
Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints
for Neural Network Robustness Verification

Shiqi Wang * 1 Huan Zhang * 2 Kaidi Xu * 3 Xue Lin 3 Suman Jana 1 Cho-Jui Hsieh 4 Zico Kolter 2

Abstract
We develop β-CROWN, a new bound propaga-
tion based method that can fully encode neuron
split constraints in branch-and-bound (BaB) based
complete verification via optimizable parameters
β. When jointly optimized in intermediate layers,
β-CROWN generally produces better bounds than
typical LP verifiers with neuron split constraints,
while being as efficient and parallelizable as exist-
ing bound propagation methods such as CROWN
on GPUs. Applied to complete robustness verifi-
cation benchmarks, β-CROWN with BaB is close
to three orders of magnitude faster than LP-based
BaB methods, and is at least 3 times faster than
winners of VNN-COMP 2020 competition while
producing lower timeout rates. By terminating
BaB early, our method can also be used for effi-
cient incomplete verification. We achieve higher
verified accuracy in many settings over power-
ful incomplete verifiers, including those based on
convex barrier breaking techniques. Compared to
the typically tightest but very costly semidefinite
programming (SDP) based incomplete verifiers,
we obtain higher verified accuracy with three or-
ders of magnitudes less verification time, and en-
able better certification for verification-agnostic
(e.g., adversarially trained) networks.

1. Introduction
As neural networks (NNs) are being deployed in safety-
critical applications, it becomes increasingly important to
formally verify their behaviors under potentially malicious
inputs. Broadly speaking, the neural network verification
problem involves proving certain desired relationships be-
tween inputs and outputs (often referred to as specifications),

*Equal contribution 1Columbia University 2CMU
3Northeastern University 4UCLA. Correspondence to: Shiqi
Wang <sw3215@columbia.edu>, Huan Zhang <huan@huan-
zhang.com>, Kaidi Xu <xu.kaid@northeastern.edu>.

Accepted by the ICML 2021 workshop on A Blessing in Disguise:
The Prospects and Perils of Adversarial Machine Learning. Copy-
right 2021 by the author(s).

such as safety or robustness guarantees, for all inputs inside
some domain. This is a challenging problem due to the
non-convexity and high dimensionality of neural networks.

We first focus on complete verification: the verifier should
give a definite “yes/no” answer given sufficient time. Many
complete verifiers rely on branch and bound (BaB) (Bunel
et al., 2018) involving (1) branching by recursively split-
ting the original verification problem into subdomains (e.g.,
splitting a ReLU into positive/negative linear regions) and
(2) bounding each subdomain with specialized incomplete
verifiers. Traditional BaB-based verifiers use expensive lin-
ear programming (LP) solvers (Ehlers, 2017; Lu & Kumar,
2020; Bunel et al., 2020b) as incomplete verifiers which
can fully encode neuron split constraints for tight bound-
ing. Meanwhile, a recent work (Xu et al., 2021) shows
that cheap incomplete verifiers can significantly accelerate
complete verifiers on GPUs over LP-based ones thanks to
their efficiency. We call these cheap incomplete verifiers
bound propagation methods (Wong & Kolter, 2018; Dvi-
jotham et al., 2018; Gehr et al., 2018; Singh et al., 2019b).
However, unlike LP solvers, these methods lack the power
to handle neuron split constraints in BaB. Such a problem
causes loose bounds and unnecessary branching, hurting the
verification efficiency. Even worse, they fail to detect many
infeasible subdomains in BaB, leading to incompleteness
unless additional checking is performed (Xu et al., 2021).

In our work, we develop a new, fast bound propagation
based incomplete verifier, β-CROWN. It solves an opti-
mization problem equivalent to the expensive LP based
methods with neuron split constraints while still enjoying
the efficiency of bound propagation methods. β-CROWN
contains optimizable parameters α and β, and any valid
settings of these parameters yield sound bounds for verifi-
cation. These parameters are optimized using a few steps
of (super)gradient ascent to achieve bounds as tight as pos-
sible. Furthermore, we can jointly optimize α and β for
intermediate layer bounds, allowing β-CROWN to tighten
relaxations and outperform typical LP verifiers with fixed
intermediate layer bounds. Unlike traditional LP-based BaB
methods, β-CROWN can be efficiently implemented with
an automatic differentiation framework on GPUs to fully
exploit the power of modern accelerators. The combina-
tion of β-CROWN and BaB (β-CROWN BaB) produces a

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

complete verifier with GPU acceleration, reducing the veri-
fication time of traditional LP based BaB verifiers (Bunel
et al., 2018) by almost three orders of magnitudes on stan-
dard benchmarking models. Compared to state-of-the-art
verifiers like ERAN and OVAL (the leading methods in
VNN competition 2020 (Liu & Johnson)), our approach is
3 to 70 times faster with similar or lower timeout rates.

Finally, by terminating our complete verifier β-CROWN
BaB early, our approach can also function as a more ac-
curate incomplete verifier by returning an incomplete but
sound lower bound of all subdomains explored so far. We
achieve better verified accuracy on a few benchmarking
models over powerful incomplete verifiers including those
based on multi-neuron convex relaxations (Singh et al.,
2019a; Tjandraatmadja et al., 2020; Müller et al., 2021) and
semidefinite relaxations (Dathathri et al., 2020). Compared
to the typically tightest but very costly incomplete verifier
SDP-FO (Dathathri et al., 2020) based on tight semidefinite
programming (SDP) relaxations (Raghunathan et al., 2018;
Dvijotham et al., 2020), our method obtains consistently
higher verified accuracy while reducing verification time by
three orders of magnitudes, enabling better certification on
verification-agnostic (e.g., adversarially trained) models.

2. Related Work
Early complete verifiers relied on existing solvers (Katz
et al., 2017; Ehlers, 2017; Huang et al., 2017; Dutta et al.,
2018; Tjeng et al., 2019) and were limited to very small
problem instances. BaB based method was proposed to bet-
ter exploit the network structure using LP-based incomplete
verifier for bounding and ReLU splits for branching (Bunel
et al., 2018; Wang et al., 2018a; Lu & Kumar, 2020; Botoeva
et al., 2020). Input domain branching was also considered
in (Wang et al., 2018b; Royo et al., 2019; Anderson et al.,
2019) but limited by input dimensions (Bunel et al., 2018).
Traditional complete verifiers may need hours to verify one
example on networks with a few thousand neurons. Re-
cently, a few approaches used efficient iterative solvers or
bound propagation methods on GPUs without relying on
LPs. Bunel et al. (2020a) decomposed the verification prob-
lem layer by layer, solved each layer in a closed form on
GPUs, and used Lagrangian to enforce consistency between
layers. De Palma et al. (2021a) used a dual-space verifier
with a tighter linear relaxation (Anderson et al., 2020; Tjan-
draatmadja et al., 2020) than LP at a cost of high complexity.
A concurrent work BaDNB (De Palma et al., 2021b) pro-
posed a new branching strategy “filtered smart branching”
for better verification performance. Xu et al. (2020) used
CROWN as an efficient incomplete solver on GPUs for
complete verification, but it cannot handle neuron split con-
straints, leading to suboptimal efficiency and more timeouts.

For incomplete verification, Salman et al. (2019) showed the
inherent limitation of using per-neuron convex relaxations.

Singh et al. (2019a) and Müller et al. (2021) broke this bar-
rier by relaxing multiple ReLU neurons; Tjandraatmadja
et al. (2020) considered relaxing a layer of neurons using a
strong mixed-integer programming formulation (Anderson
et al., 2019). SDP based relaxations (Raghunathan et al.,
2018; Fazlyab et al., 2020; Dvijotham et al., 2020; Dathathri
et al., 2020) typically produce tight bounds but with signifi-
cantly higher cost. We break this barrier using branch and
bound, and outperform existing incomplete verifiers under
many scenarios in both runtime and tightness.

3. β-CROWN for NN Verification
Notations. We define the input of a neural network as
x ∈ Rd0 , and define the weights and biases of an L-
layer neural network as W(i) ∈ Rdi×di−1 and b(i) ∈ Rdi
(i ∈ {1, · · · , L}) respectively. For simplicity we assume
that dL = 1 so W(L) is a vector and b(L) is a scalar. The
neural network function f : Rd0 → R is defined as f(x) =
z(L)(x), where z(i)(x) = W(i)ẑ(i−1)(x) + b(i), ẑ(i)(x) =
σ(z(i)(x)) and ẑ(0)(x) = x. σ is the activation function
and we use ReLU throughout this paper. When the context
is clear, we omit ·(x) and use z(i)j and ẑ

(i)
j to represent

the pre-activation and post-activation values of the j-th
neuron in the i-th layer. The set C defines the allowed input
region. We consider the canonical specification f(x) > 0:
if we can prove that f(x) > 0, ∀x ∈ C, we say f(x) is
verified. Under x ∈ C, we define the intermediate layer
bounds l

(i)
j ≤ z

(i)
j ≤ u

(i)
j . When using branch-and-bound,

we denote the Z+(i) and Z−(i) as the set of neuron indices
with positive and negative split constraints in layer i. We
define the split constraints at layer i asZ(i) := {z(i) | z(i)j1 ≥
0, z

(i)
j2

< 0,∀j1 ∈ Z+(i),∀j2 ∈ Z−(i)}. We denote the
vector of all pre-ReLU neurons as z, and we define a set Z
to represent the split constraints on z: Z = Z(1) ∩ Z(2) ∩
· · · ∩ Z(L−1). For convenience, we also use the shorthand
Z̃(i) := Z(1) ∩ · · · ∩Z(i) and z̃(i) := {z(1), z(2), · · · , z(i)}.

Bound Propagation with Neuron Split Constraints
The NN verification problem under neuron split con-
straints can be written as an optimization: minx∈C,z∈Z f(x).
Bound propagation methods such as CROWN (Zhang
et al., 2018) can give a relatively tight lower bound for
minx∈C f(x) but they cannot handle the neuron split con-
straints z ∈ Z . We now show the intuition on how to
apply split constraints to the bound propagation process.
To encode the neuron splits, we define diagonal matrix
S(i) ∈ Rdi×di where i ∈ [1, · · ·L− 1], j ∈ [1, · · · , di]:

S
(i)
j,j=−1 (z

(i)
j ≥0); S

(i)
j,j=1 (z

(i)
j <0); S

(i)
j,j=0 (no split)

We start from last layer and derive linear bounds for each
intermediate layer z(i) and ẑ(i) for both x ∈ C and z ∈ Z .
We also assume that pre-ReLU bounds l(i) ≤ z(i) ≤ u(i)

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

for each layer i are available. By definition of NN we have:

min
x∈C,z∈Z

f(x) = min
x∈C,z∈Z

W(L)ẑ(L−1) + b(L). (1)

Since ẑ(L−1) = ReLU(z(L−1)), we can relax ReLU simi-
larly as done in CROWN (see Lemma A.1) at layer L− 1,
and obtain a linear lower bound for f(x) w.r.t. z(L−1):

min
x∈C,z∈Z

f(x) ≥ min
x∈C,z∈Z

W(L)D(L−1)z(L−1) + const.

To enforce the split neurons at layerL−1, we use a Lagrange
function with β(L−1)>S(L−1) multiplied on z(L−1):

min
x∈C
z∈Z

f(x) ≥ min
x∈C

z̃(L−2)∈Z̃(L−2)

max
β(L−1)≥0

W(L)D(L−1)z(L−1)

+ β(L−1)>S(L−1)z(L−1) + const

≥ max
β(L−1)≥0

min
x∈C

z̃(L−2)∈Z̃(L−2)

(
W(L)D(L−1)

+ β(L−1)>S(L−1)
)
z(L−1) + const

(2)

The first inequality is due to the definition of the Lagrange
function: we remove the constraint z(L−1) ∈ Z(L−1) and
use a multiplier to replace this constraint. The second
inequality is due to weak duality. Due to the design of
S(L−1), neuron split z(L−1)j ≥ 0 has a negative multiplier

−β(L−1)
j and split z(L−1)j < 0 has a positive multiplier

β
(L−1)
j . Any β(L−1) ≥ 0 yields a lower bound for the con-

strained optimization. Then we can substitute z(L−1) with
W(L−1)ẑ(L−2) + b(L−1) into Eq. 9 for the next layer. The
above bound propagation process continues until reaching
input layer, with each layer’s split constraints handled via
optimizable β variables. Following this procedure, we give
a linear lower bound for f(x) under split constraints z ∈ Z:

Theorem 3.1 (β-CROWN bound). Given an L-layer NN
f(x) : Rd0 → R with weights W(i), biases b(i), pre-ReLU
bounds l(i) ≤ z(i) ≤ u(i) (1 ≤ i ≤ L), input bounds C,
split constraints Z . We have:

min
x∈C,z∈Z

f(x) ≥ max
β≥0

min
x∈C

(a+Pβ)>x+ q>β + c, (3)

where a ∈ Rd0 ,P ∈ Rd0×(
∑L−1

i=1 di),q ∈ R
∑L−1

i=1 di and
c ∈ R are functions of W(i), b(i), l(i), u(i). β :=[
β(1)> β(2)> · · · β(L−1)>]> concatenates all β(i).

