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ABSTRACT
This paper describes a diffusion model for co-speech gesture genera-
tion presented by KU-ISPL entry of the GENEA Challenge 2023. We
formulate the gesture generation problem as a co-speech gesture
generation problem and a semantic gesture generation problem,
and we focus on solving the co-speech gesture generation prob-
lem by denoising diffusion probabilistic model with text, audio,
and pre-pose conditions. We use the U-Net with cross-attention
architecture as a denoising model, and we propose a gesture au-
toencoder as a mapping function from the gesture domain to the
latent domain. The collective evaluation released by GENEA Chal-
lenge 2023 shows that our model successfully generates co-speech
gestures. Our system receives a mean human-likeness score of 32.0,
a preference-matched score of appropriateness for the main agent
speech of 53.6%, and an interlocutor speech appropriateness score
of 53.5%.We also conduct an ablation study to measure the effects of
the pre-pose. By the results, our system contributes to the co-speech
gesture generation for natural interaction.

CCS CONCEPTS
•Computingmethodologies→Animation; •Human-centered
computing → Human computer interaction (HCI).
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1 INTRODUCTION
Synthesizing synchronized and human-like gestures performs cru-
cial roles to improve immersion, engagement, and naturalness for
embodied virtual agents and humanoid robots. During the human-
computer interaction(HCI) process, human uses both verbal and
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non-verbal expressions to provide their intent to the interlocutor.
Gesture generation, which is one of the main challenges for non-
verbal interaction, aims to synthesize natural-looking and mean-
ingful human gestures. The task can be separated whether verbal
expression exists or not. When verbal expressions, such as audio
or text, are given, the gesture generation model focuses on making
gestures that emphasize the meaning of verbal expressions. In the
other case, the model should generate gestures that deliver the
intent whether verbal expressions are given or not. We define the
task with verbal information as co-speech gesture generation and
the task that focuses on synthesizing meaningful body motions that
deliver intent as semantic gesture generation. In this research, we
focus on generating high-fidelity co-speech gestures.

There are many challenges for the co-speech gesture generation.
The first is timing synchronization. Since the speech and gestures
are shown to the interlocutor sequentially, he or she will be con-
fused if gestures depart from speech. For example, if the start and
end timing of the gestures slightly differs from speech, the users
will think that it is an implemental error. A more detrimental situa-
tion is traffic jams during continuous generation. Once the timing
is out of sync, the timing between speech and gestures is continu-
ally departed and the discomfort will be gradually increased. With
similar thinking, semantic synchronization, which is the second
challenge, is also important to deliver proper intent. For example,
when people say "I disagree." by nodding, the interlocutor will be
confused that it is positive or negative.

The third obstacle is noise robustness. 3D pose estimation or mo-
tion capture is utilized to acquire gesture data. However, the quality
of raw data obtained by 3D pose estimation is not enough because
the algorithm is basically image-to-3D reconstruction, which is a
one-to-many problem. The motion capture is better, but it is too ex-
pensive and time-consuming. To secure quality, the cost is increased
exponentially. Therefore, the raw data may contain noise. Since
training with noisy data hurts both quantitative and qualitative
performance, a workaround such as pre-processing or noise-robust
training is needed.

To tackle these problems, deep learning-based approaches have
been applied to generating co-speech gestures, recently. There are
three types of training strategies: reconstruction-based method[15,
18, 34], generative adversarial network(GAN)[8] based method[25,
33], and diffusion[7, 12] basedmethods[3, 5, 38]. The reconstruction-
based co-speech gesture generation methods directly estimate ges-
tures from text or audio. Although the methods induce reasonable
results in terms of joint error, disadvantages are seen in terms of
diversity. To generate various results without quantitative perfor-
mance degradation, GAN-based co-speech gesture generation mod-
els are trained by controlling the weight between reconstruction
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loss and adversarial loss. Recently, denoising diffusion probabilis-
tic models(DDPMs) are achieving huge success in the generative
model and computer vision fields and expanding to other research
fields[14, 24]. Especially, the diffusion model could synthesize vari-
ous images that reflect input conditions, even if its semantic space is
large. Since the semantic space of the speech for co-speech gesture
generation is large, the diffusion model may help to synthesize
various and synchronized results. Therefore, the goal of the paper
is to find a suitable diffusion model structure for co-speech gesture
generation.

