
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMIT0: LIBRARY GENERATION FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

With the goal of supporting research into AI that exceeds typical expert software
development ability, we introduce COMMIT0, a benchmark that challenges AI
agents to write libraries from scratch. Agents are provided with a specification
document outlining the library’s API as well as a suite of interactive unit tests,
with the goal of producing an implementation of this API accordingly. The imple-
mentation is validated through running these unit tests. As a benchmark, COM-
MIT0 is designed to move beyond static one-shot code generation towards agents
that must process long-form natural language specifications, adapt to multi-stage
feedback, and generate code with complex dependencies. COMMIT0 also offers
an interactive environment where models receive execution and linting feedback
on the code they generate. Our experiments demonstrate that while current agents
can pass some unit tests, none can yet fully reproduce full libraries. Results also
show that interactive feedback is quite useful for models to generate code that
passes more unit tests, validating the benchmarks that facilitate its use.

1 INTRODUCTION

AI agents have been increasing rapidly in ability, particularly in domains such as problem-solving,
math, and coding. Tasks related to software development have been particularly promising areas
due to both their clarity of evaluation and economic value. This has motivated the release of several
coding benchmarks in recent years (Hendrycks et al., 2021a; Chen et al., 2021; Zhuo et al., 2024).
A notable example is SWE-bench (Jimenez et al., 2024), which assesses the ability of agents to
generate patches to resolve real-world GitHub issues. While critical, these tasks generally remain
within the skill set of an experienced software engineer. It seems plausible that if LLM systems
continue to improve these tasks will be solvable.

We are interested in benchmarks that exist further beyond both the frontier of expert human ability
as well as current model ability. Specifically, tasks that experts struggle to solve but can still be fully
specified and reliably verified. Software engineering is an appealing domain for this, as the process
of developing actual implementations of functions is very complex. Nevertheless, humans can fully
specify the desired behavior of functions and validate them through unit testing.

With this goal in mind, we introduce COMMIT0, a benchmark that tests an agent’s ability to generate
a software library from scratch. This task is especially challenging – large, real-world libraries are
notoriously difficult to design, often requiring hundreds of engineers and years of development.
Nonetheless, this task remains verifiable without requiring humans to solve it directly. Humans can
provide specifications that outline the library’s API and write unit tests to verify whether the API
has been implemented correctly.

COMMIT0 extends beyond existing benchmarks in several ways. Central to COMMIT0 is interactive
feedback. Due to the complexity of generating a library, it is improbable, or likely impossible, that an
agent could generate a complete, working version in one shot. Instead, the benchmark is constructed
such that must adapt to multi-stage feedback such as unit test errors. Libraries also feature complex
dependencies. Implementing one function in a library involves calling other functions, and therefore
Agents need to identify the right order to implement the functions. Finally COMMIT0 features
long-context processing: agents must navigate specifications of hundreds of pages, and generate
thousands of functions, both of which require processing texts in a long context.

While our main focus is the benchmark itself, we also introduce a prototype agent SDE-I for com-
pleting the benchmark. The agent introduces a basic method for traversing the complex library

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

“““

F F F F F F F F F F F

src/events.py
class Event:
 """An event that may happen at...
 """

 def _desc(self) -> str:
 """Return a string *Event()*."""
 return f’{self._class_._name_}()’

[...]

class Process(Event):
 @property
 def target(self) -> Event:
 """The event that the process...
 """
 return self._target

src/events.py
class Event:
 """An event that may happen at...
 """

 def _desc(self) -> str:
 """Return a string *Event()*."""
 pass

[...]

class Process(Event):
 @property
 def target(self) -> Event:
 """The event that the process...
 """
 pass

Figure 1: An overview of COMMIT0. Given a starter repository with empty function body, a spec-
ification, and a suite of unit tests, agents are required to produce an implementation of the library
that passes all unit tests.
dependencies, uses best-in-class LLMs to process long contexts, and responds to the interactive
feedback of the system. To perform code completion SDE-I uses a state-of-the-art coding agent.

We empirically evaluate this system on COMMIT0. Our experiments show that with a state-of-the-
art LLM without feedback, it can pass 17% unit tests in the easier libraries but can only pass 6%
in all libraries. We find that iterating on error messages from unit tests improves the pass rate of
unit tests to 26% on the easier libraries, demonstrating the utility of leveraging execution feedback.
Finally, conditioning on relevant files – i.e., ensuring the agent considers related file dependencies
and context – further enhances performance.

2 RELATED WORK

Evaluation of LMs. Recent benchmarks for evaluating agents focus on knowledge-intense,
exam-style questions in domains ranging from grade-school mathematics to quantum mechanics
(Hendrycks et al., 2021c; Srivastava et al., 2023; Hendrycks et al., 2021b; Rein et al., 2023). While
these questions are challenging, with some requiring PhD level knowledge, they are often short and
easy to memorize, and they only require few steps of sequential reasoning. In contrast, Commit0
requires reasoning over a long horizon. Mastering the ability to develop full repositories requires
considering many files, many unit tests, and complex linter feedback.

