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ABSTRACT

We introduce a novel single-camera teleoperation system for learning dexterous
manipulation. Our system allows human operators to collect 3D demonstrations
efficiently with only an iPad and a computer. These demonstrations are then used
for imitation learning on complex multi-finger robot hand manipulation tasks. One
key contribution of our system is that we construct a customized robot hand for
each user in the physical simulator, which is a manipulator resembling the same
kinematics structure and shape of the operator’s hand. This not only avoids unsta-
ble human-robot hand retargetting during data collection, but also provides a more
intuitive and personalized interface for different users to operate on. Once the data
collection is done, the customized robot hand trajectories can be converted to dif-
ferent specified robot hands (models that are manufactured and commercialized)
to generate training demonstrations. Using the data collected on the customized
hand, our imitation learning results show large improvement over pure RL on
multiple specified robot hands.
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Figure 1: We introduce a teleoperation system which utilizes a single camera on an iPad to record a human
hand, estimates the 3D hand pose and shape, converts it to a customized robot hand in a physical simulator for
dexterous manipulation. Once the manipulation trajectories are collected, we convert them to different specified
robot hands to generate demonstrations, and use them for imitation learning.

1 INTRODUCTION

Dexterous manipulation with multi-finger hand is of vital importance in robot manipulation study.
The complex contact pattern between dexterous hand and manipulated objects is very hard to model.
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It is very challenging to design a controller manually that can solve contact-rich tasks in unstruc-
tured environment. Recent research shows possibilities to learn dexterous manipulation skills with
Reinforcement Learning (RL) (OpenAI et al., 2018; 2019; Rajeswaran et al., 2017). The closed-
loop learning from interaction philosophy is appealing to robotics researchers. However, the high
Degree-of-Freedom(DoF) joints and discontinuous contact increase the sample complexity to train
an RL policy. It often takes a large amount of time to collect interaction data. Besides, black-box
optimization with RL rewards can also lead to unexpected and unsafe behaviors.

Learning from human demonstration collected by the teleoperation system is a natural solution for
dexterous manipulation given the similar morphology. Most current teleoperation systems require
Virtual Reality (VR) (Rajeswaran et al., 2017; Kumar & Todorov, 2015; Hedayati et al., 2018; Pan
et al., 2021; Zhang et al., 2018) devices or wired gloves to capture human hands. While providing
accurate data collection, it also limits the flexibility and scalability of the process. On the other hand,
vision-based teleoperation frees the human operator from wearing special devices and thus reduces
the cost and is more scalable.

However, vision-based teleoperation introduces another challenge in the process. Almost all existing
methods need to convert the collected human hand motion into robot hand motion to command the
robot, which is called motion retargeting (Handa et al., 2020; Li et al., 2019; Antotsiou et al., 2018).
A human operator needs to choose the movement based on the imagination of the future robot hand
gesture and configuration. But humans are only familiar with their own hand. The human operators
may find it hard to control the robot if the retargeting mapping is not intuitive, and it will take much
time to calibrate their own hands with the robot hands. Moreover, the demonstrations collected with
a specific robot hand can only be used for training imitation learning algorithm on the same robot.

In this paper, we introduce a single-camera teleoperation system with a scalable setup and an in-
tuitive control interface that can collect demonstrations for multiple robot hands. In particular, our
system only requires an iPad or one of another mobile device as the capturing device and DOES NOT
need to perform motion retargeting online during teleoperation. At the beginning of data collection,
our system will first perform initialization and automatic calibration: estimate the hand geometry of
a specific human operator and construct the mapping from the operator frame to the frame in sim-
ulated environment. The key of our system is to generate a customized robot hand on the fly in the
physical simulator. The customized robot hand will resemble the same kinematics structure of the
operator’s hand in both geometry (e.g., shape and size) and morphology. The system will generate
different robot hands for different human operators. In this way, we can avoid motion retargeting
and provide a more intuitive way for manipulation at the same time. The operator can then control
the customized hand that he or she is most familiar with to perform dexterous manipulation tasks.
Despite the lack of tactile feedback, our system can collect demonstration efficiently at around 60
trajectories per hour for the Relocate and Flip task in subsection 4.1.