In this paper, we propose a diffusion-based co-speech gesture
generation method. We establish a gesture autoencoder to project
from gesture space to feature space and vice versa. The model was
configured to select suitable features according to the characteristics
of the gesture data. We also present how to deliver audio and text
information to the diffusion model. We use validated audio features
and the pre-trained language model to provide rich features.

The data and evaluations are provided by GENEA Challenge
2023[20]. Thanks to the good-quality data, the noise robustness
problem is under control and we can focus on the synchronizing
problems. The evaluations, which contain human likeness, and
appropriateness for the main agent and interlocutor, are also well-
formulated to measure the generation performance. The code is
available here1.

2 RELATEDWORKS
2.1 Co-speech gesture generation
Kucherenko et al. [18] proposed an autoencoder-style audio-to-
gesture model with hidden representation learning. The method
first find hidden embedding space of gesture by autoencoder and
next train the audio encoder to find joint embedding space between
audio and gesture. Yoon et al. [34] trained the sequence-to-sequence
LSTM model to map text transcriptions to 2D co-speech gestures.
Kim et al. [15] trained the transformer-based autoencoder with
self-supervised pre-training. These approaches use reconstruction
loss to optimize the model. Chang et al.[4] presented a locality con-
straint attention-based gesture generation model, which is inspired
by Tacotron2. StyleGestures [1] uses the method of normalizing
flow to generate gestures from speech. Audio2Gestures [22] syn-
thesize gestures using a variational autoencoder. Yoon et al. [33]
train the model with adversarial loss and reconstruction loss to
generate gestures from trimodal contexts. HA2G [25] adopts a
hierarchical decoder to address the structural information of the
joint. Gesturemaster[37] used a rhythm embedding module, style
embedding module, motion graph construction, and graph-based
optimization to extract features and generate gestures.

2.2 Semantic gesture generation
Kim et al. [16] generates gestures with the semantics itself or ex-
tracted from text. The method with an intent classifier emphasizes
co-speech gesture generation. The co-speech gesture model is se-
lected to generate gestures if the intent is unclear, else this method

1https://github.com/GT-KIM/GENEA2023-KU-ISPL

is used to synthesize gestures. SEEG [23] generates semantic en-
ergized co-speech gestures with the semantic prompt gallery, se-
mantic prompter, and semantic energized learning. Gesticulator[19]
synchronizes between text and audio features in the encoding phase
and generates gestures by autoregression.

2.3 Diffusion-based motion generation
Alexanderson et al. [2] proposed conformer[10]-based diffusion
models for gesture generation, dance synthesis, and path-driven
locomotion. Zhu et al. [38] migrated the diffusion model to speech-
driven co-speech gesture generation with diffusion gesture stabi-
lizer and implicit classifier-free guidance. FLAME [17] generates
and edits human motion with the pre-trained language model and
transformer. Motiondiffuse[36] and MDM[30] also synthesize hu-
man motions from text descriptions. [3] learns a gesture-transcript
joint embedding space using contrastive learning. The learned em-
beddings are incorporated into the diffusion model via an adaptive
instance normalization layer. [5] synthesize motions by diffusion
model using latent space. The motion representations are projected
into latent space, diffused, and reconstructed to the original motion
space.

3 CO-SPEECH GESTURE GENERATION
MODEL

Figure 1 depicts an overview of the proposed model to generate
high-fidelity co-speech gestures. In this section, we first introduce
the problem formulation of co-speech gesture generation (Section
3.1). We propose the gesture autoencoder, which is designed to
project gesture space to feature space (Section 3.2). We then present
the classifier-free guidance for applying speech conditions to co-
speech gestures (Section 3.3). Furthermore, we establish the forward
diffusion and the reverse conditional generation process in feature
space (Section 3.4).

3.1 Problem Formulation
The co-speech gesture training data often consist of 3D pose se-
quence x, audio a, text(sentence) s, and metadata. The generative
model G parameterized by 𝜃 is optimized to synthesize x, which
is further conditioned on the audio a, text s, and the pre-defined
initial poses x−1 of the M frames. The learning objective of the
problem can be formulated as 𝑎𝑟𝑔min𝜃 | |x −𝐺𝜃 (a, s, x−1) | |.