Software engineering benchmarks Existing benchmarks for code generation focus on specific
aspects of the software engineering pipeline. Program synthesis benchmarks evaluate code gener-
ation, for example, HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), BigCodeBench
(Zhuo et al., 2024), CodeBenchGen (Xie et al., 2024), and Classeval (Du et al., 2023). Segmented
benchmarks, such as DevBench (Li et al., 2024), separately evaluate different aspects such as code
design, code generation, and unit test synthesis. R2E (Jain et al.) introduces a more challenging
task by requiring function generation that involves dependencies within and across files. SWE-
bench (Jimenez et al., 2024) provides a more holistic evaluation of a model’s ability to resolve pull
requests, requiring the incorporation of repository-level context. However, the amount of context
necessary to resolve a specific pull request varies greatly and is small on average. These previous
benchmarks focus on generating one or a few functions and are thus manageable via static one-shot
code generation. In contrast, COMMIT0 requires generating an entire codebase consisting of numer-
ous interdependent functions, which necessitates a series of refinements based on execution results
to pass all unit tests.

Software engineering agents Recent work has made impressive progress in developing software
engineering agents that operate on repositories (Yang et al., 2024; Zhang et al., 2023; Wang et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000 6000
unit_tests

0
2
4
6
8

10
12
14
16

#
 li

br
ar

ie
s

0.0 0.5 1.0 1.5 2.0 2.5 3.0
spec_tokens 1e5

0
2
4
6
8

10
12
14
16
18

#
 li

br
ar

ie
s

0 50 100 150 200 250
files

0

2

4

6

8

10

12

14

#
 li

br
ar

ie
s

0 250 500 750 1000 1250
functions

0
2
4
6
8

10
12
14
16
18

#
 li

br
ar

ie
s

Figure 2: Basic statistics of COMMIT0. The red dotted line denotes the median. Top left: the
distribution of the number of unit tests in a library; top right: the distribution of the number of
tokens in a specification; bottom left: the distribution of the number of source files in a library;
bottom right: the distribution of the number of public functions to be implemented in a library.

2024a). Commit0 proposes a software agent that not only operates at the repository-level but also
self-corrects given test feedback. Our method extends prior work on self-correction (Madaan et al.,
2023; Shinn et al., 2023) to the larger-scale problem of repository generation.

3 THE COMMIT0 BENCHMARK

COMMIT0 benchmarks an agent’s ability to generate a functioning library from scratch. It consists
of 54 Python libraries covering a wide range of topics, including machine learning, networking,
databases, and data visualization. Given, (1) a specification document that contains both texts and
images, (2) a starter repository with both unit tests and files to fill in, agents are tasked with complet-
ing the implementation of the API described in the specification document. Libraries are prepared
by removing the core source code from their repo in a systematized manner.

The agent is provided with a specification in PDF format and a starter repository containing a source
code directory and a test directory. The task is to make edits to the repository. In practice, the model
generates modified versions of the source code files. We then replace the original files with the
modified ones and perform a git commit to save the changes.

For evaluation, we check out the commit where the model made its final edits and run unit tests on
that commit. The model’s performance is measured only by the pass rate of these unit tests.

To prevent the model from copying source code, we restrict access to original GitHub repositories
via web retrieval. However, the model is allowed to use the web for general knowledge lookup. For
instance, if it needs to implement a radar plot for visualization, it is allowed to search for relevant
information online.

Figure 2 presents basic statistics of COMMIT0. The top left of Figure 2 shows the distribution of
unit tests across all libraries. Approximately 30 libraries have fewer than 1,000 unit tests, but the
distribution shows a long tail. The top right illustrates the distribution of tokens in the specifications,
with even the smallest specification containing over 10,000 tokens. Most libraries have fewer than
50,000 tokens, though the longest specification reaches up to 300,000 tokens. The bottom left
displays the distribution of files, where the majority of libraries have fewer than 50 files, but some

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

exceed 100. Finally, the bottom right shows the number of public functions to be implemented.
While most libraries have fewer than 250 functions, this number can exceed 1,300 in some cases.

3.1 LIBRARY SELECTION

We focus on Python libraries due to their widespread use, abundant data resources, and strong
ecosystem support. To select a set of high-quality libraries for models to implement, we design
three sets of filtering criteria.
Library requirements. We restrict libraries to be Python-only. Specifically, the library needs
to contain over 95% Python code. The library also needs to have native Python implementations
instead of using Python wrapping libraries in other languages. Finally, the library must support
testing with pytest.
Specification requirements. We want to identify libraries that have comprehensive specifications.
The specification must have its own webpage rather than a plain README page. The specification
document must cover both a user guide which describes how the library is intended to be used and a
comprehensive API reference that defines the input and the output of a function. The specification
should both describe in natural language what are the inputs and outputs and specify the types of
inputs and outputs.
Unit test requirements. We aim to identify libraries with comprehensive unit tests to test the
implementation of a library, while having understandable test that feasible to run in an interactive
system. To achieve these goals, we limit the libraries to those with over 90% of code that can be
covered by unit tests. We filter libraries whose unit tests that take over than 30 minutes to run on a
single CPU and the libraries where a significant number of unit tests can only be run on GPUs.

To compile the list of libraries included in COMMIT0, we consider both generally popular Python
libraries and PyPI packages with top download counts1. We follow the annotation guideline2 to filter
out the libraries that satisfy the criteria described above.

We create two dataset splits: lite, which includes libraries with fewer functions to implement, and
all, which contains all libraries. Lite has a total of 16 libraries. Due to the complexity of COMMIT0
and budget constraints, we focus most of our evaluation on COMMIT0 lite.

