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ABSTRACT

Lasso regression is a widely used technique in data mining
for model selection and feature extraction. In many applica-
tions, it remains challenging to apply the regression model
to large-scale problems that have massive data samples with
high-dimensional features. One popular and promising strat-
egy is to solve the Lasso problem in parallel. Parallel solvers
run multiple cores in parallel on a shared memory system to
speedup the computation, while the practical usage is lim-
ited by the huge dimension in the feature space. Screening
is a promising method to solve the problem of high dimen-
sionality by discarding the inactive features and removing
them from optimization. However, when integrating screen-
ing methods with parallel solvers, most of solvers cannot
guarantee the convergence on the reduced feature matrix.
In this paper, we propose a novel parallel framework by
parallelizing screening methods and integrating it with our
proposed parallel solver. We propose two parallel screen-
ing algorithms: Parallel Strong Rule (PSR) and Parallel
Dual Polytope Projection (PDPP). For the parallel solver,
we proposed an Asynchronous Grouped Coordinate Descent
method (AGCD) to optimize the regression problem in par-
allel on the reduced feature matrix. AGCD is based on a
grouped selection strategy to select the coordinate that has
the maximum descent for the objective function in a group
of candidates. Empirical studies on the real-world datasets
demonstrate that the proposed parallel framework has a su-
perior performance compared to the state-of-the-art parallel
solvers.
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•Information systems → Data mining;
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1. INTRODUCTION
Sparse models with `1-regularization are widely used to

find the linear model of best fit. Many research efforts
have been devoted to develop efficient solvers for the `1-
regularized sparse models, such as the Lasso problem [18].
Recent technological innovations lead to huge data collec-
tions that keep growing rapidly. As a result, in many ap-
plications, running Lasso on huge-scale data sets usually
exceeds the computing capacity of a single machine run-
ning single-threaded approaches. Parallelizing the learning
process for the regression problem has recently drawn a lot
of interest. Most of the proposed algorithms are based on
Stochastic Coordinate Descent (SCD) [17] to accelerate the
whole learning process. Many existing approaches, like Shot-
gun [6], Parallel Block Coordinate Descent (PBCD) [13] and
Thread-Greedy [16, 15], employ multiple-threaded comput-
ing by utilizing multiple cores on a shared memory system.
However, the curse-of-dimensionality is still a great challenge
for large-scale problems. High-dimensional data in feature
space means more time spent in the optimization and data
synchronization in the multithreading environment.

To address this issue, screening is one of highly efficient
approaches to solve the high-dimensional problem. Screen-
ing pre-identifies inactive features that have zero compo-
nents in the solution and remove them from the optimiza-
tion. As a result, we can solve the regression problem on
the reduced feature matrix, leading to substantial savings
in terms of computation and memory usage. The idea of
screening has achieved great success in a large class of `1-
regularized problems [3, 19, 24, 25, 22, 21, 23], such as Lasso
regression, Logistic regression, elastic net, multi-task feature
learning (MTFL) and more general convex problems.

Parallel screening is a promising strategy to solve the high-
dimensional problem in big data optimization. However, the
idea of using screening in a multithreading environment has
not been investigated, since it is challenging to integrate
screening rules with parallel solvers. Most of the published
parallel solvers are based on parallelizing SCD to speedup
the optimization process. The updating strategy of SCD is
to randomly select one coordinate to update in each itera-
tion. Parallelizing SCD allows multi-processors to update
the coordinates concurrently without synchronization. Al-
though it might result in the divergence of objective func-
tion, parallel solvers can achieve dramatic speedup when op-
timizing the regression problem in a very high-dimensional
feature space. It is shown in [6] that the dimension of fea-



ture space for parallel solvers should be no less than P
2ρ

when
there are P threads, where ρ denotes the spectral radius
of ATA, and A is the feature matrix. When we integrate
screening methods with the state-of-the-art parallel solvers
such as Shotgun, PBCD and Asynchronous Stochastic Co-
ordinate Descent (ASYSCD) [11], it can result in the diver-
gence of the objective function since the feature matrix is
shrunk to a matrix with a small feature space after applying
screening rules on it. Although we can reduce the number
of threads to guarantee the convergence, it has a negative
effect on the scalability of the parallel method. Since pre-
vious parallel solvers cannot satisfy the constraint between
the number of threads and feature space, it is essential to
develop a parallel solver to optimize the problem in the re-
duced feature data matrix.

In this paper, we propose a parallel framework to solve the
Lasso regression problem on large-scale datasets with huge
dimensional feature space. We parallelize screening rules
by partitioning the sample and feature space to accelerate
the screening process. We propose two parallel safe screen-
ing rules: Parallel Strong Rule (PSR) and Parallel Dual
Polytope Projection (PDPP). To optimize the regression
problem in parallel on the reduced feature matrix, we pro-
pose an Asynchronous Grouped Coordinate Descent method
(AGCD) to solve the problem of small feature space in the
optimization after employing screening rules. In AGCD, we
introduce competition strategy to select the candidate coor-
dinates that minimize the objective function with the max-
imum descent of function value. If the selected coordinate
wins the competition in a group of candidates, that coordi-
nate will be updated at this iteration, otherwise the update
terminates. The main idea of AGCD is to reduce the fre-
quency to update coordinates and select the most important
candidates to update, allowing the solver to converge in a
small feature space. It is different with the random selection
strategy in most of the parallel solvers.

