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long-term Finnish prospective observational study found that
people with seizure clusters had worse disease outcomes than
those without clusters [4]. Patients more likely to experience
seizure clusters are given stronger anticonvulsant medications,
which may cause side effects [5]. These drugs are administered
preemptively since, on termination of a given seizure, it
is unknown whether another seizure will occur in the near
future. Predicting whether another seizure will occur shortly
after the termination of a seizure, i.e., whether a seizure
will cluster, is clinically important. Our goal is to develop
individualized machine learning (ML) models for predicting
seizure type, i.e., isolated seizure or cluster seizure, using
intracranial EEG (iEEG) data. iEEG may capture differences
in seizure dynamics, i.e., brain activity of different seizure
types in patients with drug-resistant epilepsy [3], [5].

The main challenges in predicting seizure types are: (i)
the lack of long-term EEG data of individuals, (ii) limited
understanding of the differences between isolated and cluster
seizures, and (iii) limited exploration of ML methods that are
suitable for individualized cluster prediction. Ferastraoaru et
al. observed differences in the duration of isolated and cluster
seizures by pooling short-term data from 92 patients but had
limited samples from each patient (3 − 31 seizures each) to
explore patient-specific differences [6]. However, the patient-
specific nature of seizure dynamics suggests that differences
between isolated and cluster seizures might be patient-specific
[2]. Karoly et al. found differences in the pre-ictal iEEG
energy between isolated and cluster seizures in three out of
15 patients in long-term NeuroVista data [7]. However, they
did not explore more fine-grained iEEG features, for e.g.,
bivariate features, which may further highlight patient-specific
differences. To the best of our knowledge, previous studies
have not developed individualized seizure cluster prediction

Abstract—Seizure clusters, i.e., seizures that occur within a 
short duration of each other, occur in several epilepsy patients 
and are associated with increased disease severity. Understanding 
the characteristics of seizure clusters and predicting whether a 
given seizure will cluster or not is valuable both from a patient’s 
and clinician’s perspective. We propose a novel methodology 
for studying seizure clusters based on bivariate intracranial 
EEG (iEEG) features and develop one of the first individualized 
seizure cluster prediction models by combining machine learning 
with relative entropy (a bivariate feature). Relative entropy 
was used to quantify interactions between brain regions and 
capture potential differences in interactions underlying isolated 
and cluster seizures. We evaluated our methodology using one 
of the largest ambulatory iEEG datasets, consisting of data 
from 15 patients with up to 2 years of recordings each. This 
provided us a sufficient n umber o f s eizures i n e ach p atient to 
enable individualized analyses and prediction. On data of 3710 
seizures consisting of 3341 cluster seizures (from 427 clusters) and 
369 isolated seizures, machine learning models based on relative 
entropy predicted seizure clusters with up to 73.6% F1-score and 
outperformed baseline predictors. Our results are beneficial in 
addressing the clinical burden of clusters.
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I. INTRODUCTION

Seizures in an individual can follow a range of patterns from
cyclic, to random, to clustered [1], [2]. Seizure clustering, i.e.,
the occurrence of multiple seizures within a short duration, is
estimated to occur in 13% - 76% of epilepsy patients [3]. A
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methods.
We propose a novel approach for predicting individualized

seizure type using ML and a bivariate feature extracted from
various physiologic frequency bands from long-term iEEG
data. (i) We used various frequency bands because the band
capturing prominent seizure-related iEEG changes can vary
across patients [8]. (ii) We used relative entropy (REN), a
bivariate feature, because it can quantify the dynamics under-
lying different seizure types. Epilepsy is increasingly being
understood as a network disorder [9], [10]. We expect that
if the dynamics of isolated and cluster seizures are different,
their network interactions, measured using the similarity in
iEEG between pairs of electrodes, might show differences
[11]. (iii) We used individualized long-term iEEG data to
capture a sufficient number of seizures in each patient to
enable exploration of patient-specific differences in dynamics
[2] and training of individualized models. (iv) Finally, we
trained several linear and non-linear ML models using REN
data as features to predict seizure type.

