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ABSTRACT

As large language models (LLMs) become central to AI applications, gaining a
deeper understanding of their inner workings is increasingly important. In this
work, we analyze the weight matrices of pretrained transformer models – specifi-
cally BERT and Llama – using random matrix theory (RMT) as a zero-information
hypothesis. While randomly initialized weights perfectly agree with RMT predic-
tions, deviations emerge after training, allowing us to locate learned structures
within the models. We identify layer-type specific behaviors that are consistent
across all blocks and architectures considered. By pinpointing regions that devi-
ate from RMT predictions, we highlight areas of feature learning and confirm this
through comparisons with the activation covariance matrices of the corresponding
layers. Our method provides a diagnostic tool for identifying relevant regions in
transformer weights using only the trained matrices. Additionally, we address the
ongoing debate regarding the significance of small singular values in the context
of fine-tuning and alignment in LLMs. Our findings reveal that, after fine-tuning,
small singular values play a crucial role in the models’ capabilities, suggesting
that removing them in an already aligned transformer can be detrimental, as it
may compromise model alignment.

1 INTRODUCTION

Large language models (LLMs) have become foundational in deep learning, revolutionizing natural
language processing tasks such as translation, text classification, and question answering (Vaswani
et al., 2017; Yang et al., 2019; Touvron et al., 2023; Le Scao et al., 2023). Despite the well-
documented success (Liu et al., 2019) of models like BERT (Devlin et al., 2018), the GPT series,
and vision transformers (Dosovitskiy et al., 2021; Touvron et al., 2021; Liu et al., 2021), a thor-
ough theoretical understanding of their inner workings remains elusive. Researchers have explored
various facets of LLMs (Radford et al., 2019), yet key questions about how these models encode
information and the roles of specific model components remain unanswered.

A potential avenue for deeper insights lies in the application of random matrix theory (RMT), which
has been effective in neural networks for identifying structural properties and information density
(Martin & Mahoney, 2021; Thamm et al., 2022; Staats et al., 2023). RMT has already shown
promise in determining where information resides in models, particularly through analyzing the
spectrum of weight matrices. As networks are initialized randomly, the weights precisely follow
RMT predictions before training. After training, changes to the weights become visible when com-
paring them to RMT predictions. We build on these insights by leveraging RMT to pinpoint regions
in LLMs where relevant features are learned, using deviations of the weight matrices from RMT
predictions as indicators.

In this work, we study the weight matrices of pretrained BERT1 and Llama-8B2 models using RMT
as a diagnostic tool. We find that certain types of matrices exhibit significant deviations from RMT
predictions, while others remain close to their initialization. This pattern is consistent across dif-
ferent layers of the transformers and holds true for both the smaller BERT and the more powerful
Llama-8B model. We identify the regions with the strongest deviations as areas of feature learning

1google-bert/bert-base-uncased
2meta-llama/Meta-Llama-3.1-8B
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and confirm this through a comparison to the covariance matrix of the layer activations. Further-
more, we analyze the effect that the removal of groups of singular values and corresponding vectors
from a fine-tuned BERT transformer has on the BoolQ validation accuracy. We find that the removal
of groups in which the hypothesis of random vectors is less likely leads to significantly larger drops
in validation accuracy. Our method allows us to pinpoint key areas in the transformer architecture
using nothing more than the trained weight matrices.

Additionally, we contribute to the ongoing debate on the significance of small singular values, par-
ticularly in relation to fine-tuning and alignment in LLMs. Some studies suggest that small singular
values are crucial for generalization (Hsu et al., 2022), while others argue that removing them can be
beneficial (Sharma et al., 2023). We reconcile these views by showing that the importance of small
singular values arises from the fine-tuning process conducted prior to reduction in Hsu et al. (2022).
The findings of Perez et al. (2022) indicate that alignment can degrade LLM performance in certain
tasks, which may explain the observed improvements when small singular values are removed. Our
results suggest that reducing an already aligned transformer could be counterproductive, as it risks
disrupting the model’s alignment. All code to generate the figures is open source and available under
Anonymous (2024).