3.2 BENCHMARK CONSTRUCTION

Ensuring Replicability. A key aspect of COMMIT0 is replicable running of unit tests across all
the libraries, which depends on the correct setup of development environments. To achieve this, we
annotate setup commands for each library. We begin by annotating a specific commit of the library
repository, which is used to extract installation requirements and generate the starter repository. The
installation requirements typically include a compatible Python version, necessary pip packages,
and an installation command. Some libraries may also require system-level dependencies, such as
clang. Finally, we annotate the pytest command, the directory containing the unit tests, and the
source code directory.

Preparing COMMIT0 Libraries. We prepare a library for COMMIT0 by removing its core code in
a systematic way. We assume that a library contains public functions which are accessible to users,
and private functions which are not supposed to be called. This is often not enforced explicitly by
Python but is upheld by convention. To determine if a function is a public function, we check if it has
an associated docstring. To prepare COMMIT0, we replace the function body of all public functions
to be empty (pass) and remove all private functions entirely. We perform these code modifications
by first parsing each Python file into an abstract syntax tree, performing transforms on the syntax
tree, and converting back to source code.3

Preparing specifications. Specifications exist in different forms. Some libraries have pure text
descriptions while others have extensive figures to demonstrate how the libraries work. For example,
seaborn is a data visualization library; they use figures to demonstrate the expected outcomes of

1https://hugovk.github.io/top-pypi-packages/
2We include the annotation guideline in Appendix.
3done with the ast library

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

operators.py

Fill in autodiff.py based on

minitorch

tensor_ops.py

tensor_ops.pyoperators.py

autodiff.py

Stage 1: Fill-in Stage 2: Revise based on linting
autodiff.py:28:5 - error:
(reportUndefinedVariable)

autodiff.py:36:45 - error:
(reportReturnType)

autodiff.py:49:17 - error:
(reportAttributeAccessIssue)

............

Stage 3: Revise based on testing

SDE-I SDE-ISDE-I

minitorch/autodiff.py
- pass
+ visited = set()

minitorch/autodiff.py
- for parent in node:
+ for parent in nodes:

minitorch/autodiff.py
+ class SimpleOps:
+ self.cmap = 0

minitorch/tensor_ops.py:40:
in __init__
 self.id_cmap =
ops.cmap(operators.id)
E AttributeError:
type object 'SimpleOps' has no
attribute 'cmap'.

............

Figure 3: Overview of SDE-I.

API functions. To unify the format, we convert all specifications to the PDF format. Specifically,
starting from the main documentation page, we crawl the webpage as well as all the internal links
recursively and save them as a PDF.

3.3 INTERACTIVE ENVIRONMENT

A key feature of COMMIT0 is its interactivity. Generating an entire library in a single attempt is
challenging for an agent; they need to iteratively incorporate feedback to refine their implementa-
tions. To facilitate this, we have developed an interactive environment that provides agents with
multiple sources of feedback, including unit testing, linting, and coverage analysis.

Unit Test Feedback Unit tests are crucial for validating the specified behavior of functions. The
results from unit tests provide valuable information about implementation issues, including error
types and execution traces. This feedback is essential for debugging. Our interactive environment
allows agents to execute an arbitrary number of unit tests for any library in parallel.

The primary challenge in this process is the need to set up environments for each library to run the
unit tests. To address this, we create a Docker image for each library and execute the tests in these
isolated environments. This setup allows agents to simultaneously develop and run unit tests across
all libraries using the pre-built images.

Linting Feedback Our interactive environment also offers comprehensive linting feedback, in-
cluding type checking, as an additional corrective signal. We apply a standardized linter and con-
figuration file across all libraries to ensure consistency. Specifically, we use Ruff as our linter4. For
reproducibility, we release both the Docker images and the linter configuration file alongside our
benchmark.

Coverage Feedback Coverage analysis serves as another valuable signal. For instance, if a unit
test passes in one run but fails in another, the difference in coverage can help identify which lines
of code are causing errors by comparing the differences in coverage. To provide this coverage
information, we use pytest-cov and leverage the pre-built isolated environments described above
to run the coverage analysis in a reproducible way.

4 THE SDE-I AGENT

COMMIT0 has several challenges involving complex multi-file dependencies and interactive feed-
back that make it challenging to apply current agents to this task Yang et al. (2024). To test the
difficulty level of COMMIT0, we design a prototype agent that is meant to act as simply as possible
while still being interactive.

4github.com/astral-sh/ruff

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The SDE-I is inspired by basic software engineering. It writes functions, runs unit tests, and itera-
tively edits the code based on error messages until the functions pass. We present an overview of the
agent in Figure 3. The agent operates in three stages: first, it fills in the function body for each func-
tion, then runs a linter to fix type errors, and finally executes unit tests, refining its implementation
based on the test results.

Stage 1: Draft initial implementations. SDE-I focuses on drafting an initial implementation
for each function. The first practical challenge is determining the appropriate unit for generation.
Implementing all functions at once is impractical, as concatenating them often exceeds the model’s
maximum context length. However, implementing each function in isolation loses the broader con-
text of the other functions. To balance this, we choose to treat all functions within a single module5

as one generation unit.