The main contributions of this study are summarized as
follows:

• We propose a parallel framework by integrating the
screening methods with parallel solvers to accelerate
the whole learning process. To the best of our knowl-
edge, this is the first study to introduce the idea of
screening into a parallel framework.

• We propose an asynchronous parallel solver AGCD to
guarantee the convergence of optimization on the re-
duced feature data matrix.

• We evaluate the proposed parallel framework using
real world datasets, including the 810 patients of Alzhei-
mer’s Disease (AD) collected from North America with
approximately 5.9 million features.

• Experimental results demonstrate the effectiveness and
efficiency of proposed methods (PSR+AGCD and PDPP
+AGCD). PSR+AGCD outperforms other state-of-the-
art parallel solvers like PBCD and ASYSCD. When
solving the Lasso regression along a sequence of pa-
rameter values, PDPP+AGCD obtains a speedup of
130 folds over ASYSCD.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents our proposed
parallel framework. Section 4 analyzes the convergence of

the proposed methods. Experimental results on the real-
world biomedical datasets are reported in Section 5. We
conclude the paper in Section 6.

2. RELATED WORK

2.1 Screening
Existing screening methods can be divided into two cate-

gories: Safe Screening Rules and Heuristic Screening Rules.
Safe screening rules guarantee that the predicted inactive
features have zero coefficients in the solution. In other words,
discarding the inactive features in safe screening rules does
not sacrifice the accuracy of optimization since the corre-
sponding positions in the solution vector are zero in the
ground truth. SAFE [3] is a safe screening method that
estimates the dual optimal solution of Lasso. Strong rules
[19] are another efficient screening methods based on heuris-
tic screening rules. In most of the cases, strong rules discard
more features than SAFE, leading to a substantial speedup.
However, strong rules cannot guarantee that discarded fea-
tures have zero components in the solution. To avoid the
incorrectly discarded cases, [19] proposed a method to check
the KKT conditions, ensuring the correctness of screening
results. To optimize the problem along a sequence of param-
eter values, Enhanced Dual Polytope Projection (EDPP)
[24] is an efficient and effective safe screening method and
achieves significant speedup for the Lasso problem.

2.2 Parallel Solvers
After we get the reduced feature matrix from screening

rules, we can apply different solvers to optimize it, such as
Stochastic Gradient Descent (SGD) [26], FISTA [1], ADMM
[2] and SCD [17, 12, 14]. When we consider solvers in a mul-
tithread environment, a lot of parallel solvers were proposed
based on the SCD. Shotgun [6] is a parallel coordinate de-
scent method which allows multiple processors to update the
coordinates concurrently. PBCD [13] described a method for
the convex composite optimization problem. In this method,
all the processors update randomly selected coordinates or
blocks synchronously at each iteration. The method in [9,
16, 15] are based on the greedy coordinate descent method.
Recently, asynchronous parallel methods are proposed to ac-
celerate the updating process. ASYSCD [11] proved the
linear convergence of asynchronous SCD solver under the
essential strong convexity condition. PASSCoDe [4] is an
asynchronous Stochastic Dual Coordinate Descent(SDCD)
method for solving the dual problem. Parallel SDCA [20]
is an asynchronous parallel solver based on the Stochastic
Dual Coordinate Ascent (SDCA) method. Both PassCoDe
and Parallel SDCA focus on the `2-regularized models.

3. PROPOSED PARALLEL FRAMEWORK
In this section, we present the proposed parallel frame-

work based on a shared memory model with multiple pro-
cessors. Our parallel framework is composed of two main
procedures:

1. Identify the inactive features by the parallel screening
rules and remove inactive features from optimization.

2. Solve the Lasso regression on the reduced feature ma-
trix in parallel.

In step one, we parallelize screening rules to identify and



discard inactive features, significantly accelerating the whole
learning process. We propose two parallel screening rules:
PSR and PDPP.

In step two, we propose an asynchronous parallel solver
AGCD to solve the Lasso regression on the reduced data
matrix in parallel.

3.1 Problem Formulation
In this paper, we consider the following `1-regularized

minimization problem:

min
x∈RN

F (x) =
1

2
‖Ax− y‖22 + λ‖x‖1, (1)

where A is the design matrix and A ∈ R
M×N , y ∈ R

M is the
response vector and x is the sparse model we need to learn.
λ is the regularization parameter and λ > 0.

3.2 Parallel SAFE and Parallel Strong Rules
SAFE [3] is an efficient safe screening method. SAFE

discards the ith entry of x when the following rule holds:

|AT
i y| < λ− ‖Ai‖2‖y‖2

λmax − λ

λmax
, (2)

where λmax = maxi |A
T
i y|, Ai denotes the ith column of A.