2 RELATED WORK

RMT has been widely used as a calculational tool for performing statistical averages in the analysis
of machine learning models. Early applications of RMT to neural networks, such as Pennington &
Bahri (2017), analyzed the spectral properties of loss surfaces in deep learning, providing insights
into learning dynamics. Building on this foundation, Baskerville et al. (2022) derived universal as-
pects of outliers in loss surfaces. Beyond its role in statistical analysis, RMT has been proposed
as a tool for analyzing trained network weight matrices. Martin & Mahoney (2021) applied RMT
to weight matrices by examining the learning dynamics of image recognition models through their
spectra. Following up on this work, Martin et al. (2021) suggested that large outliers in the singular
value spectrum are indicative of well-trained matrices. Further studies (Thamm et al., 2022; Levi
& Oz, 2023) reinforced RMT’s utility in understanding how networks evolve during training. They
demonstrated that deviations from RMT predictions indicate where feature learning occurs, as op-
posed to lazy learning (Chizat et al., 2019), where weights remain close to their initial random state.
These findings underscore RMT’s potential for identifying regions of learned features without the
need for training data.

Transformers present unique challenges in understanding information storage. Prior work by Jawa-
har et al. (2019); Reif et al. (2019) has shown that different layers specialize in storing distinct types
of knowledge, while Aken et al. (2020) examined how semantic information is encoded in neuron
activations. Hendel et al. (2023) explored how in-context learning in LLMs can be understood,
suggesting that models implicitly create temporary task-specific vectors during inference. Tenney
(2019) investigated where linguistic information is stored within BERT models, revealing that dif-
ferent layers capture various components of classical NLP tasks, such as syntax and semantics. Li
et al. (2022) demonstrated that models can construct internal representations of environments – such
as board game states – without explicit training, highlighting emergent capabilities. In Park et al.
(2023), the question of whether binary concepts can be described by geometrical directions in the
embedding space is investigated. Lee et al. (2024) identified directions within the network that
encode toxicity, offering insights into how models can be aligned by subtracting harmful behavior
patterns. Hernandez et al. (2023) examined how transformers encode relational knowledge, such
as synonyms, suggesting that these relationships are captured through linear structures within the
model’s latent space.

Finally, the low-rank structure of features in neural networks has been explored. Yu & Wu (2023)
highlighted that while transformer features often exhibit low rank, their weight matrices do not,
revealing a complex relationship between representations and parameters. Positional encodings,
crucial to transformer performance, have also been studied for their role in shaping the learned
feature space (Tsai et al., 2019).
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Figure 1: Singular value spectra of weight matrices from a pretrained BERT transformer ((a) and
(b)) and a Llama-8B model ((c) and (d)), shown as blue histograms. For comparison, red curves rep-
resent the spectra of random matrices with identical dimensions and i.i.d. normally distributed en-
tries with zero mean and standard deviation 1/

√
m, mimicking freshly initialized network weights.

The dashed black curves depict the MP distribution from Eq. 2. We observe that the empirical spec-
tra deviate from the random control to varying degrees depending on the matrix type. Specifically,
while the attention.output matrices exhibit only a few outliers and are dominated by regularization in
the case of Llama, the query matrices display significant outliers for both the Llama-8B and BERT
models.

3 SPECTRA OF LLMS WEIGHT MATRICES

To analyze the weight matrices of transformer networks, we perform a singular value decomposition
(SVD) to decompose each weight matrix into its singular values and singular vectors. For a given
weight matrix W ∈ Rm×n, the SVD factorizes W into three matrices

W = USV T , (1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices containing the left and right singular
vectors of W , respectively, and S ∈ Rm×n is a diagonal matrix containing the real, non-negative
singular values of W .

