
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

ConTextTab: A Semantics-Aware Tabular In-Context Learner

Anonymous Authors1

Abstract
Tabular in-context learning (ICL) models such
as TabPFN and TabICL have recently achieved
state-of-the-art (SOTA) performance on several
tabular prediction tasks. Trained exclusively on
synthetic data, these models however do not fully
leverage the rich semantics and world knowledge
contained in real-world data. Tabular ICL mod-
els based on pretrained large language models
such as TabuLa-8B integrate semantics and world
knowledge but are only able to make use of a
small amount of context due to inherent architec-
tural limitations. Aiming to bridge this gap, we
introduce ConTextTab1, integrating semantic un-
derstanding and alignment into a table-native ICL
framework. Using specialized embeddings for dif-
ferent data modalities and training on large-scale
real-world tabular data, our model is competi-
tive with SOTA across a broad set of benchmarks
while setting a new standard on the semantically
rich CARTE benchmark.

1. Introduction
Tables remains a predominant data format in many real-
world applications (Chui et al., 2018), making its under-
standing through machine learning algorithms critical. Re-
cently, applying the in-context learning (ICL) paradigm to
tabular prediction tasks has shown promising results. The
approach was pioneered by TabPFN (Hollmann et al., 2023).
Pretrained on large amounts of synthetic data, its latest incar-
nation TabPFNv2 (Hollmann et al., 2025) produces SOTA
results on datasets with up to 10 000 rows for both classifica-
tion and regression tasks. In recent work, TabICL (Qu et al.,
2025) extends the success story of this approach to larger
datasets, using special tabular embedding modules. Com-
mon to both TabPFN and TabICL is that they are trained
entirely on synthetically generated numerical data, with cat-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1The code and model checkpoints will be publicly released.

egorical features produced by an indexing procedure. While
using synthetic data has many advantages, in particular its
diversity at scale, a consequence is that the data does not
contain any semantically meaningful values as found in real-
world applications. In particular, column names are not used
in either TabPFN or TabICL, and categorical features are
encoded via ordinal encoding disregarding any underlying
semantics. We argue that semantic understanding can be
captured by training on real-world data. A primary example
of this is TabuLa-8B (Gardner et al., 2024), turning a pre-
trained LLM into a tabular ICL model. However, utilizing
pretrained LLMs for tabular tasks has several limitations.
Most importantly, textual serialization and tokenization of
the input table is not token efficient, effectively limiting
the maximum context length that can be processed. For
example, TabuLa-8B operates on a maximum of 32 context
rows. Furthermore, the tokenization schema and autoregres-
sive nature of LLMs are not adapted to the tabular structure,
resulting in a linear non-uniform token sequence.

Aiming to bridge these approaches, we propose a table-
native ICL model trained on real-world data, using em-
beddings tailored to different data modalities, in particular
incorporating semantic embeddings of column names and
categorical values. The resulting model is competitive to ex-
isting table-native ICL approaches across a range of tabular
prediction benchmarks and achieves a new SOTA for the
semantically rich CARTE benchmark (Kim et al., 2024), in
particular in the low-data regime.

2. Related Work
Tabular deep learning: Prediction on tabular data has
traditionally been dominated by decision trees, particularly
boosted variants. They deliver strong performance but re-
quire separate training for each task and cannot leverage pre-
training. Recent deep learning approaches have successfully
shown consistently good performance overtaking boosted
trees, for example RealMLP (Holzmüller et al., 2024).

In-context learning on tabular data: TabPFN broke the
long-standing dominance of boosted trees on small classi-
fication tasks, outperforming them by using row-level ICL.
A recent variant, TabDPT (Ma et al., 2024), showed that
equally excellent results can be achieved by training on
real-world data using similarity-based retrieval of context

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

ConTextTab: A Semantics-Aware Tabular In-Context Learner

+ + + +

Acquisition date

16/08/2024

Price ($)

1792.00

Description

Laptop

Received

TRUE

2D layer (×m)

Context rows
Query rows

Text embeddings

Numerical embeddings

Date embeddings

Column embeddings

Classification Loss Regression Loss

FC

cross-row attentioncross-column attention

2D layer (×m)

FC

Figure 1. Our proposed model architecture illustrating the integration of data type-specific embeddings, an interleaved attention backbone,
and customized output heads.

rows. Generalizing the row-based encoding, cell-based ICL
introduced with TabPFNv22 and utilized also by TabICL
extended this success to larger datasets with up to 10 000
and more samples.

Semantics and real data: Capturing the rich semantics of
real-world tabular data enables the transfer of world knowl-
edge across prediction tasks in addition to statistical patterns.
The CARTE (Kim et al., 2024) architecture enables pretrain-
ing across a range of real-world sources while capturing
semantics. It achieves SOTA results on the semantically
rich CARTE benchmark, although it requires task-specific
fine-tuning. Several works approach tabular ICL by tuning
LLMs on tabular tasks, e.g. TabLLM (Hegselmann et al.,
2023), LIFT (Dinh et al., 2022), or TabuLa-8B. In particu-
lar, the works by Gardner et al. (2024) are note-worthy for
curating the T4 dataset, containing roughly 3 M, and for its
excellent results in the very low data-regime.