However, samples in the training data often have a long dura-
tion. To reduce the computational cost and memory usage, every
modality of the sample is cropped into segments x = {x1, ..., x𝑖 },
a = {a1, ..., a𝑖 }, and s = {s1, ..., s𝑖 }, where x𝑖 has N frames and
a𝑖 , s𝑖 have the same time length as x𝑖 . Now the generative model G
estimates x𝑖 from the audio a𝑖 , text s𝑖 , and the M pose frames from
previous segment x(𝑁−𝑀 ) :𝑁

𝑖−1 , instead of synthesizing x at once. Fi-
nally, the generative model G synthesizes the gestures {x1, ..., x𝑖 }
continuously.

The model is autoregressive because the poses generated by the
previous segment are used to synthesize the current segment, and
stochastic because the initial diffusion feature map is random noise.

https://github.com/GT-KIM/GENEA2023-KU-ISPL
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Figure 1: Overview of the proposed diffusion-based co-speech
gesture generation method. The model is autoregressive and
probabilistic. For the N-th generation, audio, text, and pre-
poses are projected to the latent space and used to conditions.
The initialized Gaussian noise is iteratively diffused by the
reverse process. The output latent vector is reconstructed to
the gesture space by the decoder.

3.2 Gesture Autoencoder
In the Stable Diffusion[28], the latent diffusion model provides flex-
ible, computationally tractable, and sometimes achieving quality
improvement. The gesture autoencoder focus on finding good latent
embedding space projected from gesture space. The gesture autoen-
coder consists of two autoencoder models: pose autoencoder and
motion autoencoder. Since the gesture is the sequential pose data,
we design the pose autoencoder for projecting the raw pose space
to latent space, and the motion autoencoder to find correlations
along the time axis.

The pose encoder and decoder consist of 3 fully-connected layers
with dropout[29] and GELU activation function[11] each. The input
poses sequence x𝑁×3𝐽 is projected to z′𝑁×𝐷 by the pose encoder,
where z′ denotes mid-level hidden representation, J is the number of
joints, and D is the dimension of z′, and the pose decoder performs
reverse projection. The pose autoencoder is first trained with L1
reconstruction loss. Once the pose autoencoder is optimized, the
parameters are frozen in the rest training stages such as diffusion
training stage.

The motion autoencoder aims to capture sequential information
of the data. Thus, the motion encoder and decoder consist of 3
gated recurrent units(GRU) layers[6] and 3multi-head self-attention

layers[31], which have strong capacity in sequential data modeling.
The motion encoder is formulated

z = 𝑀𝐻𝑆𝐴(𝐺𝑅𝑈 (z′)) (1)

where𝑀𝐻𝑆𝐴(𝑋 ) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋,𝑋,𝑋 ). The attention mechanism
is

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

) ·𝑉 (2)

where Q, K, and V are the query, key, and value from the feature
matrix, d is the channel dimension, and T is the matrix transpose
operation.

Themid-level hidden representation z′𝑁×𝐷 is projected to z𝑁×𝐷

by the motion encoder, where z denotes hidden representation in
feature space, and the motion decoder performs reverse projection.
The motion autoencoder is individually trained with L1 reconstruc-
tion loss. The parameters of the motion autoencoder are also frozen
after this training stage.

3.3 Conditioning
The diffusion models are theoretically capable of modeling the con-
ditional distribution 𝑝 (𝑧 |𝑦). This can be implemented with a condi-
tional denoising autoencoder 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑦), where 𝑦 ∈ {a, s, zi−1}, to
address the generation process through inputs y. To combine condi-
tional information and latent vector in the U-Net backbone, we use
a cross-attention mechanism, which is used in Stable Diffusion[28].

The three modalities, which are audio, text, and pre-pose, are
used as conditions in the diffusion process. The pre-processed audio
features, text features, and pre-pose features are projected to the
embedding vectors by fully-connected layers. These three embed-
ding vectors are added to the time embedding vector and propagate
the information of each modality to the denoising U-Net model.