Detailed formulations for a, P, q and c are given in Ap-
pendix C. For `p norm robustness (C = {x | ‖x−x0‖p≤ ε}),
the inner minimization has a closed solution:

min
x∈C,z∈Z

f(x) ≥ max
β≥0
−‖a+ Pβ‖qε+ (P>x0

+ q)>β + a>x0 + c := max
β≥0

g(β)

where 1
p+

1
q = 1. The maximization is concave inβ (q ≥ 1),

so we can optimize it using projected (super)gradient ascent

with gradients from automatic differentiation. Since any
β ≥ 0 yields a valid lower bound for minx∈C,z∈Z f(x),
convergence is not necessary to guarantee soundness. An
additional optiomizable variable during bound propagation
are the slopes of lower bound used for relaxing unstable
ReLU neurons (Xu et al., 2021). We define α(i) ∈ Rdi as
the slopes of lower bounds for unstable ReLU (detailed in
Lemma A.1) for layer i and define all free variables α :=

{α(1) · · ·α(L−1)}. Since any 0 ≤ α(i)
j ≤ 1 yields a valid

bound, we can optimize it to tighten the bound. Formally,
we rewrite the optimization problem with α explicitly:

min
x∈C,z∈Z

f(x) ≥ max
0≤α≤1, β≥0

g(α,β). (4)

g is a function of l
(i)
j and u

(i)
j (intermediate layer bounds).

These bounds are also computed using β-CROWN using
independent sets of α, β variables and are optimized jointly.
The joint optimization allows us to outperform typical LP
verifier with fixed intermediate bounds (Xu et al., 2021).

Connections to the Dual Problem Many BaB based
complete verifiers (Bunel et al., 2018; Lu & Kumar, 2020)
use an LP formulation as the incomplete verifier (detailed in
Section B.2). We first show that it is possible to derive The-
orem B.1 from the dual of this LP, leading to Theorem B.2:

Theorem 3.2. The objective dLP for the dual problem of the
LP in (Bunel et al., 2018) can be represented as

dLP = −‖a+ Pβ‖1·ε+ (P>x0 + q)>β + a>x0 + c,

where a, P, q and c are defined in the same way as in
Theorem B.1, and β ≥ 0 corresponds to the dual variables
of neuron split constraints in the LP problem.

An immediate consequence is that β-CROWN can poten-
tially solve the verification problem with split constraints as
well as using an LP solver with fixed intermediate bounds:

Corollary 3.2.1. When α and β are optimally set and in-
termediate bounds l,u are fixed, β-CROWN produces p∗LP,
the optimal objective of LP with split constraints in Eq. 14:

max
0≤α≤1,β≥0

g(α,β) = p∗LP,

β-CROWN with Branch and Bound (β-CROWN BaB)
We perform complete verification following BaB frame-
work (Bunel et al., 2018) using β-CROWN as the incom-
plete solver, and we use simple branching heuristics like
BaBSR (Bunel et al., 2020b) or FSB (De Palma et al.,
2021b). To efficiently utilize GPU, we also use batch splits
to evaluate multiple subdomains in the same batch as in (Xu
et al., 2020; De Palma et al., 2021a). We list our full algo-
rithm β-CROWN BaB in Appendix D.

Theorem 3.3. β-CROWN with Branch and Bound on split-
ting ReLUs is sound and complete.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Table 1. Average runtime and average number of branches on three CIFAR-10 models over 100 properties in the OVAL benchmark.
CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

Method time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

BaBSR (Bunel et al., 2020b) 2367.78 1020.55 36.00 2871.14 812.65 49.00 2750.75 401.28 39.00
MIPplanet (Ehlers, 2017) 2849.69 - 68.00 2417.53 - 46.00 2302.25 - 40.00

ERAN∗(Singh et al., 2019a; 2018a; 2019b; 2018b) 805.94 - 5.00 632.20 - 9.00 545.72 - 0.00
GNN-online (Lu & Kumar, 2020) 1794.85 565.13 33.00 1367.38 372.74 15.00 1055.33 131.85 4.00

BDD+ BaBSR (Bunel et al., 2020a) 807.91 195480.14 20.00 505.65 74203.11 10.00 266.28 12722.74 4.00
OVAL (BDD+ GNN)∗(Bunel et al., 2020a; Lu & Kumar, 2020) 662.17 67938.38 16.00 280.38 17895.94 6.00 94.69 1990.34 1.00

A.set BaBSR (De Palma et al., 2021a) 381.78 12004.60 7.00 165.91 2233.10 3.00 190.28 2491.55 2.00
BigM+A.set BaBSR (De Palma et al., 2021a) 390.44 11938.75 7.00 172.65 4050.59 3.00 177.22 3275.25 2.00

Fast-and-Complete (Xu et al., 2021) 695.01 119522.65 17.00 495.88 80519.85 9.00 105.64 2455.11 1.00
BaDNB (BDD+ FSB)∗(De Palma et al., 2021b) 309.29 38239.04 7.00 165.53 11214.44 4.00 10.50 368.16 0.00

β-CROWN BaBSR (ours, using the BaBSR branching heuristic) 233.06 276299.50 6.00 124.26 139526.24 3.00 7.21 210.66 0.00
β-CROWN FSB (ours, using the FSB branching heuristic) 122.71 112341.21 3.00 81.66 58565.57 2.00 6.89 42.36 0.00

* OVAL (BDD+ GNN) and ERAN are VNN competition 2020 winners; BaDNB (BDD+ FSB) is a concurrent work.

Figure 1. Percentage of solved properties with growing running time. β-CROWN FSB (light green) and β-CROWN BaBSR (dark green)
clearly lead in all 3 settings and solve over 80% properties within 10 seconds.

100 101 102 103

CIFAR-10 Base: Running time (in s)

0

20

40

60

80

100-CROWN FSB
-CROWN BaBSR

OVAL (VNN-Comp)
ERAN (VNN-Comp)
BaBSR
MIPplanet
GNN-Online
BDD+ FSB
BDD+ BaBSR
A.Set BaBSR
Big-M+A.Set BaBSR
Fast-and-Complete

100 101 102 103

CIFAR-10 Wide: Running time (in s)

0

20

40

60

80

100

100 101 102 103

CIFAR-10 Deep: Running time (in s)

0

20

40

60

80

100

Table 2. Verified accuracy (%) and avg. per-example verification time (s) on 7 models from SDP-FO (Dathathri et al., 2020).
CROWN/DeepPoly are fast but loose bound propagation based methods, and they cannot be improved with more running time. SDP-FO
uses stronger semidefinite relaxations, which can be very slow and sometimes has convergence issues. PRIMA is one of the best convex
relaxation barrier breaking methods; we did not include kPoly and OptC2V because they are weaker than PRIMA (see Table 4).

Dataset Model CROWN/DeepPoly SDP-FO (Dathathri et al., 2020)∗ PRIMA (Müller et al., 2021) β-CROWN FSB Upper
ε = 0.3 and ε = 2/255 Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) bound

MNIST CNN-A-Adv 1.0 1 43.4 >20h 44.5 136 68.0 76 79.5

CIFAR

CNN-B-Adv 21.5 2 32.8 >25h 38.0 360 44.5 94 64.0
CNN-B-Adv-4 43.5 2 46.0 >25h 53.5 51 54.0 52 62.5
CNN-A-Adv 35.5 2 39.6 >25h 41.5 11 43.5 31 52.0

CNN-A-Adv-4 41.5 1 40.0 >25h 45.0 7 46.0 4 49.5
CNN-A-Mix 23.5 1 39.6 >25h 37.5 36 41.5 33 51.5

CNN-A-Mix-4 38.0 1 47.8 >25h 48.5 9 50.5 8 55.0
* SDP-FO results are directly from their paper due to very long running time. † PRIMA and β-CROWN FSB results are on the same set of 200 random

examples. β-CROWN uses 1 GPU and 1 CPU; PRIMA uses 1 GPU and 20 CPUs.

4. Experimental Results
Comparison to Complete Verifiers We evaluate our
method and 10 baselines on complete verification on dataset
provided in (Lu & Kumar, 2020; De Palma et al., 2021a)
and used in VNN competition 2020 (Liu & Johnson). The
dataset contains 3 CIFAR-10 models (Base, Wide, and
Deep) with 100 examples each. Each data example is asso-
ciated with an `∞ norm ε and a target label for verification.
The details of each baseline and experimental setups can
be found in Appendix E. We report the average verification
time and branch numbers in Table 1 and plot the percent-
age of solved properties over time in Figure 1. β-CROWN
FSB achieves the fastest average running time with minimal
timeouts compared to all 10 baselines, and also clearly leads
on the cactus plots. Our benefits are more clearly shown
in Figure 1, where we solve 80% to 90% examples under
10 seconds and most other verifiers can only verify a small
portion or none of the properties within 10 seconds.

Comparison to Incomplete Verifiers. In Table 2 we
compare against a state-of-the-art semidefinite programming
(SDP) based verifier, SDP-FO (Dathathri et al., 2020), and
a very recent strong multi-neuron linear relaxation method,
PRIMA (Müller et al., 2021), on 1 MNIST and 6 CIFAR-
10 models in (Dathathri et al., 2020). The models were
trained using adversarial training (verification agnostic),
which posed a challenge for verification. The SDP formula-
tion can be tighter than linear relaxation based ones, but it
takes 2 to 3 hours to converge on one GPU for verifying a
single property, resulting 5,400 GPU hours to verify 200 test-
ing images with 10 labels. Due to resource limitations, we
directly quote SDP-FO results from (Dathathri et al., 2020)
on the same set of models, and evaluate verified accuracy
on the same set of 200 test images for all other baselines.
Table 2 shows that overall we are three orders of magnitude
faster than SDP-FO while still achieving consistently higher
verified accuracy. Additional results are in Appendix E.3.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

References
Anderson, G., Pailoor, S., Dillig, I., and Chaudhuri, S. Op-

timization and abstraction: A synergistic approach for
analyzing neural network robustness. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2019.

Anderson, R., Huchette, J., Tjandraatmadja, C., and Vielma,
J. P. Strong convex relaxations and mixed-integer
programming formulations for trained neural networks.
Mathematical Programming, 2020.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and
Misener, R. Efficient verification of relu-based neural
networks via dependency analysis. In AAAI Conference
on Artificial Intelligence (AAAI), 2020.

Bunel, R., De Palma, A., Desmaison, A., Dvijotham, K.,
Kohli, P., Torr, P. H. S., and Kumar, M. P. Lagrangian de-
composition for neural network verification. Conference
on Uncertainty in Artificial Intelligence (UAI), 2020a.

Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., and
Mudigonda, P. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research (JMLR), 2020b.

Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P., and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2018.

Dathathri, S., Dvijotham, K., Kurakin, A., Raghunathan,
A., Uesato, J., Bunel, R. R., Shankar, S., Steinhardt, J.,
Goodfellow, I., Liang, P. S., et al. Enabling certification
of verification-agnostic networks via memory-efficient
semidefinite programming. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

De Palma, A., Behl, H. S., Bunel, R., Torr, P. H. S., and
Kumar, M. P. Scaling the convex barrier with active sets.
International Conference on Learning Representations
(ICLR), 2021a.

De Palma, A., Bunel, R., Desmaison, A., Dvijotham, K.,
Kohli, P., Torr, P. H., and Kumar, M. P. Improved branch
and bound for neural network verification via lagrangian
decomposition. arXiv preprint arXiv:2104.06718, 2021b.

Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A. Out-
put range analysis for deep feedforward neural networks.
In NASA Formal Methods Symposium, 2018.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., and
Kohli, P. A dual approach to scalable verification of
deep networks. Conference on Uncertainty in Artificial
Intelligence (UAI), 2018.

Dvijotham, K. D., Stanforth, R., Gowal, S., Qin, C., De, S.,
and Kohli, P. Efficient neural network verification with
exactness characterization. In Conference on Uncertainty
in Artificial Intelligence (UAI), 2020.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis
(ATVA), 2017.

