
Trade-off Between Efficiency and Consistency
for Removal-based Explanations

Yifan Zhang∗1 Haowei He∗1 Zhiquan Tan2 Yang Yuan1,3,4†

1IIIS, Tsinghua University
2Department of Math, Tsinghua Univesity

3Shanghai Artificial Intelligence Laboratory
4Shanghai Qizhi Institute

{zhangyif21,hhw19,tanzq21}@mails.tsinghua.edu.cn
yuanyang@tsinghua.edu.cn

Abstract

In the current landscape of explanation methodologies, most predominant ap-
proaches, such as SHAP and LIME, employ removal-based techniques to evaluate
the impact of individual features by simulating various scenarios with specific
features omitted. Nonetheless, these methods primarily emphasize efficiency in
the original context, often resulting in general inconsistencies. In this paper, we
demonstrate that such inconsistency is an inherent aspect of these approaches by
establishing the Impossible Trinity Theorem, which posits that interpretability,
efficiency, and consistency cannot hold simultaneously. Recognizing that the at-
tainment of an ideal explanation remains elusive, we propose the utilization of
interpretation error as a metric to gauge inefficiencies and inconsistencies. To this
end, we present two novel algorithms founded on the standard polynomial basis,
aimed at minimizing interpretation error. Our empirical findings indicate that the
proposed methods achieve a substantial reduction in interpretation error, up to 31.8
times lower when compared to alternative techniques‡.

1 Introduction

Most existing explanation approaches are removal-based [18], which involve the sequential process
of eliminating certain input features, examining the subsequent alterations in the model’s behavior,
and ascertaining each feature’s impact through observation. However, most of these methods [60, 38]
primarily focus on the original input with all features, often yielding inconsistent outcomes in
alternative scenarios. Consequently, the resulting interpretations may not explain the network’s
behavior consistently even in a small neighborhood of the input, as demonstrated in Figure 1.

Inconsistency is a non-trivial concern. Imagine a doctor treating a diabetic patient with the help of
an AI system. The patient has features A, B, and C, representing three positive signals from various
tests. The AI recommends administering 4 units of insulin with the following explanation: A, B,
and C have weights 1, 1, and 2, respectively, amounting to 4 units in total. The doctor might then
ask the AI: what if the patient only has A and B, but not C? One might expect the answer to be
close to 2, as A+B has a weight of 2. However, the network, being highly non-linear, might output a
different suggestion like 3 units, explaining that both A and B have a weight of 1.5. Such inconsistent

∗Equal Contribution.
†Corresponding Author
‡Code is available at https://github.com/trusty-ai/efficient-consistent-explanations.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/trusty-ai/efficient-consistent-explanations

behaviors can significantly reduce the doctor’s confidence in the interpretations, limiting the practical
value of the AI system.

this movie is very good

12.7% -3.6%+ 6.8% -=15.0% 13.2%+ +

prediction baseline-

94.3% 50.4%+

Network Input

Interpretation

()

this movie is good

-5.3%+ 9.1% -=19.2%+

prediction baseline-

87.7% 50.4%+14.3%

Network Input

Interpretation

()

Figure 1: Interpretations generated by SHAP on movie review.

Consistency (see Definition 2.2) is certainly not the only objective for interpretability. Being equally
important, efficiency is a commonly used axiom in the attribution methods [72, 22, 59], also called
local accuracy [38] or completeness [60], stating that the model’s output should be equal to the
network’s output for the given input (see Definition 2.3). Naturally, one may ask the following
question:

Q1: Can we generate an interpreting model that is both consistent and efficient?

Unfortunately, this is generally unattainable. We have proved the following theorem in Section 2:

Theorem 1(Impossible trinity, informal version). For post-hoc interpreting models, interpretability,
efficiency and consistency cannot hold simultaneously.

A few examples following Theorem 1:
(a) Most attribution methods are interpretable and efficient, but not consistent.
(b) The original (deep) network is consistent and efficient, but not interpretable.
(c) If one model is interpretable and consistent, it cannot be efficient.

However, consistency is necessary for many scenarios, leading to the follow-up question:

Q2: For consistent interpreting models, can they be approximately efficient?

The answer depends on the definition of “approximately efficient”. We introduce a new notion called
truthfulness, which serves as a natural relaxation of efficiency, or partial efficiency. We divide the
functional space of a network f into two subspaces: the readable part and the unreadable part. We
call the interpreting model g truthful if it can accurately represent the readable part of f , denoted
as V (see Definition 2.4). The unreadable part is not merely a “fitting error”; it truthfully represents
the higher-order non-linearities in the network that our interpretation model g, even at its best, cannot
cover. In short, what g conveys is true, though it may not encompass the entire truth. Due to
Theorem 1, this is essentially the best that consistent algorithms can achieve.

Truthfulness is a parameterized notion, depending on the choice of the readable subspace. While
there are theoretically infinite possible choices, we follow previous researchers on interpretability
with non-linearities [61, 41, 63], using the basis that induces interpretable terms like xixj or xixjxk.
These capture higher-order correlations and are easy to understand. The resulting subspace has the
standard polynomial basis (or equivalently, the Fourier basis).

When truthfulness is parameterized with the polynomial basis, designing consistent and truthful
interpreting models is equivalent to learning the Fourier spectrum (see Algorithm 1 and Lemma 3.4).
However, exact consistency is not always necessary for most real-world applications, as approximate
consistency is usually sufficient. We formally use the number of different interpreting models (in log
scale) as a metric for inconsistency. Our last question is:

Q3: When a little inconsistency is allowed, can we get better interpreting models?

We affirmatively answer this question in Section 4 by introducing a new algorithm called Harmonica-
local. We then apply it multiple times to develop Harmonica-anchor and Harmonica-anchor-
constrained, which offer smaller interpretation errors with a small degree of inconsistency.

2

In this paper, we focus on removal-based explanations [18], which implies that f and g are Boolean
functions. We remark that empirically most networks are not Boolean functions, i.e., the input
variables are real valued. However, for every explanation algorithm (including LIME [47] and
SHAP [38]) in the removal-based framework, the input x is not modified to an arbitrary real value.
Instead, x is fixed, and the algorithm only retain or remove each feature of x for generating the
explanations. When x is fixed with n features, it becomes natural to use Boolean functions to
represent both the network f and the interpreting model g for their outputs in all 2n feature-removal
scenarios. In other words, the algorithms in the framework only consider a fixed x each time, and
given this x, there are only 2n possible outcomes, even for the models with real inputs. Therefore,
treating f and g as Boolean functions is not a simplification, but an accurate characterization of the
removal-based framework (see Figure 1 in [18] for an illustration).

Our new algorithms, including Harmonica-local, Harmonica-anchor, and Harmonica-anchor-
constrained, are all based on the Harmonica algorithm from Boolean functional analysis [27], which
has rigorous theoretical guarantees on recovery performance and sampling complexities. In Section 5,
we demonstrate that on datasets like IMDb and ImageNet, our algorithms achieve up to 31.8x lower
interpretation error compared with other methods.

In summary, our contributions are:
• We prove the impossible trinity theorem for removal-based explanations, demonstrating that

interpretable algorithms cannot be consistent and efficient simultaneously.
• When a small inconsistency is allowed, we propose new algorithms using Harmonica-local and

empirically demonstrate that these algorithms achieve significantly lower interpretation errors
compared with other methods.

• For interpretable algorithms that are consistent but not efficient, we introduce a new notion
called truthfulness, which can be regarded as partial efficiency. Due to the impossible trinity
theorem, this is the best achievable outcome when consistency is required.

2 Our Framework on Interpretability

We consider a Hilbert spaceH equipped with inner product ⟨·, ·⟩, and induced norm ∥ · ∥. We denote
the input space by X , the output space by Y , which means H ⊆ X → Y . We use G ⊂ H to
denote the set of interpretable functions, and F ⊂ H to denote the set of machine learning models
that need interpretation. In this paper, if not mentioned otherwise we focus on models that are not
self-interpretable, i.e., f ∈ F \ G.
Definition 2.1 (Interpretable and Interpretation Algorithm). We call A model g is interpretable, if
g ∈ G. An interpretation algorithm A takes f ∈ H, x ∈ X as inputs, and outputs A(f, x) ∈ G for
interpreting f on x.

As we mentioned previously, for many interdisciplinary fields, the interpretation algorithm should be
consistent.
Definition 2.2 (Consistent). Given f ∈ H, an interpretation algorithm A is consistent with respect to
f , if A(f, x) remains the same (function) for every x ∈ X .

Efficiency is an important property of the attribution methods.
Definition 2.3 (Efficient). A model g ∈ H is efficient with respect to f ∈ F on x ∈ X , if
g(x) = f(x).

The following theorem states that one cannot expect to achieve the best of all three worlds.
Theorem 1 (Impossible Trinity for Removal-based Explanations). For any interpretation algorithm
A and function sets G ⊂ F ⊆ H, there exists f ∈ F such that with respect to f , either A is not
consistent, or A(f, x) is not efficient on x for some x ∈ X .

Proof. Please refer to Appendix B for all the proofs.

Theorem 1 says efficiency is too restrictive for consistent interpretations. However, being inefficient
does not mean the interpretation is wrong, it can still be truthful. Recall a subspace V ⊂ H is closed
if whenever {fn} ⊂ V converges to some f ∈ H, then f ∈ V . We have:

3

Definition 2.4 (Truthful gap and truthful). Given a closed subspace V ⊆ H, g ∈ G ⊆ V and f ∈ F ,
the truthful gap of g to f for V is:

TV (f, g) ≜ ∥f − g∥2 − inf
v∈V
∥f − v∥2. (1)

When TV (f, g) = 0, we say g is truthful for subspace V with respect to f , and we know (see e.g.
Lemma 4.1 in [56]) ∀v ∈ V, ⟨f − g, v⟩ = 0.

Truthfulness means g fully captures the information in the subspace V of f , therefore it can be seen
as a natural relaxation of efficiency. To characterize the interpretation quality, we introduce the
following notion.
Definition 2.5 (Interpretation error). Given functions f, g ∈ X → Y , the interpretation error between
f and g with respect to measure µ is

Ip,µ(f, g) ≜
(∫

X
|f(x)− g(x)|pdµ(x)

)1/p

. (2)

Notice that interpretation error is only a loss function that measures the quality of the interpretation,
instead of a metric in ℓp space. Therefore, µ can be a non-uniform weight distribution following
the data distribution. If µ is uniform distribution over X , we abbreviate Ip,µ(f, g) as Ip(f, g). For
real-world applications, interpreting the model over the whole X is unnecessary, so µ is usually
defined as a uniform distribution on the neighborhood of input x (under a certain metric), in which
case we denote the distribution as Nx.

3 Applying Our Framework to Removal-based Explanations

Now we focus on interpreting removal-based explanations [38, 18]. Removal-based explanations are
post-hoc, which means they are generated based on a target network for a fixed input, by removing
features from that input. There are three choices affecting the removal-based explanations: how
features are removed, what behavior is analyzed after feature removal, and how to summarize the
feature influence. For example, SHAP [38] considers all possible subsets of the features, and analyzes
how holding out different features affects functional value, and finally summarizes the differences
based on the Shapley value calculation.

Therefore, removal-based explanations can be represented as Boolean functions, as feature subset
S ⊆ [n] can be represented as Boolean input: f ∈ {−1, 1}n → R, where −1 means the specific
feature i ∈ S is removed, 1 means the specific feature is retained. We use −1/1 instead of 0/1 to
represent the binary variables for ease of exposition using the Fourier basis.

3.1 Fourier Basis and Truthful Gap

Fourier analysis is a handy tool for analyzing Boolean functions. Due to the space limit, we defer the
more comprehensive introduction on Fourier analysis for Boolean functions to Appendix A, and only
present the necessary notions here.
Definition 3.1 (Fourier basis). For any subset of variables S ⊆ [n], we define the corresponding
Fourier basis as χS(x) ≜ Πi∈Sxi ∈ {−1, 1}n → {−1, 1}.

The Fourier basis is also called polynomial basis in the literature. It is a complete orthonormal basis
for Boolean functions, under the uniform distribution on {−1, 1}n. We remark that this uniform
distribution is used for theoretical analysis and algorithm design, and is different from the measure µ
for interpretation quality assessment in Definition 2.5.
Definition 3.2 (Fourier expansion). Any Boolean function f ∈ {−1, 1}n → R can be expanded as

f(x) =
∑
S⊆[n]

f̂SχS(x),

where f̂S = ⟨f, χS⟩ is the Fourier coefficient on S.

Now we define the notion of C-Readable function.

4

Definition 3.3 (C-Readable function). Given a set of Fourier bases C, a function f is C-readable if it
is supported on C. That is, for any χS ̸∈ C, ⟨f, χS⟩ = 0. Denote the corresponding subspace as VC .