3. Method
To overcome the aforementioned limitations of existing
table-native ICL methods and bridge the gap to LLM-based
ones, we propose ConTextTab, a semantics-aware table-
native ICL model. To this end, we perform several key
modifications to the TabPFN architecture and utilize large-
scale pretraining on real-world data. An overview of our
proposed architecture is given in Figure 1.

3.1. Encoding

We encode data differently depending on its modality – i.e.
text, date, or numeric type. Column headers are also en-
coded, effectively replacing positional encodings.

2Hereinafter, we focus on TabPFNv2 and refer to it as TabPFN.

Text: We transform each text cell to an embedding vec-
tor using a pretrained text embedding model. We ap-
ply this to both free text as well as categorical columns,
which can thus retain the meaning in their labels. Any
off-the-shelf embedding model can be used for this pur-
pose. We settle for the comparably small but fast model
all-MiniLM-L6-v2 (Wang et al., 2020). We apply a
learnable linear layer to the text embeddings to map to di-
mension d. Semantic embeddings of cell values have been
previously investigated (Yak et al., 2023; Ye et al., 2024a;
Kim et al., 2024; Spinaci et al., 2024), however, details on
how they are used differ in each implementation.

Date: We embed day, month, and year values separately
and sum the three resulting latent vectors.

Numerical: As numbers do not contain semantic meaning
beyond their value, we apply a one-dimensional encoding.
During training, we clip columns between the 2% and 98%
quantiles of their distribution and scale them to have zero
mean and unit variance. This avoids exploding gradients
during training. Finally, the resulting number is multiplied
by a learnable vector and a bias is added. If the original
value was NaN, 0 is used instead.

Column headers: We embed column headers with the
same model used for text cells. The result is passed through
a separate learnable linear layer to map to the correct target
dimension and summed with the cell embedding. Note
that all the above embeddings are fully equivariant under
permutations of either rows or columns – a property often
desired (Van Breugel & Van Der Schaar, 2024).

3.2. Backbone

We leave the TabPFN architecture mostly unchanged, stack-
ing n layers with alternating cross-column and cross-row

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

ConTextTab: A Semantics-Aware Tabular In-Context Learner

self-attention. Following TabPFN, cross-column attention
has no masking, while cross-row attention is masked so
that each row can only attend to the provided context. To
increase the modularity, the feedforward MLP block of the
transformer encoder is repeated after each self-attention, so
that horizontal and vertical blocks have the same weights.

Model weights can also be optionally shared between each
instance of the transformer block, which consists of two
interleaved attention layers. Such an architecture can be
interpreted as a recurrent neural network but unrolled in
depth rather than in time. This results in high parameter
efficiency. Empirically, we observed that sharing weights
did not affect model performance and therefore use weight
sharing as the default option for our model in the following.

3.3. Decoding

Classification: We apply a standard cross-entropy loss af-
ter an MLP. However, this imposes two limitations. First, the
number of classes seen in pretraining cannot be exceeded at
inference without resorting to extensions such as hierarchi-
cal classification as used in TabPFN’s many-class extension.
Secondly, it prevents us from using the semantic value of the
class label. For that purpose, we create an additional special
input encoding, only for the target column, in addition to the
ones previously described. Despite breaking equivariance
under permutation, we found it to be effective.

Regression: The model predicts the float value of the tar-
get, clipped and normalized as previously described. Em-
pirically, we have found this simple schema to work well.
During training, an L2 loss is applied. At inference, the
inverse normalization is applied to the prediction.

4. Experimental Setup
4.1. Training and inference

For pretraining, we use the T4 dataset (Gardner et al., 2024).
We discard tables with fewer than 150 rows, which leaves
2.18 M tables with a median of 750 rows and 9 columns.
We randomly select 1000 rows, then between 50 and 900
rows as query, and use the rest as context. Then we ran-
domly select one target column aiming to equal probability
of classification and regression. We train each model for
between 2 to 5 epochs, until convergence. We use a micro
batch size of 1 and accumulate gradients to simulate a batch
size of 256. To improve stability, we employ gradient clip-
ping and the AdamW optimizer with a maximum learning
rate of 10−4, reached after a linear warm-up phase of 1000
gradient updates. We set n = 12 and d = 768, and train
on a single H100 GPU, reaching a throughput of roughly
10 tables/sec. Further experiments with longer context and
incorporating data from Ma et al. (2024) did not lead to
measurable improvements.

Like TabPFN, we employ bagging at inference time. From
the original train split of a given evaluation dataset, we
sample 8 times c context rows with replacement, make a
separate prediction with each collection of c rows using the
same model, and average the predictions (regression values
or classification probabilities). We typically set c = 8192,
which is much larger than the training context size.