Fazlyab, M., Morari, M., and Pappas, G. J. Safety ver-
ification and robustness analysis of neural networks
via quadratic constraints and semidefinite programming.
IEEE Transactions on Automatic Control, 2020.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy
(SP). IEEE, 2018.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety
verification of deep neural networks. In International
Conference on Computer Aided Verification (CAV), 2017.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification (CAV), 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations (ICLR), 2015.

Liu, C. and Johnson, T. Vnn comp 2020. URL https:
//sites.google.com/view/vnn20/vnncomp.

Lu, J. and Kumar, M. P. Neural network branching for
neural network verification. International Conference on
Learning Representation (ICLR), 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018.

Müller, M. N., Makarchuk, G., Singh, G., Püschel, M., and
Vechev, M. Precise multi-neuron abstractions for neural
network certification. arXiv preprint arXiv:2103.03638,
2021.

Raghunathan, A., Steinhardt, J., and Liang, P. S. Semidef-
inite relaxations for certifying robustness to adversarial
examples. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Royo, V. R., Calandra, R., Stipanovic, D. M., and Tomlin, C.
Fast neural network verification via shadow prices. arXiv
preprint arXiv:1902.07247, 2019.

https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn20/vnncomp

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Salman, H., Yang, G., Zhang, H., Hsieh, C.-J., and Zhang, P.
A convex relaxation barrier to tight robustness verification
of neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Shi, Z., Zhang, H., Chang, K.-W., Huang, M., and Hsieh,
C.-J. Robustness verification for transformers. In Interna-
tional Conference on Learning Representations (ICLR),
2020.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. Fast and effective robustness certification. In
Advances in Neural Information Processing Systems
(NeurIPS), 2018a.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. Boosting
robustness certification of neural networks. In Interna-
tional Conference on Learning Representations, 2018b.

Singh, G., Ganvir, R., Püschel, M., and Vechev, M. Beyond
the single neuron convex barrier for neural network certi-
fication. In Advances in Neural Information Processing
Systems (NeurIPS), 2019a.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proceedings of
the ACM on Programming Languages (POPL), 2019b.

Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W.,
Patel, K., and Vielma, J. P. The convex relaxation barrier,
revisited: Tightened single-neuron relaxations for neural
network verification. Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
International Conference on Learning Representations
(ICLR), 2019.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana,
S. Efficient formal safety analysis of neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. For-
mal security analysis of neural networks using symbolic
intervals. In USENIX Security Symposium, 2018b.

Wong, E. and Kolter, Z. Provable defenses against adversar-
ial examples via the convex outer adversarial polytope. In
International Conference on Machine Learning (ICML),
2018.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.-W., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C.-J. Automatic
perturbation analysis for scalable certified robustness and
beyond. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X.,
and Hsieh, C.-J. Fast and complete: Enabling complete
neural network verification with rapid and massively par-
allel incomplete verifiers. International Conference on
Learning Representations (ICLR), 2021.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

Zhang, H., Chen, H., Xiao, C., Li, B., Boning, D., and Hsieh,
C.-J. Towards stable and efficient training of verifiably
robust neural networks. In International Conference on
Learning Representations (ICLR), 2020.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

A. Additional Background
A.1. The NN Verification Problem and the LP Verifier.

Neural network verification seeks the solution of the optimization problem in Eq. 5:

min f(x) := z(L)(x) s.t. z(i) = W(i)ẑ(i−1) + b(i), ẑ(i) = σ(z(i)), x ∈ C, i ∈ {1, · · · , L− 1} (5)

The set C defines the allowed input region and our aim is to find the minimum of f(x) for x ∈ C, and throughout this paper
we consider C as an `∞ ball around a data example x0: C = {x | ‖x− x0‖∞≤ ε} but other `p norms can also be supported.
In practical settings, we typically have “specifications” to verify, which are (usually linear) functions of neural network
outputs describing the desired behavior of neural networks. For example, to guarantee robustness we typically investigate
the margin between logits. Because the specification can also be seen as an output layer of NN and merged into f(x) under
verification, we do not discuss it in detail in this work. We consider the canonical specification f(x) > 0: if we can prove
that f(x) > 0, ∀x ∈ C, we say f(x) is verified.

A commonly used incomplete verification technique is to relax non-convex ReLUs with linear constraints and turn the
verification problem into a linear programming (LP) problem, which can then be solved with linear solvers. We refer
to it as “LP verifier” in this paper. Specifically, given ReLU(z

(i)
j) := max(0, z

(i)
j) and its intermediate layer bounds

l
(i)
j ≤ z

(i)
j ≤ u

(i)
j , each ReLU can be categorized into three cases linearly relaxed differently: (1) if l

(i)
j ≥ 0 (ReLU in

linear region) then ẑ(i)j = z
(i)
j ; (2) if u

(i)
j ≤ 0 (ReLU in inactive region) then ẑ(i)j = 0; (3) if l

(i)
j ≤ 0 ≤ u

(i)
j (ReLU is

unstable) then three linear bounds are used: ẑ(i)j ≥ 0, ẑ(i)j ≥ z
(i)
j , and ẑ(i)j ≤

u
(i)
j

u
(i)
j −l

(i)
j

(
z
(i)
j − l

(i)
j

)
; they are often referred to

as the “triangle” relaxation (Ehlers, 2017; Wong & Kolter, 2018). The intermediate layer bounds l(i) and u(i) are usually
obtained from a cheaper bound propagation method (see next subsection). LP verifiers can provide relatively tight bounds
but linear solvers are still expensive especially when the network is large. Also, unlike our β-CROWN, they have to use fixed
intermediate bounds and cannot use the joint optimization of intermediate layer bounds (Section B.3) to tighten relaxation.

A.2. CROWN: Efficient Incomplete Verification by Propagating Linear Bounds
Another cheaper way to give a lower bound for the verification problem Eq. 5 is through sound bound propagation.
CROWN (Zhang et al., 2018) is a representative method that propagates a linear bound of f(x) w.r.t. every intermediate
layer in a backward manner until reaching the input x. CROWN uses two linear constraints to relax unstable ReLU neurons:

a linear upper bound ẑ(i)j ≤
u
(i)
j

u
(i)
j −l

(i)
j

(
z
(i)
j − l

(i)
j

)
and a linear lower bound ẑ(i)j ≥ α

(i)
j z

(i)
j (0 ≤ α(i)

j ≤ 1). We can then

bound the output of a ReLU layer:

Lemma A.1 (ReLU relaxation in CROWN). Given w, v ∈ Rd,u ≤ v ≤ l (element-wise), we have

w>ReLU(v) ≥ w>Dv + b′,

where D is a diagonal matrix containing free variables 0 ≤ αj ≤ 1 only when uj > 0 > lj and wj ≥ 0, while its rest
values as well as constant b′ are determined by l,u, w.

Detailed forms of each term are listed in Appendix C. Lemma A.1 can be repeatedly applied, resulting in an efficient
back-substitution procedure to derive a linear lower bound of NN output w.r.t. x:
Lemma A.2 (CROWN bound (Zhang et al., 2018)). Given an L-layer ReLU NN f(x) : Rd0 → R with weights W(i),
biases b(i), pre-ReLU bounds l(i) ≤ z(i) ≤ u(i) (1 ≤ i ≤ L) and input constraint x ∈ C. We have

min
x∈C

f(x) ≥ min
x∈C

a>CROWNx+ cCROWN

where aCROWN and cCROWN can be computed using W(i),b(i), l(i),u(i) in polynomial time.

When C is an `p norm ball, minimization over the linear function can be easily solved using Hölder’s inequality. The main
benefit of CROWN is its efficiency: CROWN can be efficiently implemented on machine learning accelerators such as
GPUs (Xu et al., 2020) and TPUs (Zhang et al., 2020), and it can be a few magnitudes faster than an LP verifier which is
hard to parallelize on GPUs. CROWN was generalized to general architectures (Xu et al., 2020; Shi et al., 2020) while we
only demonstrate it for feedforward ReLU networks for simplicity.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

A.3. Branch and Bound and Neuron Split Constraints
Branch and bound (BaB) method is widely adopted in complete verifiers (Bunel et al., 2018): we divide the domain of the
verification problem C into two subdomains C1 = {x ∈ C, z(i)j ≥ 0} and C2 = {x ∈ C, z(i)j < 0} where z(i)j is an unstable
ReLU neuron in C but now becomes linear for each subdomain. Incomplete verifiers can then estimate the lower bound of
each subdomain with relaxations. If the lower bound produced for subdomain Ci (denoted by fCi) is greater than 0, Ci is
verified; otherwise, we further branch over domain Ci by splitting another unstable ReLU neuron. The process terminates
when all subdomains are verified. The completeness is guaranteed when all unstable ReLU neurons are split.
LP verifier with neuron split constraints. A popular incomplete verifier used in BaB is LP verifier. Essentially, when
we split the j-th ReLU in layer i, we can simply add z(i)j ≥ 0 or z(i)j < 0 to Eq. 5 and get a linearly relaxed lower
bound to each subdomain. We denote the Z+(i) and Z−(i) as the set of neuron indices with positive and negative split
constraints in layer i. We define the split constraints at layer i as Z(i) := {z(i) | z(i)j1 ≥ 0, z

(i)
j2

< 0,∀j1 ∈ Z+(i),∀j2 ∈
Z−(i)}. We denote the vector of all pre-ReLU neurons as z, and we define a set Z to represent the split constraints
on z: Z = Z(1) ∩ Z(2) ∩ · · · ∩ Z(L−1). For convenience, we also use the shorthand Z̃(i) := Z(1) ∩ · · · ∩ Z(i) and
z̃(i) := {z(1), z(2), · · · , z(i)}. LP verifiers can easily handle these neuron split constraints but are very expensive than bound
propagation methods like CROWN and cannot be accelerated on GPUs.

Branching strategy. Branching strategies (selecting which ReLU neuron to split) are generally agnostic to the incomplete
verifier used in BaB but do affect the overall BaB performance. BaBSR (Bunel et al., 2020b) is a widely used strategy in
complete verifiers, which is based on an fast estimates on objective improvements after splitting each neuron. The neuron
with highest estimated improvement is selected for branching. Recently, Filtered Smart Branching (FSB) (De Palma et al.,
2021b) improves BaBSR by mimicking strong branching - it utilizes bound propagation methods to evaluate the best a
few candidates proposed by BaBSR and chooses the one with largest improvement. Graph neural network (GNN) based
branching was also proposed (Lu & Kumar, 2020). Our β-CROWN BaB is a general complete verification framework fit for
any potential branching strategy, and we evaluate both BaBSR and FSB in experiments.

B. Additional Technical Details
In main text we have given a brief overview of the our β-CROWN algorithm. In this section, we will go over the details of
the bound propagation processes with split constraints, derive the β-CROWN bounds from both primal space and dual space,
and discuss how to tighten the bound using free parameters α and β. Lastly, we describe β-CROWN BaB, a complete
verifier that also becomes a strong incomplete verifier when stopped early.

B.1. β-CROWN: Linear Bound Propagation with Neuron Split Constraints
The NN verification problem under neuron split constraints can be written as an optimization:

min
x∈C,z∈Z

f(x). (6)

Bound propagation methods like CROWN can give a relatively tight lower bound for minx∈C f(x) but they cannot handle
the neuron split constraints z ∈ Z . Before we present our main theorem, we first show the intuition on how to apply split
constraints to the bound propagation process.

To encode the neuron splits, we first define diagonal matrix S(i) ∈ Rdi×di in Eq. 7 where i ∈ [1, · · ·L− 1], j ∈ [1, · · · , di]:

S
(i)
j,j = −1(if split z(i)j ≥ 0); S

(i)
j,j = +1(if split z(i)j < 0); S

(i)
j,j = 0(if not split z(i)j) (7)

We start from last layer and derive linear bounds for each intermediate layer z(i) and ẑ(i) for both x ∈ C and z ∈ Z . We
also assume that pre-ReLU bounds l(i) ≤ z(i) ≤ u(i) for each layer i are available. We initially have:

min
x∈C,z∈Z

f(x) = min
x∈C,z∈Z

W(L)ẑ(L−1) + b(L). (8)

Since ẑ(L−1) = ReLU(z(L−1)), we can apply Lemma A.1 to relax the ReLU neuron at layer L − 1, and obtain a linear
lower bound for f(x) w.r.t. z(L−1):

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

min
x∈C,z∈Z

f(x) ≥ min
x∈C,z∈Z

W(L)D(L−1)z(L−1) + const.