Strong rules [19] are another efficient screening methods
based on heuristic screening method. In strong rules, the ith
feature will be discarded when satisfies the following equa-
tion:

|AT
i y| < 2λ− λmax. (3)

The calculation of λmax follows the same way in SAFE.
For large-scale problems, it is necessary to parallelize the

learning process. To speedup the learning process, we paral-
lelize screening rules in a multithreading environment. Sup-
pose there are P processors, we partition the feature space
into P parts. The jth processor holds a subset Sj of feature
space where Sj ⊆ S and S = {1, 2, ......, N}. To average the
performance of parallel solvers, each thread holds N/P coor-
dinates and the partition is non-overlapped. We summarize
the Parallel SAFE rule (PSAFE) in algorithm 1.

At the beginning, every processor generates the index set
Sj and Sj ∈ R

N/P . Let us define some notations here. E
is a vector and E ∈ R

N/P . [W ]Sj
indicates the collection

of ωth element in W where ω ∈ Sj if W is a vector. When
W represents a matrix, [W ]Sj

denotes the collection of ωth

column of W and ω ∈ Sj . Since λmax = maxi |A
T
i y|, we

first need to compute E = AT b firstly. To achieve this on P
processors, we partition the computation into P parts. Ev-
ery processor performs [E]Sj

= [A]TSj
y in parallel. The time

complexity is reduced from O(MN) to O(MN/P) since no
synchronization is needed between processors. E is stored
as a global variable and can be accessed by all the proces-
sors after updated. Then we get λmax by ‖E‖∞. From the
6th line to the 11th line in algorithm 1, every processor per-
forms screening rules on its own index set Sj to select the
active features. Since A and b are global variables, all the
processors are able to calculate σ and τ in parallel without
synchronization. In the end, we get the selected index set I

and reduced feature matrix Ã. Suppose I has Ñ elements

of true values, the dimension of Ã is R
M×Ñ . The original

optimization problem (1) can be reformulated as:

min
x̃

1

2
‖Ãx̃− y‖

2

2 + λ‖x̃‖1 : x̃ ∈ R
Ñ . (4)

Algorithm 1 Parallel SAFE rule (PSAFE)

Input:

A, b and λ.
Output:

Ã and the selected index set I.

1: Initialize: I = 0 ∈ R
N .

2: In parallel on P processors.

3: Generate the index set Sj for the jth processor.

4: Compute the λmax: [E]Sj
= [A]TSj

y, λmax = ‖E‖∞.

5: Get the norm of response y: σ = ‖y‖2.

6: for each element i in the set of Sj do

7: Get the norm of the ith column of A: τ = ‖Ai‖2.

8: if |AT
i y| ≥ λ− τ ∗ σ ∗ λmax−λ

λmax
then

9: Ii = true, select ith column of A into Ã.
10: end if

11: end for

After we obtain the solution vector x̃∗ for problem (4), we
can recover x∗ by I and x̃∗.
The implementation of PSR in parallel follows the same

way of PSAFE. The only difference between PSR and PSAFE
is that the computation of ‖Ai‖2 and ‖y‖2 in equation (2) is
not needed in PSR. We employ the same partition strategy
and parallel technique to parallelize the strong rules in (3).
We skip the details of implementation for brevity.

3.3 Parallel Dual Polytope Projection
In many machine learning applications, the optimal value

of the regularization parameter λ is unknown. To tune the
value of λ, commonly used methods such as cross valida-
tion needs to solve the Lasso problem along a sequence of
parameter values λ0 > λ1 > ... > λκ , which can be very
time-consuming. A sequential version of strong rules was
proposed in [19] by utilizing the information of optimal so-
lutions in the previous parameter. Suppose we have already
obtained the solution vector x(λk−1)

∗ at λk−1 where the in-
teger k ∈ [1, κ], the sequential strong rule rejects the ith
feature at λk when the following rule holds:

|AT
i (y −Ax(λk−1)

∗| < 2λk − λk−1. (5)

Although the sequential strong rule is able to predict a large
proportion of inactive features, it might mistakenly discard
active features that have nonzero components in the solu-
tion. We need to check the KKT conditions to guarantee
the correctness of the predicted results.

EDPP [24] is a highly efficient safe screening method that
estimates the dual problem and geometric properties of Lasso
regression, achieving significant speedups for real-world ap-
plications. The implementation details of EDPP is available
on the GitHub1. We omit the introduction of EPDD for
brevity. Based on the partition strategy and parallel tech-
nology employed on PSAFE and PSR, we propose a parallel
safe screening rules, known as the Parallel Dual Polytope
Projection (PDPP), to quickly identify and discard inactive
features parallelly in a sequence of parameters.