4.2. Evaluation

Datasets: We use a variety of tabular prediction datasets to
evaluate and compare our approach to established baselines
and other SOTA methods. Namely, we evaluate all mod-
els on the following benchmarks: OpenML-CC18 (Bischl
et al., 2021), a pure classification benchmark; OpenML-
CTR23 (Fischer et al., 2023), a pure regression benchmark;
TALENT (Ye et al., 2024b), a recent diverse benchmark con-
taining over 300 classification and regression tasks. Here,
we focus on a subset containing 45 datasets that are rep-
resentative of the overall performance of the baselines in-
vestigated in the original works, which we refer to as the
TALENT-Tiny benchmark; TabReD (Rubachev et al., 2025),
a small but challenging benchmark of large datasets; and
finally CARTE (Kim et al., 2024), a mixed classification and
regression benchmark containing highly semantic features
and few numerical ones.

Across all benchmarks, we evaluate a total of 203 tasks, 91
regression and 112 classification. Due to the large number
of evaluated datasets, we do not perform cross-validation
but evaluate a fixed test split for each task. We refer to
Appendix B.2 for dataset statistics and further details.

Baselines: We compare our approach to several es-
tablished classical methods as well as recent ICL and
other deep learning models. Namely, we compare
with TabPFN, TabICL, TabDPT, CARTE, RealMLP, XG-
Boost (Chen & Guestrin, 2016), LightBGM (Ke et al.,
2017), CatBoost (Prokhorenkova et al., 2018), random for-
est, histogram-based gradient boosting tree, KNN, linear,
and a naive estimator from scikit-learn (Pedregosa
et al., 2011). For all pretrained models, we use the latest
available release and checkpoints as of May 2025. For the
boosted tree baselines and RealMLP, we use the pytabkit
wrapper and evaluate tuned-default (TD) as well as hyperpa-
rameter optimized (HPO) variants (Holzmüller et al., 2024).
As the gold standard in tabular prediction, we also eval-
uate AutoGluon (Erickson et al., 2020). We refer to Ap-
pendix B.1 for full details on the used baseline.

Metrics: We evaluate accuracy and R2 for classification
and regression tasks, respectively. As averaging across a
large number of datasets with varying performance can blur
relative performance across models, we also evaluate mean
rank. For each benchmark, we calculate the mean across
all constituent datasets and models. Full rank performance

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ConTextTab: A Semantics-Aware Tabular In-Context Learner

Table 1. Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc) and R2 score in percent. For a full
comparison with all evaluated models we refer to Appendix A.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

AutoGluon – – 78.7 73.8 – 88.5 – 67.0 – 86.0 64.6 – 87.9 73.7

ConTextTab 1.61 1.16 76.9 72.2 1.71 86.8 2.06 72.9 2.38 85.4 63.4 1.43 87.7 76.1
TabPFN 1.86 2.59 72.4 65.0 1.67 87.0 1.63 74.9 2.00 85.6 63.8 1.41 87.3 75.1
CatBoost [HPO] 2.37 2.22 75.6 66.1 2.44 86.7 2.71 -44.4 1.5 85.8 63.7 2.30 86.0 72.1
RealMLP [TD] 2.42 3.55 70.2 59.6 1.97 87.2 2.06 45.7 1.12 86.0 64.6 2.35 86.2 71.5
Naive 4.84 5.00 53.0 -1.8 4.81 47.0 4.89 -8.5 4.50 80.8 -0.6 4.70 53.4 -22.3

Figure 2. Critical difference diagram between ConTextTab and
several baselines, across all 203 evaluated datasets.

128 256 512 1024 2048 4096 8192 Full

2

3

4

5

6

Average Rank (lower is better)

128 256 512 1024 2048 4096 8192 Full
0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Average Accuracy

128 256 512 1024 2048 4096 8192 Full

0.3

0.4

0.5

0.6

0.7

Average R2 score

Autogluon
ConTextTab
TabPFN
LightGBM
RealMLP
CARTE
TabDPT

Figure 3. Average accuracy, and regression results on CARTE
benchmark across various data subsets.

is averaged across all datasets across all benchmarks. To
reduce the impact of noise, we count model performances
as ties when their evaluation lie within 0.005 of each other.

5. Results
The main results are shown in Table 1 with extended re-
sults presented in Appendix A.1. Here, we are excluding
AutoGluon from the overall rank and best-model compari-
son as it is ensembling and stacking a multitude of model
architectures, making it difficult to highlight architectural
strengths and weaknesses. Overall, our model achieves the
highest rank across all evaluated datasets. This performance
gain is statistically significant, as depicted in the critical
difference diagram shown in Figure 2. Our model performs
particularly well for the semantically rich CARTE bench-
mark, where TabPFN is outperformed by boosted trees and
even non-tuned CatBoost, highlighting the importance of
incorporating semantic understanding into tabular ICL. On
the other end, while the absolute performance of ConText-

Tab for large datasets, e.g. within the TabReD benchmark,
is decent, it falls behind tuned boosted trees and RealMLP
here, which achieve SOTA on par with AutoGluon.

