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Abstract
Tabular in-context learning (ICL) models such
as TabPFN and TabICL have recently achieved
state-of-the-art (SOTA) performance on several
tabular prediction tasks. Trained exclusively on
synthetic data, these models however do not fully
leverage the rich semantics and world knowledge
contained in real-world data. Tabular ICL mod-
els based on pretrained large language models
such as TabuLa-8B integrate semantics and world
knowledge but are only able to make use of a
small amount of context due to inherent architec-
tural limitations. Aiming to bridge this gap, we
introduce ConTextTab1, integrating semantic un-
derstanding and alignment into a table-native ICL
framework. Using specialized embeddings for dif-
ferent data modalities and training on large-scale
real-world tabular data, our model is competi-
tive with SOTA across a broad set of benchmarks
while setting a new standard on the semantically
rich CARTE benchmark.

1. Introduction
Tables remains a predominant data format in many real-
world applications (Chui et al., 2018), making its under-
standing through machine learning algorithms critical. Re-
cently, applying the in-context learning (ICL) paradigm to
tabular prediction tasks has shown promising results. The
approach was pioneered by TabPFN (Hollmann et al., 2023).
Pretrained on large amounts of synthetic data, its latest incar-
nation TabPFNv2 (Hollmann et al., 2025) produces SOTA
results on datasets with up to 10 000 rows for both classifica-
tion and regression tasks. In recent work, TabICL (Qu et al.,
2025) extends the success story of this approach to larger
datasets, using special tabular embedding modules. Com-
mon to both TabPFN and TabICL is that they are trained
entirely on synthetically generated numerical data, with cat-

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

1The code and model checkpoints will be publicly released.

egorical features produced by an indexing procedure. While
using synthetic data has many advantages, in particular its
diversity at scale, a consequence is that the data does not
contain any semantically meaningful values as found in real-
world applications. In particular, column names are not used
in either TabPFN or TabICL, and categorical features are
encoded via ordinal encoding disregarding any underlying
semantics. We argue that semantic understanding can be
captured by training on real-world data. A primary example
of this is TabuLa-8B (Gardner et al., 2024), turning a pre-
trained LLM into a tabular ICL model. However, utilizing
pretrained LLMs for tabular tasks has several limitations.
Most importantly, textual serialization and tokenization of
the input table is not token efficient, effectively limiting
the maximum context length that can be processed. For
example, TabuLa-8B operates on a maximum of 32 context
rows. Furthermore, the tokenization schema and autoregres-
sive nature of LLMs are not adapted to the tabular structure,
resulting in a linear non-uniform token sequence.

Aiming to bridge these approaches, we propose a table-
native ICL model trained on real-world data, using em-
beddings tailored to different data modalities, in particular
incorporating semantic embeddings of column names and
categorical values. The resulting model is competitive to ex-
isting table-native ICL approaches across a range of tabular
prediction benchmarks and achieves a new SOTA for the
semantically rich CARTE benchmark (Kim et al., 2024), in
particular in the low-data regime.

2. Related Work
Tabular deep learning: Prediction on tabular data has
traditionally been dominated by decision trees, particularly
boosted variants. They deliver strong performance but re-
quire separate training for each task and cannot leverage pre-
training. Recent deep learning approaches have successfully
shown consistently good performance overtaking boosted
trees, for example RealMLP (Holzmüller et al., 2024).

In-context learning on tabular data: TabPFN broke the
long-standing dominance of boosted trees on small classi-
fication tasks, outperforming them by using row-level ICL.
A recent variant, TabDPT (Ma et al., 2024), showed that
equally excellent results can be achieved by training on
real-world data using similarity-based retrieval of context
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Figure 1. Our proposed model architecture illustrating the integration of data type-specific embeddings, an interleaved attention backbone,
and customized output heads.

rows. Generalizing the row-based encoding, cell-based ICL
introduced with TabPFNv22 and utilized also by TabICL
extended this success to larger datasets with up to 10 000
and more samples.