After all the data is collected with the teleoperation system, we perform motion retargeting via op-
timization offline. We convert the trajectory of a customized robot hand to actual specified robot
hands (i.e., the corresponding models are manufactured and commercialized in the real world). We
experiment with 3 types of robot hands including the Schunk Robot Hand (Schunk), the Adroit
Robot Hand (Kumar et al., 2013), and the AR10 Robot Hand (Robots). We only need to collect
the trajectories once to generate imitation data for all these specified robot hands. We can then
use the demonstrations for imitation learning on the corresponding manipulation task. We apply the
imitation learning algorithm by augmenting the RL objective with the collected demonstrations (Ra-
jeswaran et al., 2017).

We experiment with two types of challenging dexterous manipulation tasks: Relocate and Flip. In
the Relocate task, the robot needs to pick up and place an object to match a goal position, which
is randomized in each trial. The Flip task requires the robot to revert a fallen mug to its normal
pose. Our results show that human demonstrations collected in our teleoperation system significantly
improve dexterous hand manipulation on three different specified robot hands, compared to pure
RL method. During data collection, multiple users with different hand sizes can use our system
which generates different customized hands to perform teleoperation. We hope our teleoperation
system can reduce the burden of demonstration collections and generalizable to training policies for
different robot hands.

We highlight our main contributions as follows:
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Figure 2: Overview of our Teleoperation and Imitation System We develop a teleoperation sys-
tem with a paired imitation learning system. In the single-camera teleoperation system, we collect
human demonstrations on dexterous tasks in simulator. In the imitation learning system, we perform
motion retargeting to obtain demonstrations for multiple robot hands.

• We develop a single-camera teleoperation system to collect demonstrations and a paired
imitation system to learn dexterous skills for multiple robot hands. To the best of our
knowledge, it is the first teleportation system for dexterous manipulation with a single
camera.

• We propose a novel customized robot hand, which is constructed on the fly based on the
hand shape of a specific human operator.

• We show that the collected demonstration can effectively improve the performance of the
policies trained with multiple specified robot hands.

2 RELATED WORK

Dexterous Manipulation. Manipulation with dexterous robot hands has been long studied in
robotics and it remains to be one of the most challenging control task (Rus, 1999; Okamura et al.,
2000; Andrews & Kry, 2013; Bai & Liu, 2014). Recently, we have witnessed Reinforcement Learn-
ing (RL) approaches (OpenAI et al., 2018; 2019) delivering promising results on complex in-hand
manipulation tasks. While these results are encouraging, RL suffers from poor sample efficiency in
training. Under a high degree of freedom (more than 20 in most hands), the RL policy can easily
explore unexpected behaviors without well-designed rewards and external constraints.

Imitation Learning from Demonstrations. Learning from human demonstrations can not only pro-
vide external constraint for the robot to explore the expected human-like behaviors but also largely
reduces sample efficiency. Beyond behavior cloning (Pomerleau, 1989; Young et al., 2020), imi-
tation learning has been widely studied in the form of Inverse Reinforcement Learning (Ng et al.,
2000; Abbeel & Ng, 2004; Ho & Ermon, 2016; Fu et al., 2017; Torabi et al., 2018; Aytar et al.,
2018) and incorporating expert demonstrations into the RL objectives (Peters & Schaal, 2008; Duan
et al., 2016; Večerı́k et al., 2017; Rajeswaran et al., 2018; Radosavovic et al., 2021). Our work is
highly inspired by Rajeswaran (Rajeswaran et al., 2018), where a VR setup is proposed to collect
demonstrations for dexterous manipulation and an algorithm named Demo Augmented Policy Gra-
dient (DAPG) is introduced for imitation learning. However, data collection with VR requires a lot
of human effort and is not scalable. We propose to collect data via a single-camera teleoperation
system, which makes the process scalable and accessible for different users Our work is also related
to imitation learning from human videos (Schmeckpeper et al., 2020; Shao et al., 2020; Song et al.,
2020; Young et al., 2020). However, most of these works focus on a 2-jaw parallel gripper and
relatively simple tasks, where 3D information is not necessary. Our teleoperation system provides
critical 3D hand-object pose information for guiding dexterous manipulation.
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Vision-based Teleoperation. Vision-based teleoperation frees the operator from wearing data cap-
ture devices, which is commonly used in the game industry(Zhang, 2012). This technique has been
used for robot teleoperation (Kofman et al., 2007; Du et al., 2012; 2010; Almetwally & Mallem,
2013) on manipulation tasks, e.g. pick and place with a parallel gripper. DexPilot (Handa et al.,
2020) is a pioneering work to extend the vision-based teleoperation to manipulation with an Allegro
Hand (Robotics). To capture the hand pose, a black-clothed table with four calibrated RealSense
cameras is used in their system. Our work only requires a single iPad camera for teleoperation with-
out the controlled environment. Our novel customized robot hand also provides a more intuitive way
for data collection and allows generalization for learning with multiple specified robot hands, which
has not been shown before.