To investigate the dependence on dataset size, we depict the
performance on the CARTE benchmark across varying sub-
sampled sizes in Figure 3, ranging from 128 rows to the full
dataset. ConTextTab consistently outperforms other mod-
els across all sample sizes and even surpasses AutoGluon
for up to 2048 training samples. This highlights the strong
capabilities of tabular ICL but also the need for further re-
search into scaling these architectures to effectively deal
with much larger context sizes as well as training datasets.
We investigate this more closely in Appendix A.2.

6. Limitations and future work
While achieving SOTA results across the investigated
datasets, we observe several limitations of our proposed
approach. One drawback of using real-world data for train-
ing is the possibility of contamination, e.g. the presence
of evaluation tasks in the training corpus. For the CARTE
benchmark, being our focus, we have conducted a con-
tamination study, using the column name and cell value
embeddings created by a text embedder and matching sim-
ilarities. We did not find any contamination of CARTE in
T4. For contamination of OpenML datasets, we refer to
the original study by Gardner et al. (2024). Either way, as
a single table is only seen a few times during training, we
believe that memorization is likely not a practical problem
when training on real-world data. Generally, all investigated
table-native ICL models fail to scale their performance to
very large datasets. Increasing the context length did not
resolve these issues. In the large-data case, conventional
methods, in particular when stacked via AutoGluon, still
perform best. Overcoming this remains one of the major
challenges for tabular foundation models.

Overall, we show that incorporating semantics in table-
native models is beneficial but also that more semantically
rich data is required – both at scale for training models with
longer context, as well as curated for evaluation.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

ConTextTab: A Semantics-Aware Tabular In-Context Learner

References
Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter,

F., Lang, M., Mantovani, R. G., van Rijn, J. N., and Van-
schoren, J. OpenML benchmarking suites. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pp. 785–794, 2016. ISBN 978-1-
4503-4232-2.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung,
R., Nel, P., and Malhotra, S. Notes from the AI frontier:
Insights from hundreds of use cases. McKinsey Global
Institute, pp. 28, 2018.

Dinh, T., Zeng, Y., Zhang, R., Lin, Z., Gira, M., Rajput,
S., Sohn, J.-y., Papailiopoulos, D., and Lee, K. LIFT:
Language-interfaced fine-tuning for non-language ma-
chine learning tasks. Advances in Neural Information
Processing Systems, 35:11763–11784, 2022.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. AutoGluon-Tabular: Robust
and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Fischer, S. F., Feurer, M., and Bischl, B. OpenML-CTR23
– A curated tabular regression benchmarking suite. In
AutoML Conference 2023 (Workshop), 2023.

Gardner, J. P., Perdomo, J. C., and Schmidt, L. Large scale
transfer learning for tabular data via language modeling.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35, pp.
507–520, 2022.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. TabLLM: Few-shot classification of
tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp.
5549–5581. PMLR, 2023.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
TabPFN: A transformer that solves small tabular classi-
fication problems in a second. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A.,
Körfer, M., Hoo, S. B., Schirrmeister, R. T., and Hutter,
F. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Holzmüller, D., Grinsztajn, L., and Steinwart, I. Better by
default: Strong pre-tuned MLPs and boosted trees on
tabular data. Advances in Neural Information Processing
Systems, 37:26577–26658, 2024.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. LightGBM: A highly efficient
gradient boosting decision tree. In Advances in Neural
Information Processing Systems, 2017.

Kim, M. J., Grinsztajn, L., and Varoquaux, G. CARTE:
Pretraining and transfer for tabular learning. In Forty-first
International Conference on Machine Learning, 2024.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. TabDPT: Scaling tabular foundation
models. arXiv preprint arXiv:2410.18164, 2024.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of Machine Learning
Research, 12:2825–2830, 2011.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. CatBoost: Unbiased boosting with categor-
ical features. Advances in Neural Information Processing
Systems, 31, 2018.

Qu, J., Holzmüller, D., Varoquaux, G., and Morvan, M. L.
TabICL: A tabular foundation model for in-context learn-
ing on large data. arXiv preprint arXiv:2502.05564, 2025.

Rubachev, I., Kartashev, N., Gorishniy, Y., and Babenko,
A. TabReD: A benchmark of tabular machine learning
in-the-wild. In International Conference on Learning
Representations, 2025.

Spinaci, M., Polewczyk, M., Hoffart, J., Kohler, M. C., The-
lin, S., and Klein, T. PORTAL: Scalable tabular founda-
tion models via content-specific tokenization. In NeurIPS
2024 Third Table Representation Learning Workshop,
2024.

Van Breugel, B. and Van Der Schaar, M. Why tabular foun-
dation models should be a research priority. In Proceed-
ings of the 40th International Conference on Machine
Learning, 2024.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers, 2020.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

ConTextTab: A Semantics-Aware Tabular In-Context Learner

Yak, S., Dong, Y., Gonzalvo, J., and Arik, S. IngesTables:
Scalable and efficient training of LLM-enabled tabular
foundation models. In NeurIPS 2023 Second Table Rep-
resentation Learning Workshop, 2023.