Semantics and real data: Capturing the rich semantics of
real-world tabular data enables the transfer of world knowl-
edge across prediction tasks in addition to statistical patterns.
The CARTE (Kim et al., 2024) architecture enables pretrain-
ing across a range of real-world sources while capturing
semantics. It achieves SOTA results on the semantically
rich CARTE benchmark, although it requires task-specific
fine-tuning. Several works approach tabular ICL by tuning
LLMs on tabular tasks, e.g. TabLLM (Hegselmann et al.,
2023), LIFT (Dinh et al., 2022), or TabuLa-8B. In particu-
lar, the works by Gardner et al. (2024) are note-worthy for
curating the T4 dataset, containing roughly 3 M, and for its
excellent results in the very low data-regime.

3. Method
To overcome the aforementioned limitations of existing
table-native ICL methods and bridge the gap to LLM-based
ones, we propose ConTextTab, a semantics-aware table-
native ICL model. To this end, we perform several key
modifications to the TabPFN architecture and utilize large-
scale pretraining on real-world data. An overview of our
proposed architecture is given in Figure 1.

3.1. Encoding

We encode data differently depending on its modality – i.e.
text, date, or numeric type. Column headers are also en-
coded, effectively replacing positional encodings.

2Hereinafter, we focus on TabPFNv2 and refer to it as TabPFN.

Text: We transform each text cell to an embedding vec-
tor using a pretrained text embedding model. We ap-
ply this to both free text as well as categorical columns,
which can thus retain the meaning in their labels. Any
off-the-shelf embedding model can be used for this pur-
pose. We settle for the comparably small but fast model
all-MiniLM-L6-v2 (Wang et al., 2020). We apply a
learnable linear layer to the text embeddings to map to di-
mension d. Semantic embeddings of cell values have been
previously investigated (Yak et al., 2023; Ye et al., 2024a;
Kim et al., 2024; Spinaci et al., 2024), however, details on
how they are used differ in each implementation.

Date: We embed day, month, and year values separately
and sum the three resulting latent vectors.

Numerical: As numbers do not contain semantic meaning
beyond their value, we apply a one-dimensional encoding.
During training, we clip columns between the 2% and 98%
quantiles of their distribution and scale them to have zero
mean and unit variance. This avoids exploding gradients
during training. Finally, the resulting number is multiplied
by a learnable vector and a bias is added. If the original
value was NaN, 0 is used instead.

Column headers: We embed column headers with the
same model used for text cells. The result is passed through
a separate learnable linear layer to map to the correct target
dimension and summed with the cell embedding. Note
that all the above embeddings are fully equivariant under
permutations of either rows or columns – a property often
desired (Van Breugel & Van Der Schaar, 2024).

3.2. Backbone

We leave the TabPFN architecture mostly unchanged, stack-
ing n layers with alternating cross-column and cross-row

2
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self-attention. Following TabPFN, cross-column attention
has no masking, while cross-row attention is masked so
that each row can only attend to the provided context. To
increase the modularity, the feedforward MLP block of the
transformer encoder is repeated after each self-attention, so
that horizontal and vertical blocks have the same weights.

Model weights can also be optionally shared between each
instance of the transformer block, which consists of two
interleaved attention layers. Such an architecture can be
interpreted as a recurrent neural network but unrolled in
depth rather than in time. This results in high parameter
efficiency. Empirically, we observed that sharing weights
did not affect model performance and therefore use weight
sharing as the default option for our model in the following.

3.3. Decoding

Classification: We apply a standard cross-entropy loss af-
ter an MLP. However, this imposes two limitations. First, the
number of classes seen in pretraining cannot be exceeded at
inference without resorting to extensions such as hierarchi-
cal classification as used in TabPFN’s many-class extension.
Secondly, it prevents us from using the semantic value of the
class label. For that purpose, we create an additional special
input encoding, only for the target column, in addition to the
ones previously described. Despite breaking equivariance
under permutation, we found it to be effective.

Regression: The model predicts the float value of the tar-
get, clipped and normalized as previously described. Em-
pirically, we have found this simple schema to work well.
During training, an L2 loss is applied. At inference, the
inverse normalization is applied to the prediction.

