
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIOLOGICALLY PLAUSIBLE LEARNING
VIA BIDIRECTIONAL SPIKE-BASED DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing biologically plausible learning algorithms that can achieve performance
comparable to error backpropagation remains a longstanding challenge. Existing
approaches often compromise biological plausibility by entirely avoiding the use
of spikes for error propagation or relying on both positive and negative learning
signals, while the question of how spikes can represent negative values remains
unresolved. To address these limitations, we introduce Bidirectional Spike-based
Distillation (BSD), a novel learning algorithm that jointly trains a feedforward
and a backward spiking network. We formulate learning as a transformation
between two spiking representations (i.e., stimulus encoding and concept encoding)
so that the feedforward network implements perception and decision-making by
mapping stimuli to actions, while the backward network supports memory recall
by reconstructing stimuli from concept representations. Extensive experiments on
diverse benchmarks, including image recognition, image generation, and sequential
regression, show that BSD achieves performance comparable to networks trained
with classical error backpropagation. These findings represent a significant step
toward biologically grounded, spike-driven learning in neural networks.

1 INTRODUCTION

Human learning and cognition cannot be reduced to a simple unidirectional “perception-to-decision”
pipeline. Rather, they emerge from bidirectional processes that integrate bottom-up sensory perception
with top-down memory recall (Caucheteux et al., 2023; Bonetti et al., 2024). During visual perception,
retinal signals are transformed through hierarchical neural pathways into high-level conceptual
representations stored in memory. Conversely, during recall, the brain can reconstruct partial sensory
features from these stored representations.

Kosslyn et al. (1993) showed with positron emission tomography that the same early visual cortical
areas (i.e., V1 and V2) activated during perception are also engaged when subjects visualize objects
with their eyes closed. Later studies demonstrated that stimulus identity can be decoded from early
visual cortex activity during both working memory and mental imagery, with patterns resembling
those elicited by actual stimulation (Albers et al., 2013). For instance, consider a learner distinguishing
between different bird species. At the outset, early visual areas may encode only basic features such
as edges or color patches, making two similar species appear nearly indistinguishable from each
other. As categorical knowledge of the species is acquired, higher-level conceptual representations
emerge and feed back to early visual regions. This feedback sharpens perceptual sensitivity to
subtle diagnostic features, such as beak curvature or wing pattern, thereby refining low-level visual
representations in accordance with learned category distinctions.

Inspired by the brain’s bidirectional architecture of perception and recall, we introduce bidirectional
spike-based distillation (BSD), a novel learning algorithm that frames learning as a transformation
between two spiking representations: stimulus encoding and concept encoding. The feedforward
pathway performs perception and decision-making by mapping sensory stimuli to conceptual repre-
sentations, analogous to the brain’s analytical mode, while the feedback pathway facilitates memory
recall by reconstructing stimuli from semantic concept encodings, analogous to the brain’s imagi-
native mode. These feedforward and feedback networks can be trained jointly by distilling feature
representations from one another. By integrating perception and recall within a unified framework,
BSD provides a biologically grounded alternative to conventional unidirectional learning paradigms.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We also show that the proposed bidirectional distillation (implemented via spike trains) yields a more
biologically plausible learning algorithm. While backpropagation has achieved remarkable success
in deep learning (LeCun et al., 2015; Rumelhart et al., 1986), its underlying mechanisms conflict
with established neurobiological principles (Crick, 1989; Lillicrap et al., 2020). Key inconsistencies
include the requirement for symmetric feedforward and feedback weights, reliance on global error
signals instead of local synaptic plasticity, a two-stage learning process that clearly separates forward
and backward passes, and the use of continuous activations rather than discrete spike-based commu-
nication. To address these limitations, and building on the three criteria proposed by Lv et al. (2025),
we introduce two additional requirements: neurons should communicate using discrete binary spikes
for both learning and inference, and learning should rely on unsigned spiking signals only (Hayden
et al., 2011). The learning algorithm we present demonstrates that all five criteria can be satisfied,
whereas existing approaches typically fall short on one or more of these criteria.

Through extensive experiments across a range of tasks, including image classification, text character
prediction, time-series forecasting, and image generation, and using diverse network architectures
such as multi-layer perceptrons, convolutional neural networks, recurrent neural networks, and
autoencoders, we demonstrate that BSD achieves performance comparable to backpropagation while
satisfying all five criteria for biological plausibility. Our results indicate that more adherence to
biological fidelity does not necessarily compromise computational effectiveness.

The contributions of this study can be summarized as follows:

• Inspired by the brain’s bidirectional architecture of perception and recall, we propose a novel learn-
ing framework in which the feedforward network (stimuli-to-decision) and the backward network
(concept-to-stimuli) are jointly trained by mutually distilling spiking feature representations.

• We introduce two additional biological plausibility criteria to complement the three proposed by
Lv et al. (2025), resulting in five key principles: asymmetric forward and backward weights, local
error representation, non-two-stage learning, spiking neuron models, and unsigned error signals.
The BSD algorithm satisfies all five criteria and demonstrates enhanced biological plausibility.

• We perform extensive experiments using the BSD algorithm across diverse network architectures
and various tasks. The experimental results show that BSD achieves performance comparable to
error backpropagation while maintaining greater adherence to biological fidelity.

2 RELATED WORK

Backpropagation (BP) (Rumelhart et al., 1986) has long been criticized for its limited biological
plausibility, as it depends on weight symmetry (Stork, 1989), global error signals (Crick, 1989), and
a strictly sequential forward–backward computation process (Guerguiev et al., 2017; Hinton, 2022).

To address these limitations, numerous alternative approaches have been proposed to improve
biological plausibility (Schmidgall et al., 2024; Jiao et al., 2022; Li et al., 2024). To eliminate the
reliance on global error signals, local loss methods (Mostafa et al., 2018) and their variants (Belilovsky
et al., 2019; Nøkland & Eidnes, 2019; Kaiser et al., 2020) have been introduced, which typically
employ fixed or trainable auxiliary heads to align hidden layers directly with the target. Feedback
alignment (Lillicrap et al., 2016) addresses the weight transport problem by replacing the backward
weights with fixed, randomly initialized matrices, thereby breaking the symmetry between forward
and backward weights. Target propagation (TP) (Bengio, 2014) introduces approximate inverse
models to generate layer-wise targets, with weight updates obtained by minimizing the mismatch
between outputs and targets. Although TP employs local losses and avoids weight symmetry, it
requires each layer to transmit two distinct types of signals at different times. Moreover, TP often
suffers from convergence instability. Extensions such as Difference Target Propagation (DTP) (Lee
et al., 2015) and SDTP (Bartunov et al., 2018) improved stability and performance but offered little
progress towards greater biological plausibility, and Biologically-plausible Reward Propagation
(BRP) (Zhang et al., 2021), which replaces floating-point interlayer signals in TP with spike-based
signals, has not demonstrated reliable generalization across tasks. Predictive coding (Rao & Ballard,
1999) offers another influential framework, postulating that the brain continually generates top-down
predictions to minimize sensory prediction errors. Motivated by this framework, Error-driven Local
Representation Alignment (LRA-E) (Ororbia & Mali, 2019) introduces a mechanism where error
signals are projected backward to generate local target representations for hidden layers. The network
then learns by minimizing the local discrepancy between actual neuronal activities and these generated

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

targets, thereby enabling training without global error backpropagation. Other methods, such as
Decoupled Neural Interfaces (DNI) (Jaderberg et al., 2017), train an auxiliary head at each hidden
layer to approximate layer-wise gradients yet fail to break weight symmetry. Alternatively, Dendritic
Localized Learning (DLL) (Lv et al., 2025) employs local error signals for weight updates, yet still
relies on transmitting signed floating-point values and generally performs poorly across benchmarks.
Counter-Current Learning (CCL) (Kao & Hariharan, 2024) faces the same limitation of floating-point
communication and further lacks demonstrated effectiveness in sequential regression tasks.

Other biologically inspired mechanisms, like Hebbian learning (Donald, 1949) and spike-timing-
dependent plasticity (STDP) (Song et al., 2000), adjust synaptic strength according to correlations in
neuronal activity, while burst-dependent synaptic plasticity(Payeur et al., 2021) regulates synaptic
plasticity by high-frequency bursts of spikes. Although fully consistent with biological observations,
these rules struggle to integrate supervised learning signals, and STDP additionally requires precise
temporal resolution. Energy-based learning approaches (LeCun et al., 2006), e.g., Boltzmann ma-
chines (Ackley et al., 1985), Hopfield networks (Hopfield, 1984), and contrastive learning frameworks
(Hinton, 2002), instead optimize an energy function. However, minimizing energy does not always
correspond to reducing task-specific loss, limiting their utility for general supervised learning. E-prop
(Bellec et al., 2020) approximates BPTT for SRNNs using eligibility traces; while supporting local,
online updates, it remains limited by the use of signed error signals.

In contrast, our approach, which is inspired by the brain’s bidirectional interplay between perception
and recall, exhibits improved biological plausibility while achieving stable convergence and superior
performance on various benchmarks and tasks.

3 PRELIMINARY

3.1 SPIKING NEURONS

We adopt the leaky integrate-and-fire (LIF) neuron model (Maass, 1997) in our spiking neural
networks (SNNs). The dynamics of the LIF neuron are formulated in discrete time as follows:

U [t] = H[t](1− S[t]) + UresetS[t], (1)

H[t] = U [t− 1] +
1

τ

(
I[t]− (U [t− 1]− Ureset)

)
, (2)

S[t] = Θ(H[t]− Uthr), (3)

where I[t] represents the input current at time step t. Here, H[t] and U [t] denote the membrane
potential before and after the trigger of a spike S[t], respectively. The parameter τ is the membrane
time constant, while Uthr and Ureset specify the firing threshold and reset potential. A spike is generated
when the pre-spike potential H[t] exceeds the threshold Uthr, in which case the neuron fires (S[t] = 1)
and the membrane potential is reset to Ureset. Additional preliminaries are given in the appendix B.

3.2 BIOLOGICAL PLAUSIBILITY CRITERIA

In this work, we mainly build upon three biological plausibility criteria established by Lv et al. (2025):
C1. Asymmetric synaptic weights for feedforward and feedback pathways; C2. Local synaptic
plasticity based solely on locally available information without global error signals; C3. Non-dual-
phase training that eliminates sequential forward–backward dependencies. We will also introduce two
additional criteria in Section 4, further extending the framework of biologically plausible learning.

4 METHOD

4.1 DESIGN PRINCIPLES

Inspired by the brain’s bidirectional processes of perception and recall, we propose Bidirectional
Spike-Based Distillation (BSD), which frames learning as a transformation between stimulus encoding
and concept encoding through spiking representations. The feedforward pathway maps sensory inputs
to concepts for perception and decision-making, while the backward pathway reconstructs inputs
from concepts, thereby supporting feedforward learning during training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

!"##

!"#"$:&#

'()*"$:+#’

v"

v

𝐿𝑎𝑦𝑒𝑟 1 𝐿𝑎𝑦𝑒𝑟 2 𝐿𝑎𝑦𝑒𝑟 𝐿

𝐼𝑛𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡	𝑆𝑝𝑖𝑘𝑒

𝑇𝑎𝑟𝑔𝑒𝑡	𝑆𝑝𝑖𝑘𝑒

𝐖𝟏 𝐖𝑳#𝟏𝐖𝟐

𝚯𝟏 𝚯𝟐 𝚯%#&. . .

. . .

𝑾:𝑭𝒐𝒓𝒘𝒂𝒓𝒅	𝒔𝒚𝒏𝒂𝒑𝒕𝒊𝒄	𝒘𝒆𝒊𝒈𝒉𝒕.
𝚯:𝑭𝒆𝒆𝒅𝒃𝒂𝒄𝒌	𝒔𝒚𝒏𝒂𝒑𝒕𝒊𝒄	𝒘𝒆𝒊𝒈𝒉𝒕.
𝒔: 𝒃𝒐𝒕𝒕𝒐𝒎−𝒖𝒑	𝒔𝒑𝒊𝒌𝒆.
𝒔’: 𝒕𝒐𝒑−𝒅𝒐𝒘𝒏	𝒔𝒑𝒊𝒌𝒆.