3.4 Diffusion
DDPMs define the latent variable models of the form 𝑝𝜃 (𝑥0) =∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 , where 𝑥1:𝑇 are latent variables in the same sample

space as 𝑥0 with the same dimensionality.
The forward process, which is also called the diffusion process,

approximates the posterior distribution 𝑞(𝑥1:𝑇 |𝑥0) by the Markov
chain that gradually adds Gaussian noise to the data according to
the variance schedule 𝛽1, ..., 𝛽𝑇 :

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1), (3)

where
𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I). (4)

The forward process variances 𝛽𝑡 can be learned by reparameteri-
zation or held constant as hyperparameters. Since our model uses
gesture autoencoder for mapping from pose to latent embeddings,
the latent embeddings are gradually corrupted by noise, which
finally leads to a pure white noise when T goes to infinity. There-
fore, the prior latent distribution of 𝑝 (𝑥𝑇 ) is N(𝑥𝑡 ; 0, I) with only
information of Gaussian noise.

The reverse process estimates the joint distribution of 𝑝𝜃 (𝑥0:𝑇 ).
It is defined as a Markov chain with learned Gaussian transitions
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starting at N(𝑥𝑡 ; 0, I):

𝑝𝜃 (𝑥0:𝑇 = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ), (5)

where
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) . (6)

The corrupted noisy latent embedding𝑥𝑡 is sampled by𝑞(𝑥𝑡 |𝑥0) =
N(𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )I), where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏𝑡
𝑠=1 𝛼𝑠 .

Since the problem is co-speech gesture generation, which is
a conditional generation problem, we have to provide additional
inputs a, s, and zi−1 to the model. Therefore, these conditions are
injected into the generation process. The reverse process of each
timestep can be updated for our problem as:

𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 , 𝑦) = N(𝑥𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡, 𝑦), 𝛽𝑡 I) . (7)

The reverse process is started by sampling a Gaussian noise
𝑧𝑡 N(0, I) and following the Markov chain to iteratively denoise
the latent variable 𝑥𝑡 via Eq. 7 to get the original latent vector 𝑧0.

The variational lower bound on negative log-likelihood is used
to optimize the diffusion model. We follow [12] to simplify the
training objective to the ensemble of MSE losses as:

𝐿(𝜃 ) = E𝑡,𝑥0,𝜖 [| |𝜖 − 𝜖𝜃 (
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖,𝑦, 𝑡) | |2], (8)

where t is uniformly sampled between 1 and T, and 𝜖 is initialized
as N(0, I). The diffusion model is trained by the gradient descent
steps on Eq. 8 until converged.

4 EXPERIMENT
4.1 Data Processing
We trained our model using the GENEA Challenge 2023 dataset[35],
derived from the Talking with hands 16.2M dataset[21]. This dataset
comprises a training set containing 371 clips, a validation set with
40 clips, and a test set encompassing 70 clips. Each clip consists
of audio recordings, transcriptions, gesture motions for the main
agent, gesture motions for the interlocutor, and associated metadata.
The audio data possesses a sampling rate of 44100Hz. The gesture
motions are formatted in BVH (Biovision Hierarchy) format, and
their frame rate is set at 30 frames per second (FPS).

Our system exclusively utilizes audio and text data from the main
agent, disregarding the interlocutor’s information andmetadata.We
extract the mel-spectrogram, mel-frequency cepstrum coefficients,
and prosody features using n-fft=4096 and a hop length of 33ms.
To extract audio features, we employed the Librosa[27] package
and the Parselmouth[13] library. The network output comprises
joint angles relative to a T-pose, with these angles parameterized
using the exponential map[9]. Each dimension is normalized to
have a mean of zero and a standard deviation of one across the
official challenge training set. We selected a total of 26 joints for
full-body expression. Subsequently, we apply a Savitzky-Golay
filter[26] with a window length of 9 and a polynomial order of 3 to
smooth the generated gestures. For text segmentation, we employ a
pre-trained text embedding model[32], featuring 1024 dimensions
per sentence. We opted for sentence embedding due to its capacity
to capture semantic information in contrast to word embeddings.
Given that the audio, text, and gesture data are temporally aligned,

Table 1: Detailed hyperparameters setting

Hyperparameter Value

# of joints (J) 26
# of pre-pose frames (M) 8

# of frames of the segment (N) 128
Denoising diffusion steps 1000
Feature dimension (D) 128

Condition vector dimension 512
# of residual blocks per up/downsampling layer 2

# of up/downsampling layers 4
# of attention heads 4

N-FFT 4096
Hop length [ms] 33

Text embedding dimension 1024
optimizer AdamW

learning rate 1e-4
batch size 8

the timing of audio features, text embeddings, and pose sequences
are synchronized.