The Readable notion is parameterized with C, because it may differ case by case. If we set C to be
all the single variable bases, only linear functions are readable; if we set C to be all the bases with
the degree at most 2, functions with pairwise interactions are also readable. Moreover, if we further
add one higher order term to C, e.g., χ{x1,x2,x3,x4}, it means we can also reason about the factor
x1x2x3x4 in the interpretation, which might be an important empirical factor that people can easily
understand. Starting from the bases set C, we have the following formula for computing the truthful
gap.
Lemma 3.4 (Truthful gap for Boolean functions). Given a set of Fourier bases C, two functions
f, g ∈ {−1, 1}n → R, the truthful gap of g to f for C is

TVC
(f, g) =

∑
χS∈C

⟨f − g, χS⟩2. (3)

With the previous definitions, it becomes clear that finding a truthful interpretation g is equivalent to
accurately learning a Boolean function with respect to the readable bases set C. Intuitively, it means
we want to find algorithms that can compute the coefficients for the bases in C. In other words, we
want to find the importance of the bases like x1, x2x5, x2x6x7, etc.

3.2 Representative Algorithms

Applying the impossible trinity theorem to removal-based explanations, there are two notable algo-
rithms on the extremes.

Shapley values: efficient but not consistent. Let N = {1, 2, ..., n} represent a set of n players, and
let v : 2N → R be a characteristic function that assigns a real value to each coalition of players. The
Shapley value of player i is given by:

ϕi(v) =
∑

S⊆N\i

(n− |S| − 1)! · |S|!
n!

[v(S ∪ i)− v(S)], (4)

where |S| is the number of players in coalition S, and the sum is taken over all possible coalitions
S that do not include player i. One of the most important properties of Shapley values is efficiency,
i.e.

∑
i∈N ϕi(v) = v(N) − v(∅) (or denoting explanation function g ≜

∑
i∈N ϕi(v) + v(∅)). As

Shapley value based explanations do not focus on consistency, its explanation is efficient only for the
original input, but not for other scenarios when certain features are removed.

Harmonica: consistent but not efficient. What can we do if we want to address consistency? As
mentioned in Definition 2.4, we do not expect the algorithm to be efficient, but it can still be truthful
with respect to a subspace V , which is naturally represented with the polynomial basis. Therefore, in
order to learn truthful explanations for given subspace V , it is natural to consider LASSO regression
over the coefficients on the polynomial basis. Harmonica (Algorithm 1) fulfills this requirement [27]
and has superior complexity shown in Theorem 2.

Algorithm 1: Harmonica [27]
1. Given uniformly randomly sampled x1, · · · , xT , evaluate them on f : {f(x1),, f(xT)}.
2. Solve the following regularized regression problem.

argmin
α∈R|C|


T∑

i=1

 ∑
S,χS∈C

αSχS(xi)− f(xi)

2

+ λ∥α∥1

 (5)

3. Output the polynomial g(x) =
∑

S,χS∈C αSχS(x).

Theorem 2 (Complexity of Harmonica). Given f ∈ {−1, 1}n → R, a (ϵ/4, s, C)-bounded function,
Algorithm 1 finds a function g with interpretation error at most ϵ in time O((T log 1

ϵ + |C|/ϵ) · |C|)
and sample complexity T = Õ(s2/ϵ · log |C|).

5

We defer detailed descriptions and theoretical guarantees of these algorithms to Appendix B.1, C
and D, discussion on the comparison of our algorithms with the existing algorithms to Appendix E.

3.3 Quantifying Inconsistency

All the Fourier coefficients together are called the Fourier spectrum of f . We can define the fol-
lowing distance between two functions based on their spectrums as the quantitative measure of the
inconsistency between different explanations.
Definition 3.5 (Spectrum (Fourier) distance for Boolean functions). Given two interpretations
g(·), h(·) ∈ {−1, 1}n → R, we define the spectrum p-distance between them as:

Dp (g(·), h(·)) ≜ ∥̂g − h∥̂p =

∑
S⊆[n]

∣∣∣ĝS − ĥS

∣∣∣p
1/p

. (6)

As there may be many candidates p for evaluating interpretation error and spectrum distance. In
the following, we will investigate the most natural choice for p. As the Fourier expansion uniquely
determined a Boolean function. We would like the distance between their expansion to have the same
tendency as the interpretation error, thus the spectrum can encode enough information to reflect the
accuracy of the interpretation. We shall first discuss the most “strict” case, i.e. the L0 norm.

Denote the support of an Boolean function f as supp(f) ≜ {x ∈ {−1, 1}n | f(x) ̸= 0}. The support
of Fourier coefficients (Fourier spectrum), is defined by supp(f̂) ≜ {S ⊆ [n] | f̂(S) ̸= 0}. Based
on Proposition C.1, we have the following uncertainty principle for removal-based explanations:
Theorem 3 (Uncertainty Principle for Removal-based Explanations). Assume f, g ∈ {−1, 1}n →
R and f ̸= g. When evaluated under L0 norm, the interpretation error and spectrum distance
(inconsistency value) have the following uncertainty principle (can be seen as a quantitative version
of Impossible Trinity Theorem 1):

I0(f, g)D0(f, g) ≥ 1. (7)

We can see that the L0 norm is too strict for evaluating the differences between interpretations
(inconsistency). Fortunately, the following proposition shows that the L2 relaxed version is much
better, or to say, natural, due to Parseval’s identity.
Proposition 3.6 (L2 norm is natural). When taking µ as a uniform distribution, for f, g ∈
{−1, 1}n → R, we have I2(f, g) = D2(f, g).

Now we present a theorem on the trade-off between efficiency and consistency, quantified by total
interpretation error and total inconsistency value (spectrum distance).
Theorem 4 (Trade-off between Efficiency and Consistency). Given a function f : {−1, 1}n → R
and a set of N interpretable functions {g1, g2, . . . , gN} defined on disjointed sets Xi (X =

⋃
Xi),

each gi : {−1, 1}n → R, let ḡ denote the average (spectrum) of gi across the space X = {−1, 1}n.
Define (we use L2 norm as default):

Itotal =

N∑
i=1

∥f |x∈Xi − gi|x∈Xi∥2,

Dtotal =

N∑
i=1

∥̂gi|x∈Xi
− ḡ|x∈Xi

∥̂2,

Then, we have the following inequality:

Itotal + Dtotal ≥
N∑
i=1

∥f |x∈Xi − ḡ|x∈Xi∥2.

In addition, denote g† as the globally consistent interpretation g† defined on {−1, 1}n with minimal
interpretation error (can be obtained by Harmonica), we have:

N∑
i=1

∥f |x∈Xi
− ḡ|x∈Xi

∥2 ≥
N∑
i=1

∥f |x∈Xi
− g†|x∈Xi

∥2 = I2(f, g†) = D2(f, g
†).

6

Algorithm 2: Harmonica-anchor
Input: anchor number k, model f , a distance metric function d(·, ·) : (χS , χS)→ R which
calculates distance between two anchors (e.g., Lp norm or Hamming distance), sampling
number T , regularization coefficient λ1.
Output: interpretation models gi with coefficients αi ∈ R|C|, i = 1, 2, 3, ..., k.

1: Fix random bases bi, i = 1, 2, 3, ..., k as anchors.
2: Randomly sample T bases b1, b2, ..., bT and accordingly, we calculate f(x1), f(x2), ..., f(xT).
3: Assign each basis to the anchor with minimal distance and index using

di = min{argminj d(bi, b
x
j)}, i = 1, 2, 3, ...T and j = 1, 2, 3, ..., k.

4: for i = 1, 2, 3, ..., k do
5: Solve the following regularized regression problem:

argmin
αi∈R|C|

{
T∑

n=1

(
I(i = dn)

(∑
S,χS∈C

αi,SχS(xn)− f(xn)
))2

+ λ∥αi∥1

}
. (8)

6: end for

This theorem illuminates the inherent trade-offs in designing interpretable models. Specifically, to
reduce Itotal, one would typically need to increase Dtotal unless f itself is close to an interpretable
model ḡ. Theorem 4 can also be seen as a quantitative version of the Impossible Trinity Theorem 1
for removal-based explanations.

Now we established the lower bound of Itotal+Dtotal by I2(f, g†) (the same as D2(f, g
†)), showing the

trade-off between efficiency and consistency, and also bridging the locally consistent interpretations
gi and globally consistent interpretation g†.

4 Trade-off Between Efficiency and Consistency

Harmonica recovers functions across the entire function space. However, in our setting, ifNx is small,
it is sufficient to recover a small neighborhood of the function. This inspires us to apply Harmonica
to a local space instead of the entire space. By doing so, we obtain more concentrated samples in
the local neighborhood. Consequently, minimizing the interpretation error in this neighborhood
becomes more manageable. We refer to Harmonica with samples in the local neighborhood as
Harmonica-local.

If we relax the consistency requirement, meaning that users are willing to accept minor inconsistencies
in interpretations when a slight modification is made to the input, we can achieve smaller interpretation
error with Harmonica-anchor, as shown in Algorithm 2. Intuitively, Harmonic-anchor applies multiple
Harmonica-local algorithms to different subspaces of the input. Specifically, for a given neighborhood
region Nx, we now randomly select kx bases bx,i, (i = 1, 2, 3, ..., kx) as interpretation anchors
instead of only one basis as Harmonica does. We calculate kx interpretation models gx,i on each
anchor and denote the coefficient of gx,i as αx,i. For simplicity, we omit the subscript x in the
following.

The number of bases k is highly related to consistency, so we could define the log value log k to
evaluate the inconsistency of the interpretation models. The minimum inconsistency value is 0, as
in Harmonica (k = 1), while for attribution methods, the inconsistency should be almost n, which
is the number of input variables. The maximum inconsistency value depends on the neighborhood
region Nx, since the number of interpretation models should not exceed the number of points in Nx.
As a special case, the Harmonica algorithm achieves 0 inconsistency, making it the most consistent
algorithm.
However, if one only considers the number of different interpretation algorithms, users may still
encounter a high level of inconsistency empirically when the interpretations significantly differ from
one another. Thus, another critical constraint to add is the spectrum distance constraint among
different interpretations of different anchors. Based on Theorem 4, we introduce Harmonica-anchor-
constrained in Algorithm 3 (in Appendix). In this algorithm, λ2 serves as a penalty coefficient for the
difference between gi, and we solve the problem using iterative gradient descent. Intuitively, a larger

7

λ2 restricts the expressive power of the interpretation models gi, leading to a larger interpretation
error.

5 Experiments

5.1 Analysis on Polynomial Functions

To investigate the performance of different interpretation methods, we manually examine the output
of various algorithms including LIME [47], SHAP [38], Shapley Interaction Index [45], Shapley
Taylor [61, 26], Faith-SHAP [62], Harmonica, and Low-degree (Appendix D) for lower-order
polynomial functions.

We observe that all algorithms can accurately learn the coefficients of the first-order polynomial. For
the second-order polynomial function, only Shapley Taylor, Faith-SHAP, Harmonica, and Low-degree
can learn all the coefficients accurately. For the third-order polynomial function, only Faith-SHAP,
Harmonica, and Low-degree succeed. Due to space constraints, we defer the details to Appendix F.

5.2 Experimental Setup

In the rest of this section, we conduct experiments to evaluate the interpretation error Ip,Nx
(f, g) and

truthful gap TVC
(f, g) of Harmonica and other baseline algorithms on language and vision tasks

quantitatively. In our experiments, we choose 2nd order and 3rd order Harmonica algorithms, which
correspond to setting C to include all terms with order at most 2 and 3.

The baseline algorithms chosen for comparison include LIME [47], Integrated Gradients [60],
SHAP [38], Integrated Hessians [30], Shapley Taylor interaction index, and Faith-SHAP, where the
first three are first-order algorithms, and the last three are second-order algorithms.

The two language tasks we select are the SST-2 [55] dataset for sentiment analysis and the IMDb [40]
dataset for movie review classification. The vision task is the ImageNet [33] for image classification.
To demonstrate the capability of our interpretation framework applied to vision tasks, we have
generated two examples in Figure 2, compared with LIME, Integrated Gradients (IG), and SHAP.
Note that all of these methods are applied to the same ground-truth image segmentation provided
by the MS-COCO dataset [35]. For ablations on using the SLIC superpixels [2], please refer to
Appendix H.

Figure 2: Illustrative examples for applying our interpretation method on MS-COCO dataset.

For the SST-2 dataset, we attempt to interpret a convolutional neural network (see details in Ap-
pendix G) trained with the Adam [32] optimizer for 10 epochs. The IMDb dataset contains long
paragraphs, and each paragraph has multiple sentences. By default, we use periods, colons, and
exclamations to separate sentences. For the ImageNet [33] dataset, we aim to provide class-specific
interpretation, meaning that only the class with the maximum predicted probability is considered for
each sample. We use the official pre-trained ResNet-101 [28] model from PyTorch.