𝑽:𝒃𝒂𝒔𝒂𝒍	𝒗𝒐𝒍𝒕𝒂𝒈𝒆.
?𝑽:𝒂𝒑𝒊𝒄𝒂𝒍	𝒗𝒐𝒍𝒕𝒂𝒈𝒆.

𝒔𝟏 𝒔𝟐 𝒔𝑳

𝒔’𝑳𝒔’𝟐𝒔’𝟏

𝐂!" =
v! ⋅ +v#
|v!||+v#|

ℒ𝑜𝑠𝑠 =0
$

1 − 𝐂%% & + 𝜆0
#'$

max 0, 𝐂%"
&

𝑆𝑜𝑚𝑎

𝒂 𝒃

𝒄

𝐴𝑝𝑖𝑐𝑎𝑙

𝐵𝑎𝑠𝑎𝑙

𝐴𝑥𝑜𝑛

𝑆𝑜𝑚𝑎

Figure 1: (a) Overview of the bidirectional spike-based distillation framework. (b) Illustration of
feature alignment using the properties of pyramidal neurons, which receive feedforward and feedback
signals through their basal and apical dendrites, respectively. (c) Performance comparison of neural
networks trained with BSD, dendritic localized learning (DLL), a recently proposed biologically
plausible learning algorithm, and backpropagation. The experimental results show that BSD achieves
performance comparable to backpropagation.

Before introducing BSD in detail, we extend the three biological plausibility criteria of Lv et al.
(2025) with two additional principles. Designed to satisfy all five criteria, BSD ensures a biologically
grounded foundation for learning. The two additional criteria we propose are:

C4. Model of Neurons. Neurons in conventional artificial neural networks produce continuous
activations, which are typically interpreted as approximations of average firing rates (Maass, 1997).
This stands in contrast to the brain’s actual processing, where biological neurons communicate using
discrete action potentials (0-1 spikes) (Gerstner et al., 2014).

C5. Unsigned error signaling. The learning mechanism in most artificial neural networks re-
lies on signed error signals to propagate directional gradient information for weight adjustments
(Rumelhart et al., 1986). This stands in contrast with neurophysiological findings, which indicate
that neurons encode unsigned reward prediction errors, firing in response to surprising outcomes
irrespective of their positive or negative valence (Hayden et al., 2011).

To facilitate the understanding of the BSD algorithm, we illustrate both the network architecture and
the neuronal learning mechanism in Figure 1, using an L-layer MLP configuration. The complete
form of the global algorithm is detailed in Algorithm 1.

4.2 MODEL ARCHITECTURE

Neuronal Dynamics. To highlight the biological foundations of BSD, we first describe the neuron
model employed in BSD. We follow Sacramento et al. (2018) and utilize pyramidal neurons with
a three-compartment structure: soma, apical dendrites (carrying backward learning signals), and
basal dendrites (receiving feedforward inputs). To satisfy criterion C4 (model of neurons), we use
spiking neurons that emit discrete pulses instead of continuous activation values. For each neuron,
the membrane potentials arriving at the soma from the basal and apical compartments are denoted v
and v̂, respectively. The apical potential v̂ acts as a supervisory signal guiding synaptic plasticity on
the basal dendrites, while the basal potential v drives spike generation through s = SN (v), where
SN (·) denotes the spiking operation that integrates input voltage and produces spike outputs. In the
following sections, we use bold lowercase letters (e.g., vi, v̂i) to denote layer-wise vectors, which
are formed by aggregating the single-neuron scalar potentials (v and v̂, respectively) from all neurons
in layer i.

Network Architecture. The network comprises L layers of pyramidal neurons, where each layer
contains an equal number of two distinct types of neurons. Type 1 neurons receive synaptic inputs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

from lower-layer neurons and constitute the feedforward pathway, implementing a stimuli-to-decision
process that transforms sensory inputs into conceptual representations. Conversely, Type 2 neurons
receive inputs from higher-layer neurons and form the backward pathway, which attempts to recon-
struct sensory features from conceptual encodings to assist feedforward learning. During training, the
original input x is delivered to bottom-layer Type 1 neurons, while the learning target is first encoded
into a spike train ŝ and provided to top-layer Type 2 neurons. The two pathways are jointly optimized
through mutual distillation of their spiking feature representations, enabling bidirectional information
flow that mirrors the brain’s perception-recall architecture. To satisfy criterion C1 (asymmetric
synaptic weights), we employ independent synaptic weight matrices W and Θ for the feedforward
and backward pathways, respectively. The feedforward path is described by:

v1 = x; vi = v̂′
i = Wi−1si−1, si = SN (vi), i = 2, 3, . . . , L, (4)

where vi denotes the somatic membrane potential of Type 1 neurons in layer i from basal dendritic
integration, and v̂′

i denotes the somatic membrane potential of Type 2 neurons in layer i arising from
apical dendritic integration. Wi is the synaptic weight for Type 1 neurons in layer i, and si denotes
the spike train that Type 1 neurons in layer i output.

The backward pathway is described by:

v′
L = ŝ; v′

i = v̂i = Θis
′
i+1, s′i = SN (v′

i), i = 1, 2, . . . , L− 1, (5)

where v′
i denotes the somatic membrane potential of Type 2 neurons in layer i arising from basal

dendritic integration, v̂i denotes the somatic membrane potential of Type 1 neurons in layer i arising
from apical dendritic integration. Θi is the synaptic weight for Type 2 neurons in layer i, and s′i
denotes the spike train that Type 2 neurons in layer i output.

4.3 TRAINING PROCEDURE

Motivated by the neuronal least-action principle (Senn et al., 2024), which postulates that pyramidal
neurons minimize somato-dendritic mismatch errors through voltage dynamics, and to satisfy criterion
C2 (local error computation), our BSD algorithm introduces local loss functions for individual
neurons to align basal-received voltage v with apical-received voltage v̂. Type 1 and Type 2 neurons
respectively receive bottom-up sensory inputs x and top-down target signals ŝ, which in classification
tasks correspond to distinct modalities. Thus, the alignment between v and v̂ can be viewed as
aligning cross-modal embeddings. Inspired by contrastive learning in multimodal representation
learning and to satisfy C5 (Unsigned Error Signal), we employ the Relaxed Contrastive (ReCo) loss
(Lin et al., 2023), which is an unsigned loss function. In our design, error computation is localized
within each neuron, and no error signals are propagated across the network. Specifically, for Type 1
neurons in a given layer i (for i = 2, . . . , L − 1), let vi,k and v̂i,k denote the basal and apical
membrane voltage for the k-th sample in a batch, respectively. By stacking these vectors across the
batch dimension B, we construct matrices Vi ∈ RB×Di and V̂i ∈ RB×Di , where Di is the number
of neurons in layer i. The layer-specific affinity matrix Ci ∈ RB×B is then defined by its elements:

[Ci]kj =
vi,k · v̂i,j

∥vi,k∥∥v̂i,j∥
, (6)

The local loss for Type 1 neurons in layer i (for i = 1, . . . , L− 1), denoted Li, is defined as:

Li =

B∑
k=1

(1− [Ci]kk)
2 + λ

B∑
k=1

∑
j ̸=k

(max(0, [Ci]kj))
2
, (7)

where λ is a hyperparameter that controls the penalty strength for suppressing spurious correlations
between non-corresponding voltage pairs. The local loss for Type 2 neurons, L′

i, is defined analo-
gously, with its formulation provided in Appendix D. Compared with InfoNCE loss commonly used
in contrastive learning scenarios, ReCo loss avoids penalizing negatively correlated voltage pairs
between Vi and V̂i, thereby introducing enhanced flexibility and representational richness to learned
embeddings while preserving alignment objectives. We provide a more detailed justification for
adopting the ReCo loss in Appendix Q. Considering criterion C2 (local synaptic plasticity without
global error signals), we employ detach() operations to truncate the computational graph between

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

layers, ensuring that each neuron’s loss only propagates learning signals to synaptic weights con-
nected to its dendrites. As a result, the gradient of the local loss Li with respect to the feedforward
weights Wi−1 (for i = 2, . . . , L− 1) is given by:

∂Li

∂Wi−1
=

B∑
k=1

[
− 2(1− [Ci]kk)

1

∥vi,k∥

(
v̂i,k

∥v̂i,k∥
− [Ci]kk

vi,k

∥vi,k∥

)

+
∑
j ̸=k

2λmax(0, [Ci]kj)
1

∥vi,k∥

(
v̂i,j

∥v̂i,j∥
− [Ci]kj

vi,k

∥vi,k∥

)]
(si−1,k)

T ,

(8)

where B denotes the batch size, si−1,k represents the spike output vector of Type 1 neurons from
layer i − 1 for the k-th sample, and Li denotes the local loss for neurons in layer i. This locally
computed gradient is then used to update the feedforward synaptic weights via a standard gradient
descent step for i = 2, . . . , L− 1:

Wnew
i−1 = Wold

i−1 + ηW
∂Li

∂Wi−1
, (9)

where the superscripts ’new’ and ’old’ denote the weights after and before the update, and ηW is the
learning rate for the feedforward weights. A symmetric update rule, also based on its corresponding
local gradient, is applied to the backward weights Θ. The detailed gradient derivations for both W
and Θ are presented in Appendix D. The total loss for Type 1 neurons is defined as:

Ltotal =

L−1∑
i=1

Li + Ltop, (10)

where the top-layer loss is defined as Ltop =
∑B

k=1 LCE(vL,k, v̂L,k), where LCE represents the cross-
entropy loss. The total loss for Type 2 neurons, L′

total, is defined symmetrically. As all information
processing can be separated within a single neuronal compartment, the feedforward and backward
distillation processes do not require strict temporal separation and can learn simultaneously, thereby
satisfying C3 (non-two-stage training). For classification tasks, during inference, the predicted label
for input x is determined by computing cosine similarity between the ensemble of output spikes
sL and the spike trains corresponding to all candidate labels. The detailed training and inference
procedures for RNN architectures are presented in Appendix C.

4.4 LEARNING FOR GENERATION TASKS

We employ an autoencoder architecture for generation tasks, where both bottom-up and top-down
inputs are images x. To capture fine-grained edge details while reducing noise artifacts, we apply
Fast Fourier Transform (FFT) decomposition to the input images as well as to all basal and apical
membrane voltages. This frequency-domain representation separates low- and high-frequency
components, enabling adaptive loss computation. Within each layer, the regularization parameter λ is
adjusted according to frequency content: larger values are assigned to high-frequency components
to suppress spurious correlations and preserve edge fidelity, whereas smaller values are used for
low-frequency components to avoid noise amplification and maintain structural coherence. At the top
layer, mean squared error is employed to compute the loss between basal and apical voltages. The
detailed mechanism of the FFT decomposition is explained in Appendix M.

5 EXPERIMENTS

In this section, we first present the experimental settings and implementation details. We then evaluate
our proposed BSD algorithm on image classification tasks, comparing it against other biologically
plausible learning algorithms. We assess BSD-trained RNNs on sequential regression tasks and
evaluate BSD-trained autoencoders on image generation tasks. Finally, we conduct ablation studies
and analyze the network’s convergence properties and performance.

5.1 EXPERIMENTAL SETTINGS

Image Classification. We evaluate our BSD algorithm on widely used benchmarks including MNIST,
FashionMNIST, SVHN, CIFAR-10, and CIFAR-100, using classification accuracy as the metric.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of various learning algorithms in terms of biological plausibility criteria and
image classification performance. Our proposed BSD algorithm satisfies all five criteria of biological
plausibility (C1–C5) while achieving performance comparable to backpropagation. “C1, C2, C3, C4,
C5” refer to the criteria defined in Section 4.1. Results are averaged over four random seeds.