Ye, C., Lu, G., Wang, H., Li, L., Wu, S., Chen, G., and Zhao,
J. Towards cross-table masked pretraining for web data
mining. In Proceedings of the ACM on Web Conference
2024, pp. 4449–4459, 2024a.

Ye, H.-J., Liu, S.-Y., Cai, H.-R., Zhou, Q.-L., and Zhan,
D.-C. A closer look at deep learning methods on tabular
datasets. arXiv preprint arXiv:2407.00956, 2024b.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ConTextTab: A Semantics-Aware Tabular In-Context Learner

103 104 105

Train size (number of rows)

2

4

6

8

10

Ra
nk

 (l
ow

er
 is

 b
et

te
r)

ConTextTab
Autogluon

TabPFN
LightGBM

CatBoost
XGBoost

HistGradientBoosting
RealMLP

Random Forest
KNN

Figure 4. Relation between number of training dataset rows and performance, obtained as a LOWESS regression in the plane
log(nrows, rank). The confidence bands are the 80% confidence intervals obtained via bootstrapping.

A. Further Results
A.1. Extended results

Including further baselines not depicted in the main paper, Table 2 shows all collected evaluations across the investigated
benchmarks. Furthermore, we show the win ratio confusion matrix and averages of the investigated models in Figure 5.

A.2. Relation between dataset size and model performance

In addition to Figure 3, we depict average rank of the experiment previously shown in Figure 6.

Furthermore, we plot the average rank of each model as a function of the dataset size (expressed in number of rows) across
all evaluated datasets in Figure 4. Note that TabICL is missing from this comparison as it only handles classification tasks.
We can observe that, as expected, ConTextTab and TabPFN excel in the low data regime, while AutoGluon takes the lead
when enough data is available. In the very low data regime below 1000 training rows, TabPFN performs best, however our
model surpasses its performance for larger datasets with more than 1000 rows. Overall, ConTextTab remains competitive
with AutoGluon until roughly 10 000 rows, possibly as a result of the limitation in both the inference context size and the
context size seen during training. After 10 000 rows, gradient boosting methods, as well as RealMLP, start surpassing the
performance of ConTextTab as well as TabPFN. Overall, this indicates the need of further research for tabular ICL to handle
larger amounts of training data, but also the availability of more diverse benchmarks, covering larger datasets, as the current
evaluation is dominated by datasets with less than 10 k rows and less than 100 columns, see Figure 7.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

ConTextTab: A Semantics-Aware Tabular In-Context Learner

0.61

0.66

0.85

0.82

0.86

0.80

0.75

0.84

0.93

0.93

0.97

0.89

0.69

0.77

0.49

0.34

0.57

0.66

0.68

0.70

0.72

0.67

0.76

0.96

0.93

0.97

0.80

0.60

0.62

0.36

0.31

0.37

0.58

0.60

0.61

0.64

0.62

0.70

0.94

0.96

0.98

0.58

0.52

0.58

0.30

0.12

0.31

0.41

0.66

0.54

0.62

0.59

0.72

0.88

0.91

0.96

0.56

0.47

0.55

0.28

0.14

0.31

0.37

0.30

0.45

0.55

0.56

0.63

0.88

0.91

0.98

0.55

0.45

0.52

0.26

0.12

0.28

0.36

0.41

0.49

0.55

0.48

0.57

0.86

0.92

0.97

0.57

0.43

0.45

0.23

0.15

0.25

0.34

0.35

0.40

0.42

0.50

0.61

0.85

0.87

0.96

0.50

0.40

0.45

0.20

0.20

0.28

0.37

0.38

0.41

0.48

0.45

0.54

0.87

0.90

0.96

0.50

0.34

0.36

0.19

0.11

0.21

0.28

0.26

0.32

0.36

0.33

0.42

0.84

0.91

0.96

0.47

0.25

0.36

0.10

0.06

0.03

0.05

0.09

0.11

0.13

0.14

0.09

0.14

0.42

0.92

0.10

0.04

0.10

0.05

0.04

0.06

0.02

0.07

0.07

0.08

0.12

0.09

0.09

0.54

0.87

0.13

0.03

0.07

0.01

0.03

0.03

0.01

0.04

0.02

0.03

0.04

0.03

0.03

0.04

0.12

0.02

0.02

0.03

0.01

0.10

0.19

0.40

0.42

0.44

0.40

0.48

0.48

0.52

0.89

0.87

0.98

0.45

0.44

0.31

0.24

0.36

0.43

0.52

0.54

0.56

0.58

0.62

0.73

0.94

0.96

0.97

0.55

0.59

0.27

0.19

0.33

0.36

0.41

0.46

0.52

0.49

0.57

0.59

0.89

0.91

0.97

0.55

0.36

0.19

0.45

0.55

0.58

0.65

0.71

0.70

0.74

0.76

0.82

0.94

0.98

0.98

0.67

0.64

0.73

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

A
ut

og
lu

on

C
on

Te
xt

Ta
b

Ta
bP

FN

Li
gh

tG
B
M

 [
H

PO
]

X
G

B
oo

st
 [

H
PO

]

C
at

B
oo

st
 [

H
PO

]

H
is

tG
ra

dB
oo

st

R
ea

lM
LP

 [
TD

]

R
an

do
m

 f
or

es
t

Li
ne

ar

K
N

N
 [

k=
5]

N
ai

ve

C
A
R
TE

Ta
bD

PT

R
ea

lM
LP

 [
H

PO
]

Ta
bI

C
L

Model A

Autogluon

ConTextTab

TabPFN

LightGBM [HPO]

XGBoost [HPO]

CatBoost [HPO]

HistGradBoost

RealMLP [TD]

Random forest

Linear

KNN [k=5]

Naive

CARTE

TabDPT

RealMLP [HPO]

TabICL

M
od

el
 B

(a) Win ratio matrix with Model A wins over Model B.