8

1 2 4 8 16
Subspace radius

10 2

10 1
In

te
rp

re
ta

tio
n

er
ro

r

22.8x

IMDb

1 2 4 8
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

31.8x

ImageNet

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP

Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

Figure 3: Visualization of L2 interpretation error Ip,Nx(f, g) of several state-of-the-art interpretation
methods evaluated on IMDb and ImageNet datasets.

5.3 Results on Interpretation Error

For a given input sentence x with length l, we define the induced neighborhood Nx by introducing
a masking operation on this sentence. The radius 0 ≤ r ≤ l is defined as the maximum number of
masked words.

Figure 3 displays the L2 interpretation error evaluated under different neighborhoods with a radius
ranging from 1 to ∞ for all the considered datasets. Here, ∞ represents the maximum sentence
length, which may vary for different data points. We also inspect L1 and L0 norms. Here, L2

and L1 are defined according to Eqn. (2) with p = 2 and p = 1, respectively. And L0 denotes∫
X 1|f(x)− g(x)| ≥ 0.1dµ(x). We can see that Harmonica consistently outperforms all the other

baselines on all radii.

Note that for IMDb in Figure 3, we make a slight modification such that the masking operation
is performed on sentences in one input paragraph instead (we also change the definition of radii
accordingly). For ImageNet in Figure 3, the interpretation error is evaluated on 1000 random images,
and the masking operation is performed on 16 superpixels in one input image instead (we also change
the definition of radii accordingly). We can see that when the neighborhood’s radius is greater
than 1, Harmonica outperforms all the other baselines. Specifically, when evaluated on ImageNet
dataset, Harmonica-anchor (k = 9) achieves 31.8 times lower interpretation error I2,N1 compare
to Integrated Gradients [60]. Limited by space, the detailed numerical results and interpretation
error under other norms are presented in Appendix I. In contrast, Harmonica-local achieves more
accurate local consistency but high error outside the neighborhood. The relevant results are deferred
in Appendix J due to limited space.

As mentioned in Section 4, Harmonica-anchor further reduces the interpretation error by learning
each subspace separately. Figure 3 shows that the L2 interpretation error of Harmonica-anchor
achieves lower error than Harmonica on various datasets, and the error further declines as we increase
the number of anchors. Full results of other norms and the results of Harmonica-anchor-constrained
are shown in Appendix L.

Table 1: Comparison of C3 truthful gap TC(f, g) results evaluated on IMDb and ImageNet datasets
(lower truthful gap means better truthfulness of the interpretation).

Method Harm.
2nd

Harm.
3rd LIME SHAP IG IH Shapley

Taylor
Faith-
Shap

IMDb 0.540 0.174 5.343 1.390 1.438 1.948 7.005 15.528
ImageNet 0.660 0.246 0.738 2.023 1.848 175.368 0.474 0.430

5.4 Results on Truthful Gap

For convenience, we define the set of bases Cd up to degree d as Cd = {χS |S ⊆ [n], |S| ≤ d}.
We evaluate the truthful gap on the set of bases C3, C2, and C1. For implementation details on

9

calculating the truthful gap, please refer to Appendix K. Table 1 shows the C3 truthful gap evaluated
on different datasets. We can see that Harmonica outperforms all the other baseline algorithms. Due
to space limitations, C2 and C1 results are provided in Appendix K.

5.5 More Experimental Results

For more experimental results on different image segmentation methods, different neural network
architectures, and different choices of baselines, please refer to Appendix H. For more results on the
Low-degree algorithm, please refer to Appendix M.

6 Related Work

Interpretability is a critical topic in machine learning, and we refer the reader to [20, 37] for insightful
general discussions. Below we discuss different types of interpretable models.

Removal-based explanations. Covert et al. [18] presents a unified framework for removal-based
model explanation methods, connecting 26 existing techniques such as LIME [47], SHAP [38],
Meaningful Perturbations [21], and permutation tests [10]. LIME [47] is a classical method that
samples data points following a predefined sampling distribution and computes a function that
empirically satisfies local fidelity.

The Shapley value [50, 72, 24] originates from cooperative game theory and is used to allocate the
total value generated by a group of players among individual players. It is the unique kind of method
that satisfies a few important properties, including efficiency, symmetry, dummy, additivity, etc.
Shapley values have been extensively applied to machine learning model explanations [38, 39, 57,
59, 67, 78, 23, 77] and feature importance [17]. Recent research has focused on developing efficient
approximation methods for Shapley values [38, 15, 5, 16, 31, 26, 68]. Many works have generalized
Shapley values to higher-order feature interactions [45, 24, 61, 41, 63, 1, 62].

Gradient-based explanations. Gradient-based explanations are popular for deep learning models,
such as CNNs. These methods include SmoothGrad, Integrated Gradient, GradCAM, DeepLift, LRP,
etc. [53, 54, 52, 60, 74, 49, 6, 51, 13, 42, 52, 48]. Although these methods have seen extensive use in
various areas, gradient-based methods are often time-consuming and can be insensitive to random
model parameterization [3].

Model-specific interpretable models. Interpretable or transparent (white-box) models are inherently
ante-hoc and model-specific. One primary goal of utilizing interpretable models is to achieve inherent
model interpretability. Prominent approaches include Decision Trees ([66, 7, 75]), Decision Rules
([69, 58]), Decision Sets ([34, 70]), and Linear Models ([64, 65]). Moreover, another research
direction attempts to use an interpretable model surrogate to approximate the original black-box
models. [14] employs a two-layer additive risk model for interpreting credit risk assessments.
[8] suggests an approach called model extraction that greedily learns a decision tree to approximate
f . However, these methods primarily rely on heuristics and lack theoretical guarantees.

7 Conclusion

In this paper, we tackled the problem of generating consistent interpretations and introduced the
impossible trinity theorem of interpretability, under a formal framework for understanding the
interplay between interpretability, consistency, and efficiency. Since a consistent interpretation cannot
be efficient, we relaxed efficiency to truthfulness, meaning the interpretation matches the target
function in a specific subspace. This led to the problem of learning Boolean functions and the
proposal of new algorithms based on the Fourier spectrum and a localized version of Harmonica.
Our methods showed lower interpretation errors and improved consistency compared to the existing
approaches.

While our work offers theoretical insights, many open questions and challenges remain in building
more interpretable, consistent, and efficient models. We hope our work serves as a foundation for
future research in the area of explainable AI.

10

Acknowledgments

Thanks to Jiaye Teng for the useful discussions. This work is supported by the Ministry of Science
and Technology of the People’s Republic of China, the 2030 Innovation Megaprojects “Program on
New Generation Artificial Intelligence” (Grant No. 2021AAA0150000).

References
[1] Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when features

are dependent: More accurate approximations to shapley values. Artificial Intelligence, 298:
103502, 2021.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels. Technical report, EPFL, 2010.

[3] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.

[4] Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-
convex objectives. In International Conference on Machine Learning, pp. 1080–1089. PMLR,
2016.

[5] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a
polynomial time algorithm for shapley value approximation. In International Conference on
Machine Learning, pp. 272–281. PMLR, 2019.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[7] Randall Balestriero. Neural decision trees. ArXiv, abs/1702.07360, 2017.

[8] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpretability via model extraction. ArXiv,
abs/1706.09773, 2017.

[9] William Beckner. Inequalities in fourier analysis. Annals of Mathematics, 102(1):159–182,
1975.

[10] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[11] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

[13] Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
782–791, 2021.

[14] Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang, and Tong
Wang. An interpretable model with globally consistent explanations for credit risk. ArXiv,
abs/1811.12615, 2018.

[15] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and c-shapley:
Efficient model interpretation for structured data. ArXiv, abs/1808.02610, 2019.

[16] Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation using linear
regression. In International Conference on Artificial Intelligence and Statistics, pp. 3457–3465.
PMLR, 2021.

11

[17] Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions
with additive importance measures. Advances in Neural Information Processing Systems, 33:
17212–17223, 2020.

[18] Ian Covert, Scott M Lundberg, and Su-In Lee. Explaining by removing: A unified framework
for model explanation. The Journal of Machine Learning Research, 22:209–1, 2021.

[19] Amir Dembo, Thomas M Cover, and Joy A Thomas. Information theoretic inequalities. IEEE
Transactions on Information theory, 37(6):1501–1518, 1991.

[20] Derek Doran, Sarah Schulz, and Tarek R. Besold. What does explainable ai really mean? a new
conceptualization of perspectives. ArXiv, abs/1710.00794, 2017.

[21] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE international conference on computer vision, pp.
3429–3437, 2017.

[22] Eric Friedman and Herve Moulin. Three methods to share joint costs or surplus. Journal of
Economic Theory, 87(2):275–312, 1999.

[23] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in Neural Information Processing
Systems, 33:1229–1239, 2020.

[24] Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction
among players in cooperative games. International Journal of Game Theory, 28:547–565, 1999.

[25] Tom Gur and Omer Tamuz. Testing booleanity and the uncertainty principle. arXiv preprint
arXiv:1204.0944, 2012.

[26] Mark Hamilton, Scott M. Lundberg, Lei Zhang, Stephanie Fu, and William T. Freeman. Ax-
iomatic explanations for visual search, retrieval, and similarity learning. In International
Conference on Learning Representations, 2022.

[27] Elad Hazan, Adam R. Klivans, and Yang Yuan. Hyperparameter optimization: A spectral
approach. ArXiv, abs/1706.00764, 2018.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[29] Isidore I Hirschman. A note on entropy. American journal of mathematics, 79(1):152–156,
1957.

[30] Joseph D. Janizek, Pascal Sturmfels, and Su-In Lee. Explaining explanations: Axiomatic feature
interactions for deep networks. J. Mach. Learn. Res., 22:104:1–104:54, 2021.

[31] Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In Lee, and Rajesh Ranganath.
Fastshap: Real-time shapley value estimation. In International Conference on Learning Repre-
sentations, 2021.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Arxiv,
abs/1412.6980, 2015.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60:84 – 90, 2012.

[34] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 131–138, 2019.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
objects in context, 2015.

12

[36] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[37] Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

[38] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, 2017.

[39] Scott M. Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution
for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

[40] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies, pp. 142–150,
2011.

[41] Aria Masoomi, Davin Hill, Zhonghui Xu, Craig P. Hersh, Edwin K. Silverman, Peter J. Castaldi,
Stratis Ioannidis, and Jennifer G. Dy. Explanations of black-box models based on directional
feature interactions. In International Conference on Learning Representations, 2022.

[42] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-
Robert Müller. Explaining nonlinear classification decisions with deep taylor decomposition.
Pattern recognition, 65:211–222, 2017.

[43] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[44] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[45] Guillermo Owen. Multilinear extensions of games. Management Science, 18(5-part-2):64–79,
1972.

[46] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing, pp. 1532–1543, 2014.

[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144, 2016.

[48] Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. Advances in Neural Information Processing Systems, 32, 2019.

[49] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. International Journal of Computer Vision, 128:336–359, 2017.

[50] Lloyd S. Shapley. Quota solutions of n-person games. Edited by Emil Artin and Marston Morse,
pp. 343, 1953.

[51] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a
black box: Learning important features through propagating activation differences. CoRR,
abs/1605.01713, 2016.

[52] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning, pp.
3145–3153. PMLR, 2017.

[53] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034, 2014.

[54] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. ArXiv, abs/1706.03825, 2017.

13

[55] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1631–1642, 2013.

[56] Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert
spaces. Princeton University Press, 2009.

[57] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and information systems, 41(3):647–665, 2014.

[58] Guolong Su, Dennis Wei, Kush R. Varshney, and Dmitry M. Malioutov. Interpretable two-level
boolean rule learning for classification. ArXiv, abs/1511.07361, 2015.

[59] Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
International Conference on Machine Learning, pp. 9269–9278. PMLR, 2020.

[60] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pp. 3319–3328. PMLR, 2017.

[61] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction
index. In International conference on machine learning, pp. 9259–9268. PMLR, 2020.

[62] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley
shapley interaction index. arXiv preprint arXiv:2203.00870, 2022.

[63] Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? in-
terpretable attribution for feature interactions. Advances in Neural Information Processing
Systems, 33:6147–6159, 2020.

[64] Berk Ustun and Cynthia Rudin. Methods and models for interpretable linear classification.
ArXiv, abs/1405.4047, 2014.

[65] Berk Ustun, Stefano Tracà, and Cynthia Rudin. Supersparse linear integer models for inter-
pretable classification. ArXiv, abs/1306.6677, 2014.

[66] Jialei Wang, Ryohei Fujimaki, and Yosuke Motohashi. Trading interpretability for accuracy:
Oblique treed sparse additive models. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1245–1254, 2015.

[67] Jiaxuan Wang, Jenna Wiens, and Scott Lundberg. Shapley flow: A graph-based approach
to interpreting model predictions. In International Conference on Artificial Intelligence and
Statistics, pp. 721–729. PMLR, 2021.

[68] Rui Wang, Xiaoqian Wang, and David I. Inouye. Shapley explanation networks. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021, 2021.