The second challenge is managing complex dependencies between modules, which is critical be-
cause implementing a module often requires understanding which other modules it depends on.
SDE-I performs a topological sort on imports of source code modules. It constructs a directed
acyclic graph (DAG) of the library, where each node represents a module. If a module imports oth-
ers, the imported modules are set as its parent nodes. In the case of conditional import cycles, a
random edge is removed to break the cycle. SDE-I then proceeds by filling in the modules in the
order determined by the topological sort. When implementing a module, it also includes the content
of all modules that the current module imports. In this step, SDE-I entirely ignores whether the
generated code is executable or not.

Finally, to prevent agents from accessing source code on GitHub – which would make COMMIT0
trivially solvable – we check for any retrieval of information from GitHub during every filling-in
attempt by detecting the presence of github.com or raw.githubusercontent.com in the
retrieval URLs. If these URLs are detected, the corresponding generation will be voided.

Stage 2: Refine based on linting results. SDE-I improves the initial implementations by running
a linter to detect and correct issues related to code style, syntax, and type errors. Linting provides a
lightweight, static analysis that helps enforce coding standards and catch potential problems before
running more resource-intensive tests. SDE-I appends linting results to the context and generates
revised versions of where issues were located. This process is repeated until all linter errors are
resolved or the maximum number of linter runs is reached.

Stage 3: Refine based on unit test results. SDE-I refines the implementation further by running
unit tests to ensure functional correctness. A challenge similar to the first stage arises: running all
unit tests simultaneously may generate error messages that exceed the model’s maximum context
length. However, unit tests are naturally grouped by functionality, with tests for related features
typically organized within the same test module. We leverage this structure by executing unit tests
one module at a time. The results are then incorporated into the context, allowing SDE-I to revise
the code based on the error messages. This process is iterative, with SDE-I continually revising the
code until all tests pass or a predefined limit on test runs is reached.

Implementation The SDE-I is implemented to be modular as to the underlying coding system
and language model.

For code generation, we default to the Aider framework.6 Aider’s interface allows us to define a
prompt, a lint command, and a test command. We construct a message that includes a prompt to fill
in the missing function body, along with texts from specifications and any necessary import modules.

For the LLM, we evaluate several model families known for their strong performance on coding
benchmarks. Specifically, we consider GPT-4o-mini (Hurst et al., 2024) and o1-preview (OpenAI,
2024); Claude 3.5 Sonnet7; DeepSeek-V2.5 (Guo et al., 2024); Llama-3.1-8B-Instruct, Llama-3.1-
70B-Instruct, Llama-3.1-405B-Instruct (Dubey et al., 2024); and Codestral8.

5In Python, a file is a module.
6aider.chat
7anthropic.com/news/claude-3-5-sonnet
8mistral.ai/news/codestral/

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Stage 1 Stage 2 Stage 3

OpenAI o1-preview 17.34105.92 - 21.46913.35

Claude 3.5 Sonnet 17.80 1.55 18.7912.47 29.30 99.39

DeepSeek-V2.5 16.55 1.43 11.6110.21 25.43 26.41

Llama-3.1-8B-Instruct 6.03 1.47 0.23 1.78 0.37 2.77

Llama-3.1-70B-Instruct 7.10 10.85 1.8311.25 2.49 24.82

Llama-3.1-405B-Instruct 8.08 7.94 1.7612.20 4.95 29.10

Codestral 6.34 0.30 6.34 0.36 7.41 1.99

Table 1: Unit test pass rates across three stages of SDE-I on COMMIT0 lite. Subscripts are corre-
sponding costs in US dollars.

5 RESULTS

Library Total Stage 1 Stage 2 Stage 3
babel 5663 0 0 0
cachetools 215 173 179 179
chardet 376 3 25 3
cookiecutter 367 108 102 16
deprecated 171 73 80 151
imapclient 267 0 0 31
jinja 851 0 0 0
marshmallow 1229 456 338 456
minitorch 230 0 0 0
parsel 206 10 10 0
portalocker 36 15 1 15
pyjwt 259 11 11 128
simpy 140 20 17 94
tinydb 201 27 38 64
voluptuous 149 0 0 0
wcwidth 38 6 6 1

Table 2: Pass rate on COMMIT0 lite across three stages of SDE-I.

To assess the effectiveness of each stage in the SDE-I agent, we evaluate ablated versions of the
method where we apply a fixed number of stages. We summarize the results on COMMIT0 lite
in Table 1. (Note that we skip stage 2 for OpenAI o1-preview due to its high costs.) Among the
three models, Claude 3.5 Sonnet consistently delivers the best performance across all three stages.
Surprisingly progressing from Stage 1 to Stage 2 results in a decline in performance with the open-
weights models. As discussed in the qualitative analysis in Section 6, although the linting feedback
provides useful guidance for fixing bugs, the model struggles to apply it effectively, often introducing
additional errors. This issue particularly affects the less capable models. However, moving from
Stage 2 to Stage 3 consistently improves the average pass rate, demonstrating the value of utilizing
unit test feedback. In the compute-constrained setting, Codestral in stage 1 has the best performance
(6.34%) under $1, and Claude 3.5 Sonnet in stage 3 has the best performance (%29.3) under $100.

Table 2 shows the pass rate for each library using Claude 3.5 Sonnet at each stage. At the individual
library level, the results are mixed. In many cases, when models attempt to address linting issues and
unit test feedback, they inadvertently introduce new errors. However, for libraries like deprecated,
parsel, and tinydb, Claude 3.5 Sonnet shows the greatest improvement from execution feedback.