To parallelize the screening rules, we need to partition
both the feature space and sample space. In Section 2.1,
this is done in the feature space, and we follow a similar

1http://dpc-screening.github.io/lasso.html



way to partition it in the sample space. Before introducing
the details about the proposed algorithm, we first introduce
notations in the paper. As we discussed in Section 2.1, we
use [W ]Sj

to indicate the collection of elements of W in the

index set Sj if W denotes a vector. When W is a matrix,
we use the [W ]Sj

to represent the corresponding columns of

W in the index set Sj . We use the same notations in PDPP.
Suppose there are P processors, we partition the sample
space into P parts. The jth processor holds an index set
Tj of sample space, where Tj ⊆ T and T = {1, 2, ......,M}.
Every subset Tj has M/P elements and there is no overlap
among them. When W denotes a vector, {W}Tj

indicates

the collection of every ωth elements from W in the index set
Tj where ω ∈ Tj . When W is a data matrix, {W}Tj

denotes

the collection of every ωth rows in W where ω ∈ Tj . To take
{A}Tj

as an example, we extract columns of A in the index

set Tj to construct it. So the dimension of {A}Tj
is R

M
P

×N .

We summarize the PDPP method in algorithm 2.

Algorithm 2 Parallel Dual Polytope Projection (PDPP)

1: In parallel on P processors

2: Generate the Sj and Tj for the jth processor.

3: Compute the λmax: [E]Sj
= [A]TSj

y, λmax = ‖E‖∞.

4: φ = argmaxi|E|, v = Aφ, v is the φth column of A.

5: Let λ0 ∈ (0, λmax] and λ ∈ (0, λ0].

6: if λ = λmax then

7: {θ(λ)}Tj
=

{y}Tj

λmax
.

8: else

9: {θ(λ)}Tj
=

{y}Tj
−{A}Tj

x(λ)∗

λ
.

10: end if

11: if λ0 = λmax then

12: {v1(λ0)}Tj
= sign(vT y){v}Tj

.

13: else

14: {v1(λ0)}Tj
=

{y}Tj

λ0
− {θ(λ0)}Tj

.

15: end if

16: {v2(λ, λ0)}Tj
=

{y}Tj

λ
− {θ(λ0)}Tj

.

17: α = <v1(λ0),v2(λ,λ0)>

‖v1(λ0)‖
2

2

.

18: {v⊥2 (λ, λ0)}Tj
= {v2(λ, λ0)}Tj

− α{v1(λ0)}Tj
.

19: Given λmax = λ0 > ... > λκ, for k ∈ [1, κ], we make a
prediction of screening on λk if x(λk−1)

∗ is known:

20: [w]Sj
= [A]TSj

(θ(λk−1) +
1
2
v⊥2 (λk, λk−1))

21: for every element i in the set of Sj do

22: if wi < 1− 1
2
‖v⊥2 (λk, λk−1)‖2‖Ai‖2 then

23: Discard the i th column from A.

24: end if

25: end for

In PDPP, all the P processors perform the computation
in parallel. Firstly, the jth processor generates the corre-
sponding index set Sj and Tj by the method we discussed
previously. Then we follow the same way in PSAFE and
PSR to calculate the λmax in parallel. The dimensions of
θ(λ), v1(λ0), v2(λ, λ0), v

⊥
2 (λ, λ0) are R

M . In PDPP, we em-
ploy partition strategy in sample space on these variables:
{θ(λ)}Tj

, {v1(λ0)}Tj
, {v2(λ, λ0)}Tj

and {v⊥2 (λ, λ0)}Tj
. As

a result, the computation of these variables is performed in
parallel. From line 19 to line 25 in algorithm 2, we employ
PDPP on a sequence of parameter values: λmax = λ0 >
... > λκ. When performing the screening rule on λk and
k ∈ [1, κ], we need to compute w firstly, where w ∈ R

N .
We perform the computation of w based on the partition
strategy in the feature space:

[w]Sj
= [A]TSj

(θ(λk−1) +
1

2
v⊥2 (λk, λk−1)). (6)

Finally, for each element i in the index set Sj , we will identify
the ith entry of x(λk)

∗ to be zero if the following rule holds:

wi ≥ 1−
1

2
‖v⊥2 (λk, λk−1)‖2‖Ai‖2. (7)

The calculation of ‖v⊥2 (λk, λk−1)‖2 and ‖Ai‖2 in (7) is sim-
ilar to the calculation of ‖y‖2 and ‖Ai‖2 in algorithm 1.

Overall, the time complexity of PDPP is O(MN/P). Re-
gardless of the calculation and updating on the vector vari-
ables, the calculation of these variables is dominant: w,
{θ(λ)}Tj

and ‖Ai‖2 where i ∈ Sj . The calculation of all

these variables can be parallelized by the partition strategy
in PDPP without synchronization among processors.

3.4 Asynchronous Grouped Coordinate Descent
To address the challenge we discussed in section 2.2, we

propose a novel parallel solver, called Asynchronous Grouped
Coordinate Descent (AGCD), to solve the Lasso regression
on the reduced feature matrix. Rather than randomly select-
ing coordinates or blocks to update asynchronously among
threads, AGCD adopts a grouped selection strategy; that is,
chooses the candidate that minimizes the objective function
with the most descent to update among a group of coordi-
nates. The details of AGCD are given in algorithm 3.