We evaluated our approach using NeuroVista data [12],
one of the largest ambulatory iEEG datasets, consisting of
data from 15 patients with up to 2 years of recordings
for each patient. The analysis included 3710 isolated and
cluster seizures. Seizures within 24 hours of each other were
considered as belonging to a cluster. For each seizure, iEEG
data from the ictal as well as 10 minutes pre-ictal period
(near-seizure) were used. We computed REN from the iEEG
data since it has previously been used for seizure detection
[13] and seizure onset zone localization [11]. To evaluate
whether REN captures differences in seizure types, averaged
REN values in different frequency bands for isolated and
cluster seizures were statistically compared [2]. Based on
insights from the statistical analysis, we developed several
individualized prediction models and compared them with
baseline techniques for predicting seizure cluster. Finally, we
assessed the robustness of our results by repeating the analyses
with seizures within 8 hours of each other being considered
as part of a cluster.

Our contributions are as follows:

1) We proposed a generic framework (Fig. 1, Fig. 2) for
investigating the dynamics of cluster seizures and for
predicting if a given patient will experience a seizure
cluster or an isolated seizure.

2) Using REN from various frequency bands, we found
significant differences between the dynamics of isolated
and cluster seizures in six patients, substantially improv-
ing over a previous approach that found differences only
in three patients on the same dataset.

3) We found that the majority of the differences were in
the beta and gamma bands and during the near-seizure
period.

4) Individualized ML models predicted seizure type with
73.6% F1-score and outperformed baseline predictors.
To the best of our knowledge, this is the first demon-
stration of individualized seizure cluster prediction.

5) The results were robust to change in the inter-seizure
interval threshold for clustering.

The prediction models can be clinically useful in guiding the
selection of anticonvulsant medications based on seizure type.
Moreover, insights into the characteristics of seizure clusters
can guide the exploration of techniques to mitigate their
clinical burden, for e.g., through changes in brain stimulation
parameters.

II. METHODS

The overall analyses pipeline is shown in Fig. 1. The details
of each step are described below.

A. Long-term iEEG data collection

We used data that was collected as part of the NeuroVista
study in Australia [12]. In that study, 15 patients with refrac-
tory epilepsy were implanted with an intracranial EEG device
that collected data in an ambulatory setting for up to 2 years
in each patient. Data from six patients was excluded from
this study due to significant data drops which could affect
the analysis of clustering. The nine patients included in the
study had an average recording duration of 550 ± 208 days.
Data for each patient consisted of iEEG data collected from 16
electrodes (2 lead assemblies with 8 contacts distributed across
2 electrode arrays each) placed on the presurgically assessed
seizure onset zone. Data was sampled at 400Hz and wirelessly
transmitted from the implanted device to an external, hand-
held personal device.

B. Seizure detection and the selection of near-seizure data

Seizures were detected from the iEEG data for each patient
using a published methodology [14]. This procedure resulted
in an average of 412.2 ± 348.4 seizures per patient over the
course of their entire recording. The average duration of the
seizures was 39.0 ± 63.6s. Since pre-ictal activity near seizure
onset can show differences between different seizure types
[7], we included pre-ictal iEEG in our analysis. For each
seizure, pre-ictal iEEG up to 10mins prior to seizure onset
was considered because seizure-related changes can manifest
in that duration [15]. In case a seizure had occurred within the
previous 10 mins of the given seizure, the iEEG data between
the termination of the previous seizure and the onset of the
given seizure was considered. We refer to this pre-ictal iEEG
data as near-seizure.