4. Experimental Setup
4.1. Training and inference

For pretraining, we use the T4 dataset (Gardner et al., 2024).
We discard tables with fewer than 150 rows, which leaves
2.18 M tables with a median of 750 rows and 9 columns.
We randomly select 1000 rows, then between 50 and 900
rows as query, and use the rest as context. Then we ran-
domly select one target column aiming to equal probability
of classification and regression. We train each model for
between 2 to 5 epochs, until convergence. We use a micro
batch size of 1 and accumulate gradients to simulate a batch
size of 256. To improve stability, we employ gradient clip-
ping and the AdamW optimizer with a maximum learning
rate of 10−4, reached after a linear warm-up phase of 1000
gradient updates. We set n = 12 and d = 768, and train
on a single H100 GPU, reaching a throughput of roughly
10 tables/sec. Further experiments with longer context and
incorporating data from Ma et al. (2024) did not lead to
measurable improvements.

Like TabPFN, we employ bagging at inference time. From
the original train split of a given evaluation dataset, we
sample 8 times c context rows with replacement, make a
separate prediction with each collection of c rows using the
same model, and average the predictions (regression values
or classification probabilities). We typically set c = 8192,
which is much larger than the training context size.

4.2. Evaluation

Datasets: We use a variety of tabular prediction datasets to
evaluate and compare our approach to established baselines
and other SOTA methods. Namely, we evaluate all mod-
els on the following benchmarks: OpenML-CC18 (Bischl
et al., 2021), a pure classification benchmark; OpenML-
CTR23 (Fischer et al., 2023), a pure regression benchmark;
TALENT (Ye et al., 2024b), a recent diverse benchmark con-
taining over 300 classification and regression tasks. Here,
we focus on a subset containing 45 datasets that are rep-
resentative of the overall performance of the baselines in-
vestigated in the original works, which we refer to as the
TALENT-Tiny benchmark; TabReD (Rubachev et al., 2025),
a small but challenging benchmark of large datasets; and
finally CARTE (Kim et al., 2024), a mixed classification and
regression benchmark containing highly semantic features
and few numerical ones.

Across all benchmarks, we evaluate a total of 203 tasks, 91
regression and 112 classification. Due to the large number
of evaluated datasets, we do not perform cross-validation
but evaluate a fixed test split for each task. We refer to
Appendix B.2 for dataset statistics and further details.

Baselines: We compare our approach to several es-
tablished classical methods as well as recent ICL and
other deep learning models. Namely, we compare
with TabPFN, TabICL, TabDPT, CARTE, RealMLP, XG-
Boost (Chen & Guestrin, 2016), LightBGM (Ke et al.,
2017), CatBoost (Prokhorenkova et al., 2018), random for-
est, histogram-based gradient boosting tree, KNN, linear,
and a naive estimator from scikit-learn (Pedregosa
et al., 2011). For all pretrained models, we use the latest
available release and checkpoints as of May 2025. For the
boosted tree baselines and RealMLP, we use the pytabkit
wrapper and evaluate tuned-default (TD) as well as hyperpa-
rameter optimized (HPO) variants (Holzmüller et al., 2024).
As the gold standard in tabular prediction, we also eval-
uate AutoGluon (Erickson et al., 2020). We refer to Ap-
pendix B.1 for full details on the used baseline.

Metrics: We evaluate accuracy and R2 for classification
and regression tasks, respectively. As averaging across a
large number of datasets with varying performance can blur
relative performance across models, we also evaluate mean
rank. For each benchmark, we calculate the mean across
all constituent datasets and models. Full rank performance
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Table 1. Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc) and R2 score in percent. For a full
comparison with all evaluated models we refer to Appendix A.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

AutoGluon – – 78.7 73.8 – 88.5 – 67.0 – 86.0 64.6 – 87.9 73.7

ConTextTab 1.61 1.16 76.9 72.2 1.71 86.8 2.06 72.9 2.38 85.4 63.4 1.43 87.7 76.1
TabPFN 1.86 2.59 72.4 65.0 1.67 87.0 1.63 74.9 2.00 85.6 63.8 1.41 87.3 75.1
CatBoost [HPO] 2.37 2.22 75.6 66.1 2.44 86.7 2.71 -44.4 1.5 85.8 63.7 2.30 86.0 72.1
RealMLP [TD] 2.42 3.55 70.2 59.6 1.97 87.2 2.06 45.7 1.12 86.0 64.6 2.35 86.2 71.5
Naive 4.84 5.00 53.0 -1.8 4.81 47.0 4.89 -8.5 4.50 80.8 -0.6 4.70 53.4 -22.3

Figure 2. Critical difference diagram between ConTextTab and
several baselines, across all 203 evaluated datasets.
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Figure 3. Average accuracy, and regression results on CARTE
benchmark across various data subsets.

is averaged across all datasets across all benchmarks. To
reduce the impact of noise, we count model performances
as ties when their evaluation lie within 0.005 of each other.