[69] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille.
Or’s of and’s for interpretable classification, with application to context-aware recommender
systems. ArXiv, abs/1504.07614, 2015.

[70] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille.
A bayesian framework for learning rule sets for interpretable classification. The Journal of
Machine Learning Research, 18(1):2357–2393, 2017.

[71] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[72] Robert J Weber. Probabilistic values for games, the shapley value. essays in honor of lloyd s.
shapley (ae roth, ed.), 1988.

14

[73] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

[74] Shawn Xu, Subhashini Venugopalan, and Mukund Sundararajan. Attribution in scale and space.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pp. 9677–9686. Computer Vision Foundation / IEEE, 2020.
doi: 10.1109/CVPR42600.2020.00970.

[75] Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neural decision trees.
ArXiv, abs/1806.06988, 2018.

[76] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

[77] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International Conference on Machine Learning, pp.
12241–12252. PMLR, 2021.

[78] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and Quanshi Zhang. Interpreting mul-
tivariate shapley interactions in dnns. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 10877–10886, 2021.

[79] Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

15

Pseudo Code for Harmonica-anchor-constrained

Algorithm 3: Harmonica-anchor-constrained
Input: anchor number k, model f , a distance metric function d(·, ·) : (χS , χS)→ R which
calculates distance between two anchors (e.g., Hamming distance or Lp norm), sampling
number T , loss balance coefficient λ1, λ2, update epochs E, update rate η
Output: interpretation models gi with coefficients αi, i = 1, 2, 3, ..., k.

1: Fix random bases bi, i = 1, 2, 3, ..., k as interpretation anchors.
2: Randomly initialize αi ∈ R|C|, i = 1, 2, 3, ..., k.
3: Randomly sample T bases b1, b2, ..., bT and accordingly, we calculate f(x1), f(x2), ..., f(xT).
4: Assign each basis to the anchor with minimal distance and index with

di = min{argminj d(bi, b
x
j)}, i = 1, 2, 3, ...T and j = 1, 2, 3, ..., k.

5: for e = 1, 2, 3, ..., E do

6: Lf = 1
T

∑T
i=1

(∑
S,χS∈C αdi,SχS(xi)− f(xi)

)2
7: Lr = 1

k

∑k
i=1 ∥αi∥1.

8: Lc =
1
k

∑k
i=1 ∥αi − 1

k

∑k
j=1 αj∥2.

9: Update αi with αi ← αi − η
∂(Lf+λ1Lr+λ2Lc)

∂αi
.

10: end for

A Fourier Analysis of Boolean Function

Fourier analysis of Boolean function is a fascinating field, and we refer the reader to [43] for a more
comprehensive introduction. We define the inner product as follows.
Definition A.1 (Inner product). Given two functions f, g ∈ {−1, 1}n → R, their inner product is:

⟨f, g⟩ ≜ E
x∼{−1,1}n

[f(x)g(x)] = 2−n
∑

x∈{−1,1}n

f(x)g(x). (9)

In addition, we define the induced norm ∥f∥2 ≜
√
⟨f, f⟩, and more generally, for p > 0,

∥f∥p ≜ E[|f(x)|p]1/p. (10)

The inner product defines one kind of similarity between two functions and is invariant under different
basis. Specifically, we have the following Theorem.
Definition A.2 (Plancherel’s Theorem). Given two functions f, g ∈ {−1, 1}n → R,

⟨f, g⟩ =
∑
S⊆[n]

f̂S ĝS .

When setting f = g, we get the Parseval’s identity: E[f2] =
∑

S f̂2
S .

A distribution over a discrete domain S is often represented as a non-negative function f : S →
R+which is normalized in L1, i.e.,

∑
x∈S f(x) = 1.

Definition A.3 (Fourier p-norm). For any Boolean function f ∈ {−1, 1}n → R, we define the
Fourier (or spectral) p-norm of f as

∥̂f ∥̂p ≜

∑
S⊆[n]

|f̂S |p
1/p

. (11)

Definition A.4 (Fourier p-distance). For any Boolean function f, g ∈ {−1, 1}n → R, we define the
Fourier (or spectral) p-distance between f and g as

∥̂f − g∥̂p ≜

∑
S⊆[n]

|f̂S − ĝS |p
1/p

. (12)

16

Using Fourier p-norm, we could rephrase Parseval’s identity as: ∥f∥2 = ∥̂f ∥̂2.

B Proofs

Proof of Theorem 1.

Proof. Pick f ∈ F \ G. If A is consistent with respect to f , let g = A(f, x) ∈ G for any x ∈ X . If
for every x ∈ X , g(x) = f(x), we know g = f ̸∈ G, this is a contradiction. Therefore, there exists
x ∈ X such that g(x) ̸= f(x).

Proof of Lemma 3.4.

Proof. Denote the complement space as VC̄ . We may expand f, g, v on both bases and get:

∥f − g∥2 − inf
v∈V
∥f − v∥2 =

∑
S∈C

⟨f − g, χS⟩2+

∑
S∈C̄

⟨f, χS⟩2 − inf
v∈VC

∑
S∈C

⟨f − v, χS⟩2 +
∑
S∈C̄

⟨f, χS⟩2


=
∑
S∈C

⟨f − g, χS⟩2 − inf
v∈VC

(∑
S∈C

⟨f − v, χS⟩2
)

=
∑
S∈C

⟨f − g, χS⟩2,

where the last equality holds because we can set the Fourier coefficients v̂S = f̂S for every S ∈ C,
which further gives ⟨f − v, χS⟩ = 0.

Proof of Theorem 3.

Proof. Taking µ as the uniform distribution, then I0(f, g) =
∑

x∈{−1,1}n 1f(x)̸=g(x)

2n = |supp(f−g)|
2n .

Note D0(f, g) =
∑

S⊆[n] 1f̂(S)̸=ĝ(S) =| supp(f̂−ĝ) |. The conclusion follows from Proposition C.1.

Proof of Proposition 3.6.

Proof. From the definition of I2(f, g) and D2(f, g). By Parseval’s identity, I22(f, g) =

2−n
∑

x∈{−1,1}n(f(x)− g(x))2 =
∑

S⊂[n](f̂(S)− ĝ(S))2 = D2
2(f, g).

Proof of Theorem 4.

Proof. From Proposition 3.6 (Parseval’s identity), we have (notice that our functions gi are defined
on X = {−1, 1}n globally and then restricted to Xi ⊆ X).

∥̂gi|x∈Xi − ḡ|x∈Xi ∥̂2 = ∥̂gi|x∈X − ḡ|x∈X ∥̂2 = ∥gi|x∈X − ḡ|x∈X ∥2 ≥ ∥gi|x∈Xi − ḡ|x∈Xi∥2.

Let us employ the triangle inequality for norms. Specifically, for each i = 1, 2, . . . , N , we apply the
triangle inequality as follows:

∥f |x∈Xi
− gi|x∈Xi

∥2 + ∥gi|x∈Xi
− ḡ|x∈Xi

∥2 ≥ ∥f |x∈Xi
− ḡ|x∈Xi

∥2.

Summing this inequality over all i yields:

N∑
i=1

∥f |x∈Xi
− gi|x∈Xi

∥+
N∑
i=1

∥gi|x∈Xi
− ḡ|x∈Xi

∥ ≥
N∑
i=1

∥f |x∈Xi
− ḡ|x∈Xi

∥2.

17

By the definitions of Itotal and Dtotal, we arrive at:

Itotal + Dtotal ≥
N∑
i=1

∥f |x∈Xi
− ḡ|x∈Xi

∥2.

This completes the proof.

B.1 Harmonica Algorithm

To present the theoretical guarantees of the Harmonica algorithm, we introduce the following
definition, which is slightly different from its original version in [27].
Definition B.1 (Approximately sparse function). We say a function f ∈ {−1, 1}n → R is (ϵ, s, C)-
bounded, if E[(f −

∑
χS∈C f̂(S)χS)

2] ≤ ϵ and
∑

S |f̂(S)| ≤ s.

Here f is (ϵ, s, C)-bounded means it is almost readable and has bounded ℓ1 norm. Our algorithm is
slightly different from the original algorithm proposed by [27], but similar theoretical guarantees still
hold, as stated below.

Proof of Theorem 2. Our proof is similar to the one in the original paper [27], with changes in the
readable notion, which is now more flexible than being low order. First, recall the classical Chebyshev
inequality.
Theorem B.2 (Multidimensional Chebyshev inequality). Let X be an m dimensional random vector,
with expected value µ = E[X], and covariance matrix V = E

[
(X − µ)(X − µ)T

]
. If V is a

positive definite matrix, for any real number δ > 0 :

P
(√

(X − µ)TV −1(X − µ) > δ

)
≤ m

δ2
.

Proof of Theorem 2. Let f be an (ε/4, s, C)-bounded function written in the orthonormal basis as∑
S f̂(S)χS . We can equivalently write f as f = h+g, where h is supported on C that only includes

coefficients of magnitude at least ε/4s and the constant term of the polynomial expansion of f .

Since L1(f) =
∑

S

∣∣∣f̂S∣∣∣ ≤ s, we know h is 4s2/ε+ 1 sparse. The function g is thus the sum of the

remaining f̂(S)χS terms not included in h. Denote the set of bases that appear in C but not in g as
R, so we know the coefficient of f on the bases in R is at most ϵ/4s.

Draw m (to be chosen later) random labeled examples
{(

z1, y1
)
, . . . , (zm, ym)

}
and enumerate all

N = |C| basis functions χS ∈ C as {χ1, . . . , χN}. Form matrix A such that Aij = χj

(
zi
)

and
consider the problem of recovering 4s2/ε+ 1 sparse x given Ax+ e = y where x is the vector of
coefficients of h, the i th entry of y equals yi, and ei = g

(
zi
)
.

We will prove that with constant probability over the choice m random examples, ∥e∥2 ≤
√
εm.

Applying Theorem 5 in [27] by setting η =
√
ε and observing that σ4s2/ε+1(x)1 = 0 (see definition

in the theorem), we will recover x′ such that ∥x− x′∥22 ≤ c22ε for some constant c2. As such, for the

function f̃ =
∑N

i=1 x
′
iχi we will have E

[
∥h− f̃∥2

]
≤ c22ε by Parseval’s identity. Note, however,

that we may rescale ε by a constant factor 1/
(
2c22
)

to obtain error ε/2 and only incur an additional
constant (multiplicative) factor in the sample complexity bound. By the definition of g, we have

∥g∥2 =

 ∑
S,χS ̸∈C

f̂(S)2 +
∑
S∈R

f̂(S)2

 . (13)

where each f̂(S) for S ∈ R is of magnitude at most ε/4s. By Fact 4 in [27] and Parseval’s identity we
have

∑
R f̂(R)2 ≤ ε/4. Since f is (ε/4, s, C)-concentrated we have

∑
S,χS ̸∈C f̂(S)2 ≤ ε/4. Thus,

∥g∥2 is at most ε/2. Therefore, by triangle inequality E
[
∥f − f̃∥2

]
≤ E

[
∥h− f̃∥2

]
+E

[
∥g∥2

]
≤ ε.

It remains to bound ∥e∥2. Note that since the examples are chosen independently, the entries

18

ei = g
(
zi
)

are independent random variables. Since g is a linear combination of orthonormal
monomials (not including the constant term), we have Ez∼D[g(z)] = 0. Here we can apply linearity
of variance (the covariance of χi and χj is zero for all i ̸= j) and calculate the variance

Var
(
g
(
zi
))

=

 ∑
S,χS ̸∈C

f̂(S)2 +
∑
S∈R

f̂(S)2

 .

With the same calculation as Eqn. (13), we know Var
(
g
(
zi
))

is at most ε/2. Now consider the
covariance matrix V of the vector e which equals E

[
ee⊤

]
(recall every entry of e has mean 0). Then

V is a diagonal matrix (covariance between two independent samples is zero), and every diagonal
entry is at most ε/2. Applying Theorem B.2 we have

P
(
∥e∥2 >

√
ε

2
δ

)
≤ m

δ2
.

Setting δ =
√
2m, we conclude that P (∥e∥2 >

√
εm) ≤ 1

2 . Hence with probability at least 1/2,
we have that ∥e∥2 ≤

√
εm. From Theorem 5 in [27], we may choose m = Õ

(
s2/ε · log nd

)
. This

completes the proof. Note that the probability 1/2 above can be boosted to any constant probability
with a constant factor loss in sample complexity.

For the running time complexity, we refer to [4] for optimizing linear regression with ℓ1 regularization.
The running time is O((T log 1

ϵ + L/ϵ) · |C|), where L is the smoothness of each summand in the
objective. Since each χS takes value in {−1, 1}, the smoothness is bounded by the number of entries
in each summand, which is |C|. Therefore, the running time is bounded by O((T log 1

ϵ + |C|/ϵ) ·
|C|).