5 DISCUSSION
In this section, we provide some discussions about evaluation re-
sults. The submitted co-speech gestures are measured by three
aspects: human likeness, appropriateness for agent speech, and
appropriateness for the interlocutor. The natural motion, monadic
baseline, and dyadic baseline are labeled NA, BM, and BD, respec-
tively. Our submitted entry name is named SA. Our gesture gener-
ation system is tested on a Windows 10 desktop with a 3.20GHz
i9-12900K CPU, 128GB RAM, and one RTX 3090 GPU.

5.1 Human-likeness
The results of the evaluation are presented in Table 2 and Figure 2.
Our submitted system achieves a median human-likeness score of
30 and a mean human-likeness score of 32.0. A disparity in human
likeness is observed between our entry and natural motions. One of
the significant contributing factors to this phenomenon is the lack
of structural information. By not capturing the interdependencies
among joints, our model generates gestures with a predominant
emphasis on arm movements, which tend to exhibit greater motion
compared to head or body joints. Since the movement of the center
of gravity of the agent is ignored by the above reason, the human
likeness score may decrease. Furthermore, our system omits finger
motions from its generation process. Another conceivable concern
is the effectiveness of smoothing techniques. Despite the application
of a smoothing filter, the motions produced by our system some-
times appear to lack smoothness. Potential factors contributing to
these results encompass suboptimal optimization of the smoothing
filter and an insufficient number of pre-pose instances.

5.2 Appropriateness
In respect to the appropriateness of speech exhibited by main agent,
Table 3 and Figure 4 provide a description indicating that our entry
achieves a preference-matching score of 54.8%. The outcomes of
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Table 2: Summary of the collective perception study with a
0.05 confidence interval about human-likeness. Our entry is
SA.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9
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Figure 2: Box plot visualizing the rating distribution in the
human-likeness study. Red bars are the median ratings (each
with a 0.05 confidence interval); yellow diamonds are the
mean ratings (also with a 0.05 confidence interval). Box edges
are at 25 and 75 percentiles, while whiskers cover 95% of all
ratings for each condition.

the assessment, which focuses on the appropriateness of interlocu-
tor speech, are displayed in Table 4 and Figure 6. Our developed
system attains a preference-matching score of 53.5%. We present a
concise overview of several configurations within our experimen-
tal framework, which we posit may contribute to enhancing the
appropriateness of gestures about speech. One potential rationale
we identify pertains to semantic conditioning. Our system employs

...over condition x, in terms of human-likeness
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Figure 3: Significance of pairwise differences between con-
ditions. White means that the condition listed on the 𝑦-axis
rated significantly above the condition on the 𝑥-axis, black
means the opposite (𝑦 rated below 𝑥), and grey means no
statistically significant difference at the level 𝛼 = 0.05 after
Holm-Bonferroni correction.

a pre-trained sentence embedding model without fine-tuning. How-
ever, numerous textual segments in the data fail to adhere to proper
sentence structure. Consequently, the embedding might inaccu-
rately convey the semantics of these text segments. To mitigate this
concern, we will change the sentence embedding model to a word
embedding model, or utilization of extended segments.

Furthermore, timing synchronization is a consideration. Given
that our system incorporates speech features such asmel-spectrogram,
MFCC, and prosody to extract temporal information from audio,
the model learns to effectively synchronize audio with gestures.
Additionally, the pre-pose condition aids in capturing the initia-
tion timing. Consequently, the proposed model demonstrates the
capability to regulate the timing of speech onset and pauses.

Moreover, we address the issue of gesture smoothness. The gener-
ated gesture results from our system sometimes exhibit irregularity.
We hypothesize that the phenomenon may be attributed to the
architecture of the pose autoencoder, the pre-poses, and the extent
of the smoothing filter employed. A more intricate exploration of
these factors will be conducted in the ablation study section.