In AGCD, there are two global variables d and R to store

where d ∈ R
Ñ and R ∈ R

M . We initialize d to be zero and R
to be −y. In each iteration, every processor randomly picks

up a coordinate i from {1, 2, ..., Ñ} to estimate and update.
The calculation of the gradient for the ith coordinate, which
is denotes as g(x̃)i, can be written as:

g(x̃)i = ÃT
i (Ãx̃− y). (8)

To make it more efficient, the calculation of (8) can be de-
composed into the following steps:

Step1: Calculate the gradient: g(x̃)i = ÃT
i R and get ∆x̃i.

Step2: Update R : R = R+∆x̃iÃ
T
i .

Since R is initialized as −y, R stores the information of

ÃT
i (Ãx − y) by following the above updating rules. To cal-

culate ∆x̃i, we apply soft thresholding function [17] to get
the proximal gradient for x̃i. The definition of soft thresh-
olding operator Γ is given by :

Γϕ(x) = sign(x)(|x| − ϕ). (9)

In algorithm 3, L denotes the Lipschitz constant. For SCD
[17, 12, 14], the Lipschitz constant is set to be ‖Ai‖

2
2 when

updating the ith coordinate. Since SCD randomly picks only
one coordinate to update, the problem has a closed-form so-
lution in each iteration. When considering a multithreading
environment, the way to calculate L is different. PBCD [13]
employs Expectation Maximization (EM) to get an approx-
imation model on L but it depends on the sparsity of the





wins the competition, AGCD performs Step 1 and Step 2 to
update x̃i and R. However, di is not the current descent of
object function since xi and R have changed. In the next
iteration, if AGCD selects the 1st coordinate to evaluate, x1

might still not be updated since d2 > d1 in the last iteration.
Although d1 is updated in the next iteration, x1 still has a
lower chance to be updated since x2 is the winner last time
and d2 is the “winning distance”. Because of asynchronous
characteristic of AGCD, it is not guaranteed that all the di
are updated to the newest one. AGCD makes all the win-
ners’ di updated to newest value to minimize the effects of
winners to competitions of other candidates.

3.6 Discussion
We apply atomic operations to avoid the synchronization

among threads when updating xi, R and di. Since x, R and
di are global variables, it is necessary to add locks on these
shared variables when multiple threads attempt to update
them simultaneously. However, updating a single variable
and locking all the variables is not an efficient strategy since
all the other threads have to wait for one thread to finish
its job. We employ atomic operations to write the global
variables atomically without any locks. [11] and [4] have ob-
served empirical convergence when applying “atomic writes”
on updating the shared variables.

AGCD adopts a grouped selection strategy to update the
solution vector by choosing the candidate that minimizes the
objective function with the most descent. In the random se-
lection strategy used in parallel SCD solvers, a number of
processors update the solution vector asynchronously, which
is more likely to result in the divergence of the optimization
problem in a small feature space. In AGCD, the update
of solution variables is not as frequent as in the random
selection strategy. The selected coordinate has to beat a
group of candidates to get the chance to update. In fact,
the selected coordinates will not be updated in most of the
iterations since it failed in the competition. However, this
does not mean that the computation spent in a failed can-
didate is a waste of time. Although xi is not updated, it
updates the descent value di for that coordinate. Suppose
xi is updated, it means that R is changed. As a result, all
the elements in d should be updated by (14). Therefore,
updating d concurrently is critical to guarantee the accurate
result of competition in the grouped selection strategy.

4. CONVERGENCE ANALYSIS
In this section, we analyze the convergence of the proposed

parallel framework. PSAFE and PDPP are safe screening
rules and it is guaranteed that all the discarded features have
zero coefficients in the solution. PSR is a heuristic screen-
ing method but we can ensure the correctness of result by
checking the KKT condition. AGCD can be safely applied

on the reduce feature matrix Ã to optimize the problem (4).
Therefore, the proposed parallel framework will work if we
prove the convergence of AGCD.

We follow the same way in [17] to rewrite the objec-
tive function (1) into an equivalent problem with a twice-
differentiable regularizer:

min
x̂

1

2

M∑

j=1

(âT
j x̂− bj)

2 + λ

2N∑

i=1

x̂i : x̂ ∈ R
2N , (15)

where aj denotes the jth row of A and the feature space

is duplicated as: âj = [aj ;−aj ] and âj ∈ R
2N . Once the

optimal solution x̂∗ of equation (15) is obtained, we can
recover the solution vector x∗ of (1) by x∗

i = x̂∗
d+i − x̂∗

i .
We denote the objective function F (x) equal to (15) in the
convergence analysis part.

Definition 1. Let F (x) : R2N → R be a convex function.
Assume that there exists β > 0, for all x and ∆x updated
in parallel, we have the following rule:

F (x+∆x) ≤ F (x) + ∆xT∇F (x) +
β

2
∆xTATA∆x.