Method C1 C2 C3 C4 C5 Model MNIST FashionMNIST SVHN CIFAR-10 CIFAR100 Avg.
Backpropagation
on ANNs

✗ ✗ ✗ ✗ ✗
MLPs 98.77%±0.33% 89.59%±0.14% 61.65%±0.42% 57.65%±0.08% 27.92%±0.17% 67.12%

CNNs 99.56%±0.14% 92.68%±0.42% 94.36%±0.73% 87.12%±1.76% 57.75%±0.35% 86.29%

Backpropagation
on SNNs

✗ ✗ ✗ ✓ ✗
MLPs 98.57%±0.24% 88.87%±0.65% 61.28%±0.52% 49.95%±0.53% 23.32%±0.87% 64.40%

CNNs 99.25%±0.02% 92.48%±0.48% 94.13%±0.02% 87.02%±0.09% 57.21%±0.34% 86.02%

Predictive Coding ✗ ✓ ✗ ✗ ✗
MLPs 98.42%±0.13% 88.72%±0.65% 59.05%±0.45% 47.34%±0.24% 19.72%±0.32% 62.65%

CNNs 99.41%±0.40% 92.03%±0.70% 94.53%±1.54% 72.94%±0.32% 53.08%±0.43% 82.40%

CCL ✓ ✓ ✓ ✗ ✗
MLPs 98.13%±0.10% 88.58%±0.29% 60.98%±0.23% 52.73%±0.59% 21.76%±0.22% 64.44%

CNNs 96.30%±0.05% 83.70%±0.57% 88.78%±0.37% 82.94%±0.53% 56.29%±0.25% 81.60%

DLL ✓ ✓ ✓ ✗ ✗
MLPs 97.57%±0.40% 87.50%±0.43% 56.60%±0.12% 45.87%±0.10% 18.24%±0.18% 61.16%

CNNs 98.87%±0.30% 90.88%±0.40% 85.81%±0.17% 70.89%±0.58% 38.60%±0.21% 77.01%

R-STDP ✓ ✓ ✓ ✓ ✓
MLPs 77.18%±0.17% 70.03%±0.28% 41.76%±0.46% 22.68%±0.30% 1.33%±0.15% 42.58%

CNNs 91.67%±0.04% 74.29%±0.30% 50.02%±0.32% 33.19%±0.38% 1.49%±0.22% 50.10%

MLPs 95.62%±0.09% 86.39%±0.13% 60.40%±0.18% 48.90%±0.54% 22.10%±0.25% 62.68%BSD (Ours) ✓ ✓ ✓ ✓ ✓
CNNs 99.44%±0.03% 91.05%±0.20% 90.81%±0.11% 84.13%±0.34% 53.48%±0.22% 83.78%

Text Character Prediction. We conduct next-character prediction experiments with BSD-trained
RNNs on the Harry Potter text corpus (Plath et al., 2019), reporting prediction accuracy.

Time-Series Forecasting. BSD-trained RNNs are evaluated on three widely used real-world multi-
variate time-series forecasting datasets: Electricity (Lai et al., 2018), Metr-la (Li et al., 2018), and
Pems-bay (Li et al., 2018), with performance primarily measured by mean squared error (MSE).

Image Generation. BSD-trained autoencoders are applied to generation tasks on MNIST, Fash-
ionMNIST, and CIFAR-10, with generation quality assessed using Fréchet Inception Distance
(FID) (Heusel et al., 2017). Additional results and visualizations are provided in Appendix F.

5.2 IMPLEMENTATION DETAILS

To ensure fair comparison, identical network architectures are used across all learning algorithms for
each task. For MLPs, CNNs, RNNs, and autoencoders, the same configurations are applied when
comparing methods on a given dataset. Detailed dataset descriptions, architectural specifications,
hyperparameter settings, and evaluation metrics are provided in Appendix E. A comprehensive
analysis of the computational costs, including training and inference memory consumption, is
provided in Appendix N.

5.3 IMAGE CLASSIFICATION

We benchmark the performance of backpropagation on Artificial Neural Networks (ANNs) and
Spiking Neural Networks (SNNs), Predictive Coding, Reward-modulated Spike-Timing-Dependent
Plasticity (R-STDP) (Izhikevich, 2007), Counter-Current Learning (CCL), Dendritic Localized
Learning (DLL), and our BSD algorithm on image classification tasks. Comprehensive results are
presented in Table 1, with additional implementation details provided in Appendix E.2.

Spiking neuron outputs degrade performance compared to continuous activations. When trained
with backpropagation, Spiking Neural Networks (SNNs) consistently exhibit inferior performance
compared to Artificial Neural Networks (ANNs) across all evaluated datasets and network architec-
tures. This performance degradation highlights the disadvantage of using spiking neurons, which
emit binary 0–1 spikes, as opposed to neurons that produce continuous-valued activations.

Our proposed BSD algorithm reconciles biological plausibility with competitive performance.
BSD satisfies all five criteria of biological plausibility (C1–C5) while achieving performance compara-
ble to backpropagation, with stable convergence across diverse datasets. In particular, on challenging
datasets such as SVHN, CIFAR-10, and CIFAR-100, and on more complex architectures including
CNNs, BSD consistently delivers robust performance. Taken together, these findings underscore the
feasibility of attaining biological plausibility without sacrificing task performance. To further assess
the scalability of our approach, we conducted experiments on the more complex Tiny-ImageNet

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

dataset, with the results presented in Appendix I. We also evaluate the robustness of our models
against input noise in Appendix L.

Table 2: Comparison of different learning algorithms for RNN training on text character prediction
and time-series forecasting tasks. Our proposed BSD algorithm achieves performance comparable
to backpropagation. ↑ (↓) denotes higher (lower) values indicate better performance. All results are
averaged across 4 random seeds. The best results and the results of BSD are presented in bold.

Method Harry Potter Electricity Metr-la Pems-bay
Pred. Acc. ↑ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Backpropagation on ANNs 51.9%±1.0% 0.175±0.007 0.324±0.007 0.131±0.004 0.214±0.005 0.164±0.001 0.190±0.002

Backpropagation on SNNs 27.8%±0.9% 0.169±0.018 0.316±0.021 0.154±0.014 0.243±0.022 0.166±0.005 0.201±0.002

Predictive Coding 38.8%±1.8% 0.162±0.019 0.312±0.018 0.141±0.001 0.228±0.005 0.178±0.004 0.202±0.003

DLL 33.7%±0.6% 0.172±0.018 0.321±0.013 0.155±0.005 0.264±0.001 0.178±0.005 0.224±0.004

BSD (Ours) 41.8%±0.1% 0.165±0.018 0.314±0.018 0.125±0.005 0.197±0.005 0.174±0.007 0.206±0.013

5.4 SEQUENTIAL REGRESSION TASKS

We evaluate BSD on four representative sequential regression tasks, comparing its performance
against backpropagation on ANNs and SNNs, Predictive Coding, and Dendritic Localized Learning
(DLL). Comprehensive results are reported in Table 2.

For time-series forecasting, we utilize the Electricity, Metr-la, and Pems-bay datasets. Predictive
Coding satisfies only the second biological plausibility criterion, whereas DLL meets the first three. In
contrast, BSD satisfies all five criteria while achieving performance comparable to backpropagation,
with RNNs trained under BSD converging reliably across all forecasting tasks.

For text character prediction, experiments are conducted on the Harry Potter corpus. As shown in
Table 2, BSD again converges successfully, outperforming both Predictive Coding and DLL.

Together, these results demonstrate that BSD effectively captures temporal dependencies in sequential
regression tasks while remaining consistent with biologically plausible learning principles.

Figure 2: Results on image generation tasks using autoencoders trained with backpropagation and
BSD. GT denotes the ground truth, BP indicates backpropagation, and BSD refers to our proposed
method. The reconstruction quality demonstrates that BSD attains performance comparable to
backpropagation on generation tasks, while preserving biological plausibility

5.5 IMAGE GENERATION

Table 3: Performance comparison of different
algorithms on image generation tasks. ↓ denotes
lower values indicate better performance.

Dataset Model FID ↓

CIFAR-10
ANN-BP 127.34
FSVAE 175.5
BSD (Ours) 168.12

MNIST
ANN-BP 49.56
FSVAE 97.06
BSD (Ours) 72.39

Figure 2 presents a comparison of image recon-
struction on CIFAR-10 across three approaches:
BP-trained autoencoders, the Fully Spiking Vari-
ational Autoencoder (FSVAE) (Kamata et al.,
2022), and BSD-trained autoencoders. Genera-
tion quality is evaluated using the Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017), a widely
adopted metric for assessing the quality of gener-
ative models.

The visual results suggest that BSD adapts ro-
bustly to generative tasks and produces reconstruc-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Learning Curves for Different Values

 = 0.0
 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 1.0
 = 1.2
 = 1.4

(a)

0.70 0.75 0.80 0.85 0.90 0.95
Sparsity

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y v=0.2

v=0.4
v=0.6

v=0.8

v=1.0

v=1.2

Effect of Firing Threshold

0.2

0.4

0.6

0.8

1.0

1.2

Fi
ri

ng
 T

hr
es

ho
ld

(b)

20 40 60 80
Epoch

la
ye

r_
1

la
ye

r_
2

la
ye

r_
3

la
ye

r_
4

la
ye

r_
5

La
ye

r

0.905 0.906 0.910 0.908

0.885 0.876 0.886 0.884

0.888 0.871 0.888 0.877

0.855 0.869 0.912 0.911

0.891 0.917 0.914 0.923

Bidirectional Spike Alignment

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ha
m

m
in

g
Si

m
ila

rit
y

(B
es

t S
am

pl
e)

(c)

Figure 3: Analysis of BSD algorithm parameters and bidirectional spike dynamics. (a) Test accuracy
curves of CNNs trained with BSD using different λ values. (b) Impact of firing threshold on network
performance. (c) Alignment of spikes emitted by Type 1 and Type 2 neurons within the same layer.

tion quality closely comparable to that achieved with backpropagation. Table 3 reports FID scores on
CIFAR-10 and MNIST, indicating that BSD attains competitive performance across both datasets and
thereby further demonstrating its suitability for generative modeling while maintaining biological
plausibility. Additional visualizations and results, including experiments on FashionMNIST, are
presented in Appendix F.1.

5.6 ABLATION STUDY

As mentioned in Section 4, inspired by contrastive learning, we adopt ReCo loss as our layer-wise
loss function. Here, we delve deeper into the impact of layer-wise loss function selection, analyzing
how BSD performs when using MSE or InfoNCE (van den Oord et al., 2018), a loss commonly used
in contrastive learning scenarios, for aligning intraneuronal voltages. We term the method using MSE
as layer-wise loss “BSD-MSE” and the method using InfoNCE as “BSD-InfoNCE,” and conduct
ablation experiments on both image classification and sequential regression tasks.

Table 4: Ablation study of loss functions on image classification tasks.

Method Model MNIST FashionMNIST SVHN CIFAR-10 CIFAR-100

BSD-MSE
MLPs 12.51% 13.72% 19.11% 11.49% 1.39%

CNNs 21.10% 29.31% 19.46% 16.93% 1.58%

BSD-InfoNCE
MLPs 94.56% 85.71% 57.33% 43.77% 19.25%

CNNs 98.77% 88.97% 83.27% 72.38% 38.06%

MLPs 95.62% 86.39% 60.40% 48.90% 22.10%BSD
CNNs 99.44% 91.05% 90.81% 84.13% 53.48%

Table 4 compares the
performance of BSD, BSD-
MSE, and BSD-InfoNCE
on image classification
tasks. BSD-MSE yields
markedly inferior results:
MLPs attain only 19.11%
accuracy on SVHN and
fail to converge on other
datasets, while CNNs
exhibit substantial performance gaps across all tasks and do not converge on CIFAR-100. BSD-
InfoNCE converges reliably on all datasets, but BSD with ReCo loss consistently achieves higher
accuracy. On complex benchmarks such as CIFAR-100, BSD surpasses BSD-InfoNCE by more
than 15 accuracy points. Additional ablation experiments for text character prediction, time-series
forecasting, and image generation tasks are provided in Appendix F.

To conclude, employing MSE loss for intraneuronal voltage alignment leads to convergence dif-
ficulties, indicating that it is ill-suited for BSD training. Moreover, compared to InfoNCE, ReCo
loss offers a distinct advantage by not penalizing unpaired samples that are already orthogonal or
negatively correlated, which allows for more flexible alignment and richer feature representations.
We also investigate the impact of the number of timesteps on model performance in Appendix O. An
ablation study demonstrating the importance of Batch Normalization is presented in Appendix P.

