laying on furniture like a 
banister, wooden chair or table, while in the second 
image, the cat is lying on a picnic table in a park.”

Based on the two images and the context, summarize 
the commonalities and differences …
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Figure 1: Pipeline of our two-phase CaD-VI : In Phase-1, we leverage captions for image pairs and
an LLM to generate CaD VI data - CaD-InstV 1 (278K), and perform visual instruction tuning on it to
arrive at the Phase-1 model CaD-LLaVAV 1 . In Phase-2, we leverage CaD-LLaVAV 1 to generate
CaD VI data on additional image pairs and collect CaD-InstV 2 (71K). Visual instruction tuning with
CaD-InstV 1 and CaD-InstV 2 leads to our final model CaD-LLaVAV 2 .
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Understanding the Commonalities and Differences (CaD ) between two signals (e.g., images) is a18

basic capability innate to humans [1]. Spotting change and difference alerts us to interesting events19

happening in our surroundings, warns us of hazard, and drives us toward learning new concepts20

exposed after the change or relative movement. Understanding what is common helps structure visual21

information and allows differences to emerge by elimination. Together, these form powerful tools for22

human learning and acquiring world knowledge.23

The forefront of modern AI shifted with the recent emergence of Large Language Models (LLMs)24

[2], where the top-performing ones [3–6] closely align to human reasoning and world-knowledge25

capabilities. LLMs’ great performance and wide applicability quickly led to their wide adoption into26

most of the current ML pipelines. In the Vision community, this impacted the development of Large27

Multi-modal Models (LMMs) [4, 7–12] largely considered the best available mimic of human visual28

intelligence to date. While multiple methods for adding multi-modal support to LLMs have been29

proposed, currently the more popular and better performing open LMMs largely rely on tuning using30

Visual Instructions (VI) [7, 13]. These methods align image tokens produced by visual encoders31

to be ‘understandable’ by an LLM decoder, allowing images to be seamlessly integrated into the32

LLM decoder input context stream together with the query text during inference. In most recent33

methods [7, 9–11], VI takes the form of a multi-turn conversation: with ‘human’ turns providing34

image context and asking the questions, and LMM turns answering them [7]. However, the majority35

of VI data focused on providing merely a single image in the VI conversations [7], while only a few36

works included multi-image VI samples [12, 14], and surprisingly, very few included some form of37

CaD VI data [9, 10, 15] to enable CaD support in the resulting LMM.38

Due to the fundamental importance of endowing LMMs with CaD capabilities, thus getting them39

closer to achieving human visual intelligence in all its diversity, we propose CaD-VI - a multi-phase40

CaD generation approach, for progressive dense and structured CaD VI data collection, which we41

employ to build CaD-Inst training curriculum and associated CaD-QA benchmark comprised of CaD-42

related open-ended questions, both contributed in this work. In essence, the final CaD-Inst curriculum43

associates diverse and large-scale (349K) image pair collection with highly detailed and structured44

CaD summaries. CaD summaries computed for an additional set of 7.6K image pairs, are used for45

extracting open CaD-related QA resulting in CaD-QA .46

As shown in Fig. 1, the Phase-1 of CaD-VI is a ‘cold start’ where, in the absence of LMMs with47

substantial CaD capabilities, we leverage image captions and an LLM to hallucinate (coarse) CaD VI48

data - CaD-InstV 1 (278K), where we collect structured and detailed CaD summaries for our paired49

images sourced from a dense & large-scale image collection [16]. Training on the first phase CaD-50

InstV 1 data we arrive at CaD-LLaVAV 1 - an LMM that has strong CaD capabilities compared to51

a large variety of leading LMMs including the very few trained with some CaD data (see Sec. 4).52

Next, leveraging our CaD-LLaVAV 1 model to produce non-hallucinated, image-informed CaD data,53

we generate additional CaD instructions into the collection CaD-InstV 2 (71K). Combining CaD-54

InstV 1 and CaD-InstV 2 we form CaD-Inst and train our final CaD-LLaVAV 2 7B and 13B LMMs to55

achieve (1) significant (up to 17.5%) absolute improvement over a large variety of recent SOTA LMMs56

over a variety of 5 CaD-related existing closed-QA evaluation benchmarks (namely BISON[17],57

SVO Probes[18], NLVR2[19], EQBEN[20], and COLA[21]), and (2) strong (up to over 20%) relative58

improvements on our contributed open-QA CaD benchmark - CaD-QA . Additionally, as CaD-Inst can59

be safely mixed with the LLaVA VI data [22], we show in Tab. ?? that our CaD-LLaVAV 2 models60

effectively avoid forgetting the general capabilities of the corresponding LLaVA LMMs.61

Our contributions are as follows: (i) we contribute CaD-Inst - a large-scale visual instruction tuning62

dataset for enhancing CaD reasoning capabilities of LMMs; (ii) we contribute CaD-QA - an open63

QA evaluation benchmark for assessing CaD capabilities; (iii) we contribute and open source a64