Results on COMMIT0 all. We summarize the results in Table 3. Due to the high API cost of
Claude 3.5 Sonnet, we only run it for the first stage of the SDE-I agent on COMMIT0 all. We note
that running just the first stage with Claude 3.5 Sonnet already outperforms running all stages with
GPT-4o-mini or DeepSeek-V2.5. In the compute-constrained setting, GPT-4o-mini in stage 1 has
the best performance (2.87%) under $1, and Claude 3.5 Sonnet in stage 1 has the best performance
(%6.12) under $100.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Stage 1 Stage 2 Stage 3

GPT-4o-mini 2.87 8.73 1.4227.22 4.24123.74

Claude 3.5 Sonnet 6.1220.46 - -
DeepSeek-V2.5 2.3314.94 2.9522.58 4.93 84.11

Table 3: Unit test pass rates at the first stage of SDE-I on COMMIT0 all. Subscripts are correspond-
ing costs in US dollars.

stage 1 + spec (first) + spec (bm25) + test info - order - import
0

5

10

15

20

Av
g.

 P
as

s

Figure 4: Ablations on different configurations of what context is provided to SDE-I.

Results on state-of-the-art software development agent: OpenHands. We test OpenHands
(Wang et al., 2024b), the best-performing agent on SWE-bench. To have OpenHands take full
advantage of the specifics of COMMIT0, we share the list of unit test IDs, linter commands, and test
commands with the agent. With this deep integration, OpenHands passed 43.20% of unit tests on
COMMIT0 lite (a 14% improvement compared to SDE-I) and 15.62% on COMMIT0 all (a 9% im-
provement). To understand this improvement, we analyze the TinyDB example, where OpenHands
improved from 64 passed tests to 174. We attribute the success of OpenHands to its better debugging
capabilities. Unlike SDE-I, which often repetitively generates the same fix for a bug, OpenHands is
able to explore different solutions.

6 ANALYSIS

Ablations. We conduct ablation studies based on the first stage of SDE-I, and the results are sum-
marized in Figure 4. First, we investigate whether including information from the specifications and
tests can help LLM agents pass more unit tests. Since the length of the specification often exceeds
the maximum context length of the LMs, we feed only the first 10,000 tokens from the specifica-
tion. For test, we append the prompt to include test modules. Surprisingly, both additions reduce
performance. We hypothesize that much of the specification and tests are irrelevant to implementing
specific modules, which may distract the model. To better leverage the specification, the agent will
likely need to first filter out only the relevant information. To verify this hypothesis, we perform re-
trieval to obtain 10,000 tokens. Specifically, we break the specification into chunks of 1,000 tokens
and retrieve the top 10 chunks to include in the context. With the same number of tokens, using
BM25-retrieved tokens yields a higher unit test pass rate, suggesting that agents can benefit from
more relevant context.

Next, we explore whether filling in functions following the order found by topological sort is help-
ful. Interestingly, we find that a random-ordering approach leads to more passed unit tests (22%
compared to 17%). Upon further inspection, we found conditioning on wrong implementations in
imported modules was the issue. Relying on incorrect implementations appears to be more harmful
than relying on empty ones. Lastly, we assess the impact of excluding relevant modules from the
context. As expected, excluding these relevant imports results in fewer passed unit tests.
Test-time scaling approaches. An interesting question is how unit test pass rates scale with more
test-time compute. We address this question with two experiments. First, we sample a module 1,
3, and 10 times, picking the best implementation based on pass rates before proceeding to the next
module. Additionally, we test whether continuous iterations on unit test feedback will eventually
enable agents to pass all unit tests. We conducted an experiment where we applied unit test feedback
over different numbers of iterations: 1, 3, and 10. We summarize the results on the left of Figure 5.
We observed that, in both cases, unit test pass rates improve with more test-time compute.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Qualitative example for using linting feedback to revise function implementations.
Test Results Before

PASSED tests/test_utils.py::test_work_in
PASSED tests/test_utils.py::test_work_in_without_path

Lint Feedback
cookiecutter/utils.py:38:5: ANN201 Missing
return type annotation for public function ‘work_in’
37 | @contextlib.contextmanager
38 | def work_in(dirname=None):

| ˆˆˆˆˆˆˆ ANN201
39 | """Context manager version of os.chdir.

= help: Add return type annotation

Revised Implementation
@contextlib.contextmanager
- def work_in(dirname=None):
+ def work_in(
+ dirname: Optional[Union[str, "os.PathLike[str]"]] = None
+) -> Any:

"""Context manager version of os.chdir.
@@ -44,11 +50,12 @@ def work_in(dirname=None):

try:
if dirname is not None:

os.chdir(dirname)
- yield
+ yield None

finally:
os.chdir(curdir)

Test Results After
Failed tests/test_utils.py::test_work_in

- TypeError: ’NoneType’ object is not an iterator
Failed tests/test_utils.py::test_work_in_without_path

- TypeError: ’NoneType’ object is not an iterator

0 50 100 150
Cost ($)

17.5

20.0

22.5

25.0

27.5

30.0

Av
g.

 P
as

s

1 times
3 times

10 times

1 times 3 times
10 times

Independent Gen
Iterative Test

0 100 200 300 400 500 600 700
Length (tokens)

0.0

0.2

0.4

0.6

0.8

1.0

10
-g

ra
m

 O
ve

rla
p

Figure 5: Left: Compute-constrained test-time approaches. Right: 10-gram overlaps between
Claude-generated functions and reference functions. Each dot is a function. We sort the 10-gram
overlap by function lengths.