5. Results
The main results are shown in Table 1 with extended re-
sults presented in Appendix A.1. Here, we are excluding
AutoGluon from the overall rank and best-model compari-
son as it is ensembling and stacking a multitude of model
architectures, making it difficult to highlight architectural
strengths and weaknesses. Overall, our model achieves the
highest rank across all evaluated datasets. This performance
gain is statistically significant, as depicted in the critical
difference diagram shown in Figure 2. Our model performs
particularly well for the semantically rich CARTE bench-
mark, where TabPFN is outperformed by boosted trees and
even non-tuned CatBoost, highlighting the importance of
incorporating semantic understanding into tabular ICL. On
the other end, while the absolute performance of ConText-

Tab for large datasets, e.g. within the TabReD benchmark,
is decent, it falls behind tuned boosted trees and RealMLP
here, which achieve SOTA on par with AutoGluon.

To investigate the dependence on dataset size, we depict the
performance on the CARTE benchmark across varying sub-
sampled sizes in Figure 3, ranging from 128 rows to the full
dataset. ConTextTab consistently outperforms other mod-
els across all sample sizes and even surpasses AutoGluon
for up to 2048 training samples. This highlights the strong
capabilities of tabular ICL but also the need for further re-
search into scaling these architectures to effectively deal
with much larger context sizes as well as training datasets.
We investigate this more closely in Appendix A.2.

6. Limitations and future work
While achieving SOTA results across the investigated
datasets, we observe several limitations of our proposed
approach. One drawback of using real-world data for train-
ing is the possibility of contamination, e.g. the presence
of evaluation tasks in the training corpus. For the CARTE
benchmark, being our focus, we have conducted a con-
tamination study, using the column name and cell value
embeddings created by a text embedder and matching sim-
ilarities. We did not find any contamination of CARTE in
T4. For contamination of OpenML datasets, we refer to
the original study by Gardner et al. (2024). Either way, as
a single table is only seen a few times during training, we
believe that memorization is likely not a practical problem
when training on real-world data. Generally, all investigated
table-native ICL models fail to scale their performance to
very large datasets. Increasing the context length did not
resolve these issues. In the large-data case, conventional
methods, in particular when stacked via AutoGluon, still
perform best. Overcoming this remains one of the major
challenges for tabular foundation models.

Overall, we show that incorporating semantics in table-
native models is beneficial but also that more semantically
rich data is required – both at scale for training models with
longer context, as well as curated for evaluation.
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Figure 4. Relation between number of training dataset rows and performance, obtained as a LOWESS regression in the plane
log(nrows, rank). The confidence bands are the 80% confidence intervals obtained via bootstrapping.

A. Further Results
A.1. Extended results

Including further baselines not depicted in the main paper, Table 2 shows all collected evaluations across the investigated
benchmarks. Furthermore, we show the win ratio confusion matrix and averages of the investigated models in Figure 5.

A.2. Relation between dataset size and model performance

In addition to Figure 3, we depict average rank of the experiment previously shown in Figure 6.

Furthermore, we plot the average rank of each model as a function of the dataset size (expressed in number of rows) across
all evaluated datasets in Figure 4. Note that TabICL is missing from this comparison as it only handles classification tasks.
We can observe that, as expected, ConTextTab and TabPFN excel in the low data regime, while AutoGluon takes the lead
when enough data is available. In the very low data regime below 1000 training rows, TabPFN performs best, however our
model surpasses its performance for larger datasets with more than 1000 rows. Overall, ConTextTab remains competitive
with AutoGluon until roughly 10 000 rows, possibly as a result of the limitation in both the inference context size and the
context size seen during training. After 10 000 rows, gradient boosting methods, as well as RealMLP, start surpassing the
performance of ConTextTab as well as TabPFN. Overall, this indicates the need of further research for tabular ICL to handle
larger amounts of training data, but also the availability of more diverse benchmarks, covering larger datasets, as the current
evaluation is dominated by datasets with less than 10 k rows and less than 100 columns, see Figure 7.
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(a) Win ratio matrix with Model A wins over Model B.
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(b) Average Win ratio of Model A against all others.