C Uncertainty Principle for Boolean functions

In the field of modern physics, the state of a particle on a given domain S is represented by a complex
function on that domain, and the probability of finding the particle in a specific position x on S
is given by the square of the modulus of the function evaluated at x. To ensure that the function
is normalized, in the case where S is continuous, the function must satisfy

∫
x∈R |f(x)|

2dx = 1.
The Fourier transform of the function, denoted by f̂ , is also normalized in L2 under a unitary
transformation, and |f̂(x)|2 represents the probability density function of the distribution of the
particle’s momentum.

The Heisenberg uncertainty principle states that the product of the variances of a particle’s position
and momentum is at least one, with an appropriate choice of units. This principle has physical
significance and relates a function on R to its Fourier transform.

In 1957, [29] proposed an entropic form of the uncertainty principle, which was later proven nearly
two decades later by Beckner [9]. The inequality states that He[f] +He[f̂] ≥ 1− ln 2, where He[f]
is the differential entropy of f , defined as −

∫
x∈R |f(x)|

2 ln |f(x)|2dx.

When the domain is Fn
2 (equivalently, {−1, 1}n), a similar inequality [25] holds with a different

constant. Let f : Fn
2 → C have a Fourier transform f̂ : Fn

2 → C. Then,

H

[
f

∥f∥

]
+H

[
f̂

∥f̂∥

]
≥ n,

where H[f] = −
∑

x∈Fn
2
|f(x)|2 log2 |f(x)|2, and ∥f∥ =

√∑
x∈Fn

2
f(x)2.

Now we present the discrete uncertainty principle for Zn
2 as the following. It can be proved using

Theorem 23 in Dembo, Cover, and Thomas [19].

All the Fourier coefficients together are called the Fourier spectrum of f . We can define the following
distance between two functions based on their spectrums.

19

As there may be many candidates p for evaluating interpretation error and spectrum distance. In
the following, we will investigate the most natural choice for p. As the Fourier expansion uniquely
determined a Boolean function, we would like the distance between their expansion to have the same
tendency as the interpretation error, thus the spectrum can encode enough information to reflect the
accuracy of the interpretation. We shall first discuss the most “strict” case, i.e. the L0 norm.

We shall introduce some notations for better understanding. Denote the support of an Boolean
function f as supp(f) ≜ {x ∈ {−1, 1}n | f(x) ̸= 0}. The support of Fourier coefficients (Fourier
spectrum), is defined by supp(f̂) ≜ {S ⊆ [n] | f̂(S) ̸= 0}. The uncertainty principle for Boolean
functions is stated as follows.
Proposition C.1 (Uncertainty Principle for Boolean functions [25, 43]). For every nonzero function
f : {−1, 1}n → R,

| supp(f)| · | supp(f̂)| ≥ 2n.

D Low-degree Algorithm

The low-degree algorithm is based on the concentration inequality, and it estimates the coefficient of
each axis individually.

Algorithm 4: Low-degree
1. Given uniformly randomly sampled x1, · · · , xT , evaluate them on f : {f(x1),, f(xT)}.
2. For any χS ∈ C, let ĝS =

∑T
i=1 f(xi)χS(xi)

T .
3. Output the polynomial g(x) =

∑
S,χS∈C ĝSχS(x).

Theorem D.1 ([36]). Given any ϵ, δ > 0, assuming that function f is bounded by B, when T ≥
2B2

ϵ2 log 2|C|
δ , we have

Pr
[
∀χS ∈ C, s.t., |ĝS − f̂S | ≤ ϵ

]
≥ 1− δ.

Theorem D.1 was proved using the Hoeffding bound, and we included the proof here for completeness.

Proof. Since we are given T samples to estimate f̂(S) for every S, we can directly apply the
Hoeffding bound (notice that the function is bounded by B):

Pr
(
|αS − f̂(S)| ≥ ϵ

)
· |C| ≤ 2 exp

(
−2Tϵ2

4B2

)
= 2 exp

(
− Tϵ2

2B2

)
.

Notice that T ≥ 2B2

ϵ2 log 2|C|
δ , we know the right hand size is bounded by δ

|C| , so Theorem D.1 is
proved.

Remarks. The theoretical guarantee of Harmonica assumes the target function f is approximately
sparse in the Fourier space, which means most of the energy of the function (Fourier coefficients) is
concentrated in the bases in C. This is not a strong assumption, because if f is not approximately
sparse, it means f has energy in many different bases, or more specifically, the bases with higher
orders. In other words, f has a large variance and is difficult to interpret. In this case, no existing
algorithms will be able to give consistent and meaningful interpretations.

Likewise, although the Low-degree algorithm does not assume sparsity for f , it cannot learn all
possible functions accurately as well. There are 2n different bases, and if we want to learn the
coefficients for all of them, the cumulative error for g is at the order of Ω(2nϵ), which is exponentially
large. This is not surprising due to the no free lunch theorem in the generalization theory, as we do
not expect to be able to learn “any functions” without exponentially many samples.

E Discussion on the Existing Algorithms

In this section, we compare our approaches with the existing techniques from different perspectives
of interpretation error (efficiency), truthfulness, and consistency.

20

LIME [47]. Given an input x, Lime samples the neighborhood points based on a sampling distribu-
tion Πx, and optimizes the following program:

min
g∈G

L(f, g,Πx) + Ω(g).

where L is the loss function describing the distance between f and g on the sampled data points, G is
the set of readable functions (e.g. the set of linear functions), Ω(·) is a function that characterizes
the complexity of g. In other words, LIME tries to minimize the fitting error and simultaneously
minimizes the complexity of g (which is usually the sparsity of the linear function). By minimizing L,
LIME also works towards minimizing the interpretation error, but their approach is purely heuristic,
without any theoretical guarantees. Although their readable function set can easily generalize to the
set with higher order terms, the sampling distribution Πx is not uniform, so it is difficult to incorporate
the orthonormal basis into their framework. In other words, the model they compute is not truthful.

Attribution methods. As we discussed in the introduction, attribution methods mainly focus on
individual inputs, instead of the neighboring points. Therefore, it is difficult for the attribution
methods to achieve low inconsistency, especially for first-order methods like SHAP [38] and IG [60].

Consider SHAP [38] as a motivating example, illustrated in Figure 1 for the task of sentiment
analysis of movie reviews. In this example, the interpretations of two slightly different sentences are
inconsistent. This inconsistency arises not only because the weights of each word differ significantly,
but also because after removing the word “very” with a weight of 15.0%, the network’s output only
drops by 6.6%. In other words, the interpretation does not explain the network’s behavior even
in a small neighborhood of the input.

For higher-order attribution methods, consistency can potentially be improved due to their enhanced
representation power. The classical Shapley interaction index has the problem of not precisely fitting
the underlying function, as observed by [61], who proposed Shapley Taylor interaction index [61] with
better empirical performance. Shapley Taylor interaction index satisfies the generalized efficiency
axiom, which says for all f ∈ {−1, 1}n → R,∑

S⊆[n],|S|≤k

IkS(f) = f([n])− f(∅).

We should remark that both the Shapley interaction index and Shapley Taylor interaction index were
not originally designed for consistent interpretations, so they did not specify how to generalize the
interpretation for the neighboring points. To this end, we make a global extension to the Shapley
value based interpretation, that is, using Shapley interaction indices or Shapley Taylor interaction
indices as the coefficients of corresponding terms of the polynomial surrogate function.

g (x1, x2, · · · , xn) = f(∅) +
∑

xi∈S,S⊆[n]

I(f, S).

However, these higher-order Shapley value based methods all focus on the original Shapley value
framework, so their interpretations are not truthful, i.e., not getting the exact coefficient of f even on
the “simple bases”. Moreover, as we will show in our experiments, higher-order methods still incur
high interpretation errors compared with our methods.

When applying Shapley value techniques for visual search, [26] proposed an interesting and novel
sampling + Lasso regression algorithm for efficiently computing higher order Shapley Taylor index in
their experiments. However, their methods are based on a sampling probability distribution generated
from permutation numbers, which is far from the uniform distribution. Additionally, their algorithm
is based on the Shapley Taylor index, so their method is not truthful as well.

Discussion on universal consistency. When discussing consistency, there are two distinct settings:
“global consistency” and “universal consistency.” This paper mainly focuses on global consistency
(Definition 2.2), where the interpretation pertains only to input features and not to others. This
scenario falls under the category of “removal-based explanations,” and most existing interpretation
methods belong to this category (26 of them were discussed in [18]). In contrast, universal consistency
implies that the interpretation may depend on features different from the input features. An example
of interpreting the sentence “I am happy” could be, “This sentence does not include [very], so this
person is not extremely happy.” Universal consistency is more challenging than global consistency,
and we hypothesize that more powerful machinery, such as foundation models, is needed.

21

Emergence of self-explainability in foundation models. In the groundbreaking work Sparks
of AGI [11], the authors conducted comprehensive experiments on GPT-4’s self-explainability.
Chain-of-thought reasoning [73, 71, 76, 79] can be considered an interpretation provided by the
model itself, although current LLMs are not always to be consistent or truthful. In the long run,
however, this approach may represent the ultimate path to explainable AI. In the computer vision
area, DINO [12, 44] emerges the ability of self-explanation provided by the attention map inside the
model, which can be directly utilized as heatmap visualization or even applied to segmentation tasks.

Proposition E.1 (Omniscient LLM is the way). An (infinitely) large (multi-modal) language model
pre-trained using (infinitely) large corpus, with zero pre-training loss and generalization loss, which
has been perfectly aligned to be truthful, is interpretable, efficient, and consistent.

Proof. To prove the proposition, let us examine each attribute (interpretable, efficient, and consistent)
in the context of an (infinitely) large (multi-modal) language model (LLM):

1. Interpretable: By assumption, the LLM has zero pre-training loss and generalization loss,
implying perfect knowledge representation. Furthermore, it is perfectly aligned to be truthful,
satisfying the criteria for interpretability as per Definition 2.4.

2. Efficient: The efficiency condition g(x) = f(x) is trivially satisfied because f = g by the
condition of self-explainability. Thus, the LLM is efficient as per Definition 2.3.

3. Consistent: Given that the LLM’s responses are generated based on a perfect understanding
and alignment, it will generate the same function A(f, x) for every x ∈ X , thereby being
consistent as per Definition 2.2.

It’s crucial to note that self-explainability does not violate the Impossible Trinity (Theorem 1). When
f = g, the LLM serves as its own interpreter, inherently satisfying all three criteria. Alternatively,
if f ⊆ g, where g has an even larger concept class than f , the interpretability criteria are also met,
albeit this is not a practical scenario for standard interpretation algorithms.

Therefore, an (infinitely) large LLM, pre-trained with an (infinitely) large corpus and aligned perfectly
to be truthful, satisfies all the conditions to be interpretable, efficient, and consistent.

F Test with Low order Polynomial Functions

F.1 First order polynomial function

To investigate the performance of different interpretation methods, let us take a closer look at a 1st
order polynomial function:

f1 (x1, x2, x3) =
1

2
x1 −

1

3
x2 +

1

4
x3,

For this simple function, we can manually compute the outcome of each algorithm, as illustrated in
Table 2. If the algorithm’s output is correct, i.e., equal to the output of f1, we write a check mark.
Otherwise, we write down the actual output of the given interpretation algorithm.

As we can see, all methods are consistent and efficient for all cases. In fact, all variants of Shapley
indices degraded to 1st order Shapley values.

Algorithms (−1,−1,−1) (−1,−1,+1) (−1,+1,−1) (−1,+1,+1) (+1,−1,−1) (+1,−1,+1) (+1,+1,−1) (+1,+1,+1)

Ground Truth −0.417 +0.083 −1.083 −0.583 +0.583 +1.083 −0.083 +0.417

LIME " " " " " " " "

SHAP " " " " " " " "

Shapley Interaction Index (1st order) " " " " " " " "

Shapley Taylor Index (1st order) " " " " " " " "

Faith-Shap (1st order) " " " " " " " "

Low-degree (1st order) " " " " " " " "

Harmonica (1st order) " " " " " " " "

Table 2: Interpretations by LIME, SHAP, Shapley Interaction Index, Shapley Taylor Index, Faith-
Shap, Low-degree, and Harmonica on the 1st order polynomial function f1.

22

F.2 Second order polynomial function

In addition, let us take a closer look at a 2nd order polynomial function:

f2 (x1, x2, x3) =
1

2
x1 −

1

3
x2 +

1

4
x3 −

1

5
x1x2 +

1

6
x1x3 −

1

7
x2x3,

For this simple function, we can manually compute the outcome of each algorithm, as illustrated in
Table 3. If the algorithm’s output is correct, i.e., equal to the output of f2, we write a check mark.
Otherwise, we write down the actual output of the given interpretation algorithm.

As we can see, 2nd order interpretation algorithms, including Shapley Taylor index, Faithful Shapley,
Low-degree, and Harmonica are consistent and efficient for all cases. Other methods can only fit a
few inputs, the 2nd order Shapley interaction index misses all the cases because it is not efficient, and
LIME misses all the cases because f2 is not a linear function.