To enforce the split neurons at layer L− 1, we use a Lagrange function with β(L−1)>S(L−1) multiplied on z(L−1):

min
x∈C,z∈Z

f(x) ≥ min
x∈C

z̃(L−2)∈Z̃(L−2)

max
β(L−1)≥0

W(L)D(L−1)z(L−1) + β(L−1)>S(L−1)z(L−1) + const

≥ max
β(L−1)≥0

min
x∈C

z̃(L−2)∈Z̃(L−2)

(
W(L)D(L−1) + β(L−1)>S(L−1)

)
z(L−1) + const

(9)

The first inequality is due to the definition of the Lagrange function: we remove the constraint z(L−1) ∈ Z(L−1) and use a
multiplier to replace this constraint. The second inequality is due to weak duality. Due to the design of S(L−1), neuron
split z(L−1)j ≥ 0 has a negative multiplier −β(L−1)

j and split z(L−1)j < 0 has a positive multiplier β(L−1)
j . Any β(L−1) ≥ 0

yields a lower bound for the constrained optimization. Then we substitute z(L−1) with W(L−1)ẑ(L−2) + b(L−1) for next
layer:

min
x∈C,z∈Z

f(x) ≥ max
β(L−1)≥0

min
x∈C

z̃(L−2)∈Z̃(L−2)

(
W(L)D(L−1) + β(L−1)>S(L−1)

)
W(L−1)ẑ(L−2) + const (10)

We define a matrix A(i) to represent the linear relationship between f(x) and ẑ(i), where A(L−1) = W(L) according
to Eq. 8 and A(L−2) = (A(L−1)D(L−1) + β(L−1)>S(L−1))W(L−1) by Eq. 10. Considering 1-dimension output f(x),
A(i) has only 1 row. With A(L−2), Eq. 10 becomes:

min
x∈C,z∈Z

f(x) ≥ max
β(L−1)≥0

min
x∈C

z̃(L−2)∈Z̃(L−2)

A(L−2)ẑ(L−2) + const,

which is in a form similar to Eq. 8 except for the outer maximization over β(L−1). This allows the back-substitution process
(Eq. 8, Eq. 9, and Eq. 10) to continue. In each step, we swap max and min as in Eq. 9, so every maximization over β(i) is
outside of minx∈C . Eventually, we have:

min
x∈C,z∈Z

f(x) ≥ max
β≥0

min
x∈C

A(0)x+ const,

where β :=
[
β(1)> β(2)> · · · β(L−1)>]> concatenates all β(i) vectors. Following the above idea, we present the main

theorem in Theorem B.1 (proof is given in Appendix C).

Theorem B.1 (β-CROWN bound). Given an L-layer NN f(x) : Rd0 → R with weights W(i), biases b(i), pre-ReLU
bounds l(i) ≤ z(i) ≤ u(i) (1 ≤ i ≤ L), input bounds C, split constraints Z . We have:

min
x∈C,z∈Z

f(x) ≥ max
β≥0

min
x∈C

(a+Pβ)>x+ q>β + c, (11)

where a ∈ Rd0 ,P ∈ Rd0×(
∑L−1

i=1 di),q ∈ R
∑L−1

i=1 di and c ∈ R are functions of W(i), b(i), l(i), u(i).

Detailed formulations for a, P, q and c are given in Appendix C. Theorem B.1 shows that when neuron split constraints
exist, f(x) can still be bounded by a linear equation containing optimizable multipliers β. Observing Eq. 9, the main
difference between CROWN and β-CROWN lies in the relaxation of each ReLU layer, where we need an extra term
β(i)>S(i) in the linear relationship matrix (for example, W(L)D(L−1) in Eq. 9) between f(x) and z(i) to enforce neuron
split constraints. This extra term in every ReLU layer yields P and q in Eq. 11 after bound propagations.

To solve the optimization problem in Eq. 11, we note that in the `p norm robustness setting (C = {x | ‖x− x0‖p≤ ε}), the
inner minimization has a closed solution:

min
x∈C,z∈Z

f(x) ≥ max
β≥0
−‖a+ Pβ‖qε+ (P>x0 + q)>β + a>x0 + c := max

β≥0
g(β) (12)

where 1
p + 1

q = 1. The maximization is concave in β (q ≥ 1), so we can simply optimize it using projected (su-
per)gradient ascent with gradients from an automatic differentiation library. Since any β ≥ 0 yields a valid lower bound for
minx∈C,z∈Z f(x), convergence is not necessary to guarantee soundness. β-CROWN is efficient - it has the same asymptotic

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

complexity as CROWN when β is fixed. When β = 0, β-CROWN yields the same results as CROWN; however the
additional optimizable β allows us to maximize and tighten the lower bound due to neuron split constraints.

We define α(i) ∈ Rdi for free variables associated with unstable ReLU neurons in Lemma A.1 for layer i and define all free
variables α = {α(1) · · ·α(L−1)}. Since any 0 ≤ α(i)

j ≤ 1 yields a valid bound, we can optimize it to tighten the bound.
Formally, we rewrite Eq. 12 with α explicitly:

min
x∈C,z∈Z

f(x) ≥ max
0≤α≤1, β≥0

g(α,β). (13)

B.2. Connections to the Dual Problem

In this subsection, we show that β-CROWN can also be derived from a dual LP problem. Based on Eq. 5 and linear relaxations
in Section A.1, we first construct an LP problem for `∞ robustness verification in Eq. 14 where i ∈ {1, · · · , L− 1}.

min f(x) := z(L)(x) s.t.

Network and Input Bounds: z(i) = W(i)ẑ(i−1) + b(i); ẑ(0) ≥ x0 − ε; ẑ(0) ≤ x0 + ε;

Stable: ẑ(i)j = z
(i)
j (if l(i)j ≥ 0); ẑ

(i)
j = 0 (if u(i)

j ≤ 0);

Unstable: ẑ(i)j ≥ 0, ẑ
(i)
j ≥ z

(i)
j , ẑ

(i)
j ≤

u
(i)
j

u
(i)
j −l

(i)
j

(
z
(i)
j − l

(i)
j

)
(if l(i)j < 0 < u

(i)
j , j /∈ Z+(i) ∪ Z−(i))

Neuron Split Constraints: ẑ(i)j = z
(i)
j , z

(i)
j ≥ 0 (if j ∈ Z+(i)); ẑ

(i)
j = 0, z

(i)
j < 0 (if j ∈ Z−(i))

(14)

Compared to the formulation in (Wong & Kolter, 2018), we have neuron split constraints. Many BaB based complete
verifiers (Bunel et al., 2018; Lu & Kumar, 2020) use an LP solver for Eq. 14 as the incomplete verifier. We first show that it
is possible to derive Theorem B.1 from the dual of this LP, leading to Theorem B.2:

Theorem B.2. The objective dLP for the dual problem of Eq. 14 can be represented as

dLP = −‖a+ Pβ‖1·ε+ (P>x0 + q)>β + a>x0 + c,

where a, P, q and c are defined in the same way as in Theorem B.1, and β ≥ 0 corresponds to the dual variables of neuron
split constraints in Eq. 14.

A similar connection between CROWN and dual LP based verifier (Wong & Kolter, 2018) was shown in (Salman et al.,
2019), and their results can be seen as a special case of ours when β = 0 (none of the split constraints are active). An
immediate consequence is that β-CROWN can potentially solve Eq. 14 as well as using an LP solver:

Corollary B.2.1. When α and β are optimally set and intermediate bounds l,u are fixed, β-CROWN produces p∗LP, the
optimal objective of LP with split constraints in Eq. 14:

max
0≤α≤1,β≥0

g(α,β) = p∗LP,

In Appendix C, we give detailed formulations for conversions between the variables α, β in β-CROWN and their
corresponding dual variables in the LP problem.

B.3. Joint Optimization of Free Variables in β-CROWN
In Eq. 13, g is also a function of l

(i)
j and u

(i)
j , the intermediate layer bounds for each neuron z(i)j . They are also computed

using β-CROWN. To obtain l
(i)
j , we set f(x) := z

(i)
j (x) and apply Theorem B.1:

min
x∈C,z̃(i−1)∈Z̃(i−1)

z
(i)
j (x) ≥ max

0≤α′≤1, β′≥0
g′(α′,β′) := l

(i)
j (15)

and for u
(i)
j we set f(x) := −z(i)j (x). Importantly, during solving these intermediate layer bounds, the α′ and β′ are

independent sets of variables, not the same ones for the objective f(x) := z(L). Since g is a function of l
(i)
j , it is also a

function of α′ and β′. In fact, there are a total of
∑L−1
i=1 di intermediate layer neurons, and each neuron is associated with a

set of independent α′ and β′ variables. Optimizing these variables allowing us to tighten the relaxations on unstable ReLU

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

neurons (which depend on l
(i)
j and u

(i)
j) and produce tight final bounds, which is impossible in LP. In other words, we need

to optimize α̂ and β̂, which are two vectors concatenating α, β as well as a large number of α′ and β′ used to compute
each intermediate layer bound:

min
x∈C,z∈Z

f(x) ≥ max
0≤α̂≤1, β̂≥0

g(α̂, β̂). (16)

This formulation is non-convex and has a large number of variables. Since any 0 ≤ α̂ ≤ 1, β̂ ≥ 0 leads to a valid lower
bound, the non-convexity does not affect soundness. When intermediate layer bounds are also allowed to be tightened during
optimization, we can outperform the LP verifier for Eq. 14 using fixed intermediate layer bounds. Typically, when Eq. 14 is
formed, intermediate layer bounds are pre-computed with bound propagation procedures (Bunel et al., 2018; Lu & Kumar,
2020), which are far from optimal.

To estimate the dimension of this problem, we denote the number of unstable neurons at layer i as si := Tr(|S(i)|). Each
neuron in layer i is associated with 2×

∑i−1
k=1 sk variables α′. Suppose each hidden layer has d neurons (si = O(d)), then

α̂ has 2×
∑L−1
i=1 di

∑i−1
k=1 sk = O(L2d2) variables in total. This can be too large for efficient optimization, so we share α′

and β′ among the intermediate neurons of the same layer, leading to a total number of O(L2d) variables to optimize. Note
that a weaker form of joint optimization was also discussed in (Xu et al., 2021) without β, and a detailed analysis can be
found in Appendix D.2.

B.4. β-CROWN with Branch and Bound (β-CROWN BaB)
We perform complete verification following BaB framework (Bunel et al., 2018) using β-CROWN as the incomplete solver,
and we use simple branching heuristics like BaBSR (Bunel et al., 2020b) or FSB (De Palma et al., 2021b). To efficiently
utilize GPU, we also use batch splits to evaluate multiple subdomains in the same batch as in (Xu et al., 2020; De Palma
et al., 2021a). We list our full algorithm β-CROWN BaB in Appendix D and we show it is sound and complete here:

Theorem B.3. β-CROWN with Branch and Bound on splitting ReLUs is sound and complete.

Soundness is trivial because β-CROWN is a sound verifier. For completeness, it suffices to show that when all unstable
ReLU neurons are split, β-CROWN gives the global minimum for Eq. 14. In contrast, combining CROWN (Zhang et al.,
2018) with BaB does not yield a complete verifier, as it cannot detect infeasible splits and a slow LP solver is still needed
to guarantee completeness (Xu et al., 2021). Instead, β-CROWN can detect infeasible subdomains - according to duality
theory, an infeasible primal problem leads to an unbounded dual objective, which can be detected (see Sec. D.3 for more
details).

Additionally, we show the potential of early stopping a complete verifier as an incomplete verifier. BaB approaches the
exact solution of Eq. 5 by splitting the problem into multiple subdomains, and more subdomains give a tighter lower bound
for Eq. 5. Unlike traditional complete verifiers, β-CROWN is efficient to explore a large number of subdomains during a
very short time, making β-CROWN BaB an attractive solution for efficient incomplete verification.

C. Proofs for β-CROWN
C.1. Proofs for deriving β-CROWN using bound propagation

Lemma A.1 is from part of the proof of the main theorem in Zhang et al. (2018). Here we present it separately to use it as an
useful subprocedure for our later proofs.