5.7 TRAINING ANALYSIS

In this section, we analyze the convergence behavior of BSD-trained models and the properties of
Type 1 and Type 2 neurons during training. Since BSD applies ReCo loss to all layers except the
top one and relies on spikes for inter-neuronal communication, both the penalty weight λ in ReCo
loss and the neuronal firing threshold are critical factors influencing its convergence. Additionally,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

we investigate the sensitivity of our framework to batch size in Appendix J, as contrastive learning
methods often depend on sufficiently large batches. A detailed analysis of the energy efficiency of
our BSD-trained models during inference is provided in Appendix K, highlighting the benefits of
spike-based computation.

Figure 3(a) shows the effect of the penalty weight λ on BSD-trained CNNs evaluated on the SVHN
dataset. Performance drops markedly when λ = 0, underscoring the role of λ in promoting separation
among sample representations and thereby enlarging the representational space. We further observe
that smaller values of λ accelerate convergence, while the best final performance is achieved at
λ = 0.6. Figure 3(b) illustrates the relationship among neuronal firing threshold, spike sparsity, and
network performance on SVHN. The network attains its best performance at a firing threshold of 0.6,
suggesting that thresholds that are either too low or too high impair effective learning. Figure 3(c)
shows the Hamming similarity between the spike trains of Type 1 and Type 2 neurons within the
same layer. The similarity rises quickly during training and exceeds 0.85 by epoch 20, demonstrating
that the feedforward (stimuli-to-decision) and backward (concept-to-stimuli) pathways successfully
achieve mutual alignment of their spiking feature representations through bidirectional distillation,
thereby validating the effectiveness of our joint training framework.

For completeness, we provide t-SNE visualizations of representations on BSD-trained CNNs in
Appendix H and examine the degree of alignment between weights W and Θ in Appendix G.

6 CONCLUSION

Human learning and cognition emerge from bidirectional processes that integrate bottom-up sensory
perception with top-down memory recall. In this framework, the feedforward network supports per-
ception and decision-making by transforming sensory stimuli into conceptual representations, while
the feedback network facilitates memory recall by reconstructing stimuli from semantic concepts.
Inspired by this principle, we propose a novel bidirectional learning framework in which the feedfor-
ward and feedback networks are jointly trained by distilling their hidden feature representations from
one another. This approach leverages the properties of pyramidal neurons, which receive feedforward
(perception) and feedback (learning) signals through their basal and apical dendrites, respectively.
Extensive experiments across diverse network architectures and tasks show that the resulting learning
algorithm achieves performance comparable to error backpropagation while yielding stronger adher-
ence to biological fidelity. Specifically, BSD achieves competitive performance across tasks: within
3% of backpropagation on MNIST (99.44% vs 99.56%) and CIFAR-10 (84.13% vs 87.12%), and
superior MSE on time-series forecasting tasks like Electricity (0.165 vs 0.175), demonstrating the
effectiveness of our approach. The limitations and future directions are discussed in Appendix R.

ETHICS STATEMENT

This research presents a biologically plausible learning algorithm and does not involve human subjects
or sensitive data. All experiments were conducted on publicly available datasets that are widely used
in machine learning research. The proposed BSD algorithm is a general-purpose learning method
without inherent bias, unethical practices, or discriminatory applications. The authors declare no
conflicts of interest or competing financial interests related to this work. The research methodology
adheres to well-established standard practices in machine learning and computational science, with
no foreseeable harmful implications or misuse potential.

REPRODUCIBILITY STATEMENT

The authors have made extensive efforts to ensure the reproducibility of the empirical results reported
in this paper. First, detailed dataset characteristics are documented in Appendix E.1. Second,
comprehensive implementation details, covering network architectures, hyperparameter settings,
training procedures, and evaluation metric explanations, are provided in Appendix E.2. Finally, the
authors have included the source code for the proposed training algorithm as supplementary material
and promised to release it publicly on GitHub upon acceptance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A Learning Algorithm for
Boltzmann Machines. Cognitive Science, 9:147–169, 1985. doi: 10.1207/s15516709cog0901 7.

Alexandra M Albers, Peter Kok, Ivan Toni, H Chris Dijkerman, and Floris P de Lange. Shared
representations for working memory and mental imagery in early visual cortex. Current Biology,
23(15):1427–1431, 2013.

Sergey Bartunov, Adam Santoro, Blake A Richards, Luke Marris, Geoffrey E Hinton, and Timo-
thy Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. Advances in Neural Information Processing Systems, 31, 2018.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
Nature Communications, 11(1):3625, 2020.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Leonardo Bonetti, Gemma Fernández-Rubio, Francesca Carlomagno, Mathias Dietz, Dimitrios
Pantazis, Peter Vuust, and Morten L Kringelbach. Spatiotemporal brain hierarchies of auditory
memory recognition and predictive coding. Nature Communications, 15(1):4313, 2024.

Charlotte Caucheteux, Alexandre Gramfort, and Jean-Rémi King. Evidence of a predictive coding
hierarchy in the human brain listening to speech. Nature Human Behaviour, 7(3):430–441, 2023.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Advances in Neural Information
Processing Systems, volume 33, 2020.

Hebb Donald. The organization of behavior. New York 1952 Donald The Organization of Behaviour
1952, 1949.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: from
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segregated
dendrites. eLife, 6:e22566, 2017.

Benjamin Y Hayden, Sarah R Heilbronner, John M Pearson, and Michael L Platt. Surprise signals
in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving
adjustment in behavior. Journal of Neuroscience, 31(11):4178–4187, 2011.

Avi Hazan and Elishai Ezra Tsur. Neuromorphic analog implementation of neural engineering
framework-inspired spiking neuron for high-dimensional representation. Frontiers in Neuroscience,
15:627221, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural
information processing systems, pp. 6626–6637, 2017.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2(3):5, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural
Computation, 14(8):1771–1800, 2002. doi: 10.1162/089976602760128018.

John J Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Eugene M Izhikevich. Solving the distal reward problem through linkage of stdp and dopamine
signaling. Cerebral Cortex, 17(10):2443–2452, 2007.

Max Jaderberg, Wojciech M Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver,
and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. Proceedings of
the 34th International Conference on Machine Learning, 70:1627–1635, 2017.

Hou Jiao et al. The new generation brain-inspired sparse learning: A comprehensive survey. Informa-
tion Fusion, 89:35–57, 2022.

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continuous
local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

Hiromichi Kamata, Yusuke Mukuta, and Tatsuya Harada. Fully spiking variational autoencoder. In
Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 7059–7067, 2022.

Chia-Hsiang Kao and Bharath Hariharan. Counter-current learning: A biologically plausible dual
network approach for deep learning. Advances in Neural Information Processing Systems, 37:
70905–70925, 2024.

Stephen M Kosslyn, Nathaniel M Alpert, William L Thompson, Vera Maljkovic, Steven B Weise,
Christopher F Chabris, Susan E Hamilton, Scott L Rauch, and Fabio S Buonanno. Activation of
human primary visual cortex during visual recall: a magnetic resonance imaging study. Proceedings
of the National Academy of Sciences, 90(24):11802–11805, 1993.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A Tutorial on
Energy-Based Learning. In Gökhan Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander
Smola, and Ben Taskar (eds.), Predicting Structured Data. MIT Press, 2006. An extended tutorial
introducing energy-based models and their relation to Hopfield networks and Boltzmann machines.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint european conference on machine learning and knowledge discovery in databases, pp.
498–515. Springer, 2015.

X Li et al. A review of learning in biologically plausible spiking neural networks. Frontiers in
Neuroscience, 2024.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International conference on learning representations, 2018.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7(1):
13276, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Zudi Lin, Erhan Bas, Kunwar Yashraj Singh, Gurumurthy Swaminathan, and Rahul Bhotika. Relaxing
contrastiveness in multimodal representation learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2227–2236, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Changze Lv, Jingwen Xu, Yiyang Lu, Xiaohua Wang, Zhenghua Wang, Zhibo Xu, Di Yu, Xin Du,
Xiaoqing Zheng, and Xuanjing Huang. Dendritic localized learning: Toward biologically plausible
algorithm. In Forty-second International Conference on Machine Learning, 2025.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local
errors. Frontiers in neuroscience, 12:608, 2018.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International conference on machine learning, pp. 4839–4850. PMLR, 2019.

Alexander G Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local target
representations. In Proceedings of the aaai conference on artificial intelligence, volume 33, pp.
4651–4658, 2019.

Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard Naud. Burst-
dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nature Neuroscience,
24:1010–1019, 2021.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and challenges.
Frontiers in neuroscience, 12:409662, 2018.

James Plath, Gail Sinclair, and Kirk Curnutt. The 100 Greatest Literary Characters. Rowman &
Littlefield, 2019.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcircuits
approximate the backpropagation algorithm. Advances in Neural Information Processing Systems,
31, 2018.

Samuel Schmidgall, Rojin Ziaei, Jascha Achterberg, Louis Kirsch, S Hajiseyedrazi, and Jason
Eshraghian. Brain-inspired learning in artificial neural networks: a review. APL Machine Learning,
2(2), 2024.

Walter Senn, Dominik Dold, Akos F Kungl, Benjamin Ellenberger, Jakob Jordan, Yoshua Bengio,
João Sacramento, and Mihai A Petrovici. A neuronal least-action principle for real-time learning
in cortical circuits. eLife, 12:RP89674, 2024.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.

Stork. Is backpropagation biologically plausible. In International 1989 Joint Conference on Neural
Networks, pp. 241–246. IEEE, 1989.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky integrate
and analog fire network for lightweight and efficient spatiotemporal information processing. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6249–6262, 2021.

Meng Yao, Guangshe Zhao, Hu Zhang, Yifan Hu, Li Deng, Yu Tian, Bo Xu, and Guoqi Li. Attention
spiking neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8):
9393–9410, 2023.

Tielin Zhang, Shuncheng Jia, Xiang Cheng, and Bo Xu. Tuning convolutional spiking neural network
with biologically plausible reward propagation. IEEE Transactions on Neural Networks and
Learning Systems, 33(12):7621–7631, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A GLOBAL ALGORITHM OF BSD

Algorithm 1 Spike Bidirectional Distillation Algorithm

1: Input: sequence of data D, layers L, learning rates ηW, ηΘ
2: Initialize W1, . . . ,WL+1 and Θ1, . . . ,ΘL+1 randomly
3: for epoch = 0, . . . ,max epochs do
4: for each batch x, ŷ ∈ D do
5: Forward Path(transforms the low-level signals into high-level representations):
6: Assign the input values x to the voltage v1 of the input layer neurons.
7: Inputs can be viewed as analog signals arising from low-level perceptual neurons.
8: v1 ← x , s1 ← SN (v1),
9: where SN(·) denotes the leaky integrate-and-fire (LIF) spike generator, taking vi

as input and yielding the spike train si for layer i.
10: for i = 2, . . . , L do
11: When spikes pass through the synaptic cleft, they are multiplied by Wi, which is

determined by the strength of the connection:
12: v̂′

i ← vi ←Wi−1si−1, si ← SN (vi)
13: end for
14:
15: Backward Path(transforms the high-level encoding to low-level stimuli):
16: v′

L ← ŝ, where ŝ is the encoding of target ŷ
17: s′L ← SN (v′

L)
18: for i = L− 1, . . . , 1 do
19: v̂i ← v′

i ← Θis
′
i+1, s′i ← SN (v′

i)
20: end for
21:
22: Loss Computation:(layer-wise local loss)
23: We present the loss defined for Type 1 neurons, with the loss for Type 2 neurons

following symmetrically.
24: for i = 1, . . . , L− 1 do
25: Li ← LReCo(vi, v̂i) ,
26: where LReCo denotes the Relaxed Contrastive (ReCo) loss described in Section 4.3.
27: end for
28: We calculate the loss of the last layer using cross-entropy: Ltop ← LCE(vL, v̂L)
29:
30: Local Gradients:
31: for i = 2, . . . , L− 1 do
32: The calculation of the weight gradients only involves the local loss:
33: ∇Wi−1 ← ∂Li

∂Wi−1
, ∇Θi ← ∂Li

∂Θi

34: end for
35: ∇Θ1

← ∂L1

∂Θ1

36: ∇WL−1
← ∂Ltarget

∂WL−1

37:
38: Parameter Updates:
39: for i = 1, . . . , L− 1 do
40: Wi ←Wi − ηW · ∇Wi , Θi ← Θi − ηΘ · ∇Θi

41: end for
42: end for
43: end for

B ADDITIONAL PRELIMINARIES

Spiking neurons can be categorized into two types based on their signal propagation mechanisms.
One category, referred to as spike-based neurons, conveys information through spike trains. Discrete
Spiking Neural Networks (SNNs) integrate spike inputs at each time step and generate a binary spike
output when the integrated value exceeds a threshold. Continuous analog input signals are typically

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

encoded (e.g., rate encoding, time encoding, or ∆-encoding) into spike sequences. Representative
models in this category include IF, PLIF(Fang et al., 2021), and LIF(Maass, 1997). Discrete SNNs
are compatible with existing digital design processes, allowing the grouping and virtualization of
large numbers of neurons on computational cores to achieve parallel architectures. These systems
exhibit high scalability and efficient trainability, benefiting from sparse, event-driven computation
with low power consumption during the inference phase. However, the discrete nature of spike signals
limits their information capacity relative to traditional neuron models, which transmit continuous
floating-point values directly(Pfeiffer & Pfeil, 2018).