Algorithms (−1,−1,−1) (−1,−1,+1) (−1,+1,−1) (−1,+1,+1) (+1,−1,−1) (+1,−1,+1) (+1,+1,−1) (+1,+1,+1)

Ground Truth −0.593 −0.140 −0.574 −0.693 +0.474 +1.593 −0.307 +0.240
LIME −0.417 +0.083 −1.083 −0.583 +0.583 +1.083 −0.083 +0.417

SHAP −0.240 +0.283 −1.250 −0.726 +0.726 +1.250 −0.283 "
Shapley Interaction Index (2nd order) −0.329 +0.171 −0.995 −0.781 +0.671 +1.505 −0.395 +0.152

Shapley Taylor Index (2nd order) " " " " " " " "

Faith-Shap (2nd order) " " " " " " " "

Low-degree (2nd order) " " " " " " " "

Harmonica (2nd order) " " " " " " " "

Table 3: Interpretations by LIME, SHAP, Shapley Interaction Index, Shapley Taylor Index, Faith-
Shap, Low-degree, and Harmonica on the 2nd order polynomial function f2.

F.3 Third order polynomial function

Finally, we investigate the following 3rd order polynomial and present the result in Table 4.

f3 (x1, x2, x3) :=
1

2
x1 −

1

3
x2 +

1

4
x3 −

1

5
x1x2 +

1

6
x1x3 −

1

7
x2x3 +

1

8
x1x2x3,

As we can see, Faith-Shap, Low-degree, and Harmonica are consistent and efficient for all cases.
Other methods can only fit a few inputs, the 3rd order Shapley interaction index misses all the cases
because it is not efficient, and LIME misses all the cases because f3 is not a linear function.

Algorithms (−1,−1,−1) (−1,−1,+1) (−1,+1,−1) (−1,+1,+1) (+1,−1,−1) (+1,−1,+1) (+1,+1,−1) (+1,+1,+1)

Ground Truth −0.718 −0.015 +0.449 −0.818 +0.599 +1.468 −0.432 +0.365
LIME −0.417 +0.083 −1.083 −0.583 +0.583 +1.083 −0.083 +0.417

SHAP −0.365 +0.242 −1.292 −0.685 +0.685 +1.292 −0.242 "
Shapley Interaction Index (3rd order) −0.485 +0.224 −0.943 −0.896 +0.724 +1.390 −0.510 +0.496

Shapley Taylor Index (3rd order) " +0.194 −0.606 −0.970 +0.751 +1.625 −0.642 "

Faith-Shap (3rd order) " " " " " " " "

Low-degree (3rd order) " " " " " " " "

Harmonica (3rd order) " " " " " " " "

Table 4: Interpretations by LIME, SHAP, Shapley Interaction Index, Shapley Taylor Index, Faith-
Shap, Low-degree, and Harmonica on the 3rd order polynomial function f3.

Faith-SHAP has an intricate representation theorem, assigning coefficients to different terms under
the Möbius transform. Since the basis induced by the Möbius transform is not orthonormal, it is
unclear to us whether Faith-SHAP can theoretically compute the accurate coefficients for higher-
order functions. However, the running time of Faith-SHAP has an exponential dependency on n, so
empirically weighted sampling on subsets of features is needed [62]. This might be the main reason
why our algorithms outperform Faith-SHAP in experiments on real-world datasets.

G More on Experiment Details

In this section, we will first describe the detailed experimental settings. For the two language tasks,
i.e., SST-2 and IMDb, we use the same CNN neural network. The model has a test accuracy of
85.6%. For the readability of results, we treat sentences as units instead of words – masking several

23

words in a sentence may render the entire paragraph difficult to understand and even meaningless
while masking a critical sentence has meaningful semantic effects. Therefore, the radius is defined
as the maximum number of masked sentences for IMDb. The word embedding layer is pre-trained
by GloVe [46] and the maximum word number is set to 25, 000. Besides the embedding layer, the
network consists of several convolutional kernels with different kernel sizes (3, 4, and 5). After that,
we use several fully connected layers, non-linear layers, and pooling layers to process the features.
A Sigmoid function is attached to the tail of the network to ensure that the output can be seen as a
probability distribution. Our networks are trained with an Adam [32] optimizer with a learning rate
of 1e-2 for 5 epochs. For the vision task, we choose the official ResNet [28] architecture, which is
available on PyTorch and we do not discuss the architecture details here. All the experiments are run
on a server with 4 Nvidia 2080 Ti GPUs. A running time comparison can be found in Table 5. More
information about the run-time Python environment and implementation details can be found in our
code.
Table 5: Running time of different algorithms on SST2 dataset. The main characteristics affecting the
running speed are listed in the table.

Algorithm Main Characteristics Running
Time (s)Affecting Speed

Harmonica-2nd Parallel perturbation, sample=2000 225
Harmonica-3rd Parallel perturbation, sample=2000 616
LIME Captum.attr.LimeBase,

Seq. perturbation,
Sample=2000,

Exp. cosine sim.

1499

Integrated Gradients Gradient step=500 82
SHAP Captum.attr.KernelShap,

Seq. perturbation,
Sample=2000

1235

Integrated Hessians Gradient step=50 3550
Shapley Taylor Index Parallel random perturbations 651
Faith-Shap Parallel random perturbations 538

The accurate representation of the high non-linearity of deep neural networks (DNNs) can be quite
complex, often leading to computationally expensive or practically infeasible interpretability methods.
To strike a balance between computational efficiency and faithful representation, we employ higher-
order polynomial approximations to capture the non-linear aspects of the target DNNs. Specifically,
we leverage Fourier basis (or polynomial basis) to represent Boolean functions over feature subsets,
thus providing a compact and computationally efficient way to approximate DNNs. This is particularly
useful for removal-based explanations, which inherently deal with Boolean functions representing
the presence or absence of features.

It is crucial to point out that our choice of using higher-order polynomials is not arbitrary but is guided
by the principle of ”truthfulness.” We introduce a metric called the ”truthful gap,” mathematically
defined as TV (f, g) (as per Equation 1), to quantify how well our polynomial approximations capture
the information in a specific subspace V of the original function f . This notion of truthfulness serves
as a rigorous measure to validate the efficacy of our higher-order polynomial approximations.

Our empirical results, particularly those outlined in Section 5, indicate that higher-order polynomials,
specifically of orders 2 and 3, yield a favorable trade-off. They offer a substantial reduction in inter-
pretation error and a low truthful gap compared to other techniques, substantiating the reasonableness
and effectiveness of our approach.

Notice that our algorithm is a post-hoc model-agnostic interpretation algorithm, we only need to use
the original neural network f to infer on given input as an oracle. This means that one can easily
change the network architecture without any additional changes.

H More Experimental Results

In this section, we present ablation studies that examine the impact of various factors such as image
segmentation format, neural network architecture, and choice of baselines. Our results demonstrate
the robustness and efficacy of our approach in different experimental settings.

24

H.1 Image Segmentation Format

We employ the SLIC algorithm to generate segmentation superpixels on the ImageNet dataset. We
initially divide each 224× 224 image into 16 superpixels for a balance between human readability
and computational efficiency. The results, displayed in Table 6 and Figure 4, validate the effectiveness
of our approach. Further experiments with 10 superpixels are reported in Table 7, confirming the
robustness of our method.

H.2 Neural Network Architectures

We also conduct experiments using diverse neural network architectures such as ResNet-18 and
VGG16. Tables 8 and 9 respectively present the interpretation errors on ImageNet for these architec-
tures.

H.3 Choice of Baselines

The choice of baseline is critical for removal-based interpretation methods. We investigate the
interpretation errors when using the average pixel value and a blurred image as baselines. The results
are shown in Tables 10 and 11.

Table 6: Interpretation error on MS-COCO. Bold indicates the best performance, and underline
indicates the second best.

Radius

1 2 4 8 16

Harmonica-2nd 0.0291 0.0332 0.0363 0.0367 0.0367
Harmonica-3rd 0.0183 0.0218 0.0241 0.0244 0.0244
LIME 0.2264 0.2451 0.2478 0.2479 0.2479
SHAP 0.1952 0.2036 0.2041 0.2042 0.2042
IG 0.3473 0.3515 0.3464 0.3462 0.3438
IH 1.3717 1.5047 1.5141 1.5141 1.5141
Shapley Taylor 0.3554 0.3313 0.3269 0.3267 0.3267
Faith-Shap 0.2428 0.2397 0.2349 0.2347 0.2347

Table 7: Interpretation error on ImageNet with the number of superpixels set to 10.
Radius

1 2 4 8 16

Harmonica-2nd 0.0970 0.1054 0.1221 0.1416 0.1420
Harmonica-3rd 0.0705 0.0825 0.0997 0.1179 0.1183
LIME 0.1995 0.2121 0.2570 0.3052 0.3051
SHAP 0.1449 0.2077 0.2743 0.3064 0.3063
IG 0.2615 0.3567 0.4423 0.4628 0.4626
IH 1.6707 2.2977 2.9443 3.1871 3.1877
Shapley Taylor 0.0982 0.1417 0.1761 0.1815 0.1814
Faith-Shap 0.0970 0.1250 0.1587 0.1811 0.1810

I Detailed Results on Interpretation Error

In this section, we provide interpretation error results under other norms (Figure 6, 7, and 8) and the
corresponding numerical results (Table 12, 13 and 14).

25

Table 8: Interpretation error on ImageNet using ResNet18 (ACC@1=69.758%).
Radius

1 2 4 8 16

Harmonica-2nd 0.1468 0.1433 0.1353 0.1357 0.1414
Harmonica-3rd 0.1247 0.1261 0.1231 0.1272 0.1319
LIME 0.2278 0.2209 0.2150 0.2382 0.2578
SHAP 0.1034 0.1436 0.1963 0.2323 0.2375
IG 0.1937 0.2613 0.3466 0.4028 0.4039
IH 0.6422 0.8686 1.1591 1.3939 1.4254
Shapley Taylor 0.1292 0.1530 0.1716 0.1744 0.1775
Faith-Shap 0.1239 0.1426 0.1532 0.1607 0.1693

Table 9: Interpretation error on ImageNet using VGG16 (ACC@1=71.592%).
Radius

1 2 4 8 16

Harmonica-2nd 0.1468 0.1404 0.1298 0.1303 0.1368
Harmonica-3rd 0.1290 0.1267 0.1204 0.1225 0.1289
LIME 0.2376 0.2280 0.2180 0.2448 0.2664
SHAP 0.1042 0.1461 0.2012 0.2407 0.2477
IG 0.1708 0.2331 0.3123 0.3659 0.3694
IH 0.5988 0.8132 1.1010 1.3663 1.4149
Shapley Taylor 0.1155 0.1435 0.1677 0.1720 0.1728
Faith-Shap 0.1085 0.1306 0.1456 0.1548 0.1621

Table 10: Interpretation error on ImageNet using the average pixel value as the baseline.
Radius

Method 1 2 4 8 16

Harmonica-2nd 0.1341 0.1279 0.1201 0.1243 0.1304
Harmonica-3rd 0.1012 0.1025 0.1022 0.1095 0.1156
LIME 0.2205 0.2142 0.2095 0.2327 0.2520
SHAP 0.1022 0.1410 0.1934 0.2307 0.2357
IG 0.1824 0.2468 0.3280 0.3822 0.3835
IH 0.6292 0.8497 1.1356 1.3752 1.4115
Shapley Taylor 0.1293 0.1665 0.2157 0.2550 0.2534
Faith-Shap 0.1219 0.1530 0.1918 0.2288 0.2302

Table 11: Interpretation error on ImageNet using the blurred image as the baseline.
Radius

Method 1 2 4 8 16

Harmonica-2nd 0.0207 0.0209 0.0210 0.0218 0.0225
Harmonica-3rd 0.0200 0.0203 0.0204 0.0213 0.0220
LIME 0.0260 0.0276 0.0310 0.0372 0.0394
SHAP 0.0184 0.0258 0.0360 0.0460 0.0477
IG 0.0215 0.0299 0.0415 0.0524 0.0541
IH 0.0268 0.0373 0.0525 0.0684 0.0718
Shapley Taylor 0.0350 0.0370 0.0385 0.0372 0.0360
Faith-Shap 0.0343 0.0358 0.0368 0.0358 0.0350

26

Radius L2 norm L1 norm L0 norm

1 0.0536 0.0460 0.1154
2 0.0576 0.0463 0.1219
4 0.0639 0.0483 0.1350
8 0.0768 0.0549 0.1696

16 0.0945 0.0651 0.2173
32 0.0990 0.0677 0.2275
∞ 0.0991 0.0677 0.2279

Harmonica2

Radius L2 norm L1 norm L0 norm

1 0.0434 0.0363 0.0995
2 0.0484 0.0376 0.1046
4 0.0561 0.0405 0.1157
8 0.0700 0.0474 0.1456