We denote β = 1 for the square loss function and β = 1
4
for

the logistic loss function. Let d̂ = [d̂1, d̂2, ......d̂2N ] represent
the potential candidates updated by (12). ∆x denotes the
collective update of x in one iteration. ∆xi is equal to zero
when d̂i fails the competition where i ∈ (1, 2N).
When there is only one coordinate updated at the same

time, we have ∆x = (∆xi)ei and ei is a unit vector in the
ith coordinate. The process of optimization is the same as
the sequential coordinate descent when one coordinate is up-
dated at each iteration. It was shown in [17] that the sequen-
tial coordinate descent converges by the following bound:

E[F (x(K))]− F (x∗) ≤
N(β‖x∗‖22 + 2F (x(0)))

K + 1
, (16)

where F (x(K)) is the output after K iterations. The conver-
gence analysis of AGCD is the same as sequential coordinate
descent if only one coordinate is updated in each iteration.

When there are more than one candidates winning the
competition at the same time, we summarize the main anal-
ysis in the following theorem:

Theorem 1. Let x∗ be the solution of F(x) and x(K) be
the output of AGCD after K iterations. Let P be the number
of processors and Φ denotes the maximum number of candi-
dates to be updated in one iteration. Suppose F (x) satisfies

the assumption of Definition 1; let ε = (Φ−1)(ρ−1)
2N−1

< 1 and

ρ be the spectral radius of ATA. We have

E[F (x(K))]− F (x∗) ≤
N(β‖x∗‖22 +

2
1−ε

F (x(0)))

(K + 1)Φ
.

Proof. We use a similar technique in [6] to prove this
theorem. Let Θ denote the index set that collects the win-
ners of competitions in one iteration and Φ = |Θ|. Based on
the assumption of Definition 1, we have

EΘ[F (x+∆x)− F (x)]

≤ EΘ[∆xT∇F (x) +
β

2
∆xTATA∆x]

= ΦEi[∆xi∇F (x)i +
β

2
(∆xi)

2]

+
β

2
Φ(Φ− 1)Ei,j:i 6=j [∆xi(A

TA)i,j∆xj ]

= ΦEi[∆xi∇F (x)i +
β

2
(1 +

(Φ− 1)(ρ− 1)

2N − 1
)(∆xi)

2]

= ΦEi[∆xi∇F (x)i +
β

2
(1 + ε)(∆xi)

2].

Let ρ = maxµ:µT µ=1 µ
T (ATA)µ. Ei,j:i 6=j [∆xi(A

TA)i,j∆xj ]

is bounded by ρ in terms of Ei[∆(xi)
2] where i is chosen

uniformly at random from {1, ..., 2N}. The rest of proof
followes the same way in Shotgun [6]’s convergence analysis
to obtain the result of Theorem 1. We omit it for brevity.



Table 1: A comparison of PDPP+AGCD and EDPP+SLEP along a sequence of 100 parameter values on 0.5

million ADNI dataset
EDPP+SLEP PDPP+AGCD

No. in the λ/λmax nnz after nnz in the Objective No. in the λ/λmax nnz after nnz in the Objective
sequence screening solution function sequence screening solution function

1 1.0 0 0 373.0 1 1.0 0 0 373.0
6 0.95 9 4 372.9657 6 0.95 9 4 372.9657
12 0.9 17 8 372.6708 12 0.9 17 8 372.6708
17 0.85 26 16 372.0295 17 0.85 26 16 372.0295
23 0.8 52 26 370.5095 23 0.8 52 26 370.5095
28 0.75 82 46 368.3644 28 0.75 82 46 368.3644
34 0.7 133 69 364.2990 34 0.7 133 69 364.2990
39 0.65 182 103 359.3397 39 0.65 182 103 359.3397
45 0.6 267 134 351.0384 45 0.6 267 134 351.0384
50 0.55 351 169 341.9249 50 0.55 351 169 341.9249
56 0.5 447 216 327.9936 56 0.5 447 216 327.9936
61 0.45 551 260 313.6343 61 0.45 551 260 313.6343
67 0.4 717 307 292.8738 67 0.4 717 307 292.8738
72 0.35 867 364 272.4728 72 0.35 867 364 272.4728
78 0.3 1104 419 244.0223 78 0.3 1104 418 244.0223
84 0.25 1423 473 210.9855 84 0.25 1423 473 210.9855
89 0.2 1878 508 179.7974 89 0.2 1878 508 179.7974
94 0.15 2745 571 145.1732 94 0.15 2745 569 145.1732
100 0.1 6065 650 98.9118 100 0.1 6070 651 98.9118

In Shotgun, it was shown that the number of processors
should satisfy P ≤ P ∗ ≈ N

2ρ
and the experiment demon-

strates that Shotgun diverges as P exceeds P ∗. As we dis-
cussed in section 3.5, the size of each group is set to be
ω = 2ρ. The maximum number of updated coordinates in
one iteration is Φ = N

ω
which satisfy the above constraint.

In the real cases, the number of updated candidates is much
smaller than P since most of the updates happen in the cal-
culation of d. In the grouped selection strategy of AGCD,
each coordinate has a low probability to be updated among
ω candidates. As a result, P can be equal to or larger than
N
2ρ

in the real application of AGCD. We demonstrate it in
the experiment that AGCD encountered the cases that the
number of processors is larger than the number of active
features while AGCD still converged to the optimal value.