The second type of spiking neuron architecture uses similar temporal equations as spiking neurons but
propagates analog signals, referred to as analog-based neurons, such as LIAF(Wu et al., 2021). These
signals can encode more information and exhibit lower response latency in certain tasks. However,
hardware implementations of such neurons require analog circuits and because computations cannot
be skipped during inference, the system exhibits higher power consumption (Hazan & Ezra Tsur,
2021).

In Section 3.1, we provide the time dynamics equation for LIF. The equation 1 and equation 3 for
different types of spiking neurons are similar, while equation 2 exhibits multiple variations. For
example, the equation for IF is defined as follows:

H[t] = U [t− 1] + I[t] (11)

The primary distinction between IF and LIF lies in the inclusion of a voltage leakage mechanism in
LIF, which more closely resembles the behavior of biological neurons. Other variants, such as PLIF,
consider the parameter τ in equation 2 to be learnable, while LIAF replaces Θ in equation 3 with
ReLU, thereby enabling the transmission of continuous floating-point values.

C THE MODEL ARCHITECTURE OF RNNS

The network comprises one layer of auto-regressive pyramidal neurons, which contains a pair of
two distinct types of neurons. Type 1 neurons receive synaptic inputs on their basal dendrites from
axons of lower-layer neurons, while Type 2 neurons receive basal dendritic inputs from axons of
higher-layer neurons. x1,x2, . . . ,xN represent the input sequence where N is the sequence length.
The training objective is to align the output oi of each timestep Type 1 neurons with ŷi at each
timestep i. During learning, the original input xi is delivered to the basal dendrites of Type 1 neurons
at timestep i, while the target ŷi is provided to the basal dendrites of Type 2 neurons.

We employ synaptic weight matrices Wih,Whh and Who in the feedforward pathway corresponding
to the input to the hidden layer weight, the spike of the previous time to the hidden layer weight and
the hidden layer to the output weight respectively. Similar to the feedforward pathway, Θoh,Θhh and
Θhi in the backward pathways corresponding to the output target to the hidden layer weight, the spike
of the previous time to the hidden layer weight and the hidden layer to the reconstructed input weight
respectively.

The feedforward process is described by:

hi = ĥ′
i = Wihxi +Whhsi−1, oi = Whohi, si = SN (hi), i = 2, 3, . . . , N, (12)

where hi denotes the somatic membrane potential of Type 1 neurons at timestep i arising from basal
dendritic integration, ĥ′

i denotes the somatic membrane potential of Type 2 neurons at timestep i
arising from apical dendritic integration. si denotes the spike train that Type 1 neurons at timestep i
output and s1 = 0.

The backward process is governed by:

h′
i = ĥi = Θohŷi +Θhhs

′
i+1, x̂i = Θhiĥi, s′i = SN (ĥi), i = 1, 2, . . . , N − 1, (13)

where h′
i denotes the somatic membrane potential of Type 2 neurons at timestep i arising from basal

dendritic integration, ĥi denotes the somatic membrane potential of Type 1 neurons at timestep i
arising from apical dendritic integration. Θi is the synaptic weight for Type 2 neurons in layer i, and
s′i denotes the spike train that Type 2 neurons at timestep i output and s′N = 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D GRADIENTS DERIVATION FOR BSD

This section details the derivation of the gradients for the local loss functions with respect to the
feedforward weights W and backward weights Θ.

D.1 GRADIENT WITH RESPECT TO FEEDFORWARD WEIGHTS Wi−1 (TYPE 1 NEURONS)

For Type 1 neurons in layer i (for i = 2, . . . , L− 1), the local loss Li is defined as:

Li =

B∑
k=1

(1− [Ci]kk)
2 + λ

B∑
k=1

∑
j ̸=k

(max(0, [Ci]kj))
2
, (14)

where [Ci]kj is the cosine similarity between vi,k = Wi−1si−1,k and v̂i,j = v′
i,j .

The gradient with respect to Wi−1 is found via the chain rule. The resulting gradient is computed as
a sum of outer products over the batch:

∂Li

∂Wi−1
=

B∑
k=1

(
∂Li

∂vi,k

)
(si−1,k)

T (15)

The gradient with respect to the basal voltage vi,k is:

∂Li

∂vi,k
= −2(1− [Ci]kk)

∂[Ci]kk
∂vi,k

+
∑
j ̸=k

2λmax(0, [Ci]kj)
∂[Ci]kj
∂vi,k

(16)

The derivative of the cosine similarity term is:

∂[Ci]kj
∂vi,k

=
1

∥vi,k∥

(
v̂i,j

∥v̂i,j∥
− [Ci]kj

vi,k

∥vi,k∥

)
(17)

Combining these terms yields the final gradient for Wi−1:

∂Li

∂Wi−1
=

B∑
k=1

[
− 2(1− [Ci]kk)

1

∥vi,k∥

(
v̂i,k

∥v̂i,k∥
− [Ci]kk

vi,k

∥vi,k∥

)

+
∑
j ̸=k

2λmax(0, [Ci]kj)
1

∥vi,k∥

(
v̂i,j

∥v̂i,j∥
− [Ci]kj

vi,k

∥vi,k∥

)]
(si−1,k)

T

(18)

D.2 GRADIENT WITH RESPECT TO BACKWARD WEIGHTS Θi (TYPE 2 NEURONS)

For Type 2 neurons in layer i (for i = 2, . . . , L− 1), the local loss L′
i is defined symmetrically:

L′
i =

B∑
k=1

(1− [C′
i]kk)

2 + λ

B∑
k=1

∑
j ̸=k

(max(0, [C′
i]kj))

2
, (19)

where [C′
i]kj is the cosine similarity between v′

i,k = Θis
′
i+1,k and v̂′

i,j = vi,j .

The derivation for Θi follows the same structure, yielding a sum of outer products over the batch:

∂L′
i

∂Θi
=

B∑
k=1

(
∂L′

i

∂v′
i,k

)
(s′i+1,k)

T (20)

The gradient with respect to v′
i,k is:

∂L′
i

∂v′
i,k

= −2(1− [C′
i]kk)

∂[C′
i]kk

∂v′
i,k

+
∑
j ̸=k

2λmax(0, [C′
i]kj)

∂[C′
i]kj

∂v′
i,k

, (21)

where the derivative of the cosine similarity term is:

∂[C′
i]kj

∂v′
i,k

=
1

∥v′
i,k∥

(
v̂′
i,j

∥v̂′
i,j∥
− [C′

i]kj
v′
i,k

∥v′
i,k∥

)
(22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This gives the final gradient for Θi:

∂L′
i

∂Θi
=

B∑
k=1

[
− 2(1− [C′

i]kk)
1

∥v′
i,k∥

(
v̂′
i,k

∥v̂′
i,k∥
− [C′

i]kk
v′
i,k

∥v′
i,k∥

)

+
∑
j ̸=k

2λmax(0, [C′
i]kj)

1

∥v′
i,k∥

(
v̂′
i,j

∥v̂′
i,j∥
− [C′

i]kj
v′
i,k

∥v′
i,k∥

)]
(s′i+1,k)

T

(23)

E EXPERIMENTAL SETTINGS

E.1 STATISTICS OF DATASETS

We evaluate our proposed Bidirectional Spike-based Distillation (BSD) algorithm across a diverse
range of tasks. The datasets employed in our experiments are detailed below, categorized by task.

Image Classification. For the image classification tasks, we conducted experiments on five widely-
used benchmarks to assess the model’s performance in visual recognition.

• MNIST. The Modified National Institute of Standards and Technology (MNIST) dataset is a
cornerstone benchmark comprising 60,000 training and 10,000 testing images of handwritten
digits (0-9). Each image is a 28× 28 pixel grayscale representation.

• FashionMNIST. As a more challenging drop-in replacement for MNIST, the FashionM-
NIST dataset contains 60,000 training and 10,000 testing examples of clothing items and
accessories across 10 classes, each being a 28× 28 grayscale image.

• Street View House Numbers (SVHN). The SVHN dataset consists of 32× 32 color images
of house numbers from a real-world setting. We use the standard cropped version, which
includes 73,257 digits for training and 26,032 for testing, categorized into 10 classes.

• CIFAR-10. The Canadian Institute for Advanced Research (CIFAR-10) dataset contains
50,000 training and 10,000 testing 32× 32 color images across 10 mutually exclusive object
classes (e.g., airplane, automobile, bird).

• CIFAR-100. The CIFAR-100 dataset is a collection of 60,000 32 × 32 color images,
designed for fine-grained object recognition tasks. It contains 100 distinct classes that are
hierarchically grouped into 20 superclasses. For each class, there are 500 training images
and 100 testing images.

Image Generation. To evaluate the generative performance of BSD, we employed an autoencoder
architecture for image reconstruction on the MNIST, FashionMNIST, and CIFAR-10 datasets. The
quality of the generated images was quantitatively assessed using the Fréchet Inception Distance
(FID) score, which measures the similarity between the distributions of the reconstructed and original
images.

Text Character Prediction. For the sequential prediction task, we utilized a natural language
corpus to evaluate the model’s ability to capture temporal dependencies at the character level.

• Harry Potter Corpus. This dataset is a text corpus derived from the Harry Potter book
series (Plath et al., 2019), used for next-character prediction experiments.

Time-Series Forecasting. For evaluating performance on multivariate time-series forecasting, we
employed three standard real-world datasets from different domains.

• Electricity. The Electricity dataset (Lai et al., 2018) contains hourly electricity consumption
data for 321 clients from 2012 to 2014, serving as a benchmark for long-term forecasting.

• Metr-la. This traffic forecasting dataset (Li et al., 2018) contains traffic speed data from 207
sensors on highways in Los Angeles County, aggregated every 5 minutes over a four-month
period.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Pems-bay. Sourced from the Caltrans Performance Measurement System (PeMS), this
dataset (Li et al., 2018) comprises traffic speed information from 325 sensors in the San
Francisco Bay Area over six months, providing another challenging forecasting benchmark.

E.2 IMPLEMENTATION DETAILS

E.2.1 BSD-MLPS

Model Architecture. For the feedforward path composed of Type 1 neurons, we design distinct
Multi-Layer Perceptron (MLP) architectures tailored to each task, given the heterogeneity of input
dimensions and class cardinalities across the five datasets. For each layer, the synaptic weight
configurations of the backward path are designed to ensure that the number of neurons in both
the Type 1 feedforward and Type 2 feedback paths remain consistent across all layers MNIST and
FashionMNIST consist of single-channel 28 × 28 grayscale images, whereas SVHN, CIFAR-10,
and CIFAR-100 comprise three-channel 32× 32 color images. In terms of classification objectives,
MNIST, FashionMNIST, SVHN, and CIFAR-10 are 10-class tasks, while CIFAR-100 involves 100
classes. To accommodate these differences and ensure optimal performance, we adopt dataset-specific
MLP configurations. For MNIST and FashionMNIST, we employ a six-layer MLP with layer sizes
[784, 1024, 1024, 512, 256, 10], where the input dimension of 784 corresponds to the flattened
28× 28× 1 images and the output dimension of 10 reflects the number of classes. For SVHN and
CIFAR-10, we adopt a wider six-layer MLP with [3072, 4096, 2048, 1024, 512, 10] neurons per layer,
where the input dimension of 3072 is derived from flattening the 32×32×3 images. For CIFAR-100,
we maintain the same six-layer depth but adapt the final output to 100 classes, yielding layer sizes
of [3072, 4096, 2048, 1024, 512, 100]. For the backward pathway, class labels are converted into
spike-encoded targets: given a classification task with C categories, the target for a sample of class
j is represented by a categorical code inspired by one-hot encoding, consisting of a binary vector
of length C with a single active entry at the j-th position and all others inactive. This vector is then
repeated along the temporal dimension according to the number of time steps and delivered to the
basal dendrites of top-layer Type 2 neurons. In all architectures, neuronal dynamics for membrane
potential integration and spike generation are modeled using the Leaky Integrate-and-Fire (LIF)
framework. The feedback path, composed of Type 2 neurons, follows a symmetric architecture to the
feedforward path composed of Type 1 neurons.