C. iEEG preprocessing

iEEG data was preprocessed as follows. First, since am-
bulatory recordings can have several artifacts, we used a
bipolar montage for referencing the signals. Bipolar montage
was computed by taking the difference between the iEEG
signals on consecutive channels on each array, resulting in
12 bipolar pairs (2 lead assemblies × 2 arrays × 3 bipolar
pairs per array) per patient. For clarity, we refer to each
bipolar pair as an “electrode” for the remainder of the analysis
unless otherwise stated. Seizure and near-seizure iEEG data
from each electrode was divided into 2.5s non-overlapping
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Fig. 1. Analysis pipeline.

segments. Segment length was chosen as 2.5s to provide a
sufficient number of samples in each segment to robustly
estimate relative entropy. Segments in seizure and near-seizure
periods were aligned to seizure onset. Additional artifact
removal was not done because the iEEG data used for the
analysis was of a short duration and since bipolar montage
can remove artifacts that are common across channels. Data
in each segment was filtered into the following physiologic
bands for feature extraction: delta (0.5 – 4Hz), theta (4 – 8Hz),
alpha (8 – 12Hz), beta (12 – 25Hz), and gamma (25 – 45Hz)
using 2nd order Butterworth bandpass filters. The resulting
timeseries for each band and electrode within a segment was
independently normalized to have zero mean and unit variance.

D. Seizure cluster detection

Seizure clusters were identified based on the inter-seizure
intervals (ISIs) of successive seizures. Several definitions for
seizure clusters have been proposed in literature based on
a cutoff for the ISI, ranging from 2 hours to 24 hours
[6], [16]. For this analysis, we used 24 hours as the cutoff
since it is widely used. Based on this definition, seizures
were categorized into the following three types: (i) Isolated
seizures were seizures that did not have a seizure 24 hours
before or after them. The remaining seizures were categorized
as cluster seizures. Cluster seizures were further categorized
into (ii) cluster-last, which were the last seizures in clusters,
and (iii) cluster-non last, which were seizures in a cluster
that were not the last seizure. Seizures within clusters were
subcategorized to study differences and similarities between
those subcategories and isolated seizures. Near-seizure iEEG
segments were considered to be in the same category as their
corresponding seizure. To assess the robustness of our results
to the definition of seizure clusters, we also evaluated all the
results for an 8 hour cutoff for the ISI.

E. Bivariate feature computation

We used relative entropy (REN), a bivariate feature, for
analysing the iEEG data. REN quantifies the dissimilarity
in the distribution of iEEG signal amplitudes between two
electrodes. REN was computed for each segment and band

separately. For a given pair of electrodes, the distributions
of amplitudes of the filtered signals were compared using
KL divergence. Since KL divergence is nonsymmetric, the
dissimilarity was measured with each signal as reference
and the maximum was considered as REN [11]. REN was
computed for all pairs of electrodes within a patient.

F. Statistical analyses

We statistically compared REN values for the different types
of seizures separately for each band. Since we were primarily
interested in differences between isolated and cluster seizures,
in each scenario two comparisons were done: (i) isolated
vs cluster-last and (ii) isolated vs cluster-non last. Wilcoxon
rank sum test was used for statistical comparison, and FDR
correction was applied to correct for multiple testing in each
analysis.

G. Machine learning prediction models

We tested several linear and non-linear classification meth-
ods for predicting seizure clustering (Fig. 2). The linear models
evaluated in this study were logistic regression and support
vector machine (SVM). Among non-linear classifiers, random
forest, decision trees, and k-nearest neighbors (k-NN) were
evaluated. For each classifier, we used 5-fold cross validation
with 80%-20% training-testing split of the patient’s data.
Classifiers were individualized by only training and testing on
data of the same patient. Since each method had several hyper-
parameters that could affect model performance, we used
inner 5-fold cross validation for selecting hyper-parameters
using only the training data (which was split into training
and validation sets). Hyper-parameters for each classifier were
as follows: logistic regression (solver: [“newton-cg”, “lbfgs”,
“liblinear”], penalty= “l2”, C: [100, 10, 1.0, 0.1, 0.01]),
SVM (kernel: [“poly”, “rbf”, “sigmoid”], C: [50, 10, 1.0, 0.1,
0.01], gamma: [1, 0.1, 0.01, 0.001, 0.0001]), random forest
(bootstrap=True, max depth: [2, 3], min samples leaf: [4, 5]),
decision tree (max depth: [2, 3], min samples leaf: [4, 5],
criterion: [“gini”, “entropy”]). Due to imbalance in class sizes,
samples were weighted inversely proportional to class size
during model training. We used precision, recall, F1-score, and
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Fig. 2. Workflow for developing and evaluating seizure cluster prediction
models. Abbreviations: CV, cross-validation; log. reg., logistic regression.