5. EXPERIMENTAL RESULTS
In this section, we conduct several experiments to evaluate

the convergence and speedup of the proposed framework on
the following four data sets: ADNI2, MNIST [7], rcv1 [8] and
news20 [5]. The Alzheimer’s Disease NeuroimagingInitia-
tive (ADNI) is a real biomedical dataset collected from neu-
roimaging and genomic data from elderly individuals across
North America, including 809 patients of Alzheimer’s dis-
ease with 5,906,152 features, involving a 80 GB feature ma-
trix with 42 billion nonzeros. For MNIST, rcv1 and news20,
we use the training dataset obtained from LIBSVM data
set repository3 to construct the feature data matrices and
response vectors. We compare our method with the state-
of-the-art algorithms like PBCD [13] and ASYSCD [11]. All
the experiments are carried out on an Intel (R) Xeon (R)
48-core machine with 2.50 GHZ processors and 256 GB of
globally addressable memory. We employ OpenMP as the

2http://www.adni-info.org
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

parallel framework and all the methods are implemented in
C++ for fair comparisons.

5.1 Accuracy Evaluation
In this experiment, we examine the accuracy of solution

vectors in the proposed method. We perform PDPP+AGCD
along a sequence of 100 parameter values equally spaced on
the linear scale of λ/λmax from 0.1 to 1. To make a compar-
ison, we perform EDPP using SLEP [10] as the solver on the
same sequence. In SLEP, we force the “LeastR” function to
run 500 iterations. AGCD also executes 500 iterations using
48 threads. Experiments are conducted on ADNI data sets.
We choose the volume of the right pallidum as the response,
including 747 samples by removing samples without labels.
The volumes of brain regions are extracted from each sub-
ject’s T1 MRI scan using Freesurfer4. We randomly select
0.5 million features from ADNI to construct the feature ma-
trix and normalize the matrix using the “zscore” function in
Matlab . The experimental result is shown in Table 1.

We report the result of 20 parameter values from 100 pa-
rameters. The first column in both methods is the position
of the parameter in the sequence. The third column shows

the remaining number of features Ñ after applying screening
rules. Table 1 shows that the optimal value obtained by the
PDPP+AGCD and the number of nonzero in the solution is
the same as that of EDPP+SLEP. When λ/λmax is higher
than 0.8, the remaining features after screening is less than
the number of threads. However, PDPP+AGCD is still able
to converge to the optimal value.

5.2 Convergence Comparison
In this experiment, we evaluate the convergence property

of the proposed parallel methods. We conduct the exper-
iment on PSR+AGCD and compare with state-of-the-art
parallel solvers: PBCD and ASYSCD. We choose two dif-

4http://freesurfer.net/
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Figure 2: Convergence comparison between PBCD, ASYSCD and PSR+AGCD

ferent λ value: 0.8λmax and 0.6λmax to estimate the conver-
gence of above methods. To prevent PSR from discarding
active features, we check the KKT condition to ensure the
correctness of screening results. To estimate the scalability
of above algorithms, the number of cores is varied from 1
to 32: 1, 2, 4, 8, 16 and 32. For different number of cores,
we show the time of optimization that solvers converged to
the same optimal values with 48 cores. We evaluate the effi-
ciency of parallel solvers on four ADNI dataset: ADNI 1m,
ADNI 2m, ADNI 3m and ADNI 5.9m where feature dimen-
sion is varied from 1 million to 5.9 million. We choose the
volume of hippocampus in patients as the response, includ-
ing 717 samples from the original dataset. We show details
of data sets in Table 2 and results of comparison in Fig. 2.

In the first and third columns of Fig. 2, we evaluate the
convergence in terms of time using 48 cores. Note that we
use log-scale in x-axis when λ = 0.8λmax. As observed from
the figure, the objective function in PSR+AGCD converged
faster than other solvers since most of inactive features are
discarded. Most of time is spent in the screening part. When

Table 3: Data statistics
Dataset Number of features Number of samples
MNIST 780 60000
news20 62061 15935
rcv1 47236 15564

ADNI 1m 1000000 717
ADNI 2m 2000000 717
ADNI 3m 3000000 717
ADNI 5.9m 5906152 717

λ = 0.6λmax, only part of inactive features are discarded by
screening but PSR+AGCD still has superior performances.

The second and fourth columns of Fig. 2 show the time of
different solvers that converged to the same optimal value
of 48 cores when varying the number of cores from 1 to
32. Note that we use two y-axis when λ equals to 0.8λmax.
PBCD and ASYSCD use the left y-axis while PSR+AGCD
uses the right one. PSR+AGCD outperforms the other
solvers when varying the number of cores and the running
time of PSR+AGCD is reduced when there are more cores.



Table 2: Efficiency comparison along a sequence of parameter values.