Lemma A.1 (Relaxation of a ReLU layer in CROWN). Given two vectors w, v ∈ Rd,u ≤ v ≤ l (element-wise), we have

w>ReLU(v) ≥ w>Dv + b′,

where D is a diagonal matrix defined as:

Dj,j =

1, if lj ≥ 0

0, if uj ≤ 0

αj , if uj > 0 > lj and wj ≥ 0
uj

uj−lj , if uj > 0 > lj and wj < 0,

(17)

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

0 ≤ αj ≤ 1 are free variables, b′ = w>b and each element in b is

bj =

0, if lj > 0 or uj ≤ 0

0, if uj > 0 > lj and wj ≥ 0

− uj lj
uj−lj , if uj > 0 > lj and wj < 0.

(18)

Proof. For the j-th ReLU neuron, if lj ≥ 0, then ReLU(vj) = vj ; if uj < 0, then ReLU(vj) = 0. For the case of
lj < 0 < uj , the ReLU function can be linearly upper and lower bounded within this range:

αjvj ≤ ReLU(vj) ≤
uj

uj − lj
(vj − lj) ∀ lj ≤ vj ≤ uj

where 0 ≤ αj ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound. To lower bound
w>ReLU(v) =

∑
j wjReLU(vj), for each term in this summation, we take the lower bound of ReLU(vj) if wj is positive

and take the upper bound of ReLU(vj) if wj is negative (reflected in the definitions of D and b). This conservative choice
allows us to always obtain a lower bound ∀ l ≤ v ≤ u:∑

j

wjReLU(vj) ≥
∑
j

wj
(
Dj,jvj + bj

)
= w>Dv + w>b = w>Dv + b′

where Dj,j and bj are defined in Eq. 17 and Eq. 18 representing the lower or upper bounds of ReLU.

Before proving our main theorem (Theorem B.1), we first define matrix Ω, which is the product of a series of model weights
W and “weights” for relaxed ReLU layers D:
Definition C.1. Given a set of matrices W(2), · · · ,W(L) and D(1), · · · ,D(L−1), we define a recursive function Ω(k, i) for
1 ≤ i ≤ k ≤ L as

Ω(i, i) = I, Ω(k+1, i) = W(k+1)D(k)Ω(k, i)

For example, Ω(3, 1) = W(3)D(2)W(2)D(1), Ω(5, 2) = W(5)D(4)W(4)D(3)W(3)D(2). Now we present our main
theorem with each term explicitly written:
Theorem B.1 (β-CROWN bound). Given a L-layer neural network f(x) : Rd0 → R with weights W(i), biases b(i),
pre-ReLU bounds l(i) ≤ z(i) ≤ u(i) (1 ≤ i ≤ L), input constraint C and split constraint Z . We have

min
x∈C,z∈Z

f(x) ≥ max
β≥0

min
x∈C

(a+ Pβ)>x+ q>β + c, (19)

where P ∈ Rd0×(
∑L−1

i=1 di) is a matrix containing blocks P :=
[
P1
> P2

> · · · PL−1
>
]
, q ∈ R

∑L−1
i=1 di is a vector

q :=
[
q1
> · · · qL−1

>]>, and each term is defined as:

a =
[
Ω(L, 1)W(1)

]>
∈ Rd0×1 (20)

Pi = S(i)Ω(i, 1)W(1) ∈ Rdi×d0 , ∀ 1 ≤ i ≤ L− 1 (21)

qi =

i∑
k=1

S(i)Ω(i, k)b(k) +

i∑
k=2

S(i)Ω(i, k)W(k)b(k−1) ∈ Rdi , ∀ 1 ≤ i ≤ L− 1 (22)

c =

L∑
i=1

Ω(L, i)b(i) +

L∑
i=2

Ω(L, i)W(i)b(i−1) (23)

diagonal matrices D(i) and vector b(i) are determined by the relaxation of ReLU neurons, and A(i) ∈ R1×di represents the
linear relationship between f(x) and ẑ(i). D(i) and b(i) depend on A(i), l(i) and u(i):

D
(i)
j,j =

1, if l

(i)
j ≥ 0 or j ∈ Z+(i)

0, if u
(i)
j ≤ 0 or j ∈ Z−(i)

αj , if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j ≥ 0

uj

uj−lj , if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j < 0

(24)

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

b
(i)
j =

0, if l

(i)
j > 0 or u

(i)
j ≤ 0 or j ∈ Z+(i) ∪ Z−(i)

0, if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j ≥ 0

− u
(i)
j l

(i)
j

u
(i)
j −l

(i)
j

, if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j < 0

(25)

A(i) =

{
W(L), i = L− 1

(A(i+1)D(i+1) + β(i+1)>S(i+1))W(i+1), 0 ≤ i ≤ L− 2
(26)

Proof. We prove this theorem by induction: assuming we know the bounds with respect to layer ẑ(m), we derive bounds for
ẑ(m−1) until we reach m = 0 and by definition ẑ(0) = x. We first define a set of matrices and vectors a(m), P(m), q(m),

c(m), where P(m) ∈ Rdm×(
∑L−1

i=m+1 di) is a matrix containing blocks P :=

[
P

(m)
m+1

>
· · · P

(m)
L−1

>
]

, q ∈ R
∑L−1

i=m+1 di is a

vector q :=
[
q
(m)
m+1

> · · · q
(m)
L−1

>
]>

, and each term is defined as:

a(m) =
[
Ω(L,m+ 1)W(m+1)

]>
∈ Rdm×1 (27)

P
(m)
i = S(i)Ω(i,m+ 1)W(m+1) ∈ Rdi×dm , ∀m+ 1 ≤ i ≤ L− 1 (28)

q
(m)
i =

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) ∈ Rdm , ∀m+ 1 ≤ i ≤ L− 1 (29)

c(m) =

L∑
i=m+1

Ω(L, i)b(i) +

L∑
i=m+2

Ω(L, i)W(i)b(i−1) (30)

and we claim that

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m)∈Z̃(m)

(a(m) + P(m)β̃(m+1))>ẑ(m) + q(m)>β̃(m+1) + c(m) (31)

where β̃(m+1) :=
[
β(m+1)> · · ·β(L−1)>]> concatenating all β(i) variables up to layer m+ 1.

For the base case m = L− 1, we simply have

min
x∈C,z∈Z

f(x) = min
x∈C,z∈Z

W(L)ẑ(L−1) + b(L).

No maximization is needed and a(m) =
[
Ω(L,L)W(L)

]>
= W(L)>, c(m) =

∑L
i=L Ω(L, i)b(i) = b(L). Other terms are

zero.

In Section B.1 we have shown the intuition of the proof by demonstrating how to derive the bounds from layer ẑ(L−1) to
ẑ(L−2). The case for m = L− 2 is presented in Eq. 10.

Now we show the induction from ẑ(m) to ẑ(m−1). Starting from Eq. 31, since ẑ(m) = ReLU(z(m)) we apply Lemma A.1

by setting w =
[
a(m) + P(m)β̃(m+1)

]>
:= A(m). It is easy to show that A(m) can also be equivalently and recursively

defined in Eq. 26 (see Lemma C.2). Based on Lemma A.1 we have D(m) and b(m) defined as in Eq. 24 and Eq. 25, so Eq. 31
becomes

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m)∈Z̃(m)

(a(m) + P(m)β̃(m+1))>D(m)z(m)

+ (a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

(32)

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Note that when we apply Lemma A.1, for j ∈ Z+(i) (positive split) we simply treat the neuron j as if l
(i)
j ≥ 0, and for

j ∈ Z−(i) (negative split) we simply treat the neuron j as if u
(i)
j ≤ 0. Now we add the multiplier β(m) to z(m) to enforce

per-neuron split constraints:

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

max
β(m)≥0

(a(m) + P(m)β̃(m+1))>D(m)z(m) + β(m)>S(m)z(m)

+(a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))z(m)

+(a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

Similar to what we did in Eq. 9, we swap the min and max in the second inequality due to weak duality, such that every
maximization on β(i) is before min. Then, we substitute ẑ(m) = W(m)ẑ(m−1) + b(m) and obtain:

min
x∈C
z∈Z

f(x) ≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))>W(m)ẑ(m−1)

+ (a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))>b(m)

+ (a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

=

[a(m)>D(m)W(m)
]>

︸ ︷︷ ︸
a′

+(β̃(m+1)>P(m)>D(m)W(m) + β(m)>S(m)W(m))︸ ︷︷ ︸
P′β̃(m)

>

ẑ(m−1)

+
(
(P(m)>D(m)b(m) + P(m)>b(m) + q(m))>β̃(m+1) + (S(m)b(m))>β(m)

)
︸ ︷︷ ︸

q′>β̃(m)

+ a(m)>D(m)b(m) + a(m)>b(m) + c(m)︸ ︷︷ ︸
c′

Now we evaluate each term a′, P′, q′ and c′ and show the induction holds. For a′ and q′ we have:

a′ =
[
a(m)>D(m)W(m)

]>
=
[
Ω(L,m+ 1)W(m+1)D(m)W(m)

]>
=
[
Ω(L,m)W(m)

]>
= a(m−1)

c′ = c(m) + Ω(L,m+ 1)W(m+1)D(m)b(m) + Ω(L,m+ 1)W(m+1)b(m)

=

L∑
i=m+1

Ω(L, i)b(i) +

L∑
i=m+2

Ω(L, i)W(i)b(i−1) + Ω(L,m)b(m) + Ω(L,m+ 1)W(m+1)b(m)

=

L∑
i=m

Ω(L, i)b(i) +

L∑
i=m+1

Ω(L, i)W(i)b(i−1)

= c(m−1)

For P′ :=
[
P′m
> · · · P′L−1

>], we have a new block P′m where

P′m = S(m)W(m) = S(m)Ω(m,m)W(m) = P(m−1)
m

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

for other blocks where m+ 1 ≤ i ≤ L− 1,

P′i = P
(m)
i D(m)W(m) = S(i)Ω(i,m+ 1)W(m+1)D(m)W(m) = S(i)Ω(i,m)W(m) = P

(m−1)
i

For q′ :=
[
q′m
> · · · q′L−1

>], we have a new block q′m where

q′m = S(m)b(m) =

m∑
k=m

S(i)Ω(i, k)b(i) = q(m−1)
m

for other blocks where m+ 1 ≤ i ≤ L− 1,

q′i = q
(m)
i + P(m)>D(m)b(m) + P(m)>b(m)

=

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) + P(m)>D(m)b(m) + P(m)>b(m)

=
i∑

k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1)

+ S(i)Ω(i,m+ 1)W(m+1)D(m)b(m) + S(i)Ω(i,m+ 1)W(m+1)b(k)

=

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) + S(i)Ω(i,m)b(m)

+ S(i)Ω(i,m+ 1)W(m+1)b(m)

=

i∑
k=m

S(i)Ω(i, k)b(k) +

i∑
k=m+1

S(i)Ω(i, k)W(k)b(k−1)

= q
(m−1)
i

Thus, a′ = a(m−1), P′ = P(m−1), q′ = q(m−1) and c′ = c(m−1) so the induction holds for layer ẑ(m−1):

min
x∈C
z∈Z

f(x) ≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m−1) + P(m−1)β̃(m))>ẑ(m−1) + q(m−1)>β̃(m) + c(m−1) (33)

Finally, Theorem B.1 becomes the special case where m = 0 in Eq. 27, Eq. 28, Eq. 29 and Eq. 30.

The next Lemma unveils the connection with CROWN (Zhang et al., 2018) and is also useful for drawing connections to the
dual problem.

Lemma C.2. With D, b and A defined in Eq. 24, Eq. 25 and Eq. 26, we can rewrite Eq. 19 in Theorem B.1 as:

min
x∈C
z∈Z

f(x) ≥ max
β≥0

min
x∈C

A(0)x+

L−1∑
i=1

A(i)(D(i)b(i) + b(i)) (34)

where A(i), 0 ≤ i ≤ L− 1 contains variables β.

Proof. To prove this lemma, we simply follow the definition of A(i) and check the resulting terms are the same as Eq. 19.
For example,

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

A(0) = (A(1)D(1) + β(1)>S(1))W(1)

= A(1)D(1)W(1) + β(1)>S(1)W(1)

= (A(2)D(2) + β(2)>S(2))W(2)D(1)W(1) + β(1)>S(1)W(1)

= A(2)D(2)W(2)D(1)W(1) + β(2)>S(2)W(2)D(1)W(1) + β(1)>S(1)W(1)

= · · ·

= Ω(L, 1)W(1) +

L−1∑
i=1

β(i)>S(i)Ω(i, 1)W(1)

= [a+ Pβ]
>

Other terms can be shown similarly.