area under the receiver operation characteristics curve (AUC)
as performance metrics.

Each prediction model used REN values from the different
bands and periods as input and predicted whether the next
seizure would occur within 24 hours of the given seizure
or not. For this task, seizures were divided as follows: (i)
“isolated + cluster-last” - isolated seizures and the last seizure
in clusters, since no seizure occurs shortly after them; and (ii)
“cluster-non last” - the remaining seizures in clusters. During
robustness analysis, the same classes were used although the
model predicted whether the next seizure would occur within
8 hours of the given seizure or not.

We compared the models with two baseline predictors: (i)
a chance-level predictor (baseline 1), and (ii) a model that
always predicts “cluster”, i.e., another seizure will occur soon
(baseline 2). The theoretical performance for the baseline
predictors were calculated as follows. Assume that the true
probability of a seizure to be cluster-non last is r, and the
model predicts the cluster-non last label with probability q.
Then, the precision is r for both baseline 1 and baseline 2.
The recall is q for baseline 1 and 1 for baseline 2. Thus, the
F1 score for baseline 1 is 2rq

r+q , and the F1 score for baseline
2 is 2r

r+1 . The AUC for baseline 1 is 0.5 and the AUC for
baseline 2 can not be computed.

III. RESULTS

A. Distribution of seizure type per patient

We observed seizures of both types in all the patients (Fig.
3). The ratio of isolated to cluster seizures varied across
patients. For example, patients 3, 4, and 6 have very few
isolated seizures compared to cluster seizures, whereas, patient

Fig. 3. Data summary. Number of seizures of each type in each patient. Y-
axis is shown in log scale. Abbreviations: I, isolated seizure; C-L, cluster-last
seizure; C-NL, cluster-non last seizure.

9 had many more isolated seizures than cluster seizures. The
ratio of isolated to cluster seizures varied from 0.01 - 4.63.
Across all patients, there were a total of 369 isolated seizures,
2914 cluster-non last seizures, and 427 cluster-last seizures.

B. Patient-specific differences in grand average REN

To understand whether there were differences in the dynam-
ics of different seizure types as a whole, we compared the
grand average REN values within each patient. To obtain the
grand average REN, REN values for all pairs of electrodes
and all segments within a band and period were averaged
separately for each seizure. In patient 1, differences were
observed in the delta, theta, beta, and gamma bands in the
near-seizure period, but not during seizure, for both seizure
type comparisons (Fig. 4A, Fig. 4B).

Aggregating the grand average REN comparisons from all
patients showed that the majority of the differences were seen
near-seizure, especially in the beta and gamma bands (Fig.
4C). Further, near-seizure grand average REN was consistently
higher in the cluster seizures than isolated seizures. There
were no significant differences between isolated and cluster-
last seizures during the ictal period.

Interestingly, patient-specific significant differences in grand
average REN were observed in six out of nine patients in at
least one band, duration, and seizure type comparison. No
significant differences were observed in patients 2, 3, and
4, all of whom had very few seizures of at least one type.
Patient 2 had very few cluster seizures (4 non-last, 4 last),
whereas patients 3 and 4 had very few isolated seizures (< 20)
compared to cluster seizures (> 600; Fig. 3).