Figure 5. Win ratio confusion matrix and average of the investigated models across all 203 datasets. Wins are calculated based on accuracy
on classification and R2 on regression datasets. Ties are not counted as wins. Models are sorted by descending overall rank. Note that
CARTE, TabDPT, RealMLP [HPO], and TabICL were not successfully evaluated on all datasets and only compared on evaluated ones,
resulting in a smaller support and skewing their win rates. Therefore, they are separately grouped last, not used in averaging, and only
shown for completeness.
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Table 2. Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc) for classification and R2 score for
regression tasks, in percent. Missing values, due to architectural limitations or failed evaluations, are denotes as N/A and excluded from
the mean rank calculation.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

Autogluon 2.48 1.55 78.7 73.8 2.61 88.5 4.06 67.0 1.75 86.0 64.6 2.16 87.9 73.7
ConTextTab 3.53 2.24 76.9 72.2 4.08 86.8 4.37 72.9 4.62 85.4 63.4 3.22 87.7 76.1
TabPFN 4.27 7.25 72.4 65.0 3.61 87.0 3.43 74.9 4.5 85.6 63.8 2.16 87.3 75.1
LightGBM [HPO] 4.59 5.41 72.8 66.1 4.56 86.9 4.63 61.9 1.75 85.9 64.4 4.11 86.4 72.4
CatBoost [HPO] 4.99 5.33 75.6 66.1 4.6 86.7 6.63 -44.4 2.12 85.8 63.7 4.32 86.0 72.1
CatBoost [TD] 4.99 6.35 75.1 65.6 4.96 86.4 4.51 67.2 1.25 85.9 64.3 4.43 85.9 74.8
LightGBM [TD] 5.05 7.02 73.1 64.9 4.01 86.8 6.29 39.7 2.25 85.7 63.2 3.81 86.3 72.6
XGBoost [HPO] 5.05 5.84 72.6 65.7 5.74 86.3 4.34 71.4 1.75 86.0 64.2 4.03 86.2 72.6
XGBoost [TD] 5.52 8.24 72.3 64.4 4.03 87.0 6.54 63.7 2.5 85.6 62.8 4.35 86.0 72.7
HistGradBoost 5.81 7.04 72.5 64.8 5.11 86.1 7.14 51.2 2.25 85.9 63.9 5.0 86.3 67.6
RealMLP [TD] 6.52 12.2 70.2 59.6 4.62 87.2 5.14 45.7 1.12 86.0 64.6 4.86 86.2 71.5
Random forest 7.59 9.82 71.5 63.3 6.57 85.7 7.77 53.6 7.25 85.4 60.7 6.38 85.8 70.6
Linear 13.46 16.55 62.7 19.1 11.17 80.9 14.2 43.8 12.12 80.8 -4269.6 13.27 80.5 41.3
KNN [k=5] 13.78 16.25 65.5 34.3 12.06 81.7 13.57 14.1 13.5 78.7 -15.4 14.0 80.3 60.0
Naive 16.35 18.04 53.0 -1.8 15.28 47.0 16.4 -8.5 12.62 80.8 -0.6 16.89 53.4 -22.3
CARTE N/A 4.65 76.1 68.5 N/A N/A N/A N/A N/A N/A N/A 7.38 84.4 71.1
TabDPT N/A 6.63 72.7 65.1 3.74 87.8 3.26 72.4 N/A N/A 60.9 3.73 86.7 74.8
RealMLP [HPO] N/A 11.78 70.4 60.9 4.08 87.3 4.51 53.2 N/A N/A N/A 4.0 86.3 72.1
TabICL N/A N/A 72.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A 87.4 N/A
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Figure 6. Average rank, accuracy, and regression results on CARTE benchmark across various data subsets.
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B. Experimental Setup – Details
B.1. Baselines