A
ut

og
lu

on

C
on

Te
xt

Ta
b

Ta
bP

FN

Li
gh

tG
B
M

 [
H

PO
]

X
G

B
oo

st
 [

H
PO

]

C
at

B
oo

st
 [

H
PO

]

H
is

tG
ra

dB
oo

st

R
ea

lM
LP

 [
TD

]

R
an

do
m

 f
or

es
t

Li
ne

ar

K
N

N
 [

k=
5]

N
ai

ve

C
A
R
TE

Ta
bD

PT

R
ea

lM
LP

[H
PO

]

Ta
bI

C
L

Model A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
vg

 W
in

 R
at

io

0.2

0.4

0.6

0.8
Avg Win Ratio

(b) Average Win ratio of Model A against all others.

Figure 5. Win ratio confusion matrix and average of the investigated models across all 203 datasets. Wins are calculated based on accuracy
on classification and R2 on regression datasets. Ties are not counted as wins. Models are sorted by descending overall rank. Note that
CARTE, TabDPT, RealMLP [HPO], and TabICL were not successfully evaluated on all datasets and only compared on evaluated ones,
resulting in a smaller support and skewing their win rates. Therefore, they are separately grouped last, not used in averaging, and only
shown for completeness.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

ConTextTab: A Semantics-Aware Tabular In-Context Learner

Table 2. Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc) for classification and R2 score for
regression tasks, in percent. Missing values, due to architectural limitations or failed evaluations, are denotes as N/A and excluded from
the mean rank calculation.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

Autogluon 2.48 1.55 78.7 73.8 2.61 88.5 4.06 67.0 1.75 86.0 64.6 2.16 87.9 73.7
ConTextTab 3.53 2.24 76.9 72.2 4.08 86.8 4.37 72.9 4.62 85.4 63.4 3.22 87.7 76.1
TabPFN 4.27 7.25 72.4 65.0 3.61 87.0 3.43 74.9 4.5 85.6 63.8 2.16 87.3 75.1
LightGBM [HPO] 4.59 5.41 72.8 66.1 4.56 86.9 4.63 61.9 1.75 85.9 64.4 4.11 86.4 72.4
CatBoost [HPO] 4.99 5.33 75.6 66.1 4.6 86.7 6.63 -44.4 2.12 85.8 63.7 4.32 86.0 72.1
CatBoost [TD] 4.99 6.35 75.1 65.6 4.96 86.4 4.51 67.2 1.25 85.9 64.3 4.43 85.9 74.8
LightGBM [TD] 5.05 7.02 73.1 64.9 4.01 86.8 6.29 39.7 2.25 85.7 63.2 3.81 86.3 72.6
XGBoost [HPO] 5.05 5.84 72.6 65.7 5.74 86.3 4.34 71.4 1.75 86.0 64.2 4.03 86.2 72.6
XGBoost [TD] 5.52 8.24 72.3 64.4 4.03 87.0 6.54 63.7 2.5 85.6 62.8 4.35 86.0 72.7
HistGradBoost 5.81 7.04 72.5 64.8 5.11 86.1 7.14 51.2 2.25 85.9 63.9 5.0 86.3 67.6
RealMLP [TD] 6.52 12.2 70.2 59.6 4.62 87.2 5.14 45.7 1.12 86.0 64.6 4.86 86.2 71.5
Random forest 7.59 9.82 71.5 63.3 6.57 85.7 7.77 53.6 7.25 85.4 60.7 6.38 85.8 70.6
Linear 13.46 16.55 62.7 19.1 11.17 80.9 14.2 43.8 12.12 80.8 -4269.6 13.27 80.5 41.3
KNN [k=5] 13.78 16.25 65.5 34.3 12.06 81.7 13.57 14.1 13.5 78.7 -15.4 14.0 80.3 60.0
Naive 16.35 18.04 53.0 -1.8 15.28 47.0 16.4 -8.5 12.62 80.8 -0.6 16.89 53.4 -22.3
CARTE N/A 4.65 76.1 68.5 N/A N/A N/A N/A N/A N/A N/A 7.38 84.4 71.1
TabDPT N/A 6.63 72.7 65.1 3.74 87.8 3.26 72.4 N/A N/A 60.9 3.73 86.7 74.8
RealMLP [HPO] N/A 11.78 70.4 60.9 4.08 87.3 4.51 53.2 N/A N/A N/A 4.0 86.3 72.1
TabICL N/A N/A 72.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A 87.4 N/A