16 0.0876 0.0575 0.1900
32 0.0921 0.0600 0.2003
∞ 0.0922 0.0601 0.2005

Harmonica3

Radius L2 norm L1 norm L0 norm

1 0.0981 0.0870 0.3572
2 0.1010 0.0861 0.3458
4 0.1043 0.0863 0.3421
8 0.1135 0.0919 0.3659

16 0.1285 0.1015 0.4034
32 0.1323 0.1038 0.4111
∞ 0.1322 0.1037 0.4112

LIME

Radius L2 norm L1 norm L0 norm

1 0.0792 0.0568 0.1819
2 0.1089 0.0836 0.3167
4 0.1470 0.1186 0.4847
8 0.1865 0.1554 0.6252
16 0.2106 0.1783 0.6891
32 0.2137 0.1814 0.6958
∞ 0.2137 0.1814 0.6961

SHAP

Radius L2 norm L1 norm L0 norm

1 0.1133 0.0681 0.2010
2 0.1551 0.1055 0.3361
4 0.2081 0.1563 0.5066
8 0.2595 0.2075 0.6476

16 0.2852 0.2336 0.7058
32 0.2872 0.2357 0.7099
∞ 0.2874 0.2359 0.7105

Integrated Gradients

Radius L2 norm L1 norm L0 norm

1 0.0865 0.0477 0.1215
2 0.1232 0.0756 0.2118
4 0.1753 0.1183 0.3406
8 0.2343 0.1691 0.4859

16 0.2678 0.1994 0.5724
32 0.2709 0.2028 0.5823
∞ 0.2711 0.2029 0.5823

Integrated Hessians

Radius L2 norm L1 norm L0 norm

1 0.0623 0.0472 0.1090
2 0.0853 0.0649 0.1971
4 0.1144 0.0874 0.3069
8 0.1426 0.1081 0.3909

16 0.1612 0.1217 0.4404
32 0.1642 0.1241 0.4486
∞ 0.1642 0.1240 0.4489

Shapley Taylor Index2

Radius L2 norm L1 norm L0 norm

1 0.0602 0.0451 0.1034
2 0.0813 0.0614 0.1795
4 0.1091 0.0824 0.2794
8 0.1387 0.1042 0.3707

16 0.1586 0.1190 0.4271
32 0.1616 0.1213 0.4356
∞ 0.1616 0.1213 0.4357

Faith-Shap2

Table 12: The interpretation error of Harmonica and other baseline algorithms evaluated on the SST-2
dataset for different neighborhoods with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

Radius L2 norm L1 norm L0 norm

1 0.0225 0.0193 0.0041
2 0.0234 0.0193 0.0036
4 0.0300 0.0228 0.0141
8 0.0442 0.0298 0.0434
16 0.0506 0.0330 0.0574
32 0.0515 0.0334 0.0596
∞ 0.0515 0.0334 0.0597

Harmonica2

Radius L2 norm L1 norm L0 norm

1 0.0175 0.0149 0.0027
2 0.0193 0.0157 0.0022
4 0.0264 0.0195 0.0098
8 0.0407 0.0265 0.0367

16 0.0472 0.0296 0.0506
32 0.0481 0.0301 0.0528
∞ 0.0481 0.0301 0.0529

Harmonica3

Radius L2 norm L1 norm L0 norm

1 0.0624 0.0525 0.1175
2 0.0671 0.0546 0.1358
4 0.0740 0.0583 0.1606
8 0.084 0.0640 0.1903

16 0.0885 0.0664 0.2017
32 0.0892 0.0667 0.2033
∞ 0.0892 0.0667 0.2033

LIME

Radius L2 norm L1 norm L0 norm

1 0.0849 0.0650 0.2266
2 0.1123 0.0903 0.3589
4 0.1406 0.1162 0.4891
8 0.1598 0.1341 0.5610
16 0.1662 0.1402 0.5817
32 0.1671 0.1411 0.5842
∞ 0.1671 0.1411 0.5843

SHAP

Radius L2 norm L1 norm L0 norm

1 0.1228 0.0810 0.2702
2 0.1576 0.1169 0.4102
4 0.1882 0.1494 0.5333
8 0.2031 0.1657 0.5885

16 0.2067 0.1697 0.6004
32 0.2071 0.1702 0.6014
∞ 0.2071 0.1702 0.6015

Integrated Gradients

Radius L2 norm L1 norm L0 norm

1 0.1178 0.0635 0.1929
2 0.1567 0.0997 0.3125
4 0.1969 0.1415 0.4501
8 0.2227 0.1702 0.5423

16 0.2308 0.1795 0.5702
32 0.2319 0.1807 0.5739
∞ 0.2319 0.1807 0.5738

Integrated Hessians

Radius L2 norm L1 norm L0 norm

1 0.0444 0.0365 0.0554
2 0.0590 0.0470 0.0999
4 0.0684 0.0538 0.1339
8 0.0698 0.0542 0.1300

16 0.0719 0.0558 0.1287
32 0.0741 0.0575 0.1294
∞ 0.0743 0.0577 0.1294

Shapley Taylor Index2

Radius L2 norm L1 norm L0 norm

1 0.0395 0.0313 0.0337
2 0.0469 0.0378 0.0466
4 0.0547 0.0440 0.0657
8 0.0620 0.0494 0.0808

16 0.0684 0.0543 0.0851
32 0.0740 0.0588 0.0859
∞ 0.0744 0.0590 0.0859

Faith-Shap2

Table 13: The interpretation error of Harmonica and other baseline algorithms evaluated on the IMDb
dataset for different neighborhoods with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

27

(a) Laptop

(b) Flatworm

Figure 4: Illustrative examples for applying our method to vision tasks.

0 5 10 15 20 25 30 35
Number of inserted top important words

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y
er

ro
r

Harmonica-1st
LIME
SHAP
IG

(a) Insertion

0 5 10 15 20 25 30 35
Number of deleted bottom important words

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

ab
ilit

y
er

ro
r

Harmonica-1st
LIME
SHAP
IG

(b) Deletion

Figure 5: Insertion and deletion results on SST2.

J Detailed Results on Harmonica-local

J.1 Additional Experiments

We further explore Harmonica’s performance when limited to a local space instead of the whole
space. It is worth noting that Lr is a regularization loss for Harmonica, ensuring the sparseness
of each interpretation model gi. Additionally, Lc is a regularization loss penalizing the difference
between interpretation models. The value of balance coefficients depends on the application scenario
and can be determined by the end user.

1 2 4 8 16 32
Subspace radius

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(c) L0 norm

Figure 6: Visualization of interpretation error Ip,Nx
(f, g) evaluated on SST-2 dataset.

28

1 2 4 8 16 32
Subspace radius

10 1
In

te
rp

re
ta

tio
n

er
ro

r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 2

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(c) L0 norm

Figure 7: Visualization of interpretation error Ip,Nx
(f, g) evaluated on IMDb dataset.

1 2 4 8
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(a) L2 norm

1 2 4 8
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(b) L1 norm

1 2 4 8
Subspace radius

100

3 × 10 1

4 × 10 1

6 × 10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
LIME
SHAP
Integrated Gradients
Integrated Hessians
Shapley Taylor Index (2nd order)
Faith-Shap (2nd order)

(c) L0 norm

Figure 8: Visualization of interpretation error Ip,Nx
(f, g) evaluated on ImageNet dataset.

Radius L2 norm L1 norm L0 norm

1 0.1290 0.1108 0.4248
2 0.1308 0.1073 0.4116
4 0.1373 0.1094 0.4332
8 0.1584 0.1264 0.5156
∞ 0.1693 0.1342 0.5405

Harmonica2

Radius L2 norm L1 norm L0 norm

1 0.1048 0.0880 0.3202
2 0.1108 0.0887 0.3260
4 0.1220 0.0955 0.3723
8 0.1443 0.1139 0.4698
∞ 0.1566 0.1230 0.5030

Harmonica3

Radius L2 norm L1 norm L0 norm

1 0.2422 0.2208 0.7274
2 0.2347 0.2036 0.6976
4 0.2346 0.1918 0.6540
8 0.2897 0.2304 0.6893
∞ 0.3261 0.2579 0.7196

LIME

Radius L2 norm L1 norm L0 norm

1 0.1197 0.0867 0.2892
2 0.1658 0.1261 0.4566
4 0.2306 0.1862 0.6483
8 0.2943 0.2409 0.7318
∞ 0.3115 0.2523 0.7362

SHAP

Radius L2 norm L1 norm L0 norm

1 0.2322 0.1650 0.4871
2 0.3141 0.2375 0.6406
4 0.4200 0.3346 0.7722
8 0.5010 0.4094 0.8300
∞ 0.5113 0.4177 0.8340

Integrated Gradients

Radius L2 norm L1 norm L0 norm

1 1.3681 0.9504 0.8443
2 1.8603 1.4006 0.9025
4 2.5168 2.0427 0.9394
8 3.1095 2.6844 0.9543
∞ 3.2139 2.8140 0.9562

Integrated Hessians

Radius L2 norm L1 norm L0 norm

1 0.1337 0.1039 0.3939
2 0.1681 0.1309 0.4906
4 0.2028 0.1600 0.5830
8 0.2226 0.1771 0.6365
∞ 0.2274 0.1804 0.6418

Shapley Taylor Index2

Radius L2 norm L1 norm L0 norm

1 0.1238 0.0948 0.3443
2 0.1499 0.1161 0.4338
4 0.1718 0.1351 0.5126
8 0.1960 0.1554 0.5872
∞ 0.2099 0.1654 0.6071

Faith-Shap2

Table 14: The interpretation error of Harmonica and other baseline algorithms evaluated on the
ImageNet dataset for different neighborhoods with a radius ranging from 1 to∞ under L2, L1 and
L0 norms.

29

Figure 9, 10 and 11 compares Harmonica-local and Harmonica algorithms on SST-2, IMDb and
ImageNet, respectively. Here we set the radius ofNx to be 4. The results reveal that Harmonica-local
indeed performs better within the local region but fails to cover a far region.

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(c) L0 norm

Figure 9: Visualization of interpretation error Ip,Nx(f, g) evaluated on SST-2 dataset of algorithm
Harmonica and Harmonica-local.

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 2

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(c) L0 norm

Figure 10: Visualization of interpretation error Ip,Nx(f, g) evaluated on IMDb dataset of algorithm
Harmonica and Harmonica-local.

1 2 4 8
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(a) L2 norm

1 2 4 8
Subspace radius

10 1

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(b) L1 norm

1 2 4 8
Subspace radius

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-local (2nd order)
Harmonica-local (3rd order)

(c) L0 norm

Figure 11: Visualization of interpretation error Ip,Nx
(f, g) evaluated on ImageNet of algorithm

Harmonica and Harmonica-local.

K Detailed Results on Truthful Gap

Estimating truthful gap For convenience, we define the set of bases Cd up to degree
d as Cd = χS |S ⊆ [n], |S| ≤ d. We evaluate the truthful gap on the set of bases C3,
C2, and C1. By definition in Eqn. (3), we have TVC

(f, g) =
∑

χS∈C ⟨f − g, χS⟩2 =(
E

x∼{−1,1}n

[
(f(x)− g(x))

∑
χS∈C χS(x)

])2

.

Then we perform a sampling-based estimation of the truthful gap. Worth mentioning that since the
size of set Cd satisfies |Cd| =

∑d
i=0

(
n
i

)
and the max number of words, sentences, or superpixels

30

n∗ ≤ 50,
∑

χS∈C χS(x), as the summation function of orthonormal basis, is easy to compute on
every sample x ∈ {−1, 1}n (for n∗ very large, we will perform another sampling step on this
function).

Table 1 shows the C3 truthful gap evaluated on different datasets. We can see that Harmonica
outperforms all the other baseline algorithms. Figure 12 shows the truthful gap evaluated on the
SST-2 dataset. We can see that Harmonica achieves the best performance for C2 and C3. For the
simple linear case C1, Harmonica is almost as good as LIME. Figure 13 shows the truthful gap
evaluated on the IMDb dataset under the same settings as the SST-2 dataset. Figure 14 shows the
truthful gap evaluated on the ImageNet dataset. We can see that Harmonica outperforms all the other
baselines consistently.

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0
1
2
3
4
5
6
7

Tr
ut

hf
ul

 g
ap

1e 5

(a) bases C3

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
ut

hf
ul

 g
ap

1e 4

(b) bases C2

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0
1
2
3
4
5
6
7

Tr
ut

hf
ul

 g
ap

1e 4

(c) bases C1

Figure 12: Visualization of truthful gap TC(f, g) evaluated on SST-2 dataset.

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0
2
4
6
8

10
12
14
16

Tr
ut

hf
ul

 g
ap

1e 4

(a) bases C3

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0
1
2
3
4
5
6
7
8

Tr
ut

hf
ul

 g
ap

1e 4

(b) bases C2

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r)LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

 (2
nd

 or
de

r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)
0

1

2

3

4

Tr
ut

hf
ul

 g
ap

1e 3

(c) bases C1

Figure 13: Visualization of truthful gap TC(f, g) evaluated on IMDb dataset.