In the limit of large matrix dimensions, m,n → ∞, the distribution of singular values for matrices
with independent and identically distributed (i.i.d.) random entries with finite variance is known to
follow the Marchenko-Pastur (MP) law (Marčenko & Pastur, 1967)

PMP(ν) =

{
n/m
πσ̃2ν

√
(ν2max − ν2)(ν2 − ν2min) ν ∈ [νmin, νmax]

0 else
(2)

νmax
min

= σ̃(1±
√
m/n) , σ̃ = σ

√
n . (3)

In the context of weight matrices in neural networks, although the dimensions are finite, they are
often large enough for the Marchenko-Pastur distribution to approximate the singular value spectrum
of randomly initialized weights well. After training, we can compare the empirical spectrum to the
MP distribution to assess deviations resulting from the optimization process. Typically, the bulk
of singular values remains close to the MP distribution, while significant deviations may indicate
learned features. We illustrate this in Fig. 1, where the dashed black lines represent the MP law from
Eq. 2, and the red curves show the broadened spectra of random square matrices with variance 1/m
of the matrix elements. The figure displays the spectra of the query and attention.output matrices
from the eleventh block of a pretrained BERT transformer (left panels) and from the fifth block of a
pretrained Llama-8B model (right panels).

During training, certain directions in the weight matrices become more significant, leading to out-
liers in the singular value spectrum (Staats et al., 2023). It has been suggested that large outliers
in the spectrum are indicative of well-trained matrices (Martin et al., 2021). This is in line with
previous work (Thamm et al., 2022), which found that models trained in the lazy regime retain spec-
tra identical to the MP distribution and generally perform worse than models trained in the rich or
feature learning regime, where the spectra exhibit significant changes.
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Figure 2: Averaged singular value spectra of the query and attention.output matrices across all
layers of a pretrained BERT transformer ((a) and (b)) and a Llama-8B model ((c) and (d)), shown
as blue histograms. The dashed black curves represent the MP distribution for reference. We find
that the query matrices exhibit significantly more outliers than the attention.output matrices in both
models. These observations suggest that stronger feature learning occurs in the query matrices
compared to the attention.output matrices.

In Fig. 1, we observe that for both the pretrained Llama-8B and BERT transformers, the atten-
tion.output matrices have significantly fewer outliers in the singular value spectrum compared to the
query matrices. We interpret this behavior as an indication that feature learning predominantly oc-
curs in the query matrices, where the weights undergo substantial changes, while the attention.output
matrices remain closer to their initial random state, reflecting lazy learning.

Moreover, the spectra of the Llama-8B model show stronger deviations from the initial distribution
than those of the BERT model. We interpret this, in line with findings in vision models (Martin et al.,
2021), as evidence of more effective learning in the Llama-8B model. When averaging the spectra
over all matrices of the same type across all layers of the transformers, this effect persists, as shown
in Fig. 2. We find that the attention.output matrices rarely produce outliers above 2.5, a common
singular value for query matrices in these models. We later verify that the singular values and
corresponding vectors outside the Marchenko-Pastur region indeed correspond to learned features
by studying their overlap with the activation covariance matrix.

4 SINGULAR VECTORS OF WEIGHT MATRICES

In random matrices with i.i.d. entries of finite variance, the entries of a singular vector v of length n
are expected to follow a normal distribution with a standard deviation of 1/

√
n

P (vi) =
1√
2π/n

exp

(
−1

2
v2i n

)
. (4)

To identify deviations from this expected behavior in the weight matrices of transformer networks,
we perform Kolmogorov-Smirnov (KS) tests on the singular vectors. Specifically, we conduct Monte
Carlo sampling of normalized Gaussian vectors to generate synthetic data and compare their empir-
ical cumulative distribution functions (CDFs), denoted as C

(k)
emp, to the theoretical Gaussian CDF

CG(x) =
1
2 + 1

2erf
(√

n/2x
)

. The KS statistic for each sampled vector is calculated as the supre-
mum of the absolute difference between the empirical and theoretical CDFs

D(k) = sup
x

∣∣∣C(k)
emp(x)− CG(x)

∣∣∣ . (5)