Library Memorization. COMMIT0 tests models on existing libraries, versions of which are likely
part of their training data. This raises the possibility that LLMs may be simply recalling these li-
braries from memory, but not reasoning about the specifications and unit tests. (A similar question
exists for other coding benchmarks.) To explore whether current models are primarily memorizing
the libraries, we calculate the 10-gram overlap between the generated and reference libraries. We
create a mapping from function IDs to their corresponding function bodies for public functions. We
then compute the 10-gram overlap between the generated implementation and the reference imple-
mentation for each function. The overlaps are sorted by function length. The results, presented on
the right of Figure 5, indicate that LMs either fully memorize the functions or produce implemen-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

tations that are significantly different. Shorter functions are more frequently memorized. Given the
low total test accuracy, the observed degree of memorization is not a full solution for the benchmark.

Table 5: Qualitative example for using unit test feedback to revise function implementations.
Test Results Before

FAILED tests/test_condition.py::test_ior_with_or_cond
FAILED tests/test_condition.py::test_ior_with_and_cond

Unit Test Feedback
> event._value = event._callback(event)
E AttributeError: ’Initialize’ object has no attribute ’_callback’.

Did you mean: ’callbacks’?

Revised Implementation
- event._ok = True
- event._value = event._callback(event)
- event._processed = True
+ try:
+ if hasattr(event, ’_callback’):
+ event._value = event._callback(event)
+ event._ok = True
+ elif hasattr(event, ’callbacks’):
+ for callback in event.callbacks:
+ callback(event)
+ event._ok = True
+ elif isinstance(event, Process):
+ if event._target is None:
+ raise RuntimeError(’Invalid yield value "None"’)
+ event._resume(event._target)
+ else:
+ event._ok = True
+ except Exception as e:
+ event._ok = False
+ event._value = e
+ if not getattr(event, ’_defused’, False):
+ raise
+ finally:
+ event._processed = True

Test Results After
PASSED tests/test_condition.py::test_ior_with_or_cond
PASSED tests/test_condition.py::test_ior_with_and_cond

Qualitative Analysis. In the first example, we show lint feedback might hurt performance. Pre-
sented in Table 4, the function implemented in stage 1 successfully passes the unit tests. However,
the agent misinterpreted the lint feedback, which requested type annotations. In response, the agent
adds Any as the return type and modifies the function to include yield None to match the type.
Unfortunately, since a generator cannot return NoneType, this introduces a new error. In the second
example, we show test feedback can improve performance. Presented in Table 5, the unit test feed-
back points out that the attribute ‘ callback‘ is missing. The agent thus revised the implementation
by adding an if statement to check for relevant attributes, hence passing the unit tests.

7 CONCLUSION

We introduce COMMIT0, a challenging task that requires LMs to generate libraries from scratch.
Our task provides signals through unit test feedback, including both error messages and execution
traces. It also offers comprehensive linting feedback including type checking. This task is meant to
be beyond the level of most human experts, and currently seems beyond what state-of-the-art LLMs
are capable of. We hope that it can serve as both as progress benchmark for AI development as well
as spurring new agent architectures and methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

LIMITATIONS

One limitation of COMMIT0 is that we exclusively include Python libraries in our evaluation, which
may limit the generalizability of our findings to other programming languages. Additionally, our
experimental environment requires a well-specified document and a full suite of unit tests for each
library, which may not reflect the typical development process where documentation and tests are
often incomplete or evolving. While these assumptions may not be entirely realistic in every real-
world scenario, they are closely aligned with the principles of test-driven development (TDD), where
rigorous testing and clear documentation are integral parts of the development process.

ETHICS STATEMENT

Commit0 consists of forked public repositories whose licenses permit our use. Our study does not
involve human participants, and does not rely on human task workers for data collection. We do not
gather any data, including personal data, from GitHub.

Automating software engineering is a challenge that has both potential benefits and harms. Our
release of Commit0 serves to measure progress towards this challenge. We release the benchmark
in its entirety, along with all methods and results.

REPRODUCIBILITY

We release the Commit0 benchmark in its entirety, along with all methods and results. We also
provide the code for reproducing the dataset, so that it may be used for synthesizing data.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for eval-
uating llms on class-level code generation. ArXiv, abs/2308.01861, 2023. URL https:
//api.semanticscholar.org/CorpusID:260439062.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021b. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

11

https://arxiv.org/abs/2108.07732
https://api.semanticscholar.org/CorpusID:260439062
https://api.semanticscholar.org/CorpusID:260439062
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021c.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning
any github repository into a programming agent environment. In ICML 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen
Qian, Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao
Peng, and Kai Chen. DevBench: A comprehensive benchmark for software develop-
ment. ArXiv, abs/2403.08604, 2024. URL https://api.semanticscholar.org/
CorpusID:268379443.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

OpenAI. Openai o1 system card. Technical report, September 2024. URL https://openai.
com/research/openai-o1-system-card. Introduction to the o1 model series, focusing
on safety and robustness through advanced reasoning with chain of thought and risk management
protocols.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024a. URL https://arxiv.org/abs/2407.16741.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Carolyn Rose. CodeBench-
Gen: Creating scalable execution-based code generation benchmarks. ArXiv, abs/2404.00566,
2024. URL https://api.semanticscholar.org/CorpusID:268820050.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://api.semanticscholar.org/CorpusID:268379443
https://api.semanticscholar.org/CorpusID:268379443
https://openreview.net/forum?id=S37hOerQLB
https://openai.com/research/openai-o1-system-card
https://openai.com/research/openai-o1-system-card
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2407.16741
https://api.semanticscholar.org/CorpusID:268820050
https://arxiv.org/abs/2405.15793