CaD-VI methodology for collecting and enhancing CaD instruction tuning data; (iv) we demonstrate65

significant (up to 17.5%) improvements in CaD reasoning for LMMs trained using CaD-Inst as well66

as potential to scale CaD-Inst via self-improvement by CaD-Inst -trained models.67

2 Two-Phase CaD Visual Instruction Tuning68

As illustrated in Fig. 1, our CaD-VI consists of two phases: in Phase-1, we employ an LLM to69

generate summary of CaD for image pairs (Sec. 2.1) and perform visual instruction tuning on the70
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collected data (Sec. 2.2); in Phase-2, we leverage the Phase-1 model to generate CaD on additional71

image pairs and perform training with combined instruction data from both phases (Sec. 2.3).72

2.1 Phase-1a: LLM Instruction Data Collection73

In our first phase, we leverage an LLM to generate a summary of commonalities and differences74

for a pair of two images (Fig. 1 (top row)). Specifically, we construct image pairs and prompt an75

LLM, supplying it with two image captions (one per image) and an instruction prompt asking it to76

summarize all the commonalities and differences according to the provided captions, contributing to77

our first phase CaD instruction data collection denoted as CaD-InstV 1 .78

We select the Localized Narratives dataset [16] which consists of 873K image-caption pairs. Inspired79

by LLaVA [7] who used an LLM for visual instruction collection, we leverage the Mixtral 8×7B80

open LLM [23] for generating detailed and structured summaries of commonalities and differences81

for pairs of images. As the LLM can only accept text as input, in Phase 1 we use image captions82

to represent visual content of images. This is a rather crude approximation, which is alleviated in83

Phase 2 of our CaD-VI approach. We specifically prompt the LLM to structure the commonalities84

and differences summaries according to the following 6 visual aspects: (i) object types; (ii) attributes;85

(iii) counts; (iv) actions; (v) locations; and (vi) relative positions; as illustrated in Fig. 1.86

In CaD-InstV 1 we collected structured summaries of CaD for 278K image pairs, with average length87

of 157 words (40 for commonalities and 117 for differences). We construct a two-turn conversation88

for each image pair. In the first turn, we define the task of summarizing CaD by providing the encoded89

visual tokens of the two images and instructing the model to summarize the CaD , where the response90

part of the turn is the LLM-generated structured summary collected above. In this instruction, we91

do not provide the image captions, forcing the model to rely only on image tokens to complete92

the task. In the second turn, we reinforce the image-text alignment by employing a simple task of93

text-to-image retrieval to avoid forgetting the model’s general capabilities. We randomly sample one94

of the two captions and request the model to select the image (from the current pair) to which the95

caption belongs.96

2.2 Phase-1b: CaD Visual Instruction Tuning97

Architecture. As illustrated in Fig. 1, we use our collected CaD-InstV 1 data to perform visual98

instruction tuning using the open-sourced code of LLaVA-1.5 [22] LMM. The LLaVA-1.5 model99

consists of ϕL(·; θL) - a pretrained Vicuna 1.5 [24] LLM (finetuned from LLama 2 [25]); ϕV (·; θV ) -100

a pretrained visual encoder CLIP ViT-L/14@336px [26]; and ϕM (·; θM ) - a two-layer MLP projector101

converting the visual encoder tokens to post-embedding layer LLM tokens. Given a pair of two102

images xV1 , xV2 and the instruction xI , the MLP projects the visual features computed by the visual103

encoder into embedded language tokens, i.e. vk = ϕM (ϕV (xVk
; θV ); θM ), k ∈ {1, 2}. Then the104

projected visual features and instruction text tokens are concatenated and fed into the LLM, where the105

response text tokens are generated in an autoregressive manner, i.e. x̂i
R = ϕL([v1, v2, xI , x̂

<i
R ]; θL),106

where x̂i
R denotes the i-th token in the generated response.107

Training. We finetune the LLaVA-1.5 model using the LLaVA [7] pipeline. Specifically, following108

LLaVA pre-training, we finetune only the pretrained projection MLP and the (frozen) LLM with109

LoRA adapters [27]. We minimize the CLM loss of the next token prediction in the responses,110

LCLM =
∑

i − log p(x̂i
R|V1, V2, xI , x

<i
R ).111

To preserve the general VL capabilities of the LMM, we merge our CaD-InstV 1 with the finetuning112

data of LLaVA-1.5 (665K samples). In Tab. ?? we show that CaD-VI indeed preserves the general113

LMM capabilities compared to LLaVA-1.5 as evaluated on the SEED benchmark [28]. Phase-1 CaD114

visual instruction tuning results in our cold-start model CaD-LLaVAV 1 which is an LMM that can be115

used for annotating visual commonalities and differences.116

2.3 Phase-2: Data Collection and Tuning117

Phase-2a: LMM-based CaD Instruction Collection. While in Phase 1 we used an LLM to extract a118

CaD summary based on human-generated captions, for Phase 2 data collection we leverage our Phase119