128 256 512 1024 2048 4096 8192 Full

2

3

4

5

6

Average Rank (lower is better)

128 256 512 1024 2048 4096 8192 Full
0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Average Accuracy

128 256 512 1024 2048 4096 8192 Full

0.3

0.4

0.5

0.6

0.7

Average R2 score

Autogluon
ConTextTab
TabPFN
LightGBM
RealMLP
CARTE
TabDPT

Figure 6. Average rank, accuracy, and regression results on CARTE benchmark across various data subsets.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

ConTextTab: A Semantics-Aware Tabular In-Context Learner

B. Experimental Setup – Details
B.1. Baselines

Data preprocessor: Evaluating models across a multitude of datasets can be tricky. Datasets may have inconsistent data
type annotations, such as categories represented as strings or categorical data types, covering low- and high-cardinality
categorical features, date, time, or datetime instances, free text, boolean values and more. Most models, however, require
numerical input to process and handle non-numerical data types or missing values differently. To unify our evaluation,
we implemented a configurable default feature encoder built on the AutoMLPipelineFeatureGenerator from
AutoGluon (Erickson et al., 2020) which we found to be very versatile and robust. In particular, the encoder natively handles
low- and high-cardinality categorical data, free text (to some extent), as well as datetime encoding. For flexibility and
compatibility with a multitude of models, we extended the default implementation to cover the following options that can be
adapted to the capabilities of the baseline model at hand:

• Whether to convert booleans to string/categorical values

• Whether to not encode string/categorical values for models that natively handle them, such as CatBoost

• Whether to scale numerical data via quantile scaling with a normal distribution as target

• Whether to drop constant features

• Whether to impute missing values, extending the standard imputation (using most frequent categories and mean for
numerical data) to bools and datetime data types

As deault, we choose to convert booleans, encode categoricals via ordinal encoding, scale numerical data, drop constant
columns and impute missing values.

Below, we describe for which baselines the default values are changed or when other types of feature encodings are used.

TabPFN: We use the model from the official Python tabpfn package with version 2.0.8 together with the
tabpfn-extensions package version 0.1.0 at commit d44606e35f89e18b6bc4c4a2eef2f46918c4302e
of the Git repository3 as the PyPi release is not up-to-date.

Naturally, we use TabPFNClassifier and TabPFNRegressor for classification and regression tasks, respectively,
using default parameters for both. In particular, TabPFNClassifier uses an ensemble of 4 and TabPFNRegressor
an ensemble of 8 estimators. We combine the classification estimator with the ManyClassClassifier extension with
a redundancy factor of 4 to enable classification beyond the native 10-class limit of TabPFN which is required for the
evaluation of some of the 203 evaluated datasets.

For datasets larger than the native 10 k limit of TabPFN, we sample a random 10 k subset of the training split. This affects
66 out of the 203 evaluated datasets. For datasets with more than the 500 feature limit that TabPFN was trained with, we
select a random subsample of 500 features. This affects 12 out of 203 evaluated datasets. While this is not optimal, and
post-hoc ensembling as well as a random forest preprocessing is recommended by the authors (Hollmann et al., 2025), these
extensions cannot be combined with the many-class extension required to predict beyond the 10-class limit of the native
TabPFN model. Hence, we cannot evaluate TabPFN with the post-hoc ensembling or random forest extension.

As we found the native feature encoder of TabPFN to not work across all evaluated datasets, we use our standard feature
encoder (see above), encoding categorical columns, scaling numerical values, dropping constant columns, and imputing
missing values. As this procedure should be very similar to the TabPFN-native encoder, we anticipate this deviation to affect
the results only insignificantly if at all.

TabICL: We use the latest model weights tabicl-classifier-v1.1-0506.ckpt from the recent 0.1.1 version of
the official tabicl package. This updated variant is an improved checkpoint over the one reported in the original works (Qu
et al., 2025). However, the evaluation fails for some of the datasets due to an apparent implementation bug in the original code
(a recursion error in the self. generate ensemble() method within the tabicl.sklearn.preprocessing
module). We thus can only show fewer results for completed evaluations. For encoding, we use our default encoder, but do
not scale numericals, do not drop constant values, and do not impute missing ones as it is natively handled by the model.

3https://github.com/PriorLabs/tabpfn-extensions.git

10

https://github.com/PriorLabs/tabpfn-extensions.git


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

ConTextTab: A Semantics-Aware Tabular In-Context Learner

TabDPT: We use the model from the official GitHub repository4 at the most recent 1.1.0 release and tabdpt1 1.pth
model checkpoint. Naturally, we use TabDPTClassifier and TabDPTRegressor for classification and regression
tasks, respectively, using default parameters for both. Throughout, we evaluate the model with a (local) context size of 2048
which is the best-performing one in the original works (Ma et al., 2024). However, evaluation failed for some datasets due to
an error in the original code leading to empty predictions for very large datasets in the TabReD benchmark. Here, we use
our default encoder, scaling numericals, dropping constant values, and imputing missing ones.