C. Prediction

Grand average REN from different bands and periods were
used for prediction because they was significantly different
between seizure types in a majority of patients. This resulted
in 10 features for each seizure (5 bands × 2 periods). Patient
2 was excluded from the prediction analysis because they had
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Seizure
Near-Seizure

(A) (B)

(C)

Fig. 4. Comparison of grand average REN values with a 24 hours cutoff for ISI. (A) Grand average REN values for different seizure types, bands, and
periods for patient 1. Statistical comparison between different seizure types is shown during near-seizure and seizure periods (* denotes p < 0.05, ** denotes
p < 0.001). FDR correction was applied for all comparisons within a patient. (B) Significant differences between grand average REN values in patient 1
represented as a heatmap. (C) Significant differences in grand average REN aggregated across patients. Annotations show the number of patients in whom
there were significant differences. Abbreviations: I, isolated seizure; C-NL, cluster-non last seizure; C-L, cluster-last seizure.

TABLE I
PREDICTION PERFORMANCE FOR EACH MODEL AVERAGED ACROSS

PATIENTS WITH A 24 HOURS CUTOFF FOR ISI. MEAN AND STANDARD
DEVIATION (IN PARENTHESIS) OVER CROSS-VALIDATION ARE PROVIDED

FOR EACH METRIC (IN %).

Model Precision Recall F1-score AUC
Log. Reg. 71.4 (22.3) 64.6 (17.6) 68.2 (16.3) 62.7 (10.1)
SVM 73.5 (32.0) 59.3 (20.6) 71.8 (16.2) 55.7 (15.7)
KNN 76.9 (28.8) 70.9 (32.4) 73.6 (20.6) 62.7 (7.3)
Decision Tree 70.7 (29.8) 62.7 (16.0) 64.3 (19.7) 62.5 (13.7)
Random Forest 77.0 (29.3) 67.9 (18.0) 73.4 (15.2) 66.7 (11.2)
Baseline 1 62.5 (32.6) 50.0 (0.0) 52.3 (14.6) 50.0 (0.0)
Baseline 2 62.5 (29.2) 100.0 (0.0) 73.0 (25.1) - (-)

very few cluster-non last seizures (n = 4, Fig. 3). On average
across the remaining eight patients, random forests achieved
the best prediction (Table I) with 77.0 % precision and 67.5%
AUC while k-NN achieved the best F1-score of 73.6%. Perfor-
mance of a majority of the prediction models was comparable
or better than the baseline models. We also show the patient-
specific performance for random forest because it was the
best predictor in two metrics (Table II). The performance was
variable across patients, ranging from 52.5%− 95% F1-score.
Random forest was better than chance level predictor (baseline
1) for all the patients based on F1-score. Random forest was
better than baseline 2 (that always predicts “cluster”) in two
patients. Although baseline 2 achieves a high F1-score for
patients with a higher number of cluster seizures, it produces
a considerable number of false alarms. Machine learning-based
models reduce the number of false alarms, as demonstrated by
their higher precision (Table II).

Fig. 5. Significant differences in grand average REN aggregated across
patients with an 8 hours cutoff for ISI. FDR correction was applied for all
comparisons within a patient. Annotations show the number of patients in
whom there were significant differences. Abbreviations: I, isolated seizure;
C-NL, cluster-non last seizure; C-L, cluster-last seizure.

D. Robustness analyses

We evaluated the robustness of our results to the definition
of clusters by repeating the analyses using an 8 hour cutoff
for the inter-seizure interval. Overall, the results with the
modified cutoff were largely consistent with the 24 hours
cutoff results. There were 948 isolated clusters, 2123 cluster-
non last seizures, and 639 cluster-last seizures. Grand average
REN was significantly different in eight patients (Fig. 5).
Majority of the differences were observed in the beta and
gamma bands. There were no differences in grand average
REN between isolated and cluster-last seizures during the
ictal period. Random forest models were the best predictor of
seizure type with 66.5% F1-score and 73.8% AUC averaged
across patients (Table III). ML techniques were better than
baseline predictors.
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TABLE II
PATIENT-SPECIFIC PREDICTION PERFORMANCE FOR THE BEST PREDICTOR WITH A 24 HOURS CUTOFF FOR ISI. MEAN AND STANDARD DEVIATION (IN
PARENTHESIS) OVER CROSS-VALIDATION IS PROVIDED FOR EACH METRIC (IN %). PATIENT 2 WAS EXCLUDED FROM PREDICTION ANALYSIS BECAUSE

THEY HAD FEW CLUSTER-NON LAST SEIZURES (n = 4).