Motion Imitation. Once the demonstrations are generated, we perform imitation learning for a
policy that can be generalized to different object configurations. We stress this is different from the
works which train a policy to follow one expert demonstration (Peng et al., 2018; Liu et al., 2018;
Pathak et al., 2018; Sharma et al., 2018; Garcia-Hernando et al., 2020; Sieb et al., 2020; Xiong et al.,
2021).

3 OVERVIEW

We propose a novel framework for imitation learning from single-camera teleoperation. As shown
in Figure 2, our framework is composed of a single-camera teleoperation system and an imitation
learning system.

(i) Single-Camera Teleoperation System to collect demonstrations for dexterous manipulation
tasks. It only requires video streaming from an iPad. A key innovation of the system is constructing
a customized robot hand on the fly based on the estimated shape of the operator’s own hand. The
human operators can then control the customized robot hand in a physical simulation environment to
perform dexterous manipulation tasks. The demonstrations can be efficiently collected with around
60 demonstrations per hour.

(ii) Imitation Learning System, which can learn dexterous manipulation skills for multiple robot
hands from one set of collected demonstrations. Given the collected trajectories from the teleoper-
ation system, we perform motion retargeting to convert the demonstrations on customized hands to
the specified robot hands. These new trajectories are then used to train policies on the same task
with the corresponding robot hand. Our system can efficiently learn dexterous skills on complex
tasks which are hard to solve by RL alone.

4 SINGLE-CAMERA TELEOPERATION SYSTEM

The hardware of our teleoperation system consists of an iPad and a laptop as shown in Figure 3. We
use the front camera of an iPad to stream the RGB-D video of the human operator at 25 fps. The
teleoperation system consists of three components, a physical simulator, a hand detector to capture
human motion, and a GUI to visualize the current simulation environment for the human operator.
We use a laptop with an RTX 2070 GPU. The processing time for each RGB-D frame is less than
30ms, which means the whole teleoperation system can run at 25 fps, the same as camera frequency.

4.1 TASK DESCRIPTION

We adopt SAPIEN(Xiang et al., 2020) as our physical simulator and design multiple dexterous
manipulation tasks there. The environments are used for both demonstration collection and policy
learning. We develop 2 types of manipulation tasks with different objects. The objects are select
from YCB dataset (Calli et al., 2015) with reasonable sizes for human to manipulate.

Relocate. The robot needs to pick up an object on the table and to a target position. It requires the
agent to manipulate the object so that it can match the given goal. The first three rows of Figure 1
illustrate the relocate task with three objects of different geometry. The goal pose is visualized using
the transparent object. It is a goal-conditioned task where we randomize both the initial pose and
the goal pose for each trial. The task is evaluated based on the distance between the final object
position and the goal position.
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Figure 3: Hardware setup with an
iPad and a computer.
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Figure 4: Illustration of different customized robot hands
generated from different human hands. The hand on left
and right comes from different human. The red dots are the
joints and the red lines visualize the kinematics tree.

Flip. As shown in row 4 of Figure 1, it requires the robot to flip a mug on the table. The robot needs
to rotate the object 90 degrees carefully to avoid pushing the object away. This task evaluates robot’s
ability to exert force in a certain direction. We randomize the position and the horizontal rotation of
the mug for each trial. This task is evaluated based on the final orientation of the object.