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r) LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

(2n
d o

rde
r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)

10 4

10 3

10 2

Tr
ut

hf
ul

 g
ap

(a) bases C3

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r) LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

(2n
d o

rde
r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)

10 4

10 3

10 2

Tr
ut

hf
ul

 g
ap

(b) bases C2

Harm
on

ica

(2n
d o

rde
r)

Harm
on

ica

(3r
d o

rde
r) LIM

E
SH

AP

Int
eg

rat
ed

Grad
ien

ts

Int
eg

rat
ed

Hess
ian

s

Sh
ap

ley
 Ta

ylo
r

(2n
d o

rde
r)

 Fa
ith

-Sh
ap

 (2
nd

 or
de

r)

10 4

10 3

10 2

10 1

Tr
ut

hf
ul

 g
ap

(c) bases C1

Figure 14: Visualization of truthful gap TC(f, g) evaluated on ImageNet dataset.

31

L Detailed Results on Harmonica-anchor

L.1 Harmonica-anchor

Figure 15, 16, and 17 show the interpretation error results evaluated on three datasets. All Harmonica-
anchor algorithms further reduce the interpretation error compared to Harmonica. As we increase the
number of anchors, the interpretation error slightly reduces, which is consistent with our intuition.
Table 15, 16, and 17 show the numerical results.

1 2 4 8 16 32
Subspace radius

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 2

10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(c) L0 norm

Figure 15: Visualization of interpretation error Ip,Nx(f, g) evaluated on SST-2 of Harmonica-
anchor (2nd order) with different anchor number k.

1 2 4 8 16 32
Subspace radius

10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 2

4 × 10 3

6 × 10 3

2 × 10 2

3 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 3

10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(c) L0 norm

Figure 16: Visualization of interpretation error Ip,Nx
(f, g) evaluated on IMDb of Harmonica-

anchor (2nd order) with different anchor number k.

1 2 4 8
Subspace radius

10 1

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(a) L2 norm

1 2 4 8
Subspace radius

10 1

4 × 10 2

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(b) L1 norm

1 2 4 8
Subspace radius

10 1

2 × 10 1

3 × 10 1

4 × 10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (k=3)
Harmonica-anchor (k=5)
Harmonica-anchor (k=7)
Harmonica-anchor (k=9)

(c) L0 norm

Figure 17: Visualization of interpretation error Ip,Nx(f, g) evaluated on ImageNet of Harmonica-
anchor (2nd order) with different anchor number k.

L.2 Harmonica-anchor-constrained

Here we provide the interpretation error of Harmonica-anchor-constrained evaluated on SST-2 dataset
in Figure 18. As we increase the constraint coefficient λ2, the interpretation error increases, but still
smaller than that of Harmonica.

32

Radius L2 norm L1 norm L0 norm

1 0.0217 0.0178 0.0137
2 0.0257 0.0196 0.0186
4 0.0360 0.0258 0.0417
8 0.0559 0.0396 0.1007

16 0.0723 0.0518 0.1579
32 0.0753 0.0541 0.1688
∞ 0.0753 0.0541 0.1687

Harmonica-anchor (k = 3)

Radius L2 norm L1 norm L0 norm

1 0.0201 0.0164 0.0116
2 0.0239 0.0181 0.0157
4 0.0343 0.0242 0.0381
8 0.0544 0.0381 0.0963
16 0.0715 0.0511 0.1565
32 0.0749 0.0536 0.1678
∞ 0.0748 0.0535 0.1677

Harmonica-anchor (k = 5)

Radius L2 norm L1 norm L0 norm

1 0.0195 0.0159 0.0114
2 0.0231 0.0175 0.0144
4 0.0330 0.0232 0.0356
8 0.0535 0.0374 0.0948

16 0.0719 0.0514 0.1598
32 0.0753 0.0540 0.1714
∞ 0.0753 0.0540 0.1717

Harmonica-anchor (k = 7)

Radius L2 norm L1 norm L0 norm

1 0.0193 0.0158 0.0104
2 0.0228 0.0172 0.0139
4 0.0324 0.0227 0.0345
8 0.0533 0.0371 0.0940
16 0.0726 0.0519 0.1631
32 0.0762 0.0546 0.1750
∞ 0.0761 0.0545 0.1746

Harmonica-anchor (k = 9)

Table 15: The interpretation error of Harmonica-anchor algorithms evaluated on the SST-2 dataset
for different k with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

Radius L2 norm L1 norm L0 norm

1 0.0078 0.0062 0.0013
2 0.0088 0.0067 0.0005
4 0.0124 0.0088 0.0015
8 0.0199 0.0135 0.0074

16 0.0231 0.0154 0.0114
32 0.0235 0.0157 0.0121
∞ 0.0236 0.0157 0.0121

Harmonica-anchor (k = 3)

Radius L2 norm L1 norm L0 norm

1 0.0062 0.0049 0.0011
2 0.0070 0.0051 0.0004
4 0.0100 0.0068 0.0010
8 0.0169 0.0110 0.0053
16 0.0200 0.0129 0.0090
32 0.0204 0.0132 0.0097
∞ 0.0204 0.0132 0.0098

Harmonica-anchor (k = 5)

Radius L2 norm L1 norm L0 norm

1 0.0057 0.0044 0.0010
2 0.0062 0.0045 0.0003
4 0.0088 0.0058 0.0008
8 0.0151 0.0097 0.0042

16 0.0181 0.0116 0.0078
32 0.0186 0.0118 0.0085
∞ 0.0186 0.0119 0.0086

Harmonica-anchor (k = 7)

Radius L2 norm L1 norm L0 norm

1 0.0054 0.0042 0.0009
2 0.0057 0.0041 0.0003
4 0.0080 0.0052 0.0007
8 0.0139 0.0089 0.0036
16 0.0169 0.0107 0.0071
32 0.0174 0.0110 0.0079
∞ 0.0174 0.0110 0.0080

Harmonica-anchor (k = 9)

Table 16: The interpretation error of Harmonica-anchor algorithms evaluated on the IMDb dataset for
different k with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

Radius L2 norm L1 norm L0 norm

1 0.0573 0.0473 0.1281
2 0.0681 0.0518 0.1524
4 0.1025 0.0779 0.2855
8 0.1382 0.1066 0.4240
∞ 0.1485 0.1145 0.4562

Harmonica-anchor (k = 3)

Radius L2 norm L1 norm L0 norm

1 0.0473 0.0389 0.0842
2 0.0592 0.0442 0.1153
4 0.0976 0.0728 0.2608
8 0.1361 0.1040 0.4104
∞ 0.1462 0.1118 0.4422

Harmonica-anchor (k = 5)

Radius L2 norm L1 norm L0 norm

1 0.0442 0.0362 0.0719
2 0.0561 0.0418 0.1053
4 0.0954 0.0706 0.2496
8 0.1358 0.1032 0.4036
∞ 0.1461 0.1110 0.4352

Harmonica-anchor (k = 7)

Radius L2 norm L1 norm L0 norm

1 0.0430 0.0351 0.0672
2 0.0545 0.0404 0.0988
4 0.0952 0.0698 0.2452
8 0.1365 0.1032 0.4011
∞ 0.1468 0.1110 0.4320

Harmonica-anchor (k = 9)

Table 17: The interpretation error of Harmonica-anchor algorithms evaluated on the ImageNet dataset
for different k with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

33

1 2 4 8 16 32
Subspace radius

10 1

3 × 10 2

4 × 10 2

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (2=0.0)
Harmonica-anchor (2=1.0)
Harmonica-anchor (2=5.0)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (2=0.0)
Harmonica-anchor (2=1.0)
Harmonica-anchor (2=5.0)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

10 2

10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2nd order)
Harmonica (3rd order)
Harmonica-anchor (2=0.0)
Harmonica-anchor (2=1.0)
Harmonica-anchor (2=5.0)

(c) L0 norm

Figure 18: Visualization of interpretation error Ip,Nx
(f, g) evaluated on SST-2 dataset of Harmonica-

anchor-constrained (2nd order) with different coefficient λ2. Here all the Harmonica-anchor-
constrained algorithms use k = 5.

Radius L2 norm L1 norm L0 norm

1 0.0220 0.0182 0.0115
2 0.0236 0.0166 0.0157
4 0.0348 0.0210 0.0382
8 0.0587 0.0363 0.0977

16 0.0777 0.0484 0.1500
32 0.0813 0.0504 0.1581
∞ 0.0812 0.0503 0.1579

Harmonica-anchor-
constrained (λ2 = 0)

Radius L2 norm L1 norm L0 norm

1 0.0234 0.0176 0.0250
2 0.0287 0.0191 0.0329
4 0.0403 0.0251 0.0579
8 0.0608 0.0382 0.1086

16 0.0808 0.0494 0.1538
32 0.0853 0.0517 0.1623
∞ 0.0851 0.0516 0.1620

Harmonica-anchor-
constrained (λ2 = 1.0)

Radius L2 norm L1 norm L0 norm

1 0.0304 0.0238 0.0317
2 0.0357 0.0258 0.0427
4 0.0461 0.0315 0.0701
8 0.0650 0.0435 0.1214

16 0.0839 0.0539 0.1663
32 0.0883 0.0561 0.1750
∞ 0.0881 0.0560 0.1745

Harmonica-anchor-
constrained (λ2 = 5.0)

Table 18: The interpretation error of Harmonica-anchor-constrained algorithms evaluated on the
SST-2 dataset for different λ2 with a radius ranging from 1 to∞ under L2, L1 and L0 norms.

M Discussion on the Low-degree algorithm

We also investigate the sample complexity of Harmonica and Low-degree algorithms, which demon-
strates that Harmonica achieves better performance with the same sample size.

1 2 4 8 16 32
Subspace radius

10 2

10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2 order, 2000 samples)
Low-degree (2 order, 2000 samples)
Low-degree (2 order, 4000 samples)
Low-degree (2 order, 6000 samples)
Low-degree (2 order, 8000 samples)
Low-degree (2 order, 10000 samples)

(a) L2 norm

1 2 4 8 16 32
Subspace radius

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2 order, 2000 samples)
Low-degree (2 order, 2000 samples)
Low-degree (2 order, 4000 samples)
Low-degree (2 order, 6000 samples)
Low-degree (2 order, 8000 samples)
Low-degree (2 order, 10000 samples)

(b) L1 norm

1 2 4 8 16 32
Subspace radius

100

In
te

rp
re

ta
tio

n
er

ro
r

Harmonica (2 order, 2000 samples)
Low-degree (2 order, 2000 samples)
Low-degree (2 order, 4000 samples)
Low-degree (2 order, 6000 samples)
Low-degree (2 order, 8000 samples)
Low-degree (2 order, 10000 samples)

(c) L0 norm

Figure 19: Visualization of interpretation error Ip,Nx(f, g) evaluated on SST-2 dataset, while Har-
monica and Low-degree algorithms using different sample size varying from 2000 to 10000.

From Theorem 2 and Theorem D.1, we know that the sample complexity of the Harmonica algo-
rithm (Õ(1ϵ)) is much more efficient than the Low-degree algorithm (Õ(1

ϵ2)). Figure 19 shows that
when evaluating the interpretation error on SST-2 dataset, with the same sample size, the Harmonica

34

algorithm outperforms the Low-degree algorithm by a large margin. We further increase the sample
size for the Low-degree algorithm and see that its interpretation error gradually approaches that
of Harmonica. However, even with 5x sample size, the Low-degree algorithm still gives a larger
interpretation error compared with Harmonica. However, since exactly computing the Low-degree
algorithm is extremely time-consuming, here we present the results using five times the sample size
to show the calculation difficulty of the Low-degree algorithm.

35

	Introduction
	Our Framework on Interpretability
	Applying Our Framework to Removal-based Explanations
	Fourier Basis and Truthful Gap
	Representative Algorithms
	Quantifying Inconsistency

	Trade-off Between Efficiency and Consistency
	Experiments
	Analysis on Polynomial Functions
	Experimental Setup
	Results on Interpretation Error
	Results on Truthful Gap
	More Experimental Results

	Related Work
	Conclusion
	Fourier Analysis of Boolean Function
	Proofs
	Harmonica Algorithm

	Uncertainty Principle for Boolean functions
	Low-degree Algorithm
	Discussion on the Existing Algorithms
	Test with Low order Polynomial Functions
	First order polynomial function
	Second order polynomial function
	Third order polynomial function

	More on Experiment Details
	More Experimental Results
	Image Segmentation Format
	Neural Network Architectures
	Choice of Baselines

	Detailed Results on Interpretation Error
	Detailed Results on Harmonica-local
	Additional Experiments

	Detailed Results on Truthful Gap
	Detailed Results on Harmonica-anchor
	Harmonica-anchor
	Harmonica-anchor-constrained

	Discussion on the Low-degree algorithm