By sampling many such vectors, we obtain the distribution of expected deviations Dc for perfectly
random data. For each singular vector v from the weight matrices, we compute its KS statistic
D(v) and determine the corresponding p-value using the cumulative distribution function CDc

of
Dc via p = 1− CDc

(D(v)). Under the null hypothesis that the singular vector entries are normally
distributed, the p-values are uniformly distributed in [0, 1]. We note that due to the normalization
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Figure 3: Analysis of the singular vectors of the attention.output matrix from block 20 of the
pretrained Llama-8B model. (a) The cumulative distribution function (cdf) of the entries of a specific
singular vector (blue line) compared to the theoretical Gaussian cdf (black dashed line). The inset
shows the probability density function (pdf) of the entries. (b) The distribution of the Kolmogorov-
Smirnov (KS) statistic Dc obtained from synthetic random Gaussian vectors, used to compute p-
values for the empirical singular vectors. (c) Averaged p-values for the singular vectors (blue line),
compared to a random control (red line). We observe that the singular vectors corresponding to the
largest and smallest singular values deviate significantly from randomness.
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Figure 4: Averaged p-values from KS statistics comparing the entries of singular vectors to the nor-
mal distribution for selected weight matrices in a pretrained BERT transformer. Blue lines represent
the p-values for weight matrices from the fourth transformer block, while orange lines represent the
average p-values for the respective type of weight matrix across all transformer blocks. The dashed
horizontal line indicates the average p-value for the random control. Lower p-values suggest devia-
tions from the initial random weight matrix, which we interpret as evidence of learned information
during pretraining.

constraint of singular vectors, which introduces correlations between their entries, standard KS test
tables are not applicable. Therefore, we compute custom test statistics using the Monte Carlo ap-
proach described above.

Figure 3 (a) illustrates the probability density function (pdf) and cumulative distribution function
(cdf) of a right singular vector from a pretrained Llama-8B attention.output matrix. The expected
distributions for synthetic Gaussian data are depicted in panel (b). To identify meaningful deviations
from randomness across thousands of singular vectors, we define a local average of the p-values

pavg(vj) =
1

15

j+7∑
i=j−7

p(vi) . (6)

This averaging smooths out fluctuations and, for uniformly distributed p-values, results approxi-
mately in a Gaussian distribution with a mean of 0.5 and a standard deviation of 0.05. Panel (c) in
Figure 3 shows these averaged p-values for the right singular vectors of a Llama-8B attention.output
matrix. We observe significant deviations from the RMT prediction in the singular vectors associated
with the largest and smallest singular values.
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Figure 5: RMT analysis of the intermediate.dense matrix from the first block of a BERT transformer.
(a) The empirical singular value spectrum (blue histogram) shows clear outliers on both the left and
right sides relative to the MP distribution (black dashed line). Left-side outliers are possible due
to the aspect ratio differing from one. (b) The p-values of the singular vectors are reduced in both
these regions, indicating deviations from randomness. (c) By computing the activation covariance
matrix from activations entering this layer (using the BoolQ training dataset) and calculating the
maximal overlap of its eigenvectors with the singular vectors, we find that the regions outside the
MP curve (indicated by dashed red lines) have a large overlap with the eigenvectors of the activation
covariance matrix. In contrast, vectors inside the MP spectrum do not. We interpret the regions that
deviate from RMT predictions as corresponding to learned features.

Figure 4 presents the averaged p-values for the right singular vectors of a pretrained BERT model.
The blue curves represent a single matrix from the fourth block, while the orange curves represent
averages over all blocks. We find that the singular vectors corresponding to the largest singular
values deviate significantly from randomness for both the query matrix (panel a) and the atten-
tion.output matrix (panel b). This holds true for individual matrices as well as the averages, sup-
porting the notion of matrix-type-specific learning. In contrast, for the intermediate.dense matrix,
significant deviations occur in the singular vectors corresponding to the smallest singular values.
Later, we demonstrate that these singular vectors have a strong overlap with eigenevectors of the
activation covariance matrix, indicating their importance in feature representation.