4.2 HAND DETECTOR

Our hand detector takes as input the RGB-D frames and outputs the wrist pose (6-d), hand pose pa-
rameters (45-d), and hand shape parameters (10-d). It is implemented based upon MediaPipe (Zhang
et al., 2020) and FrankMocap (Rong et al., 2020). First, we use MediaPipe hand tracker to detect
the axis-aligned bounding-box and crop the image around the hand region. The cropped images
are then fed into FrankMocap to estimate the pose and shape parameters. It will detect 21 3D key
points on the human hand. We use SMPLX (Pavlakos et al., 2019) model to represent pose and
shape parameters. It parameterizes the hand by shape parameters for the hand geometry and pose
parameters for the deformation. Given the shape and pose parameters, we can reconstruct a hand in
the canonical frame where the wrist is placed at the origin. Then we adopt the Perspective-n-Point
(PnP) algorithm to match the key points in the canonical and the detected key points in the camera
frame to solve the transformation of the wrist to the camera. The outputs of the hand detector to the
downstream modules are wrist pose, hand pose parameters, and hand shape parameters.

4.3 TELEOPERATION PIPELINE

As shown in the top row of Figure 2, our teleoperation pipeline includes two steps: (a) Initialization;
and (b) Customized Robot Hand Construction.

Initialization The camera captures the RGB-D image of the human operator, detects the human
hand and estimates the hand shape and pose. In teleoperation, human operators naturally interpret
their motion commands to the robots with respect to an egocentric frame (Kozhevnikov & Hegarty,
2001; Stransky et al., 2010). It is common to build a global reference frame in the real world
that correspond to a frame defined in the simulated environment (Vuong et al., 2021; Li et al.,
2019). So another purpose of the initialization step is to define the global reference frame by the
operator. During initialization, the operator is required to spread five fingers as shown in the first
green rounded rectangle of Figure 2, which offers the best view of the human hand for the camera.
This design ensures better reconstruction accuracy for the human hand and generates a customized
robot hand that fits the human. We render a human hand turning from red to green to indicate
the initialization progress. The whole process takes 5 seconds. See supplementary video for more
details.

Customized Robot Hand Our system builds a customized robot hand based on the hand geometry
of each user. Given the shape parameters from initialization, we can reconstruct a human hand at rest
pose. We then build an articulated hand model in the physical simulator based on the reconstructed
human hand. We extract the joint skeleton of the human hand (the red lines in Table 4) and create
a robot model with the same kinematics structure. We choose primitive shapes, e.g. box for the
palm and capsules for fingers, for efficient collision detection (Kockara et al., 2007) and stable
simulation (Nvidia). To ensure that our customized hand can achieve any motion made by human,
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we build three revolute joints for each joint on human hands. The customized hand has 45 (15*3)
DoF, which matches the SMPLX model. In this way, we can directly rotate the joints of customized
robot hand using detected pose parameters without motion retargeting. Table 4 shows different
human hands and the corresponding customized hand. In this figure, the right human hand has a
shorter thumb. This characteristic reflects in the customized robot hand.

We use a PD controller to control the joint angles of the customized robot hand. With each hand
detection, we set the estimated pose passed by a low-pass filter as the position target. One challenge
of visual teleoperation is perception error. When the human hand is vertical to the camera plane, it
makes the detection results not so reliable and in turn generates an abrupt motion.

To tackle this issue, we utilize the hand shape estimation results as a confidence score and use it
in PD control. Since the shape parameters are estimated from the best view during initialization,
we can use them as the ground-truth hand shape. Our intuition is that when the camera view is not
reliable, both shape and pose estimation results will suffer from errors. Thus we can compute the
error of shape parameters by comparing with the ground-truth and use it as a confidence score for
pose accuracy. This problem can be formulated using normal distribution: st ∼ N(s0,Σ), where st
and so are the shape parameters from t frame and initialization, respectively. The covariance Σ is
set to be a diagonal matrix. We compute the normalized probability density p(t) as the confidence
score. The confidence-based PD position control is,

u(t) = p(t)Kpe(t)+ kd
de(t)

dt
(1)

, where u(t) is the joint torque and kp and kd are PD parameters. When the perception error is large,
we reduce the stiffness of controller. This design eliminates the undesired abrupt motion caused by
perception error.