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 2471–2484, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
151. URL https://aclanthology.org/2023.emnlp-main.151.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiao ke Hong, Wen-Ding Li, Jean Kaddour, Minglian Xu, Zhi-
han Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zi-
jian Wang, David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiao-Nan Du, Harm
de Vries, and Leandro von Werra. BigCodeBench: Benchmarking code generation with di-
verse function calls and complex instructions. ArXiv, abs/2406.15877, 2024. URL https:
//api.semanticscholar.org/CorpusID:270702705.

A DATA ANNOTATION

We list our annotations for each library in Table A. Annotation guidelines are attached at the end of
this paper.

Annotation Description
Name of the repo Owner and repository name
Commit or tag Annotate either a specific commit or a version tag (recommended).
Python version Python version that is compatible with the specified code state
Packages Path to ‘requirements.txt‘ that contains packages to be installed
Pip packages Additional pip packages to install
Install Installation command (must be in editable mode and include test dependencies)
Pre-install System-level dependencies (e.g., ‘apt-get‘, ‘clang‘, etc.)
Specification URL link to the project specification, preferably a PDF link
Test cmd ‘pytest‘ command for running unit tests
Test dir Directory where unit tests are located
Src dir Directory where the source code is located (e.g., ‘web3/‘ for ‘web3.py‘ library)

Table 6: Annotations for setting up unit tests

B IMPLEMENTATION DETAILS

Here is your task:
You need to complete the implementations for all functions (i.e.,
those with pass statements) and pass the unit tests. Do not change
the names of existing functions or classes, as they may be referenced
from other code like unit tests, etc.
IMPORTANT: When you generate code, you must maintain the original
formatting of the function stubs (such as whitespaces), otherwise we
will not be able to search/replace blocks for code modifications, and
therefore you will receive a score of 0 for your generated code.

Figure 6: The prompt provided to SDE-I at stage 1.

Prompt. We present the stage-1 SDE-I prompt in Figure 6.

13

https://aclanthology.org/2023.emnlp-main.151
https://api.semanticscholar.org/CorpusID:270702705
https://api.semanticscholar.org/CorpusID:270702705

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fill in by Module Fill in by Pass Statement

Avg. pass 17.80 12.42

Table 7: Comparison of average pass rates between filling in by module and by function.

C ABLATIONS

Generation units. Here we analyze the generation unit for filling in libraries from scratch. We
compare filling in by module and by pass statement and present the results in Table 7. We find
that filling in by pass statement leads to significantly worse results than filling in at the module
level. When generating code for one pass statement, models tend to focus solely on local contexts
and often overlook interactions with other parts in the modele. In contrast, generating code at the
module level enables models to develop a holistic understanding of a file. For example, in the
following portalocker.py file, when filling in for the only pass statement, the agent terminates
without any modification.

import os
import typing
from . import constants, exceptions
LockFlags = constants.LockFlags

class HasFileno(typing.Protocol):
pass

LOCKER: typing.Optional[typing.Callable[
[typing.Union[int, HasFileno], int], typing.Any]] = None
if os.name == ’nt’:

import msvcrt
import pywintypes
import win32con
import win32file
import winerror
__overlapped = pywintypes.OVERLAPPED()

elif os.name == ’posix’:
import errno
import fcntl
LOCKER = fcntl.flock

else:
raise RuntimeError(’PortaLocker only defined for nt and posix platforms’)

}

As a result, all the unit tests failed in the collection stage:

ImportError while loading conftest ’/testbed/portalocker_tests/conftest.py’.
portalocker_tests/conftest.py:8: in <module>

from portalocker import utils
portalocker/__init__.py:37: in <module>

lock = portalocker.lock
E AttributeError: module ’portalocker.portalocker’ has no attribute ’lock’

However, when the agent is asked to fill in the whole module, it returns the following message:

Thank you for providing the task details and the content of the relevant files.
I’ll focus on completing the implementations for the functions with ‘pass‘
statements in the ‘portalocker/portalocker.py‘ file. Since there are no explicit
‘pass‘ statements in the provided code, I’ll assume that we need to implement
the locking and unlocking functionality for both Windows (nt) and POSIX systems.

Let’s start by implementing the ‘lock‘ and ‘unlock‘ functions for both platforms.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Following this message, the agent produces the code:

if os.name == ’nt’:
[...]
def lock(file, flags):

if flags & constants.LockFlags.EXCLUSIVE:
lock_type = win32con.LOCKFILE_EXCLUSIVE_LOCK

else:
lock_type = 0

if flags & constants.LockFlags.NON_BLOCKING:
lock_type |= win32con.LOCKFILE_FAIL_IMMEDIATELY

hfile = msvcrt.get_osfhandle(file.fileno())
try:

win32file.LockFileEx(hfile, lock_type, 0, -0x10000, __overlapped)
except pywintypes.error as exc_value:

if exc_value.winerror == winerror.ERROR_LOCK_VIOLATION:
raise exceptions.LockException(fh=file)