Dataset: MNIST

The number of λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32 48
ASYSCD 131.08 76.25 62.78 39.17 26.7 23.33 25.94

100 PDPP+AGCD 6.37 3.61 2.43 1.49 1.02 0.87 1.03
Speedup 20.58 21.12 25.84 26.29 26.178 26.82 25.18

ASYSCD 283.43 182.36 116.86 61.96 45.76 38.37 48.87
200 PDPP+AGCD 10.9 6.25 3.96 1.96 1.48 1.17 1.53

Speedup 26.01 29.18 29.51 31.61 30.92 32.79 31.94

ASYSCD 571.46 364.21 238.65 129.24 92.58 71.71 88.37
400 PDPP+AGCD 17.14 11.07 7.13 3.86 2.53 1.76 2.47

Speedup 33.34 32.90 33.47 33.48 36.59 40.74 35.78

Dataset: news20

The number of λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32 48
ASYSCD 2736.52 1491.26 762.57 403.06 265.71 194.27 214.48

100 PDPP+AGCD 40.22 20.69 10.60 5.59 3.67 2.50 2.72
Speedup 68.04 72.07 71.93 72.03 72.40 77.67 78.97

ASYSCD 5528.48 2813.78 1525.03 804.68 552.83 358.35 374.48
200 PDPP+AGCD 64.40 30.07 16.33 8.47 5.69 3.63 3.92

Speedup 85.84 93.56 93.38 95.38 97.02 98.77 95.63

ASYSCD 10437.35 5480.47 2812.21 1565.12 1057.30 662.792 597.35
400 PDPP+AGCD 120.38 64.31 29.05 15.88 10.42 6.67 6.05

Speedup 86.70 85.21 96.79 98.54 101.51 99.47 98.79

Dataset: ADNI 2m

The number of λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32 48
ASYSCD 3205.13 1892.34 1105.21 756.23 435.64 324.81 372.31

100 PDPP+AGCD 48.34 23.63 12.21 8.28 5.34 4.03 4.05
Speedup 66.30 80.08 90.52 91.33 81.58 80.59 91.93

ASYSCD 5614.21 3217.91 1821.87 1345.21 826.51 692.87 684.25
200 PDPP+AGCD 63.32 34.07 18.81 12.99 7.44 5.79 5.76

Speedup 88.66 94.44 96.86 103.56 111.09 119.67 116.77

ASYSCD 11275.34 6328.35 3812.87 2315.34 1521.54 1296.54 1125.61
400 PDPP+AGCD 95.42 52.17 33.10 18.18 11.06 9.57 8.74

Speedup 118.16 119.57 115.19 127.35 137.57 135.47 128.79

5.3 Time Efficiency
The advantage of the proposed parallel framework is to

solve the Lasso problem along a sequence of parameter val-
ues. In this experiment, we perform PDPP+AGCD along
a sequence of parameter values equally spaced on the lin-
ear scale of λ/λmax from 0.1 to 1. We vary the length of
parameter sequences as 100, 200 and 400. As a compari-
son, ASYSCD is performed on the same sequence. The ex-
periment is conducted at three different data sets: MNIST,
news20 and ADNI 2m. Detailed information about data sets
is in Table 2. To evaluate the scalability of both methods,
we vary the number of cores as: 1, 2, 4, 8, 16, 32 and 48.
The result of comparison is presented in Table 3.

Table 3 shows that more parameters lead to higher speedup
for PDPP+AGCD compared to ASYSCD. PDPP+AGCD
achieved 137 folds speedup in ADNI 2m dataset, 101 folds in
news20, and 40 folds in MNIST over ASYSCD with 400 pa-
rameters. When using more cores, speedups of our method
tend to increase. Thus, in terms of speedup, PDPP+AGCD
favors more cores and sequences with more parameters.
5.4 Scalability

To estimate the scalability of proposed parallel methods,
we perform PSR+AGCD and PDPP+AGCD on 1, 2, 4, 8,
16, 32 and 48 cores to observe the speedup. We give the

definition of speedup by the following criterion:

speedup =
time spent on P processors

time spent on a single processor
.

In this experiment, we employ both methods on 5.9 mil-
lion ADNI and rcv1 data sets, respectively. PDPP+AGCD
is carried out along a 100 linear-scale sequence of param-
eter values from 0.1 to 1. For PSR+AGCD, we set λ to
be 0.8λmax in the optimization. Fig. 3 presents the re-
sult. PDPP+AGCD is more scalable than PSR+AGCD
and achieves approximate 17 and 11.5 folds speedup with
48 cores in ADNI 5.9m and rcv1 data sets, respectively.

6. CONCLUSIONS
This paper proposes a parallel framework to solve the

Lasso problem on huge dimensional datasets. We introduce
screening rules into a parallel platform to discard the in-
active features before optimization, accelerating the whole
learning process significantly. Then the problem boils down
to solve Lasso on a multithreading environment with a small
feature space. A grouped selection strategy is proposed to
select the candidates that minimize the objective function
with the largest descent. Experiments demonstrate the effi-
ciency and effective of proposed methods. For future works,
we plan to extend our framework to a distributed platform.
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