5 IMITATION LEARNING SYSTEM

5.1 MOTION RETARGETING

Table 2 shows the DoF of each finger for different robot models. The finger DoF is given in the
following order: Thumb, Index, Middle, Ring, Pinky. Due to the discrepancy of DoF and kinematics
tree, we need to convert the demonstration from the customized robot hand to a specified robot
model, namely motion retargeting. With our customized robot hand design, we can skip the motion
retargeting during teleportation, which is often computational heavy to run on the fly. And after data
collection, we use optimization based motion retargeting to process the demonstration and use it for
imitation learning. The optimization objective is defined based on the keypoints on the robot hand
as,

min
qR

t

N

∑
i=0
|| f C

i (q
C
t )− f R

i (q
R
t )||2 +α||qR

t −qR
t−1||2

s.t. qR
lower ≤ qR

t ≤ qR
upper

(2)

, where qC
t is joint angles at step t for customized robot and qR

t is joint angles at step t for a specific
robot, e.g. Schunk Robot Hand. We use f C

i and f R
i to represent the forward kinematics function

i− th keypoints on the two robots. To improve the temporal consistency, we add a normalization
term to penalize the joint angle change and initialize qC

t using the value from qC
t−1.

5.2 IMITATION LEARNING METHOD

Given the retargeted demonstration, we perform imitation learning to solve the dexterous tasks de-
fined in subsection 4.1. Note that naive behavior cloning may be hard to work with randomized
initial and target pose. Instead, we adopt imitation learning algorithms which incorporate the demon-
stration into RL. Specifically, we use Demo Augmented Policy Gradient (DAPG) (Rajeswaran et al.,
2017) as our imitation algorithm. DAPG combines the experiences collected in demonstration and
interaction into a augmented policy gradient objective,

gaug = ∑
(s,a)∈ρπθ

∇ lnπ(a|s)Aπ(s,a)+ ∑
(s,a)∈ρπdemo

∇ lnπθ (a|s)λ0λ
k
1 max
(s′,a′)∈ρπ

Aπ(s′,a′)
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DAPG RL

Figure 5: Learning curves of the RL and DAPG on the four tasks with three different robot hands.
The x-axis is training iterations and y-axis is the normalized reward. The shaded area indicates the
standard deviation for three individual random seeds for all curves.

Task RL DAPG
Toma. 45.3±4.0 85.0±12.3
Pott. 6.7±6.3 41.0±20.3
Must. 44.0±20.0 75.3±24.7
Mug 48.0±4.3 77.3±5.0

Schunk Robot

Task RL DAPG
Toma. 41.7±30.3 95.0±3.0
Pott. 0±0 53.3±37.7
Must. 0±0 0±0
Mug 28.7±17.7 54.7±15.3

Adroit Robot

Task RL DAPG
Toma. 28.3±12.7 37.3±10.2
Pott. 0±0 6.3±3.3
Must. 0±0 0±0
Mug 45.0±20.8 76.7±16.2

AR10 Robot
Table 1: Success rate of the evaluated methods on the relocate task and flip task. We use ± to
represent mean and standard deviation over three random seeds. Relocate task (Toma., Pott., Must.)
has three different objects: tomato soup can, potted meat can, and mustard bottle. Flip task (Mug)
has one object: mug. The success of relocate is defined based on the distance between object and
target. The success of flip is defined based on the orientation of the object at the end of episode.

, where the first line is the vanilla policy gradient objective and the second line is behavior cloning
from demonstration. ρπ is the occupancy measure under policy π , λ0 and λ1 are hyper-parameters,
and k is the training iterations. The Aπ(s′,a′) is the advantage under policy π .

6 EXPERIMENT

We evaluate on the tasks of Relocate three different objects and Flip a mug. We use the processed
demonstration to train policy to perform these tasks and compare them with the RL baseline. To
train the policy, we adopt imitation learning algorithms which incorporate the demonstrations into
RL. We ablate how friction, PD Controller Parameters, Object Density, and the number of demon-
strations can affect the learning process. For the RL baseline, we use Trust Region Policy Opti-
mization(TRPO) (Schulman et al., 2015) as the on-policy algorithm. Both policy and value function
are 32×32 2-layer Multi-Layer Perceptrons (MLPs). The TRPO will use 200 trajectories for each
step. The imitation learning algorithm is DAPG described in section 5. DAPG adopts TRPO using
the same hyper-parameters with demonstrations. We collect 50 trajectories of demonstration for
each task and retarget the motion from customized hand to the specified robot. We train policies

(a) Object Friction (b) Object Density (c) PD Controller
Params

(d) Num of
Demonstrations

Figure 6: Ablation Study: Learning curves of DAPG on the Relocate task with tomato soup can
using Schunk Robot Hand. We ablate: (a) friction parameter of the relocated object; (b) density of
object; (c) PD controller parameters: stiffness and damping; (d) number of demonstrations used to
train DAPG . The demonstrations are kept the same for all conditions.
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Figure 7: Comparison of the naturalness on Relocate
with mustard bottle using Schunk robot hand. Top Row:
policy learned by DAPG with demonstrations; Bottom
Row: policy learned by RL without demonstrations.