With this definition of A, we can see Eq. 19 as a modified form of CROWN, with an extra term β(i+1)>S(i+1) added when
computing A(i). When we set β = 0, we obtain the same bound propagation rule for A as in CROWN. Thus, only a small
change is needed to implement β-CROWN given an existing CROWN implementation: we add β(i+1)>S(i+1) after the
linear bound propagates backwards through a ReLU layer. We also have the same observation in the dual space, as we will
show this connection in the next subsection.

C.2. Proofs for the connection to the dual space

Theorem B.2. The objective dLP for the dual problem of Eq. 14 can be represented as

dLP = −‖a+ Pβ‖1·ε+ (P>x0 + q)>β + a>x0 + c,

where a, P, q and c are defined in the same way as in Theorem B.1, and β ≥ 0 corresponds to the dual variables of neuron
split constraints in Eq. 14.

Proof. To prove the Theorem B.2, we demonstrate the detailed dual objective dLP for Eq. 14, following a construction
similar to the one in Wong & Kolter (2018). We first associate a dual variable for each constraint involved in Eq. 14
including dual variables β for the per-neuron split constraints introduced by BaB. Although it is possible to directly write
the dual LP for Eq. 14, for easier understanding, we first rewrite the original primal verification problem into its Lagrangian
dual form as Eq. 35, with dual variables ν, ξ+, ξ−µ,γ,λ,β:

L(z, ẑ;ν, ξ,µ,γ,λ,β) = z(L) +

L∑
i=1

ν(i)>(z(i) −W(i)ẑ(i−1) − b(i))

+ ξ+
>
(ẑ(0) − x0 − ε) + ξ−

>
(−ẑ(0) + x0 − ε)

+

L−1∑
i=1

∑
j /∈Z+(i) ⋃Z−(i)

l
(i)
j <0<u

(i)
j

[
µ

(i)
j

>
(−ẑ(i)j) + γ

(i)
j

>
(z

(i)
j − ẑ

(i)
j) + λ

(i)
j

>
(−u

(i)
j z

(i)
j + (u

(i)
j − l

(i)
j)ẑ

(i)
j + u

(i)
j l

(i)
j)

]

+

L−1∑
i=1

 ∑
z
(i)
j ∈Z−(i)

β
(i)
j z

(i)
j +

∑
z
(i)
j ∈Z+(i)

−β(i)
j z

(i)
j

Subject to:

ξ+ ≥ 0, ξ− ≥ 0,µ ≥ 0,γ ≥ 0,λ ≥ 0,β ≥ 0

(35)

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

The original minimization problem then becomes:

max
ν,ξ+,ξ−,µ,γ,λ,β

min
z,ẑ

L(z, ẑ,ν, ξ+, ξ−,µ,γ,λ,β)

Given fixed intermediate bounds l,u, the inner minimization is a linear optimization problem and we can simply transfer it
to the dual form. To further simplify the formula, we introduce notations similar to those in (Wong & Kolter, 2018), where

ν̂(i−1) = W(i)>ν(i) and α(i)
j =

γ
(i)
j

µ
(i)
j +γ

(i)
j

. Then the dual form can be written as Eq. 36.

max
0≤α≤1,β≥0

g(α,β), where

g(α,β) = −
L∑
i=1

ν(i)>b(i) − ν̂(0)>x0 − ||ν̂(0)||1·ε+
L−1∑
i=1

∑
j /∈Z+(i) ⋃Z−(i)

l
(i)
j <0<u

(i)
j

l
(i)
j [ν

(i)
j]+

Subject to:

ν(L) = −1, ν̂(i−1) = W(i)>ν(i), i ∈ {1, . . . , L}

ν
(i)
j = 0, when u

(i)
j ≤ 0, i ∈ {1, . . . , L− 1}

ν
(i)
j = ν̂

(i)
j , when l

(i)
j ≥ 0, i ∈ {1, . . . , L− 1}

[ν
(i)
j]+ =

u
(i)
j [ν̂

(i)
j]+

u
(i)
j −l

(i)
j

, [ν
(i)
j]− = α

(i)
j [ν̂

(i)
j]−

λ
(i)
j =

[ν̂
(i)
j]+

u
(i)
j −l

(i)
j

,α
(i)
j =

γ
(i)
j

µ
(i)
j +γ

(i)
j

when l
(i)
j < 0 < u

(i)
j , j /∈ Z+(i)

⋃
Z−(i), i ∈ {1, . . . , L− 1}

ν
(i)
j = −β(i)

j , j ∈ Z−(i), i ∈ {1, . . . , L− 1}

ν
(i)
j = β

(i)
j + ν̂

(i)
j , j ∈ Z+(i), i ∈ {1, . . . , L− 1}

µ ≥ 0,γ ≥ 0,λ ≥ 0,β ≥ 0, 0 ≤ α ≤ 1

(36)

Similar to the dual form in (Wong & Kolter, 2018) (our differences are highlighted in blue), the dual problem can be viewed
in the form of another deep network by backward propagating ν(L) to ν̂(0) following the rules in Eq. 36. If we look closely
at the conditions and coefficients when backward propagating ν(i)

j for j-th ReLU at layer i in Eq. 36, we can observe
that they match exactly to the propagation of diagonal matrices D(i), S(i), and vector b(i) defined in Eq. 24 and Eq. 25.
Therefore, using notations in Eq. 24 and Eq. 25 we can essentially simplify the dual LP problem in Eq. 36 to:

ν(L) = −1, ν̂(i−1) = W(i)>ν(i),ν(i) = D(i)ν̂(i) − β(i)S(i), i ∈ {L, · · · , 1}∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+ = −ν̂(i)Tb(i), j ∈ {1, · · · , di}, i ∈ {L− 1, · · · , 1} (37)

Then we prove the key claim for this proof with induction where a(m) and P(m) are defined in Eq. 27 and Eq. 28:

ν̂(m) = −a(m) −P(m)β̃(m+1) (38)

When m = L− 1, we can have ν̂(L−1) = −a(L−1) −P(L−1)β̃(L) = −
[
Ω(L,L)W(L)

]> − 0 = −W(L)> which is true
according to Eq. 37.

Now we assume that ν̂(m) = −a(m) − P(m)β̃(m+1) holds, and we show that ν̂(m−1) = −a(m−1) − P(m−1)β̃(m) will

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

hold as well:

ν̂(m−1) = W(m)>
(
D(m)ν̂(m) − β(m)S(m)

)
= −W(m)>D(m)a(m) −W(m)>D(m)P(m)β̃(m+1) −W(m)>β(m)S(m)

= −a(m−1) −
[(

S(m)W(m)
)>

,
(
P(m)>D(m)W(m)

)>] [
β(m), β̃(m+1)

]
= −a(m−1) −P(m−1)β̃(m)

Therefore, the claim Eq. 38 is proved with induction. Lastly, we prove the following claim where q(m) and c(m) are defined
in Eq. 29 and Eq. 30.

−
L∑

i=m+1

ν(i)>b(i) +

L−1∑
i=m+1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+ = q(m)>β̃(m+1) + c(m) (39)

This claim can be proved by applying Eq. 37 and Eq. 38.

−
L∑

i=m+1

ν(i)>b(i) +

L−1∑
i=m+1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+

= −
L∑

i=m+1

(
D(i)ν̂(i) − β(i)S(i)

)>
b(i) +

L∑
i=m+2

(
−ν̂(i−1)Tb(i−1)

)

=

L∑
i=m+1

[(
a(i)> + β̃(i+1)>P(i)>

)
D(i)b(i) + β(i)>S(i)b(i)

]

+

L∑
i=m+2

(
a(i−1)> + β̃(i)>P(i−1)>

)
b(i−1)

=

L∑
i=m+1

β̃(i)>
[
S(i),P(i)>D(i)

]
b(i) +

L∑
i=m+2

β̃(i)>P(i−1)>b(i−1)

+

L∑
i=m+1

a(i)>D(i)b(i) +

L∑
i=m+2

a(i−1)>b(i−1)

= q(m)>β̃(m+1) + c(m)

Finally, we apply claims Eq. 38 and Eq. 39 into the dual form solution Eq. 36 and prove the Theorem B.2.

g(α,β) = −
L∑
i=1

ν(i)>b(i) − ν̂(0)>x0 − ||ν̂(0)||1·ε+
L−1∑
i=1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+

= −||−a(0) −P(0)β̃(1)||1·ε+
(
a(0)> + β̃(1)>P(0)>

)
x0 + q(0)>β̃(1) + c(0)

= −||a+ Pβ̃(1)||1·ε+
(
P>x0 + q

)>
β̃(1) + a>x0 + c

A more intuitive proof. Here we provide another intuitive proof showing why the dual form solution of verification
objective in Eq. 36 is the same as the primal one in Thereom B.1. dLP = g(α,β) is the dual objective for Eq. 14 with free

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

variables α and β. We want to show that the dual problem can be viewed in the form of backward propagating ν(L) to
ν̂(0) following the same rules in β-CROWN. Salman et al. (2019) showed that CROWN computes the same solution as the
dual form in Wong & Kolter (2018): ν̂(i) is corresponding to −A(i) in CROWN (defined in the same way as in Eq. 26 but
with β(i+1) = 0) and ν(i) is corresponding to −A(i+1)D(i+1). When the split constraints are introduced, extra terms for
the dual variable β modify ν(i) (highlighted in blue in Eq. 36). The way β-CROWN modifies A(i+1)D(i+1) is exactly the
same as the way β(i) affects ν(i): when we split z(i)j ≥ 0, we add β(i)

j to the ν(i)
j in Wong & Kolter (2018); when we split

z
(i)
j ≥ 0, we add −β(i)

j to the ν(i)
j in Wong & Kolter (2018) (ν(i)

j is 0 in this case because it is set to be inactive). To make
this relationship more clear, we define a new variable ν′, and rewrite relevant terms involving ν, ν̂ below:

ν
(i)
j = 0, j ∈ Z−(i);

ν
(i)
j = ν̂

(i)
j , j ∈ Z+(i);

ν
(i)
j is defined in the same way as in Eq. 36 for other cases

ν
(i)
j
′ = −β(i)

j + ν
(i)
j , j ∈ Z−(i);

ν
(i)
j
′ = β

(i)
j + ν

(i)
j , j ∈ Z+(i);

ν
(i)
j
′ = ν

(i)
j , otherwise

ν̂(i−1) = W(i)>ν(i)′;

(40)

It is clear that ν′ corresponds to the term −(A(i+1)D(i+1) + β(i+1)>S(i+1)) in Eq. 26, by noting that ν(i) in (Wong &
Kolter, 2018) is equivalent to −A(i+1)D(i+1) in CROWN and the choice of signs in S(i+1) reflects neuron split constraints.
Thus, the dual formulation will produce the same results as Eq. 34, and thus also equivalent to Eq. 19.

Corollary B.2.1. When α and β are optimally set, β-CROWN produces the same solution as LP with split constraints when
intermediate bounds l,u are fixed. Formally,

max
0≤α≤1,β≥0

g(α,β) = p∗LP

where p∗LP is the optimal objective of Eq. 14.

Proof. Given fixed intermediate layer bounds l and u, the dual form of the verification problem in Eq. 14 is a linear
programming problem with dual variables defined in Eq. 35. Suppose we use an LP solver to obtain the optimal dual solution

ν∗, ξ∗,µ∗,γ∗,λ∗,β∗. Then we can set α(i)
j =

γ
(i)
j
∗

µ
(i)
j
∗+γ

(i)
j
∗

, β = β∗ and plug them into Eq. 36 to get the optimal dual

solution d∗LP. Theorem B.2 shows that, β-CROWN can compute the same objective d∗LP given the same α(i)
j =

γ
(i)
j
∗

µ
(i)
j
∗+γ

(i)
j
∗

,

β = β∗, thus max0≤α≤1,β≥0 g(α,β) ≥ d∗LP. On the other hand, for any setting of α and β, β-CROWN produces the
same solution g(α,β) as the rewritten dual LP in Eq. 36, so g(α,β) ≤ d∗LP. Thus, we have max0≤α≤1,β≥0 g(α,β) = d∗LP.
Finally, due to the strong duality in linear programming, p∗LP = d∗LP = max0≤α≤1,β≥0 g(α,β).

The variables α in β-CROWN can be translated to dual variables in LP as well. Given α∗ in β-CROWN, we can get the
corresponding dual LP variables µ,γ given α by setting µ(i)

j = (1−α(i)
j)[ν̂

(i)
j]− and γ(i)

j = α
(i)
j [ν̂

(i)
j]−.

C.3. Proof for soundness and completeness

Theorem B.3. β-CROWN with branch and bound on splitting ReLU neurons is sound and complete.