Data preprocessor: Evaluating models across a multitude of datasets can be tricky. Datasets may have inconsistent data
type annotations, such as categories represented as strings or categorical data types, covering low- and high-cardinality
categorical features, date, time, or datetime instances, free text, boolean values and more. Most models, however, require
numerical input to process and handle non-numerical data types or missing values differently. To unify our evaluation,
we implemented a configurable default feature encoder built on the AutoMLPipelineFeatureGenerator from
AutoGluon (Erickson et al., 2020) which we found to be very versatile and robust. In particular, the encoder natively handles
low- and high-cardinality categorical data, free text (to some extent), as well as datetime encoding. For flexibility and
compatibility with a multitude of models, we extended the default implementation to cover the following options that can be
adapted to the capabilities of the baseline model at hand:

• Whether to convert booleans to string/categorical values

• Whether to not encode string/categorical values for models that natively handle them, such as CatBoost

• Whether to scale numerical data via quantile scaling with a normal distribution as target

• Whether to drop constant features

• Whether to impute missing values, extending the standard imputation (using most frequent categories and mean for
numerical data) to bools and datetime data types

As deault, we choose to convert booleans, encode categoricals via ordinal encoding, scale numerical data, drop constant
columns and impute missing values.

Below, we describe for which baselines the default values are changed or when other types of feature encodings are used.

TabPFN: We use the model from the official Python tabpfn package with version 2.0.8 together with the
tabpfn-extensions package version 0.1.0 at commit d44606e35f89e18b6bc4c4a2eef2f46918c4302e
of the Git repository3 as the PyPi release is not up-to-date.

Naturally, we use TabPFNClassifier and TabPFNRegressor for classification and regression tasks, respectively,
using default parameters for both. In particular, TabPFNClassifier uses an ensemble of 4 and TabPFNRegressor
an ensemble of 8 estimators. We combine the classification estimator with the ManyClassClassifier extension with
a redundancy factor of 4 to enable classification beyond the native 10-class limit of TabPFN which is required for the
evaluation of some of the 203 evaluated datasets.

For datasets larger than the native 10 k limit of TabPFN, we sample a random 10 k subset of the training split. This affects
66 out of the 203 evaluated datasets. For datasets with more than the 500 feature limit that TabPFN was trained with, we
select a random subsample of 500 features. This affects 12 out of 203 evaluated datasets. While this is not optimal, and
post-hoc ensembling as well as a random forest preprocessing is recommended by the authors (Hollmann et al., 2025), these
extensions cannot be combined with the many-class extension required to predict beyond the 10-class limit of the native
TabPFN model. Hence, we cannot evaluate TabPFN with the post-hoc ensembling or random forest extension.

As we found the native feature encoder of TabPFN to not work across all evaluated datasets, we use our standard feature
encoder (see above), encoding categorical columns, scaling numerical values, dropping constant columns, and imputing
missing values. As this procedure should be very similar to the TabPFN-native encoder, we anticipate this deviation to affect
the results only insignificantly if at all.

TabICL: We use the latest model weights tabicl-classifier-v1.1-0506.ckpt from the recent 0.1.1 version of
the official tabicl package. This updated variant is an improved checkpoint over the one reported in the original works (Qu
et al., 2025). However, the evaluation fails for some of the datasets due to an apparent implementation bug in the original code
(a recursion error in the self. generate ensemble() method within the tabicl.sklearn.preprocessing
module). We thus can only show fewer results for completed evaluations. For encoding, we use our default encoder, but do
not scale numericals, do not drop constant values, and do not impute missing ones as it is natively handled by the model.

3https://github.com/PriorLabs/tabpfn-extensions.git
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TabDPT: We use the model from the official GitHub repository4 at the most recent 1.1.0 release and tabdpt1 1.pth
model checkpoint. Naturally, we use TabDPTClassifier and TabDPTRegressor for classification and regression
tasks, respectively, using default parameters for both. Throughout, we evaluate the model with a (local) context size of 2048
which is the best-performing one in the original works (Ma et al., 2024). However, evaluation failed for some datasets due to
an error in the original code leading to empty predictions for very large datasets in the TabReD benchmark. Here, we use
our default encoder, scaling numericals, dropping constant values, and imputing missing ones.

CARTE: We use the model provided in the official Python carte-ai package with version 0.0.26. We
use CARTEClassifier and CARTERegressor with default parameters for classification and regression
tasks, respectively We treat binary classification tasks as 2-class multi-class classification and hence set
loss=‘‘categorical crossentropy’’ for the classifacation estimator. With CARTE, we use our default
preprocessor to convert bool values and datetime instances and to impute missing values, but otherwise rely on the
Table2GraphTransformer provided in the reference implementation.