Training Hyperparameters. All MLPs are optimized using AdamW with a cosine annealing
learning-rate schedule. The simulation length is fixed at T=4 time steps. For LIF neurons, we employ
the ATan surrogate function provided in the SpikingJelly framework. To ensure that spike sparsity
remains within a regime conducive to effective learning, the firing thresholds are set to 0.2 for Type 1
neurons and 0.1 for Type 2 neurons. Across all datasets, we adopt a learning rate of 1×10−4, a
batch size of 128, and apply RandAugment for data augmentation (Cubuk et al., 2020). To stabilize
optimization, gradient clipping is applied with a threshold of 0.3. Finally, for all non-top layers, the
penalty weight in the ReCo loss is fixed at λ=0.6.

E.2.2 BSD-CNNS

Model Architecture. For the feedforward path composed of Type 1 neurons, we adopt a unified
CNN architecture for all tasks. The architecture consists of five convolutional layers followed by
a fully connected output layer. Specifically, the first convolutional layer maps the input channels
to 128 channels using 3 × 3 kernels, followed by 2 × 2 max-pooling. The second convolutional
layer maintains 128 channels with the same 3 × 3 kernel and 2 × 2 max-pooling. The third and
fourth convolutional layers expand the representation to 256 channels each, again using 3× 3 kernels
with 2× 2 max-pooling. The fifth convolutional layer further increases the dimensionality to 512
channels, also with 3× 3 kernels and 2× 2 max-pooling. The feature maps are then flattened into a
512-dimensional vector, which is connected to the final output layer whose dimension is aligned with
the spike-encoded target ŝ.

As in the MLP case, class labels are converted into spike-coded targets and delivered to the basal
dendrites of top-layer Type 2 neurons. For a classification task with C categories, the target of a
sample from class j is represented by a categorical spike code inspired by one-hot encoding: a binary

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

vector of length C with a single active entry corresponding to class j, repeated along the temporal
dimension to match the simulation time steps.

To stabilize neuronal spiking activity across layers, we insert a batch-normalization layer after each
convolutional operation. This normalization constrains the membrane potentials to a comparable
range across layers, thereby ensuring that spike sparsity remains consistent and that neuronal firing
thresholds are properly regulated throughout the network.

Similarly to the MLP case, the feedback path, composed of Type 2 neurons, mirrors the structure of
the feedforward path composed of Type 1 neurons. In the feedback path, we use upsampling as the
reverse operation of the pooling used in the feedforward path, ensuring that the number of Type 1 and
Type 2 neurons in feedforward and feedback paths remains equal across all layers.

Training Hyperparameters. For all tasks, we optimize our models using the AdamW optimizer
and employ a cosine learning rate scheduler. To ensure that the neuronal firing sparsity remains
within an ideal range, we set the firing thresholds of both Type 1 and Type 2 neurons to 1.0. The
number of time steps is set to 4, with a warm-up period of 100 steps. For data augmentation, we use
RandAugment with a magnitude of 4 for MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, while
on SVHN, we apply only RandomCrop. All images are normalized prior to processing. The batch
size is set to 128 across all datasets. For MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, the
learning rates for both Type 1 and Type 2 neurons are set to 1× 10−3, whereas for SVHN, we reduce
the learning rate to 1× 10−4. For the layer-wise ReCo loss applied to all layers except the top layer,
we set the penalty weight λ to 0.6, consistent with the configuration used in MLPs.

E.2.3 BSD-RNNS

Model Architecture. For all sequential regression datasets, we employed the same RNN model
architecture which is a single-layer RNN with a hidden size of 300, where the input and output di-
mensions corresponded to those of the respective datasets: Harry Potter(103,103), Electricity(320,1),
Metr-la(206,1), Pems-bay(324,1), where the dimensions are presented in the form of (input dimen-
sions, output dimensions).

Training Hyperparameters. Similarly to the classification tasks, we utilized the AdamW optimizer
along with a cosine learning rate scheduler across all sequential regression datasets. To identify
optimal performance in different datasets, we maintained identical activation thresholds for both
Type 1 and Type 2 neurons and fixed the number of timesteps at 4 for all tasks. However, we varied
the activation threshold according to each dataset: 1.0 for the Harry Potter and Metr-la datasets, 0.8
for Electricity, and 0.5 for Pems-bay. All weights were initialized with PyTorch’s default weight
initialization. The batch size was set to 128 for the Electricity dataset and 64 for the remaining
sequential regression datasets, with the sequence length fixed to 32 across all datasets. The learning
rate was set to 0.001 for the Harry Potter, Electricity and Metr-la datasets, and 0.00015 for Pems-bay.
Due to the larger dataset size of Harry Potter, training was limited to 10 epochs, whereas the other
datasets were trained for 100 epochs. To stabilize training, gradient clipping with an upper bound of
1 was employed for all sequential regression datasets, and batch normalization was applied to the
hidden layer in Pems-bay to normalize each batch to zero mean and unit variance.

Metric. For time-series forecasting datasets (Electricity, Metr-la, and Pems-bay), the mean squared
error (MSE) and the mean absolute error (MAE) were used as performance metrics. The formulas
are as follows:

MSE =
1

B × T ×D

B∑
b=1

T∑
t=1

D∑
d=1

(ŷb,t,d − yb,t,d)
2
, (24)

MAE =
1

B × T ×D

B∑
b=1

T∑
t=1

D∑
d=1

|ŷb,t,d − yb,t,d| , (25)

where B, T,D represents the batch size, sequence length, and output dimensions, respectively. While
yb,t,d is the value of the d-th feature of the output at the t-th time step for the b-th sample in the
batch and ŷb,t,d is its target value. We normalized each column of the raw data to zero mean and unit
variance before calculating MSE and MAE, consistent with the preprocessing described in (Lv et al.,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2025). We selected the model with the lowest MSE as the final recorded performance metric. For the
text character prediction dataset (Harry Potter), element-wise accuracy was used as the performance
metric. In preprocessing, all whitespace characters in the text were replaced with a single space, and
performance was evaluated on the processed dataset.

E.2.4 BSD-AUTOENCODERS

Model Architecture. We address the task of image reconstruction on the MNIST, FashionMNIST,
and CIFAR-10 datasets using a convolutional autoencoder. The architecture, which remains consistent
across all datasets, is composed of a feedforward path (Type 1 neurons) and a symmetric feedback
path (Type 2 neurons). To maintain an identical neuron count between the Type 1 and Type 2
populations at each corresponding layer, the architecture employs inverse spatial operations: where
one path uses a strided convolution, the other utilizes an upsampling layer, and vice versa. To ensure
stable and sparse spiking activity, each layer in both paths incorporates a batch normalization step
after convolution and upsampling.

The encoder section systematically compresses the input into a latent representation through a cascade
of three convolutional layers. The first layer applies a 3× 3 convolution with a stride of 2, halving
the input’s spatial dimensions while expanding the feature maps to 128 channels. The second layer
repeats this operation, again using a stride of 2 to halve the spatial resolution and increasing the
channel depth from 128 to 256. The final encoding layer performs a third stride-2 convolution,
mapping the features to a 512-channel bottleneck representation.

Symmetrically, the decoder reconstructs the image from this bottleneck representation. Each decoding
layer first doubles the spatial dimensions of its input via a nearest-neighbor upsampling operation.
Following this, a 3× 3 convolution with a stride of 1 is applied to refine the features. This two-step
process is repeated three times: the first block reduces the channel count from 512 to 256, the second
from 256 to 128, and the final block restores the feature map to the original input resolution while
matching the channel count of the source image.

The source image is provided as the basal input to both the bottom-layer Type 1 neurons and the
top-layer Type 2 neurons. Thus, the top-layer Type 2 neurons function as a dedicated transducer for
the backward path, converting the source image into a spike-based representation.

Training Hyperparameters. The model is optimized across all datasets using the AdamW opti-
mizer, with a learning rate of 0.001 managed by a cosine annealing schedule. The spiking threshold
for both Type 1 and Type 2 neurons is uniformly set to 0.4, and the network is simulated for a
total of 8 timesteps. To apply differential penalties to the reconstruction error, we decompose the
error in the frequency domain. This is achieved by creating a binary mask based on the image’s
Fourier transform. A circular region in the frequency spectrum, centered at the zero frequency, is
defined as the low-frequency domain, while the area outside this region constitutes the high-frequency
domain. The boundary is controlled by a freq cutoff ratio hyperparameter, representing the
normalized radius of this low-frequency circle. This allows us to assign distinct λ weights for the
Reconstruction-on-Construction (ReCo) loss to the low-frequency and high-frequency components.
For the MNIST and FashionMNIST datasets, the model is trained with a batch size of 32. The
freq cutoff ratio is set to 0.6, with the ReCo loss λ configured to 0.005 for low-frequency
components and 0.01 for high-frequency components. For the more complex CIFAR-10 dataset, the
batch size is increased to 64. The freq cutoff ratio is adjusted to 0.7, and the corresponding
ReCo loss weights are set to 0.005 for the low-frequency band and increased to 0.05 for the high-
frequency band, placing a greater penalty on the reconstruction of fine-grained details. To improve
model generalization on this dataset, we also apply RandAugment for data augmentation during
training.

Evaluation Metrics For autoencoder-based image generation tasks, we employ Fréchet Inception
Distance (FID) (Heusel et al., 2017) as our evaluation metric. FID measures the distributional
similarity between real and generated images by computing the distance between their feature
representations in the Inception-v3 network’s activation space. Specifically, the metric calculates
the Fréchet distance between two multivariate Gaussian distributions fitted to the feature vectors
of real and synthetic images extracted from the final pooling layer of Inception-v3. Lower FID
scores indicate higher similarity between generated and real image distributions, with a perfect score

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

of 0 representing identical distributions. This metric provides a reliable quantitative assessment
of generation quality that correlates well with human perceptual judgment, making it particularly
suitable for evaluating the generative capabilities of our BSD-trained autoencoders.

F ADDITIONAL EXPERIMENTS

F.1 SUPPLEMENTARY RESULTS FOR IMAGE GENERATION

Figure 4: Comparison of image reconstruction on the MNIST dataset by autoencoders trained with
Backpropagation (BP) and our proposed Bidirectional Spike-based Distillation (BSD).

Figure 5: Visual comparison of FashionMNIST reconstructions from autoencoders trained with
Backpropagation (BP) and our Bidirectional Spike-based Distillation (BSD) method..

Figures 4 and 5 present a qualitative comparison of image reconstructions on the MNIST and Fashion-
MNIST datasets, showcasing outputs from autoencoders trained with conventional Backpropagation
(BP) alongside those trained with our proposed Bidirectional Spike-based Distillation (BSD). Table 5
provides a complementary quantitative analysis on the FashionMNIST dataset, benchmarking the
performance of BSD against BP and the Fully Spiking Variational Autoencoder (FSVAE) using the
Fréchet Inception Distance (FID) metric. While BSD-trained autoencoders demonstrate proficient
generative capabilities by successfully capturing the salient global structure of the input images,
compared to BP-trained ANNs, BSD-generated images tend to exhibit a loss of high-frequency detail.
This suggests that while BSD establishes a robust framework for generative modeling, exploring
further refinements or architectural adaptations could be beneficial for enhancing the preservation of
fine-grained textures and improving the overall sharpness of the generated images.

Table 5: Quantitative comparison of image generation performance on the FashionMNIST dataset,
evaluated using Fréchet Inception Distance (FID). ↓ denotes that lower scores indicate better perfor-
mance.