We propose potential methods for enhancing the performance
of our system concerning both the main agent and interlocutor
speech appropriateness. Initially, the model could incorporate inter-
locutor gestures, audio, and text as conditioning factors. Secondly,
incorporating a more extensive history of features from both the
main agent and interlocutor into the conditioning process might
yield improved gesture generation. Thirdly, the meticulous design
of the text embedding model and gesture autoencoder could en-
hance semantic conditioning and the inherent naturalness of the
generated gestures, respectively. These specific aspects will be the
focal points of our future works.
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Table 3: Summary statistics of user-study responses from
appropriateness for main agent speech, with confidence in-
tervals for the mean appropriateness score(MAS) at the level
𝛼 = 0.05. "Pref. matched" identified how often test-takers pre-
ferredmatchedmotion in terms of appropriateness, ignoring
ties.

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803
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Figure 4: Bar plots visualizing the response distribution in the
appropriateness for main agent speech. The blue bar(bottom)
represents responses where subjects preferred the matched
motion, the light grey bar(middle) represents tied responses,
and the red bar(top) represents responses preferring mis-
matched motion, with the height of each bar being propor-
tional to the fraction of each category. Lighter colors corre-
spond to slight preference, and darker colors to clear prefer-
ence. On top of each bar is also a confidence interval for the
mean appropriateness score, scaled to fit the current axes.
The dotted black line indicates chance-level performance.

5.3 ablation study
We conduct an ablation study to ensure that autoregression is help-
ful to co-speech gesture synthesis. We calculate Frechet Gesture
Distance(FGD), between ground truth and generated motions in the
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Figure 5: Significant differences between conditions in the
appropriateness for main agent speech. White means the
condition listed on the 𝑦-axis achieved a MAS significantly
above the condition on the 𝑥-axis, black means the opposite
(𝑦 scored below 𝑥), and grey means no statistically significant
difference at level 𝛼 = 0.05 after correction for the false dis-
covery rate.

Table 4: Summary statistics of user-study responses from
appropriateness for interlocutor speech, with confidence in-
tervals for the mean appropriateness score(MAS) at the level
𝛼 = 0.05. "Pref. matched" identified how often test-takers pre-
ferredmatchedmotion in terms of appropriateness, ignoring
ties.

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014

validation set, which are shown in Table 5. As a result, the FGD of
discriminator features and raw gestures are improved when using
the pre-pose condition.
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Figure 6: Bar plots visualizing the response distribution
in the appropriateness for interlocutor speech. The blue
bar(bottom) represents responses where subjects preferred
the matched motion, the light grey bar(middle) represents
tied responses, and the red bar(top) represents responses
preferring mismatched motion, with the height of each bar
being proportional to the fraction of each category. Lighter
colors correspond to slight preference, and darker colors to
clear preference. On top of each bar is also a confidence in-
terval for the mean appropriateness score, scaled to fit the
current axes. The dotted black line indicates chance-level
performance.
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Figure 7: Significant differences between conditions in the
appropriateness for interlocutor speech. White means the
condition listed on the 𝑦-axis achieved a MAS significantly
above the condition on the 𝑥-axis, black means the opposite
(𝑦 scored below 𝑥), and grey means no statistically significant
difference at level 𝛼 = 0.05 after correction for the false dis-
covery rate.

6 CONCLUSION
In this paper, we introduce an innovative diffusion-based co-speech
gesture generation framework that has been submitted to the GE-
NEA Challenge 2023. Our approach aims to produce co-speech

Table 5: Effects of autoregression.

Model FGD(feature) FGD (raw)

w/o. pre-pose 154.984 4977.059
w. pre-pose 77.909 2279.612

gestures of high fidelity, achieved by proposing a gesture autoen-
coder for effective domain transfer between the gesture space and
latent feature space. Furthermore, we leverage denoising diffusion
probabilistic models to address the challenge of co-speech ges-
ture generation. While the comprehensive results indicate that our
method achieves a preference-matching score of 54.8% and 53.5%
for appropriateness of main agent speech and interlocutor speech,
respectively.

Moreover, we conduct an in-depth ablation stud to affirm the
utility of autoregressive methods in co-speech gesture synthesis.
Our conclusion highlights the strengths of our system in timing syn-
chronization and the generation of contextually fitting gestures for
interactive scenarios. Additionally, we propose several forthcoming
challenges for research, such as refining the structures of semantic
embeddings and gesture embedding models. Our hope is that our
approach contributes not only to the advancement of diffusion-
based gesture generation research but also finds application across
various gesture generation domains.
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