CARTE: We use the model provided in the official Python carte-ai package with version 0.0.26. We
use CARTEClassifier and CARTERegressor with default parameters for classification and regression
tasks, respectively We treat binary classification tasks as 2-class multi-class classification and hence set
loss=‘‘categorical crossentropy’’ for the classifacation estimator. With CARTE, we use our default
preprocessor to convert bool values and datetime instances and to impute missing values, but otherwise rely on the
Table2GraphTransformer provided in the reference implementation.

Pytabkit models: We use the pytabkit implementation wrapper for evaluating RealMLP, XGBoost, LightGBM, and
CatBoost. We evaluate all models both in the tuned-defaults (TD) variant proposed by Holzmüller et al. (2024) as well as
hyperparameter-optimized (HPO). However, the HPO version did run into OOM issues for RealMLP, even when running on
a H100 with 96 GB of VRAM which is why we display the TD variant by default.

In particular, for RealMLP (TD), we use RealMLP TD Classifier and RealMLP TD Regressor for clas-
sification and regression tasks, respectively. For RealMLP (HPO), we use RealMLP HPO Classifier and
RealMLP HPO Regressor for classification and regression tasks, respectively, conducting the default 50 rounds of
random search HPO.

For XGBoost (TD), LightGBM (TD), and CatBoost (TD), we use XGB TD Classifier, XGB TD Regressor,
LGBM TD Classifier, LGBM TD Regressor, CatBoost TD Classifier, and CatBoost TD Regressor
for classification and regression tasks, respectively. For the HPO-variants, we use the HPO TPE versions of the estimators,
performing Parzen-tree based HPO with 50 rounds using the search space as defined by (Grinsztajn et al., 2022). LightGBM
and XGBoost are evaluated on 8-core CPU machines with 64 GB of RAM, whereas CatBoost and RealMLP are evaluated
on H100 GPUs with 96 GB of VRAM. Note that CatBoost evaluation on CPU was too slow to evaluate at scale, in particular
in the HPO variant. However, there are known issues with the GPU implementation of CatBoost which might degrade
performance5. We were not able to observe systematically worse results on those datasets on which we were also able to
evaluate the CPU variant. Hence, for consistency, we present results for the GPU variant throughout.

Throughout, we use our default encoder, scaling numericals, dropping constant values, and imputing missing ones. For all
models but CatBoost, we perform ordinal encoding of categoricals.

Sklearn models: We use several standard baseline models from scikit-learn (Pedregosa et al., 2011), combining
them with the default preprocessor as outlined above. Across all scikit-learn baselines, preprocessing only differs in
missing value imputation, depending on the model’s capability to handle missing values natively. Throughout, evaluation is
performed using scikit-learn v1.5.2.

For the naive predictor, we use the DummyClassifier and DummyRegressor to predict the most frequent, respectively
mean value of the train splits as the naive majority baseline.

For the linear predictor, we use the LogisticRegression and LinearRegression for classification and regression
tasks, respectively, using default hyperparameters.

For the KNN predictor, we use the KNeighborsClassifier and KNeighborsRegressor for classification and
regression tasks, respectively, using default hyperparameters and k = 5 nearest neighbors.

For the random forest predictor, we use the RandomForestClassifier and RandomForestRegressor for classi-
fication and regression tasks, respectively, using default hyperparameters. The model handles missing values natively.

Finally, for the histogram-based gradient boosted tree predictor, we use the HistGradientBoostingClassifier
and HistGradientBoostingRegressor for classification and regression tasks, respectively, using default hyperpa-
rameters. The model handles missing values natively.

4https://github.com/layer6ai-labs/TabDPT.git
5See https://github.com/catboost/catboost/issues/1408.

11

https://github.com/layer6ai-labs/TabDPT.git
https://github.com/catboost/catboost/issues/1408


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

ConTextTab: A Semantics-Aware Tabular In-Context Learner

103 104 105

num_rows

101

102

103

nu
m

_c
ol

s
Dataset statistics

collection
carte
openml_cc18
openml_ctr23
talent_tiny
tabred
target_type
regression
classification

Figure 7. Column and row distribution of the evaluated benchmark datasets.

AutoGluon: Throughout, we use AutoGluon v1.2 and its TabularPredictor without custom preprocessing. We use
the best quality preset and set a per-dataset time limit of 4 h. Otherwise, parameters are left at their default values. For
all datasets, evaluation is executed on a single 16-core machine with 128 GB of RAM and no GPU.

B.2. Datasets

The row and column count statistics of the evaluation datasets are visualized in Figure 7.

We extracted all datasets from their original source and performed a custom stratified train-validation-test split with a
70-10-20 ratio. For classification tasks, the target column is used for stratification. For regression tasks, we perform
stratification on the binned target column, binning it into 5 quantiles using the qcut method from the pandas library.
Otherwise, we do not perform any alterations on the data. Models not using a specific validation procedure are provided
with the concatenated train and validation split for training.

12