else:
raise

def unlock(file):
hfile = msvcrt.get_osfhandle(file.fileno())
try:

win32file.UnlockFileEx(hfile, 0, -0x10000, __overlapped)
except pywintypes.error as exc_value:

if exc_value.winerror == winerror.ERROR_NOT_LOCKED:
File was not locked.
pass

else:
raise

elif os.name == ’posix’:
[...]
def lock(file, flags):

locking_flags = fcntl.LOCK_EX
if flags & constants.LockFlags.EXCLUSIVE
else fcntl.LOCK_SH

if flags & constants.LockFlags.NON_BLOCKING:
locking_flags |= fcntl.LOCK_NB

try:
fcntl.flock(file.fileno(), locking_flags)

except IOError as exc_value:
if exc_value.errno == errno.EACCES or exc_value.errno == errno.EAGAIN:

raise exceptions.LockException(fh=file)
else:

raise
def unlock(file):

fcntl.flock(file.fileno(), fcntl.LOCK_UN)
else:

raise RuntimeError(’PortaLocker only defined for nt and posix platforms’)

D RELEASES

We release COMMIT0 on HuggingFace9, interactive environment on GitHub10, and trajectories on
Leaderboard11.

9huggingface.co/datasets/XXX/XXX
10github.com/XXX/XXX
11https://XXX.github.io/

15

huggingface.co/datasets/XXX/XXX
github.com/XXX/XXX
https://XXX.github.io/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Annotation guide

Goal of the task
● A YAML file with 50 repos annotated (see example below)

Annotation process
1. Go through 300 PyPI repositories and annotate them

a. Top 300 PyPI: https://hugovk.github.io/top-pypi-packages/ (filter as top 1000)
b. No overlap with existing annotations (below): if you enter in the name (column B),

and it highlights, we already have that in the set. So in that case, move on to the
next row. You can leave the highlighted cell (don’t erase it)

2. Annotate each repo on this spreadsheet: [Annotation] Python package requirements
a. Enter the name of the repo (look at the examples and follow the format)
b. If it is nonexistent in the list above, annotate if we want to use the repo with the

standards below
3. We can stop the process when we have 50 more well-tested and well-documented repos
4. Create yaml
5. Automatically run YAML in docker images

a. Verify installation
b. Verify tests are executable

Filtering criteria

Repo related criteria
● The library needs to have > 95% Python code
● The library has native Python implementations instead of wrapping libraries in other

languages
● Supporting unit tests with pytest

○ E.g., markdown is a really good library with good documentation and quality
code, but they are very unwilling to support pytest:
https://github.com/Python-Markdown/markdown

○ Concretely, this means that following the developer's guide, pytest can
successfully collect and run all unit tests (having a few unit tests fail is fine, but
having over 2% of tests fail is not good).

Specification related criteria
● Have a well-written specification. Criteria:

○ User guide (how to use the repo)

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

○ Developer guide (how developers can develop)
■ How to set up development environments, etc

○ API references
○ Ideally this should be a website, such as https://simpy.readthedocs.io/en/latest/

■ This is the required level of documentation
● Have docstrings in public functions

Test related criteria
● Code coverage > 90%
● Unit tests should not use GPUs

○ unless unit tests on GPUs are optional and can be disabled
● Unit tests should finish in 30 minutes

Other criteria
● The library needs to run in developer mode (eg, pip install -e).

Annotations
● Name of the repo

○ This is both the owner and repo name
● Commit or tag

○ This is annotating from which state of the repo we are having models to write
○ Only one of them should be annotated, can either be a specific commit or a

version tag. A version tag is recommended, only do commit if the library has no
recent tags (within six months)

● Python
○ Python version that can successfully run the code in the state above

● Packages:
○ Paths to requirements.txt that need to be installed

● Pip_packages:
○ Additional pip packages that need to be installed

● Install
○ Install command
○ Has to be in editable mode
○ Be sure to include test dependencies

● Pre_install
○ This is often apt-get clang or other system-level dependencies

● Specification
○ A URL link to the specification
○ This should match the code state in a commit or tag
○ If a PDF link exists, use that instead of a general web URL. E.g.,

■ https://portalocker.readthedocs.io/_/downloads/en/stable/pdf/ is preferred
■ https://portalocker.readthedocs.io/en/stable/ is less preferred

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

■ See how to get the PDF link
Annotation guide for Python package requirements

● Test_cmd
○ pytest command

● test_dir
○ Which directory unit tests are in

● Src_dir
○ Where source code is in
○ E.g., for the web3.py library (https://github.com/ethereum/web3.py), it is web3/

How to get the PDF link:
● Look for this icon in the highlighted red region and click on it

● Click on PDF

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

To test if your annotations are successful
● You should be able to follow your own annotations to set up the repositories, where you

will
○ Launch a docker container by “docker run -it ubuntu:latest”. In the container,

■ First do pre_install
■ Install the python version you annotate
■ Clone and checkout the repo to the commit or tag
■ Install packages
■ Install pip packages
■ Run the install command
■ Run unit tests with {test_cmd} {test_dir}

● All install should be successful
● Over 98% unit tests should pass

	Introduction
	Related Work
	The Commit0 Benchmark
	Library Selection
	Benchmark Construction
	Interactive Environment

	The SDE-I Agent
	Results
	Analysis
	Conclusion
	Data Annotation
	Implementation Details
	Ablations
	Releases