Dataset Model FID ↓

FashionMNIST
ANN-BP 29.07

FSVAE 90.12

BSD (Ours) 112.97

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on text character prediction and time-series forecasting tasks.

Method Harry Potter Electricity Metr-la Pems-bay
Pred. Acc. ↑ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

BSD-MSE 29.6% 0.179 0.328 0.160 0.247 0.180 0.221

BSD-InfoNCE 29.9% 0.172 0.323 0.159 0.257 0.190 0.230

BSD 41.8% 0.165 0.314 0.125 0.197 0.174 0.206

F.2 ABLATION STUDY ON RNNS

Table 6 compares the performance of BSD-ReCo, BSD-MSE, and BSD-infoNCE on sequential
regression tasks. In all tasks, the ReCo loss consistently demonstrated the highest performance. In
contrast to the outcomes from the ablation studies on image classification tasks, all inter-layer loss
functions achieved stable convergence on the sequential regression datasets, which may be attributed
to the relatively shallow depth of the RNNs.

In conclusion, for sequential regression tasks, MSE, infoNCE, and ReCo all demonstrated stable
convergence, but ReCo remains the most optimal inter-layer loss, with its performance advantage
being particularly evident on text character prediction datasets.

F.3 ABLATION STUDY ON AUTOENCODERS

Figure 6: Visual examples of image reconstructions on the CIFAR-10 dataset, showcasing the
performance of autoencoders trained with BSD using various layer-wise loss function configurations.

Dataset Model FID ↓

CIFAR-10

BSD 168.12

BSD-primitive 185.33

BSD-InfoNCE 190.95

BSD-MSE 177.66

Table 7: Ablation study on CIFAR-10 image generation, evaluating the impact of different layer-
wise loss functions and frequency decomposition strategies, with performance measured by Fréchet
Inception Distance (FID). ↓ denotes that lower FID values indicate better performance. BSD-
primitive: BSD without adaptive frequency domain decomposition. BSD-InfoNCE: BSD employing
InfoNCE loss for intra-neuronal voltage alignment. BSD-MSE: BSD utilizing Mean Squared Error
(MSE) loss for intra-neuronal voltage alignment.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

To investigate the impact of different layer-wise loss functions and frequency decomposition strategies
on image generation, we conduct an ablation study using BSD-trained autoencoders on the CIFAR-10
dataset. Figure 6 presents visual comparisons of image reconstructions, and Table 7 details the
corresponding FID scores. Our ablation study includes the following configurations: BSD: our
proposed method incorporating ReCo loss and adaptive frequency decomposition; BSD-primitive:
BSD using ReCo loss but without adaptive frequency domain decomposition, applying a uniform
λ across all frequency components; BSD-InfoNCE: BSD that substitutes ReCo loss with InfoNCE
loss for intra-neuronal voltage alignment; and BSD-MSE: BSD that replaces ReCo loss with Mean
Squared Error (MSE) loss for intra-neuronal voltage alignment. From Table 7, it is evident that
performing frequency domain segmentation using FFT and applying distinct λ penalty weights for
low and high-frequency regions significantly enhances the performance of BSD-trained autoencoders.
As a result, BSD achieves the best FID score of 168.12, notably outperforming BSD-primitive (FID
185.33). Furthermore, for image generation tasks, BSD-InfoNCE (FID 190.95), which employs
InfoNCE for intra-neuronal voltage alignment, yields inferior results compared to BSD (using ReCo
Loss for intra-neuronal voltage alignment). Figure 6 shows that while BSD-MSE demonstrates an
ability to capture salient structural features and approximate pixel locations of objects, it nonetheless
exhibits obvious deficiencies in both color fidelity and detail retention. Compared to the recon-
structions from BSD (which utilizes ReCo Loss and adaptive frequency decomposition), the images
produced by BSD-MSE appear significantly blurred and desaturated, losing fine textures and distinct
chromatic attributes present in the ground truth (GT) images. These results collectively affirm the
effectiveness of our proposed design, which integrates ReCo Loss as the layer-wise loss function,
performs frequency domain segmentation via FFT, and applies adaptive λ penalty weights for distinct
low and high-frequency regions.

G DYNAMICS OF SYNAPTIC WEIGHT ALIGNMENT

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

Weight Alignment Between Forward and Backward Networks

enc1
enc2
enc3
enc4
enc5
output

Figure 7: Alignment dynamics of synaptic weights (W and Θ) between the feedforward and
backward pathways in a BSD-trained convolutional neural network for image classification on the
CIFAR-10 dataset. The figure presents the cosine similarity of weights across network layers as a
function of training epochs.

In this section, we examine the alignment dynamics between the feedforward synaptic weights (W)
and the backward synaptic weights (Θ) within a convolutional neural network trained using the BSD
algorithm. The network was tasked with image classification on the CIFAR-10 dataset. We measured
the cosine similarity between the weights connected to the basal dendrites of Type 1 and Type 2
neurons to quantify their alignment in each layer. In Figure 7, “enc1” through “enc5” denote the five
feedforward convolutional layers and their corresponding backward upsampling layers, progressing
from the shallowest to the deepest. The “output” label refers to the final fully connected layer.
Figure 7 reveals that the weight alignment for the final fully connected layer undergoes a rapid initial
increase, peaking within the first few epochs before stabilizing at a high cosine similarity value
of approximately 0.7. In contrast, the weights of the convolutional and upsampling layers (“enc1”
to “enc5”) consistently exhibit negligible alignment, with their cosine similarity values remaining
close to zero throughout the entire training process. Such alignment behavior demonstrates that

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

the feedforward and backward pathways do not converge toward symmetric weights under BSD.
Thereby we confirm that the BSD algorithm adheres to criterion C1: Asymmetric synaptic weights
for feedforward and feedback pathways.

H T-SNE VISUALIZATION OF LEARNED FEATURE REPRESENTATIONS IN
BSD-TRAINED CNNS

La
ye

r
4

After 5 epochs After 10 epochs After 15 epochs After 20 epochs

La
ye

r
5

CIFAR-10 Classes
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Figure 8: t-SNE visualizations illustrating the evolution of learned feature representations from
the final two convolutional layers of the feedforward path in BSD-trained CNNs, for an image
classification task on the CIFAR-10 dataset across training epochs.

Figure 8 shows t-distributed stochastic neighbor embedding (t-SNE) projections of feature represen-
tations from the final two convolutional layers (Layers 4 and 5) of the feedforward path at epochs
5, 10, 15, and 20 during BSD training on CIFAR-10. As training proceeds, class-specific structure
becomes increasingly separated; by epoch 20, Layer 5 exhibits distinct, compact clusters for most
classes. This progression indicates that BSD progressively shapes intermediate features into more
class-discriminative representations.

I EVALUATION ON TINY-IMAGENET

To evaluate the scalability of our proposed algorithm, we conducted experiments on the Tiny-
ImageNet dataset. We compared our proposed BSD algorithm against both a standard backpropaga-
tion (BP) baseline and Dendritic Localized Learning (DLL). For a fair comparison, we used the same
5-layer CNN architecture across all three methods.

Table 8: Performance comparison on the Tiny-ImageNet dataset.

Method Accuracy (%)
BP 41.07
Dendritic Localized Learning (DLL) 17.10
BSD (Ours) 35.34

The results are summarized in Table 8. As shown, our BSD algorithm achieves an accuracy of
35.34%, substantially outperforming the other biologically plausible method, DLL.

J ABLATION STUDY ON BATCH SIZE

To investigate the sensitivity of our BSD framework to the batch size, we conducted an ablation
study using the BSD-trained CNN across the SVHN, CIFAR-10, and CIFAR-100 datasets. All other

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

hyperparameters were kept consistent with the main experiments detailed in Appendix E.2. The
results are summarized in Table 9.

Table 9: Impact of varying batch size on the performance of the BSD-trained CNN across multiple
datasets.

Batch Size SVHN (%) CIFAR-10 (%) CIFAR-100 (%)
16 71.55 68.96 34.99
32 78.18 78.07 42.53
64 90.97 81.54 49.15
128 90.81 84.53 53.11
256 88.97 83.85 53.49

The results demonstrate a clear trend: the performance of our BSD framework generally improves
as the batch size increases. At smaller batch sizes, the model’s performance is limited. This is an
expected behavior for contrastive learning methods like ReCo, which require a sufficiently large and
diverse set of negative samples within each batch to effectively shape the representation space. As the
batch size increases, we observe substantial performance gains across all datasets, as larger batches
provide a more robust estimate of the data distribution and a richer set of negative examples for the
contrastive objective. We also observe that once the batch size reaches 128, the performance begins to
stabilize. Further increasing the batch size to 256 yields minor fluctuations in accuracy. This suggests
that a batch size of approximately 128 provides a sufficient number of negative samples for the model
to achieve robust performance on these datasets. These findings confirm that our BSD framework
scales favorably with batch size, which is consistent with the principles of contrastive learning.

K ENERGY CONSUMPTION ANALYSIS

To quantify the energy efficiency of our trained models, we conducted a theoretical analysis of energy
consumption during inference. The primary energy advantage of SNNs is realized in this phase,
particularly on specialized neuromorphic hardware. Our BSD algorithm is a training methodology;
the resulting model used for inference is a standard SNN. Therefore, a model trained with BSD fully
retains the inherent energy-saving characteristics of SNNs.

We estimate the theoretical energy consumption per sample by following the methodology proposed
by Yao et al. (2023). For a given SNN layer l, the energy consumption is estimated as:

EnergySNN(l) = EAC × (T × γl × FLOPs(l)), (26)

where T is the number of timesteps, γl is the layer’s average firing rate, and EAC is the energy per
accumulate operation. For an equivalent ANN layer l, the formula is:

EnergyANN(l) = EMAC × FLOPs(l), (27)

where EMAC is the energy per multiply-accumulate operation. The total energy for each model is the
sum over all layers. We use the energy constants for a 45nm process from the literature (EAC = 0.9 pJ,
EMAC = 4.6 pJ) for our analysis (Yao et al., 2023). The analysis was performed on our BSD-trained
5-layer CNN and its equivalent ANN counterpart on the CIFAR-10 task. A layer-wise breakdown of
the energy consumption for both models is provided in Table 10 and Table 11, with a final summary
in Table 12.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Layer-wise energy consumption analysis for the BSD-trained SNN during inference on a
single sample from CIFAR-10.

Layer Name FLOPs Avg Firing Rate (γ) SOPs Energy (J)
Layer 1 (Conv2d) 3.54e+06 0.5006 7.09e+06 6.38e-06
Layer 2 (Conv2d) 3.77e+07 0.1519 2.29e+07 2.06e-05
Layer 3 (Conv2d) 1.89e+07 0.1815 1.37e+07 1.23e-05
Layer 4 (Conv2d) 9.44e+06 0.1943 7.34e+06 6.60e-06
Layer 5 (Conv2d) 4.72e+06 0.2037 3.85e+06 3.46e-06
Layer 6 (Linear) 5.12e+03 0.0803 1.65e+03 1.48e-09

Table 11: Layer-wise energy consumption analysis for the equivalent ANN-BP model during inference
on a single sample from CIFAR-10.

Layer Name FLOPs Energy (J)
Layer 1 (Conv2d) 3.54e+06 1.63e-05
Layer 2 (Conv2d) 3.77e+07 1.74e-04
Layer 3 (Conv2d) 1.89e+07 8.68e-05
Layer 4 (Conv2d) 9.44e+06 4.34e-05
Layer 5 (Conv2d) 4.72e+06 2.17e-05
Layer 6 (Linear) 5.12e+03 2.36e-08

Table 12: Total energy consumption comparison per inference sample.

Model Total Operations per Sample Energy per Sample (J) Energy Reduction
ANN (BP) 7.43e+07 (FLOPs) 3.42e-04 -
SNN (BSD) 5.49e+07 (SOPs) 4.94e-05 85.5% ↓

This quantitative analysis confirms the substantial energy advantage of the SNN model. By leveraging
sparse, event-driven computation, the SNN trained with our BSD method is approximately 85.5%
more energy-efficient during inference than its architecturally identical ANN counterpart. This
highlights that our biologically plausible training method yields models that are not only performant
but also highly efficient for deployment.