Patient # Random Forest Baseline 1 Baseline 2
Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC

1 69.1 (8.2) 59.4 (18.6) 61.6 (9.2) 62.1 (7.7) 59.4 50.0 54.3 50.0 59.4 100.0 74.6 -
2 - - - - - - - - - - - -
3 97.1 (1.3) 93.1 (2.9) 95.0 (1.8) 79.1 (7.8) 95.9 50.0 65.7 50.0 95.9 100.0 97.9 -
4 88.5 (3.0) 82.2 (4.9) 85.1 (1.3) 50.0 (8.0) 88.6 50.0 63.9 50.0 88.6 100.0 94.0 -
5 56.8 (6.0) 56.0 (9.5) 55.7 (5.9) 56.0 (8.2) 52.9 50.0 51.4 50.0 52.9 100.0 69.2 -
6 91.3 (3.6) 77.5 (3.2) 83.7 (2.0) 65.4 (5.8) 88.8 50.0 64.0 50.0 88.8 100.0 94.1 -
7 73.3 (38.9) 70.8 (18.2) 78.3 (13.6) 82.9 (13.5) 26.3 50.0 34.5 50.0 26.3 100.0 41.7 -
8 81.7 (4.8) 69.6 (7.0) 75.1 (6.1) 72.7 (2.6) 70.3 50.0 58.4 50.0 70.3 100.0 82.6 -
9 58.0 (38.2) 34.7 (18.5) 52.5 (11.1) 65.1 (12.1) 17.8 50.0 26.3 50.0 17.8 100.0 30.3 -

TABLE III
PREDICTION PERFORMANCE FOR EACH MODEL AVERAGED ACROSS

PATIENTS WITH AN 8 HOURS CUTOFF FOR ISI. MEAN AND STANDARD
DEVIATION (IN PARENTHESIS) OVER CROSS-VALIDATION ARE PROVIDED

FOR EACH METRIC (IN %).

Model Precision Recall F1-score AUC
Log. Reg. 71.2 (16.3) 59.2 (21.7) 61.8 (20.6) 69.4 (6.9)
SVM 60.2 (27.8) 52.7 (31.7) 65.8 (16.6) 56.6 (21.6)
KNN 72.9 (15.2) 59.0 (26.8) 64.5 (17.3) 70.4 (10.1)
Decision Tree 61.2 (24.8) 62.5 (10.5) 60.5 (12.2) 68.9 (10.1)
Random Forest 68.3 (27.7) 63.2 (11.0) 66.5 (15.0) 73.8 (9.9)
Baseline 1 45.1 (26.3) 50.0 (0.0) 44.1 (15.0) 50.0 (0.0)
Baseline 2 45.1 (25.0) 100.0 (0.0) 58.6 (24.2) - (-)

IV. RELATED WORK

We discuss related work from: (i) seizure forecasting, which
tackles a similar problem of predicting the next seizure and has
motivated the use of different features in our analysis; and (ii)
seizure cluster detection and analyses, which have highlighted
salient characteristics of cluster seizures.

A. Seizure forecasting

Seizure forecasting considers the problem of predicting the
likelihood of a seizure at a given time in the future based
on inter-ictal and pre-ictal data. Several techniques have been
developed for seizure forecasting, ranging from traditional ML
methods to more recent deep learning models [17]. Univariate,
bivariate, and multivariate features extracted from inter-ictal
EEG data have been used for seizure forecasting with varying
degrees of success [18], [19]. Convolutional neural networks
applied to EEG have been used to forecast seizures in canines
and humans better than hand-crafted features combined with
traditional ML methods [20], [21]. Our approach is different
from the forecasting literature in the use of pre-ictal and ictal
(seizure) data to predict seizures, while a majority of seizure
forecasting models use inter-ictal data to forecast seizures.