Proof. Soundness. Branch and bound (BaB) with β-CROWN is sound because for each subdomain Ci := {x ∈ C, z ∈ Zi},
we apply Theorem B.1 to obtain a sound lower bound fCi (the bound is valid for any β ≥ 0). The final bound returned by
BaB is mini fCi

which represents the worst case over all subdomains, and is a sound lower bound for x ∈ C := ∪iCi.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Algorithm 1 β-CROWN with branch and bound for complete verification. Comments are in brown.
1: Inputs: f , C, n (batch size), δ (tolerance), η (maximum length of sub-domains)
2: (f, f)← optimized_beta_CROWN(f, [C]) . Initially there is no split, so optimization is done over α̂
3: P←

[
(f, f, C)

]
. P is the set of all unverified sub-domains

4: while f < 0 and f ≥ 0 and f − f > δ and length(P) < η do
5: (C1, . . . , Cn)← batch_pick_out(P, n) . Pick sub-domains to split and removed them from P
6:

[
Cl1, Cu1 , . . . , Cln, Cun

]
← batch_split(C1, . . . , Cn) . Each Ci splits into two sub-domains Cli and Cui

7:
[
f
Cl1
, fCl1

, f
Cu1
, fCu1

, . . . , f
Cln
, fCln , fCun

, fCun

]
← optimized_beta_CROWN(f,

[
Cl1, Cu1 , . . . , Cln, Cun

]
) . Compute lower and

upper bounds by optimizing α̂ and β̂ mentioned in Section B.3 in a batch
8: P← P

⋃
Domain_Filter

(
[f
Cl1
, fCl1

, Cl1], [fCu1
, fCu1

, Cu1], . . . , [fCln
, fC1n , C

l
n], [fCun

, fCun , C
u
n]
)

. Filter out verified

sub-domains, insert the left domains back to P
9: f ← min{f

Ci
| (f
Ci
, fCi , Ci) ∈ P}, i = 1, . . . , n . To ease notation, Ci here indicates either Cui or Cli

10: f ← min{fCi | (fCi , fCi , Ci) ∈ P}, i = 1, . . . , n

11: Outputs: f , f

Completeness. To show completeness, we need to solve Eq. 5 to its global minimum. When there are N unstable neurons,
we have up to 2N subdomains, and in each subdomain we have all unstable ReLU neurons split into one of the z(i)j ≥ 0 or

z
(i)
j < 0 case. The final solution obtained by BaB is the min over these 2N subdomains. To obtain the global minimum, we

must ensure that in every of these 2N subdomain we can solve Eq. 14 exactly.

When all unstable neurons are split in a subdomain Ci, the network becomes a linear network and neuron split constraints
become linear constraints w.r.t. inputs. Under this case, an LP with Eq. 14 can solve the verification problem in Ci exactly.
In β-CROWN, we solve the subdomain using the usually non-concave formulation Eq. 16; however, in this case, it becomes
concave in β̂ because no intermediate layer bounds are used (no α′ and β′) and no ReLU neuron is relaxed (no α), thus the
only optimizable variable is β (Eq. 16 becomes Eq. 12). Eq. 12 is concave in β so (super)gradient ascent guarantees to
converge to the global optimal β∗. To ensure convergence without relying on a preset learning rate, a line search can be
performed in this case. Then, according to Corollary B.2.1, this optimal β∗ corresponds to the optimal dual variable for the
LP in Eq. 14 and the objective is a global minimum of Eq. 14.

D. More details on β-CROWN with branch and bound (BaB)
D.1. β-CROWN with branch and bound for complete verification

We list our β-CROWN with branch and bound based complete verifier (β-CROWN BAB) in Algorithm 1. The algorithm
takes a target NN function f and a domain C as inputs. The subprocedure optimized_beta_CROWN optimizes α̂ and β̂
(free variables for computing intermediate layer bounds and last layer bounds) as Eq. 16 in Section B.3. It operates in a
batch and returns the lower and upper bounds for n selected subdomains simultaneously: a lower bound is obtained by
optimizing Eq. 16 using β-CROWN and an upper bound can be the network prediction given the x∗ that minimizes Eq. 111.
Initially, we don’t have any splits, so we only need to optimize α̂ to obtain f for x ∈ C (Line 2). Then we utilize the power
of GPUs to split in parallel and maintain a global set P storing all the sub-domains which does not satisfy fCi < 0 (Line
5-10). Specifically, batch_pick_out extends branching strategy BaBSR (Bunel et al., 2018) or FSB (De Palma et al.,
2021b) in a parallel manner to select n (batch size) sub-domains in P and determine the corresponding ReLU neuron to split
for each of them. If the length of P is less than n, then we reduce n to the length of P. batch_split splits each selected
Ci to two sub-domains Cli and Cui by forcing the selected unstable ReLU neuron to be positive and negative, respectively.
Domain_Filter filters out verified sub-domains (proved with fCi ≥ 0) and we insert the remaining ones to P. The loop

breaks if the property is proved (f ≥ 0), or a counter-example is found in any sub-domain (f < 0), or the lower bound f
and upper bound f are sufficiently close, or the length of sub-domains P reaches a desired threshold η (maximum memory
limit).

1We want an upper bound of the objective in Eq. 5. Since Eq. 5 is an minimization problem, any feasible x produces an upper bound
of the optimal objective. When Eq. 5 is solved exactly as f∗ (such as in the case where all neurons are split), we have f∗ = f = f . See
also the discussions in Section I.1 of De Palma et al. (2021a).

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

D.2. Comparisons to other GPU based complete verifiers

Bunel et al. (2020a) proposed to reformulate the linear programming problem in Eq. 14 through Lagrangian decomposition.
Eq. 14 is decomposed layer by layer, and each layer is solved with simple closed form solutions on GPUs. A Lagrangian
is used to enforce the equality between the output of a previous layer and the input of a later layer. This optimization
formulation has the same power as a LP (Eq. 14) under convergence. The main drawback of this approach is that it converges
relatively slowly (we find that it typically requires hundreds of iterations to converge to a solution similar to the solution
of a LP), and it also cannot easily jointly optimize intermediate layer bounds. In Table 1 (PROX BABSR) and Figure 1
(BDD+ BABSR, which refers to the same method) we can see that this approach is relatively slow and has high timeout
rates compared to other GPU accelerated complete verifiers. Recently, De Palma et al. (2021b) proposed a better branching
strategy, filtered smart branching (FSB), to further improved verification performance of (Bunel et al., 2020a), but the
Lagrangian Decomposition based incomplete verifier and the branch and bound procedure stay the same.

De Palma et al. (2021a) used a tighter convex relaxation (Anderson et al., 2020) than the typical LP formulation in Eq. 14 for
the incomplete verifier. This tighter relaxation contains exponentially many constraints, and De Palma et al. (2021a) proposed
to solve the verification problem in its dual form where each constraint becomes a dual variable. A small active set of dual
variables is maintained during dual optimization to ensure efficiency. This tighter relaxation allows it to outperform (Bunel
et al., 2020a), but it also comes with extra computational costs and difficulties for an efficient implementation (e.g. a “masked”
forward/backward pass is needed which requires a customised lower-level convolution implementation). Additionally,
De Palma et al. (2021a) did not optimize intermediate layer bounds jointly.

Xu et al. (2021) used CROWN (Zhang et al., 2018) (categorized as a linear relaxation based perturbation analysis (LiRPA)
algorithm) as the incomplete solver in BaB. Since CROWN cannot encode neural split constraints, Xu et al. (2021) essentially
solve Eq. 14 without neuron split constraints (z(i)j ≥ 0, i ∈ {1, · · · , L− 1}, j ∈ Z+(i) and z(i)j < 0, i ∈ {1, · · · , L− 1}, j ∈
Z−(i)) in Eq. 14. The missing constraints lead to looser bounds and more branches - this can be seen in Table 1, where their
number of branches and timeout rates are higher than ours. Additionally, using CROWN as the incomplete solver leads
to incompleteness - even when all unstable ReLU neurons are split, Xu et al. (2021) still cannot solve Eq. 5 to a global
minimum, so a LP solver has to be used to check inconsistent splits and guarantee completeness. Our β-CROWN BaBSR
and β-CROWN FSB overcome these drawbacks: we consider per-neuron split constraints in β-CROWN which reduces
the number of branches and solving time (Table 1). Most importantly, β-CROWN with branch and bound is sound and
complete (Theorem B.3) and we do not rely on any LP solvers.

Another difference between Xu et al. (2021) and our method is the joint optimization of intermediate layer bounds
(Section B.3). Although (Xu et al., 2021) also optimized intermediate layer bounds, they only optimize α and do not have
β, and they share the same variable α for all intermediate layer bounds and final bounds, with a total of O(Ld) variables to
optimize. Our analysis in Section B.3 shows that there are in fact, O(L2d2) free variables to optimize, and we share less
variables as in Xu et al. (2021). This allows us to achieve tighter bounds and improve overall performance.

D.3. Detection of Infeasibility

Maximizing Eq. 12 with infeasible constraints leads to unbounded dual objective, which can be detected by checking if this
optimized lower bound becomes greater than the upper bound (which is also maintained in BaB, see Alg.1 in Sec. B.1).
Due to insufficient convergence, this cannot always detect infeasibility, but it does not affect soundness, as this infeasible
subdomain only leads to worse overall lower bound in BaB. To guarantee completeness, we show that when all unstable
neurons are split the problem is concave (see Section C.3); in this case, we can use line search to guarantee convergence
when feasible, and detect infeasibility if the objective exceeds the upper bound (line search guarantees the objective can
eventually exceed upper bound). In most real scenarios, the verifier either finishes or times out before all unstable neurons
are split.

E. Details on Experimental Setup and Results
E.1. Baselines

We compare against multiple baselines for complete verification: (1) BaBSR (Bunel et al., 2020b), a basic BaB and LP
based verifier; (2) MIPplanet (Ehlers, 2017), a customized MIP solver for NN verification where unstable ReLU neurons
are randomly selected for splitting; (3) ERAN (Singh et al., 2019a; 2018a; 2019b; 2018b), an abstract interpretation

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

based verifier which is one of VNN competition 2020 winners with lowest timeout rate; (4) GNN-Online (Lu & Kumar,
2020), a BaB and LP based verifiers using a learned Graph Neural Network (GNN) to guide the ReLU splits; (5) BDD+
BaBSR (Bunel et al., 2020a), a verification framework based on Lagrangian decomposition on GPUs (BDD+) with BaBSR
branching strategy; (6) OVAL (BDD+ GNN) (Bunel et al., 2020a; Lu & Kumar, 2020), one of VNN competition 2020
winners, using BDD+ with GNN guiding the ReLU splits; (7) A.set BaBSR and (8) Big-M+A.set BaBSR (De Palma et al.,
2021a), very recent dual-space verifiers on GPUs with a tighter linear relaxation than LP; (9) Fast-and-Complete (Xu et al.,
2021), which uses CROWN on GPUs as the incomplete verifier in BaB without neuron split constraints; (10) BaDNB
(BDD+ FSB) (De Palma et al., 2021b), a concurrent state-of-the-art complete verifier, using BDD+ on GPUs with FSB
branching strategy. β-CROWN BaB can use either BaBSR or FSB branching heuristic, and we include both in evaluation.
All methods use 1 CPU + 1 GPU (if GPU is supported) with a 1 hour timeout threshold.

E.2. Experimental Setup

We run our experiments on a single NVIDIA GTX 1080 Ti GPU (11GB GPU memory) and a Intel i7-7700K CPU (4.2 GHz).
We set the CPU memory limit for all methods to 32GB. We use the Adam optimizer (Kingma & Ba, 2015) to solve both α̂
and β̂ in Eq. 16 with 20 iterations. The learning rates are set as 0.1 and 0.05 for optimizing α̂ and β̂ respectively. We decay
the learning rates with a factor of 0.98 per iteration. To maximize the benefits of parallel computing on GPU, we use batch
sizes n =400 for Base (CIFAR-10), ConvSmall (MNIST), ConvSmall (CIFAR-10), CNN-A-Adv (MNIST), CNN-A-Adv
(CIFAR-10), CNN-A-Adv-4 (CIFAR-10), CNN-A-Mix (CIFAR-10) and CNN-A-Mix-4 (CIFAR-10); n =200 for Wide
(CIFAR-10) and Deep (CIFAR-10), n =64 for CNN-B-Adv (CIFAR-10) and CNN-B-Adv-4 (CIFAR-10), n =10 for
ConvBig (MNIST) and ConvBig (CIFAR-10); n =2 for ResNet (CIFAR-10) respectively. The CNN-A-Adv, CNN-A-Adv-4,
CNN-A-Mix, CNN-A-Mix-4, CNN-B-Adv and CNN-B-Adv-4 models are obtained from the authors or (Dathathri et al.,
2020) and are the same as the models used in their paper. We summarize the model structures in both incomplete verification
and complete verification (Base, Wide and Deep) experiments in Table 3.