L ROBUSTNESS TO INPUT NOISE

To evaluate the robustness of our BSD framework against corrupted data, we conducted an experiment
to assess the resilience of our algorithm to input noise. We used the model checkpoints pre-trained on
the clean training sets of CIFAR-10 and SVHN. During the inference phase, we introduced corruption
by adding random Gaussian noise (mean=0, std=0.05) to the input images. We then evaluated the
performance of these clean-trained models on the noisy test data and compared it to a standard
backpropagation (BP) baseline. The same 5-layer CNN architecture was used for both methods to
ensure a fair comparison.

The results, summarized in Table 13, show the accuracy on both the original clean test set and the
corrupted test set.

As expected, the performance of both methods degrades under noisy conditions. On both CIFAR-10
and SVHN, the drop in accuracy for BSD is comparable to that of BP. The results indicate that our
approach learns robust and effective features.

We attribute this competitive robustness to the dual-objective nature of the BSD training process. The
final task loss at the output layer pushes the network to extract discriminative information, while
the layer-wise alignment objective simultaneously encourages the preservation of rich generative

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Comparison of model accuracy on clean and noisy test data for CIFAR-10 and SVHN.
Models were trained only on clean data. “Noisy Accuracy” corresponds to Accuracy Under Attack
(AUA).

Dataset Method Clean Accuracy (%) Noisy Accuracy (%)

CIFAR-10 BP 87.18 70.89
BSD 83.67 67.06

SVHN BP 94.31 89.24
BSD 90.81 85.40

information from the input. This balance between two complementary goals acts as a form of
regularization, guiding the model to learn more generalizable representations that are inherently more
resilient to input perturbations, rather than learning brittle features that are only optimal for the clean
data distribution.

M FFT DECOMPOSITION FOR ADAPTIVE LOSS

The FFT decomposition, used in our generation tasks, is a method to separate the low-frequency
and high-frequency components of an image or a membrane voltage map, allowing us to apply an
adaptive loss function. The process is as follows:

First, we apply a 2D Fast Fourier Transform to the spatial tensor (e.g., a batch of membrane voltage
maps of shape [B,C,H,W]), converting it into its frequency-domain representation.

Second, to isolate these components, we construct frequency-domain masks. A low-pass filter is cre-
ated by defining a circular region centered at the zero-frequency origin of the spectrum. Frequencies
falling inside this radius are designated as low-frequency components, which represent the global
structure and smooth areas of the image. Conversely, all frequencies outside this radius are designated
as high-frequency components, which correspond to edges and fine-grained textures.

Finally, by element-wise multiplying the frequency-domain representation with these two masks,
we separate it into two distinct tensors: one containing only low frequencies and another containing
only high frequencies. This separation enables the adaptive loss computation mentioned in the main
text. We calculate the ReCo loss independently on these two components but use a different penalty
weight λ for each. A smaller λ is applied to the low-frequency components to maintain structural
coherence, while a larger λ is applied to the high-frequency components to more strongly enforce the
preservation of sharp details and edge fidelity. This approach allows the model to better preserve fine
details without sacrificing the image’s structural coherence.

N COMPUTATIONAL COST ANALYSIS

To provide a comprehensive assessment of the computational costs associated with our proposed
BSD algorithm, we conducted a comparative analysis against a standard Backpropagation (BP)
baseline for SNNs. All experiments were performed on the CIFAR-10 dataset using a single NVIDIA
GeForce RTX 2080 Ti GPU. We profiled memory consumption across different batch sizes to evaluate
scalability. For both methods, we employed the 5-layer convolutional network architecture detailed
in Appendix E.2 to ensure a fair comparison. The results for inference and training are presented
separately below.

Inference Performance. During inference for classification tasks, the BSD framework utilizes
only its feedforward pathway (weights W). Since this pathway is architecturally identical to a
BP-trained SNN of the same configuration, the computational graph and parameters used during a
forward pass are the same. As empirically confirmed in Table 14, this results in identical memory
consumption across various batch sizes. This demonstrates that our biologically plausible training
method introduces no computational overhead during the inference phase.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 14: Comparison of memory consumption during inference on CIFAR-10 across varying batch
sizes.

Batch Size Method Inference Memory Consumption (MB)

32 BP 344
BSD 344

64 BP 944
BSD 944

128 BP 1826
BSD 1826

Training Performance. During training, BSD must maintain two sets of weights (W and Θ) and
store the activations for both the feedforward and backward pathways. Furthermore, the ReCo loss
constructs a B ×B affinity matrix, which introduces an additional memory usage component that
scales quadratically with the batch size (O(B2)). However, the primary driver of BSD’s increased
memory consumption is the necessity of storing the parameters and full activation maps for the
second (backward) pathway, a characteristic inherent to our dual-network design. As detailed in
Table 15, this architectural requirement leads to higher memory consumption compared to BP, which
only stores one set of weights and the activations required for its backward pass.

Table 15: Comparison of memory consumption during training on CIFAR-10 across varying batch
sizes.

Batch Size Method Training Memory Consumption (MB)

32 BP 950
BSD 1154

64 BP 1844
BSD 2852

128 BP 3324
BSD 5034

Time Complexity Analysis. The empirical results are consistent with the theoretical time complex-
ity of the algorithms. For a network with L layers, T timesteps, a batch size of B, and an average
layer width of D, the complexities are as follows:

• BPTT: The complexity is O(L · T · B · D2), derived from the forward pass and a symmetric
backward pass through the unrolled computation graph.

• BSD: The complexity is O(L ·T ·B ·D2+L ·B2 ·D). The first term, O(L ·T ·B ·D2), accounts for
propagation through the two pathways and is comparable to BPTT. The second term, O(L ·B2 ·D),
arises from computing the B ×B affinity matrix for the layer-wise ReCo loss, making our training
complexity more sensitive to batch size.

O ABLATION STUDY ON THE NUMBER OF TIMESTEPS

To more comprehensively investigate the influence of the number of timesteps (T) on our model’s
performance, we expanded our ablation study across multiple datasets for both our CNN and RNN
architectures. All other hyperparameters were kept consistent with those described in our main
experiments. The results are summarized in Table 16 for image classification tasks and Table 17 for
sequential regression tasks.

For both CNN and RNN models, performance generally improves when increasing the number of
timesteps from T = 2 to T = 4. For timesteps greater than four (T ≥ 4), performance tends to
stabilize, exhibiting only minor fluctuations across most datasets and metrics. This suggests that four
timesteps provide a robust and effective balance, allowing neurons to integrate sufficient information

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 16: Impact of varying timesteps (T) on the performance of BSD-trained CNNs across image
classification datasets.

Timesteps (T) CIFAR-100 (%) SVHN (%) CIFAR-10 (%)
2 47.12 82.54 78.09
4 53.48 90.81 84.53
6 53.11 90.35 82.28
8 53.24 90.94 81.51

Table 17: Impact of varying timesteps (T) on the performance of BSD-trained RNNs across sequential
regression tasks.

Timesteps (T) Harry Potter (acc ↑) Metr-la (mse ↓)
2 0.4185 0.1280
4 0.4169 0.1245
6 0.4168 0.1248
8 0.4212 0.1238

to form rich representations without introducing excessive temporal complexity. These expanded
findings empirically justify our choice of T = 4 as a robust and efficient setting across a variety of
tasks and architectures.

P ABLATION STUDY ON BATCH NORMALIZATION

To more broadly investigate the specific impact of batch normalization (BN), we expanded our
ablation study to include the SVHN, CIFAR-10, and CIFAR-100 datasets. The experiments were
conducted on our BSD-trained CNN, and the results are presented in Table 18.

Table 18: Impact of Batch Normalization (BN) on the performance of the BSD-trained CNN across
multiple datasets.

Method SVHN (%) CIFAR-10 (%) CIFAR-100 (%)
BSD without BN 80.68 80.75 53.31
BSD with BN 90.81 84.53 53.48

The results show that incorporating BN improves performance across all tested datasets. This benefit
is attributed to the ability of BN to stabilize the distribution of membrane potentials across layers.
The normalization ensures that spike sparsity remains consistent, leading to more stable and effective
learning.

Q JUSTIFICATION FOR THE CHOICE OF RECO LOSS

Here, we provide a more detailed justification for our choice of the Relaxed Contrastive (ReCo) loss
over other contrastive alternatives like InfoNCE.

Our ablation study in Section 5.6 provides the empirical evidence, showing that BSD with ReCo loss
consistently and significantly outperforms BSD-InfoNCE. This is particularly evident on complex
datasets like CIFAR-100, where the performance margin is over 15 percentage points. The theoretical
rationale for this superiority, especially for aligning the voltage signals in our BSD algorithm, is as
follows.

The core objective at each hidden layer is to align the pre-spike membrane potential from the
feedforward path (vi,k) with its corresponding supervisory voltage from the backward path (v̂i,k).
Simultaneously, the network must distinguish this pair from all negative pairs, where the voltage vi,k

is paired with supervisory signals from other samples in the batch (v̂i,j for j ̸= k).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A standard InfoNCE loss enforces this distinction by applying a uniform repulsive force to all
negative pairs. This compels the membrane voltage pattern generated for one sample to be strictly
anti-correlated with the supervisory voltage patterns of all other samples. This is an overly restrictive
constraint for high-dimensional membrane potentials, which can make the learning task unnecessarily
difficult and potentially warp the feature space.

In contrast, the ReCo loss adopts a more targeted and flexible objective. It applies a penalty only
when the voltage for one sample is confusingly similar to the supervisory signal of another (i.e.,
has a positive cosine similarity). If a negative pair’s voltage representations are already orthogonal
or dissimilar, they incur no loss penalty. This allows the network to focus its learning capacity on
separating the most confusable voltage signals, rather than expending effort pushing already distinct
representations further apart. This fosters a richer and more flexible representational space for the
membrane potentials, leading to the improved final performance that is empirically validated by our
results.

R LIMITATIONS AND FUTURE DIRECTIONS

R.1 LIMITATIONS

Despite its promising performance and significant contributions, the Bidirectional Spike-Based
Distillation (BSD) framework also presents opportunities for further research. The current BSD
framework has been evaluated on conventional neural network architectures such as Multi-Layer
Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and autoencoders. Expanding the applicability of BSD to a broader range of network architectures,
such as those that incorporate residual connections or attention mechanisms, can further enhance its
capacity to address complicated tasks.

R.2 FUTURE DIRECTIONS

Future research can explore extending the BSD framework to support a wider variety of network
architectures, including those that employ residual connections and attention mechanisms, to handle
increasingly complex datasets and challenging tasks.

S THE USE OF LARGE LANGUAGE MODELS

The authors acknowledge the use of a Large Language Model (LLM) in this work. Its role was strictly
confined to polish the writing and correcting grammatical errors to enhance the overall clarity and
readability of the paper.

30

	Introduction
	Related Work
	Preliminary
	Spiking Neurons
	Biological Plausibility Criteria

	Method
	Design Principles
	Model Architecture
	Training Procedure
	Learning for generation tasks

	Experiments
	Experimental Settings
	Implementation Details
	Image Classification
	Sequential Regression Tasks
	Image Generation
	Ablation Study
	Training Analysis

	Conclusion
	Global Algorithm of BSD
	Additional Preliminaries
	The Model Architecture of RNNs
	Gradients Derivation for BSD
	Gradient with respect to Feedforward Weights Wi-1 (Type 1 Neurons)
	Gradient with respect to Backward Weights Theta i (Type 2 Neurons)

	Experimental Settings
	Statistics of Datasets
	Implementation Details
	BSD-MLPs
	BSD-CNNs
	BSD-RNNs
	BSD-Autoencoders

	Additional Experiments
	Supplementary Results for Image Generation
	Ablation study on RNNs
	Ablation study on autoencoders

	Dynamics Of Synaptic Weight Alignment
	t-SNE Visualization of Learned Feature Representations in BSD-trained CNNs
	Evaluation on Tiny-ImageNet
	Ablation Study on Batch Size
	Energy Consumption Analysis
	Robustness to Input Noise
	FFT Decomposition for Adaptive Loss
	Computational Cost Analysis
	Ablation Study on the Number of Timesteps
	Ablation Study on Batch Normalization
	Justification for the Choice of ReCo Loss
	Limitations and Future Directions
	Limitations
	Future directions

	The Use of Large Language Models