Robot Finger DoF
Schunk (4,4,3,4,5)
Adroit (5,4,4,4,5)
AR10 (2,2,2,2,2)
Customized (9,9,9,9,9)

Table 2: DoF comparison for different
robot models. Customized stands for
the customized hand robot hand in sub-
section 4.3. The number in the table fol-
lows the order of: Thumb, Index Finger,
Middle Finger, Ring Finger, and Little
Finger. The customized hand has the
same DoF for each finger.

with three different random seeds. For relocate task both initial position and target position are
randomized for both training and evaluation. For flip task, the initial position is randomized.

State and Action Space contain the angles of robot joints, the velocity of hand palm, object position,
and orientation. We also include target position for relocate task. The action space is composed of
two parts: hand palm and finger joints. The motion of the palm is controlled by 6 velocity controllers
(3 for translation, 3 for rotation). And the finger joints are actuated by position controllers. The
dimension of action is 6+nq, where nq is the DoF shown in Table 2.

6.1 MAIN COMPARISON

We evaluate both RL and DAPG on relocate and flip tasks. The training curves are shown in Figure 5.
The y-axis is the normalized return and the x-axis is the number of steps. The success rate is
summarized in Table 1. For relocate, the task is considered as successful when the object position is
within 0.1 unit length to the target at the end of the episode. For flip, the robot will get success when
the orientation of mug is flipped back, where the angle between the negative z-axis and the direction
of gravity is less than 5 degree.

As shown in Figure 5 and Table 1, imitation learning method outperforms the RL baseline for most
tasks except the mustard bottle and for all robots. The performance of DAPG using Schunk is much
better than RL at all tasks. We find that for both RL and DAPG, relocate with a mustard bottle using
Adroit and AR10 robot is very challenging. The reason is that the thumb and other four fingers can
not form a tight shape closure even at the joint limit. While for the Schunk robot, the freedom of
the thumb is large enough to grasp the object. On the other hand, Adroit achieves the best across all
three robots on relocate with a tomato soup can. This indicates the existence of robot-specific skills.
Different robot hands are designed to fit objects with different geometry and a single robot hand
can hardly do best for all tasks. The results highlight the importance of using a customized hand to
collect demonstration that can support all tasks by motion retargeting to multiple robot hands.

6.2 ABLATION STUDY

To investigate the influence of different dynamics conditions and the number of demonstrations, we
ablate the object friction, robot controller parameters, object density, and the number of demonstra-
tions. We choose the relocate task with tomato soup can using Schunk robot as the task for ablation
study. Figure 6 (a) shows that the learning curve is robust to friction change. To hold the object
firmly, a two-finger parallel-jaw gripper usually needs to form an antipodal grasp (Chen & Burdick,
1993), which is sensitive to friction change. Different from parallel-gripper, the dexterous hand can
form generate force closure with multiple contact points, thus can withstand smaller friction. Sim-
ilar results can also be found in Figure 6 (b) where the density is changing. The final performance
with x2 density is comparable to normal density. Figure 6 (c) illustrates the influence of controller
parameters on the learning curve. With larger stiffness, the robot can move the object to the target
sooner and get a larger reward. Figure 6 (d) shows more demonstrations can achieve better perfor-
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mance. We also observe that when using only 20 or 30 demos, the variance of training curves is
larger.

6.3 VISUALIZATION OF POLICY BEHAVIOR

In this experiment, we visualize the policy trained by DAPG and RL in Table 7. We observe that
DAPG tries to grasp the mustard bottle in a natural behavior while RL policy lifts the object by
rotating the wrist. These results highlight the value of demonstration to regulate the behavior of
policy to be expected and safe. This phenomenon is especially important for training embodied
agents when we want the agent to learn to interact with the environment in the desired way.

7 CONCLUSION

We propose a novel single-camera teleoperation system to collect human hand manipulation data
for imitation learning. We introduce a novel customized robot hand, providing a more intuitive way
for different human operators to collect data. We show the collected demonstrations can improve
the learning of dexterous manipulation on multiple robots, when the data collection only needs to be
conducted once.
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