Table 3. Model structures used in our experiments. For example, Conv(1, 16, 4) stands for a conventional layer with 1 input channel, 16
output channels and a kernel size of 4× 4. Linear(1568, 100) stands for a fully connected layer with 1568 input features and 100 output
features. We have ReLU activation functions between two consecutive layers.

Model name Model structure

CNN-A-Adv (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100) - Linear(100, 10)
ConvSmall (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(800, 100) - Linear(100, 10)
ConvBig (MNIST) Conv(1, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(3136, 512) -

Linear(512, 512) - Linear(512, 10)
ConvSmall (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(1152, 100) - Linear(100, 10)
ConvBig (CIFAR-10) Conv(3, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(4096, 512) -

Linear(512, 512) - Linear(512, 10)
CNN-A-Adv/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CNN-B-Adv/-4 (CIFAR-10) Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 250) - Linear(250, 10)
CNN-A-Mix/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)

Base (CIFAR-10) Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100) - Linear(100, 10)
Wide (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
Deep (CIFAR-10) Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100) - Linear(100, 10)

E.3. Additional Experiments

Comparison to Multi-neuron Convex Relaxation based Incomplete verifiers. In Table 4, we compare against a few
representative and strong incomplete verifiers on 5 convolutional networks for MNIST and CIFAR-10 under the same set of
1000 images and perturbation ε as reported in (Singh et al., 2019b; Tjandraatmadja et al., 2020; Müller et al., 2021). Among
the baselines, kPoly (Singh et al., 2019a), OptC2V (Tjandraatmadja et al., 2020) and PRIMA (Müller et al., 2021) utilize
state-of-the-art multi-neuron linear relaxation for ReLUs and can bypass the single-neuron convex relaxation barrier (Salman
et al., 2019), and are among the strongest incomplete verifiers. β-CROWN FSB achieves better verified accuracy on all five
models using a similar amount of time. Some models, such as MNIST ConvBig and CIFAR ResNet, are quite challenging -
the verified accuracy obtained by β-CROWN FSB is close to the upper bound found via PGD attack.

Tightness of verification. In Figure 2, we compare the tightness of verification bounds against SDP-FO on two adversari-
ally trained networks from (Dathathri et al., 2020). Specifically, we use the verification objective f(x) := z

(L)
y (x)− z(L)y′ (x),

where z(L) is the logit layer output, y and y′ are the true label and the runner-up label. For each test image, PGD at-

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Table 4. Verified accuracy (%) and avg. time (s) of 1000 images evaluated on the ERAN models in (Singh et al., 2019a; Tjandraatmadja
et al., 2020; Müller et al., 2021). Three convex relaxation barrier breaking methods, kPoly (Singh et al., 2019b), OptC2V (Tjandraatmadja
et al., 2020) and PRIMA (Müller et al., 2021)

Dataset Model CROWN/DeepPoly∗ kPoly OptC2V PRIMA† β-CROWN FSB Upper
Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) bound

MNIST ConvSmall 15.8 3 34.7 477 43.6 55 59.8 42 71.6 46 74.6
ConvBig 71.1 21 73.6 40 77.1 102 77.5 15 77.7 78 80.4

CIFAR
ConvSmall 35.9 4 39.9 86 39.8 105 44.1 20 46.3 18 48.2
ConvBig 42.1 43 45.9 346 No public code 46.9 97 50.3 55 61.3
ResNet 24.3 12 24.5 91 cannot run 24.9 64 25.1 42 29.0

* CROWN/DeepPoly evaluated on CPU. † PRIMA is a concurrent work and results are directly from (Müller et al., 2021) under the same
setting.

tack (Madry et al., 2018) can provide an adversarial upper bound f of the optimal objective: f∗ ≤ f . Verifiers, on the
other hand, can provide a verified lower bound f ≤ f∗. Bounds from tighter verification methods lie closer to line y = x
in Figure 2. Figure 2 shows that on both PGD adversarially trained networks, β-CROWN FSB consistently outperforms
SDP-FO for all 100 random test images. Importantly, for each point on the plots, β-CROWN FSB needs only 3 minutes
while SDP-FO needs 178 minutes on average. LP verifier produces much looser bounds than β-CROWN FSB and SDP-FO.

Figure 2. Verified lower bound v.s. PGD adversarial upper bound. A lower bound closer to the upper bound (closer to the line y = x) is
better. β-CROWN FSB uses 3mins while SDP-FO needs roughly 3 hours per point.

2 0 2 4 6
PGD adversarial upper bound

10
8
6
4
2
0
2
4
6

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP
SDP-FO
PGD (y=x)

1 0 1 2 3 4 5 6 7
PGD adversarial upper bound

8
6
4
2
0
2
4
6
8

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP
SDP-FO
PGD (y=x)

(a) MNIST CNN-A-Adv, runner-up targets, ε = 0.3 (b) CIFAR CNN-B-Adv, runner-up targets, ε = 2/255

Comparison to LPs with different intermediate layer bounds. In Figure 3, we compare our β-CROWN FSB (3 minutes
as the timeout threshold per verification instance) against incomplete LP verifiers constructed using different intermediate
layer bounds obtained from Wong & Kolter (2018) (WK), CROWN (Zhang et al., 2018), and the joint optimization
procedure (optimizing Eq. 16 with no β̂ as done in (Xu et al., 2021), denoted as OPT). Our β-CROWN FSB always
outperforms these three LP verifiers using different intermediate bounds. Also, we show that tighter intermediate layer
bounds obtained by CROWN can greatly improve the performance of the LP verifier compared to those using looser ones
obtained by Wong & Kolter (2018). Furthermore, using intermediate layer bounds computed by joint optimization can
achieve noticeable improvements. The corresponding verified accuracy for each method on PGD trained CNN-A-Adv
(MNIST) and CNN-B-Adv (CIFAR-10) networks can be found in Table 5. The results match the observations in Figure 3:
tighter intermediate bounds are helpful for LPs, but branch and bound with β-CROWN can significantly outperform these
LP verifiers. This shows that BaB is an effective approach for incomplete verification, outperforming the bounds produced
by a single LP.

More results on incomplete verification using complete verifiers with early stop In our experiments in Table 1, we
noticed that BIGM+A.SET BABSR (De Palma et al., 2021a) is also very competitive among existing state-of-the-art
complete verifiers2 - it runs fast in many cases with low timeout rates. Therefore, we also evaluate BIGM+A.SET BABSR
with an early stop of 3 minutes for the incomplete verification setting as an extension of Section 4. The corresponding
verified accuracy number for each method are reported in Table 5. As we can see BIGM+A.SET BABSR usually produces
better bounds than SDP-FO, however β-CROWN FSB consistently outperforms BIGM+A.SET BABSR under the same
3min timeout.

2The concurrent work BaDNB (BDD+ FSB) does not have public available code.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Figure 3. Verified lower bound on f(x) by β-CROWN FSB compared against incomplete LP verifiers using different intermediate layer
bounds obtained from (Wong & Kolter, 2018) (denoted as LP (WK)), CROWN (Zhang et al., 2018) (denoted as LP (CROWN)), and
jointly optimized intermediate bounds in Eq. 16 (denoted as LP (OPT)), v.s. the adversarial upper bound on f(x) found by PGD. LPs
need much longer time to solve than β-CROWN on CIFAR-10 models (see Table 5).

2 0 2 4 6
PGD adversarial upper bound

10
8
6
4
2
0
2
4
6

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP(WK)
LP(CROWN)
LP(OPT)
PGD (y=x)

1 0 1 2 3 4 5 6 7
PGD adversarial upper bound

8
6
4
2
0
2
4
6
8

Ve
rif

ie
d

lo
we

r b
ou

nd

-CROWN
LP(WK)
LP(CROWN)
LP(OPT)
PGD (y=x)

(a) MNIST CNN-A-Adv, runner-up targets, ε = 0.3 (b) CIFAR CNN-B-Adv, runner-up targets, ε = 2/255

Table 5. Verified accuracy (%) and avg. per-example verification time (s) on 7 models from SDP-FO (Dathathri et al., 2020).
Dataset MNIST ε = 0.3 CIFAR ε = 2/255

Model CNN-A-Adv CNN-B-Adv CNN-B-Adv4 CNN-A-Adv CNN-A-Adv4 CNN-A-Mix CNN-A-Mix
Methods Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s)

K&W (Wong & Kolter, 2018) 0 0.1 8.5 0.4 34.5 0.8 32.5 0.4 39.5 0.5 15.0 0.3 30.0 0.4
CROWN (Zhang et al., 2018) 1.0 0.1 21.5 0.5 43.5 0.9 35.5 0.6 41.5 0.7 23.5 0.4 38.0 0.5

CROWN-OPT (Xu et al., 2021) 14.0 3 21.5 6 45.0 4 36.0 2 42.0 2 25.0 2 38.5 2
LP(K&W) 0.5 16 14.5 612 41.0 1361 35.0 114 41.5 140 19.0 84 36.5 117

LP(CROWN) 3.5 22 21.5 941 45.0 1570 36.0 123 41.5 147 24.0 119 38.5 126
LP(OPT) 14.0 40 21.5 977 45.0 1451 36.0 122 42.0 152 25.0 94.8 38.5 127

SDP-FO (Dathathri et al., 2020)∗ 43.4 >20h 32.8 >25h 46.0 >25h 39.6 >25h 40.0 >25h 39.6 >25h 47.8 >25h
PRIMA (Müller et al., 2021) 44.5 136 38.0 360 53.5 51 41.5 11 45.0 7 37.5‡ 36 48.5 9

BigM+A.Set (De Palma et al., 2021a) 63.0 117 N/A† N/A N/A N/A 41.0 79 46.0 39 30.0 122 47.0 71
β-CROWN FSB 68.0 76 44.5 94 54.0 52 43.5 31 46.0 4 41.5 33 50.5 8

Upper Bound (PGD) 79.5 - 64.0 - 62.5 - 52.0 - 49.5 - 51.5 - 55.0 -
* SDP-FO results are directly from their paper due to the very long running time. All other methods are tested on the same set of 200 random examples. † The

implementation of BigM+A.Set BaBSR is not compatible with CNN-B-Adv and CNN-B-Adv4 models which have an convolution with asymmetric padding. ‡

A recent version of (Müller et al., 2021) reported better results on CNN-A-Mix, however we found that their results were produced on a selection of 100 data
points, and reruning their method using the same command on 200 random examples from test set produces much worse results, as reported here.

Lower bound improvements over time In Figure 4, we plot lower bound values vs. time for β-CROWN BABSR and
BIGM+A.SET BABSR (one of the most competitive methods in Table 1) on the CNN-A-Adv (MNIST) model. Figure 4
shows that branch and bound can indeed quickly improve the lower bound, and our β-CROWN BABSR is consistently
faster than BIGM+A.SET BABSR. In contrast, SDP-FO (Dathathri et al., 2020), which typically requires 2 to 3 hours to
converge, can only provide very loose bounds during the first 3 minutes of optimization (out of the range on these figures).

Complete verification performance with averaged metrics

In Section 4 we presented the median of verification time in Table 1. We include mean verification time and number of
branches in Table 1. The average verification time is heavily affected by timed out examples. For example, on the Deep
model, our β-CROWN with BaBSR significantly outperforms other baselines by over 10X because we have no timeout.
This comparison can be misleading because two factors are mixed: the efficiency of the verifier (reflected in verification time
for most examples) and the capability of the verifier (reflected in the capability of verifying hard examples and producing
less timeouts). Instead, median runtime (with timeout rates also in consideration) and the cactus plots in Figure 1 are more
appropriate means to gauge the performance of each complete verifier.

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification

Figure 4. For the CNN-A-Adv (MNIST) model, we randomly select four examples from the incomplete verification experiment and
plot the lower bound v.s. time (in 180 seconds) of β-CROWN BABSR and BIGM+A.SET BABSR. Larger lower bounds are better.
β-CROWN BaBSR improves bound noticeably faster in all four situations.

0 50 100 150
time(s)

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

2.5
2.0
1.5
1.0
0.5
0.0
0.5

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
we

r b
ou

nd
-CROWN+BaBSR

Big-M+A. Set+BaBSR