It is worth noting that regions where the averaged p-values are significantly above 0.5 are due to
the orthogonality constraints of the singular vectors (Staats et al., 2023). When some vectors have
a significant mean, the orthogonality condition forces the other vectors to adjust to maintain zero
mean overall, introducing correlations between their entries.

5 ACTIVATION COVARIANCE MATRIX

In the following, we investigate whether the non-random regions in the weight matrices correspond
to features learned by the transformer. This is accomplished by comparing the activation covariance
matrix, computed from the activations entering a layer, to the weight matrix of that same layer.
Formally, we compute the activation covariance matrix F (ℓ) for layer ℓ by averaging over nex input
examples, indexed by iex, and nt tokens, indexed by jt. Let x(ℓ)

iex,jt
denote the activations entering

layer ℓ. The activation covariance matrix is then given by

F (ℓ)
nm =

1

nexnt

∑
iex,jt

x
(ℓ)
iex,jt,n

x
(ℓ)
iex,jt,m

. (7)

This matrix is symmetric and therefore has an orthonormal eigenvector basis. We denote the eigen-
vectors by f

(ℓ)
i and the corresponding eigenvalues by λ

(ℓ)
i .

To compare these eigenvectors with the weight matrix, we consider how the activations x(ℓ) enter
layer ℓ. Specifically, we have W (ℓ)x(ℓ) + b(ℓ) = USV Tx+ b, where U, S, V are from the singular
value decomposition of W (ℓ). This equation shows that the neuron activations are directly mapped
onto the basis of the right singular vectors V . We then ask whether a specific eigenvector of the
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Figure 6: Comparison between the average singular value spectra (upper panels) and the averaged
maximal overlap of singular vectors with the eigenvectors of the activation covariance matrix (lower
panels) for different weight matrices in a pretrained BERT model. The activation covariance matrix
is computed on the BoolQ training set. The attention.output and value matrices have spectra that
remain close to the initial random distribution and show limited overlap with eigenvectors of the
activation covariance matrix. In contrast, the key and query matrices display larger deviations from
the initial distribution, including significant outliers, and show substantial overlap with eigenvectors
of the activation covariance matrix. The red dashed lines indicate the boundaries of the MP distri-
bution. The areas with significant overlap correspond well to regions outside of this distribution.
These findings suggest that feature learning occurs predominantly in the key, query, and intermedi-
ate.dense matrices, but not in the attention.output and value matrices.

activation covariance matrix corresponds to one of the right singular vectors of the weight matrix by
computing

O
(ℓ)
k = maxj(v

(ℓ)
k · f (ℓ)

j ), j ∈ {1, 2, ..., n} . (8)

This measure quantifies the extent to which the singular vectors capture specific features of the acti-
vation covariance matrix, and hence the data. In our analysis, we consider the activation covariance
matrix computed from the BoolQ training dataset using a pretrained BERT transformer.

Figure 5 illustrates the agreement between RMT results and our analysis of the activation covari-
ance matrix for the intermediate.dense matrix of a BERT transformer. The singular value spectrum
exhibits both left and right outliers (left panel), and the p-values of the corresponding right sin-
gular vectors are reduced for both the largest and smallest singular values. Notably, these regions
coincide with where the singular vectors have a large overlap with the activation covariance ma-
trix (right panel). We find overlap values above 0.5 for the singular vectors corresponding to the
smallest and largest singular values, which is a significant overlap in a 768-dimensional space. The
region between the two dashed lines represents the Marchenko-Pastur prediction computed with a
standard deviation of 1/

√
m. Within this region, the overlap with the activation covariance matrix

is significantly smaller.