Pytabkit models: We use the pytabkit implementation wrapper for evaluating RealMLP, XGBoost, LightGBM, and
CatBoost. We evaluate all models both in the tuned-defaults (TD) variant proposed by Holzmüller et al. (2024) as well as
hyperparameter-optimized (HPO). However, the HPO version did run into OOM issues for RealMLP, even when running on
a H100 with 96 GB of VRAM which is why we display the TD variant by default.

In particular, for RealMLP (TD), we use RealMLP TD Classifier and RealMLP TD Regressor for clas-
sification and regression tasks, respectively. For RealMLP (HPO), we use RealMLP HPO Classifier and
RealMLP HPO Regressor for classification and regression tasks, respectively, conducting the default 50 rounds of
random search HPO.

For XGBoost (TD), LightGBM (TD), and CatBoost (TD), we use XGB TD Classifier, XGB TD Regressor,
LGBM TD Classifier, LGBM TD Regressor, CatBoost TD Classifier, and CatBoost TD Regressor
for classification and regression tasks, respectively. For the HPO-variants, we use the HPO TPE versions of the estimators,
performing Parzen-tree based HPO with 50 rounds using the search space as defined by (Grinsztajn et al., 2022). LightGBM
and XGBoost are evaluated on 8-core CPU machines with 64 GB of RAM, whereas CatBoost and RealMLP are evaluated
on H100 GPUs with 96 GB of VRAM. Note that CatBoost evaluation on CPU was too slow to evaluate at scale, in particular
in the HPO variant. However, there are known issues with the GPU implementation of CatBoost which might degrade
performance5. We were not able to observe systematically worse results on those datasets on which we were also able to
evaluate the CPU variant. Hence, for consistency, we present results for the GPU variant throughout.

Throughout, we use our default encoder, scaling numericals, dropping constant values, and imputing missing ones. For all
models but CatBoost, we perform ordinal encoding of categoricals.

Sklearn models: We use several standard baseline models from scikit-learn (Pedregosa et al., 2011), combining
them with the default preprocessor as outlined above. Across all scikit-learn baselines, preprocessing only differs in
missing value imputation, depending on the model’s capability to handle missing values natively. Throughout, evaluation is
performed using scikit-learn v1.5.2.

For the naive predictor, we use the DummyClassifier and DummyRegressor to predict the most frequent, respectively
mean value of the train splits as the naive majority baseline.

For the linear predictor, we use the LogisticRegression and LinearRegression for classification and regression
tasks, respectively, using default hyperparameters.

For the KNN predictor, we use the KNeighborsClassifier and KNeighborsRegressor for classification and
regression tasks, respectively, using default hyperparameters and k = 5 nearest neighbors.

For the random forest predictor, we use the RandomForestClassifier and RandomForestRegressor for classi-
fication and regression tasks, respectively, using default hyperparameters. The model handles missing values natively.

Finally, for the histogram-based gradient boosted tree predictor, we use the HistGradientBoostingClassifier
and HistGradientBoostingRegressor for classification and regression tasks, respectively, using default hyperpa-
rameters. The model handles missing values natively.

4https://github.com/layer6ai-labs/TabDPT.git
5See https://github.com/catboost/catboost/issues/1408.
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Figure 7. Column and row distribution of the evaluated benchmark datasets.

AutoGluon: Throughout, we use AutoGluon v1.2 and its TabularPredictor without custom preprocessing. We use
the best quality preset and set a per-dataset time limit of 4 h. Otherwise, parameters are left at their default values. For
all datasets, evaluation is executed on a single 16-core machine with 128 GB of RAM and no GPU.

B.2. Datasets

The row and column count statistics of the evaluation datasets are visualized in Figure 7.

We extracted all datasets from their original source and performed a custom stratified train-validation-test split with a
70-10-20 ratio. For classification tasks, the target column is used for stratification. For regression tasks, we perform
stratification on the binned target column, binning it into 5 quantiles using the qcut method from the pandas library.
Otherwise, we do not perform any alterations on the data. Models not using a specific validation procedure are provided
with the concatenated train and validation split for training.

12