B. Seizure cluster detection and comparison analyses

Previous methods have mainly addressed the detection of
seizure clusters retrospectively based on inter-seizure intervals
(ISI) using threshold-based methods and statistical methods
[22]. Threshold based methods classify seizures with ISI less
than the given threshold (for e.g., 8 hrs, 24hrs) as belonging

to a cluster [6]. While these methods are easy to use, they
do not account for the differences in baseline seizure rate
of individuals and can be prone to false positives/negatives.
On the other hand, statistical methods rely on trends in the
data to identify clusters. Chiang et al. proposed a change
point detection-based method that relies on seizure diaries
to identify seizure clusters and identified several clusters that
were missed by threshold detectors [16]. For the NeuroVista
data, Seneviratne et al. visualized trends in ISI to identify
seizure clusters and seizure bursts [23]. Most cluster detection
methods rely on ISI for detection and are, therefore, not
suitable for the proposed prediction task.

Few studies have statistically compared isolated seizures
and seizure clusters to identify differences in their characteris-
tics. Ferastraoaru et al. compared the duration of isolated and
cluster seizures pooled from 92 patients and observed that
isolated seizures were longer than the first seizure in a cluster
and intracluster seizures, but were similar in duration to the last
seizure in a cluster [6]. Karoly et al. compared isolated seizures
and cluster seizures with very short ISI, termed as seizure
bursts, in the NeuroVista data [7], and observed differences in
the energy in the pre-ictal period of isolated seizures and burst
seizures in some patients. Previous studies have not explored
the individualized prediction of seizure clusters or the use of
a bivariate iEEG feature for comparing seizure types.

V. CONCLUSION

We extracted a bivariate iEEG measure from long-term
iEEG to discover differences in the seizure dynamics of iso-
lated and clustered seizures and to predict seizure clustering.
The dynamics for isolated and cluster seizures were different
in six out of nine patients. The majority of the differences
were observed in the higher frequency bands (beta and gamma)
and in the pre-ictal period. ML-based patient-specific models
achieved 73.6% F1-score in predicting clustering, i.e., the oc-
currence of another seizure shortly after a seizure, using REN.
Our results can be clinically valuable in personalizing epilepsy
treatment by guiding the selection of anticonvulsant drug
suitable for a given seizure type. Our approach also supports
the use of graph-theoretic methods [8], [24] to gain insights
into how seizure progression varies for different seizure types,
which can be useful in predicting seizure clusters.

Authorized licensed use limited to: University of Illinois. Downloaded on September 12,2024 at 20:12:52 UTC from IEEE Xplore.  Restrictions apply. 



1163

Limitations and future work. There are several limitations
of our study. Firstly, we used a threshold-based approach for
detecting seizure clusters. It has been argued that differences in
the baseline rate of seizures of individuals must be taken into
account for detecting seizure clusters [16]. Secondly, seizure
onset zone (SOZ) and non-SOZ electrodes have different
dynamics [11] although we did not distinguish between them
while averaging REN over all pairs of electrodes. Further
improvements are needed in the prediction performance. ML
methods that can learn complex short- and long-term relation-
ships in REN timeseries and that pool data across patients to
improve sample size may boost predictive performance.

Additional analyses is needed to make cluster prediction
practically viable. Since the prediction is patient-specific, it
would useful the study the effect of patients’ characteristics
on prediction performance. To determine the amount of data
needed for each patient, it is important to investigate changes
in model performance as the number of seizures used for train-
ing varies. Finally, prediction will be practically useful on lead
seizures since intra-cluster seizures can be easily determined
by previous seizures. Further analysis on isolated and cluster-
first seizures can provide insights useful for building those
models. We plan to address these directions in the future.
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