1 model CaD-LLaVAV 1 and additional image pairs to extract the CaD summaries informed by the120

images directly. Here we select the Scene-Difference [15] collection as an additional image source.121

It contains 71K pairs of similar images from COCO [29] and provides annotation of unstructured122

difference-only summaries (see Fig. 1 bottom left for an example). We feed both the image pairs and123

3



the original annotations into our CaD-LLaVAV 1 model, and generate a structured summary of both124

commonalities and differences.125

Phase-2b CaD Visual Instruction Tuning We follow the Phase-1b introduced in Sec. 2.2 for CaD126

visual instruction tuning. Here we finetune on a combination of LLaVA 1.5 [22] finetune data (665K),127

CaD-InstV 1 data (278K) and CaD-InstV 2 data (71K). This leads to the Phase 2 model, denoted as128

CaD-LLaVAV 2 .129

3 Benchmark of Open-Ended CaD QA130

In order to evaluate LMMs on answering open-ended questions on commonalities and differences of131

a pair of two images, we construct and contribute the CaD-QA benchmark.132

Data Collection. Similar to the data collection pipeline introduced in Sec. 2.1, we employ Visual133

Genome [30] and the detailed image captions from SVIT [31] as image & caption source. We collect134

7.5K image pairs with 8 or more overlapping nouns in their captions. For each pair, we employ the135

Mixtral 8×7B LLM to produce the structured CaD summaries from the captions. Next, we prompt136

Mixtral with both the image captions and the CaD summary, instructing it to generate a multi-turn137

conversation with several rounds of Q&A, providing some in-context examples of the desired layout.138

Finally, we randomly select one Q&A per conversation. There are 7520 QA pairs with an average139

answer length of 26 words.140

LLM-assisted Evaluation. Motivated by LLMs’ ability to judge response consistently with human141

assessment [24], we employ the Mixtral 8×7B LLM to compare the generated responses to the142

collected open-ended QA responses. We feed the question, correct answer, and the predicted answer143

into the LLM and instruct it to provide a rating between 0 and 5 for the predicted answer quality.144

4 Experiments145

Evaluation Datasets146

Dataset #Instruct.
Data

BISON SVO NLVR2 EQBEN COLA
Random chance 50% 50% 50% 25% 25%

SparklesChat 6.5K 56.70% 43.93% 58.00% 19.17% 20.00%
Otter 2.8M 40.67% 47.33% 52.00% 8.33% 8.10%

MMICL 5.8M 80.00% 88.13% 56.67% 20.83% 25.71%
EMU2-Chat 1.3M 46.00% 47.93% 60.00% 7.50% 13.33%
InternLM-

XComposer2-VL >600K 80.67% 82.07% 66.67% 25.00% 32.38%

LLaVA 1.6 7B <1M 66.00% 70.40% 58.67% 20.83% 11.90%
LLaVA 1.6 13B <1M 81.33% 82.13% 60.00% 17.50% 24.76%

LLaVA 1.5 7B 665K 54.00% 46.80% 61.33% 17.50% 7.62%
LLaVA 1.5 13B 665K 59.33% 56.27% 66.00% 16.67% 12.38%

CaD-VI 7B 1M 95.33% 92.73% 66.67% 39.17% 40.95%
CaD-VI 13B 1M 96.67% 93.00% 69.33% 42.50% 43.33%

Table 1: Performance on closed-ended VQA tasks with image pairs
in accuracy. Here the method CaD-VI denotes our Phase-2 model
CaD-LLaVAV 2 .

We evaluate on several VQA147

benchmarks of closed-ended148

and open-ended questions.149

For closed-ended VQA on150

image pairs, we include BI-151

SON [17], SVO Probes [18],152

EQBEN [20], COLA [21] and153

NLVR2 [19]. We also evalu-154

ate SEED-Bench Video [28]155

with two frames sampled156

from each video. For open-157

ended tasks, we use the LLM-158

as-a-judge metric (Sec. 3)159

and evaluate on our CaD-QA .160

Furthermore, we also directly161

evaluate the quality of LMM162

predicted CaD summaries for163

210 image pairs in COLA with shorter summaries generated from brief captions, and for the 7.5K164

lengthy summaries from CaD-QA generated from detailed VG captions.165

Comparison to State-of-the-Art LMMs We first compare CaD-LLaVAV 2 (denoted by CaD-VI in166

Table) to state-of-the-art LMMs on closed-ended VQA in Table 1. SparklesChat [9], Otter [10],167

MMICL [32], EMU2-Chat [12], InternLM-Xcomposer2-VL [33] all include samples with multi-168

image inputs in the visual instruction tuning while LLaVA 1.5 [22] and LLaVA 1.6 [34] are tuned169

with only single image instructions. The evaluated benchmarks are challenging due to the visually170

very similar image pairs with subtle compositional differences where the LMMs could easily make171

an incorrect decision leading to performance below random chance. Our CaD-VI 7B model already172

outperforms all the other baselines on the five benchmarks and our 13B finetuned model further173

boosts the performance.174
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