To demonstrate that these findings are general, we compute the activation covariance matrix for each
layer, determine the maximal overlaps for each matrix, and then average these maximal overlaps.
The results are shown in Figure 6 (lower panel), along with the corresponding averaged spectra
(upper panel). We make the following observations: First, the intermediate.dense matrix exhibits
a strong overlap in singular vectors with high indices (i.e., small singular values), which aligns
well with the p-values of these matrices shown in Figure 4, where the p-values drop significantly
for smaller singular values. Second, for both the query and key matrices, there are pronounced
outliers in the spectrum (extending beyond a value of 3) that correspond to singular vectors with large
overlaps with the activation covariance matrix. This is not the case for the value and attention.output
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Figure 7: Impact on validation accuracy when removing blocks of singular values from all weight
matrices of a given type in a fine-tuned BERT transformer evaluated on the SuperGLUE-BoolQ
dataset. Each block contains 10% of the singular values; block 1 corresponds to the largest singular
values, and block 10 to the smallest. The main plots show the decrease in validation accuracy after
setting these singular values to zero. The insets display the average p-values of the singular vectors
for each matrix type, averaged over all layers, with the horizontal dashed line indicating the plateau
value as a guide to the eye. Values below this plateau suggest learned information during pretrain-
ing. All results are averaged over five fine-tuning runs with different random seeds for initializing
the transformer heads. Removing the largest singular values leads to the greatest accuracy drops
across all matrix types, which is expected since significant alterations to the weight matrices affect
the downstream signal most. Strong deviations from RMT predictions in the corresponding singular
vectors are observed for all matrices except the intermediate.dense matrices. Interestingly, for the in-
termediate.dense matrices, the singular vectors corresponding to the smallest singular values exhibit
reduced p-values, indicating learned information, as confirmed by the accuracy drop when these
singular values are removed. However, low p-values do not always correspond to a performance
drop, as the learned information during pretraining may not be utilized in a given downstream task,
as seen with the key matrices.

matrices, where the largest outliers remain below 2.5. This effect, combined with the observation
that the attention.output matrix remains very close to the original MP shape and shows very little
overlap with the activation covariance matrix, strongly indicates that these matrices are not trained
in the feature learning regime.

6 REMOVING SINGULAR VALUES

In the previous sections, we demonstrated a significant overlap between the singular vectors of
weight matrices – specifically in regions where these matrices deviate from RMT predictions – and
the eigenvectors of the activation covariance matrix. To further assess the relevance of these singu-
lar values and their corresponding singular vectors, we conducted experiments where we removed
specific groups of singular values. Removing a singular value νr from a weight matrix is achieved
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by setting it to zero in S and reconstructing the weight using the original singular vectors

W = USV T , −→ S̃ii =

{
νi for i ̸= r

0 else
−→ W̃ = US̃V T . (9)

Because removing a single singular value in a full transformer model has negligible effect, we
grouped the singular values of each matrix into ten equally sized sets and removed these sets in-
dividually from the transformer. To assess the effect of removing singular values, we fine-tuned a
pretrained BERT transformer using five different random seeds for initializing the model heads on
the BoolQ dataset, achieving an average validation accuracy of 73.6%. We then removed one of the
singular value deciles from a specific matrix type in all layers; for example, we set the largest 10%
of singular values in each query matrix to zero and measured how the validation accuracy dropped
compared to the full model.

We present the results in Fig. 7, which shows good agreement between the regions that deviate from
RMT and the regions that are crucial for the transformer’s test performance. As expected, for all
matrix types, the removal of the largest singular values leads to the greatest accuracy drops. This is
corroborated by the p-values of the right singular vectors; in five out of the six cases, we observe
significant drops in p-values for vectors corresponding to the largest singular values. As a reference
for the p-value drops, we consider the plateau value, indicated by the dashed black line as a visual
guide. In the case of the intermediate.dense matrices, the singular vectors corresponding to small
singular values have the largest deviations from RMT. This is reflected in a large accuracy drop when
removing these small singular values. Although less pronounced than in the intermediate.dense ma-
trices, the key matrices also exhibit significant RMT deviations for singular vectors corresponding to
small singular values. However, when we tested the impact of removing these small singular values
from the key matrices on the BoolQ dataset, we did not observe a significant effect on the gener-
alization performance. Such behavior is expected when the information learned during pretraining
is not utilized by the downstream task (see Appendix C for an example on the SuperGLUE-WiC
dataset, where removing these small singular values impacts performance).

Although one might consider using this scheme to reduce the network size, we find that removing
larger portions of the “random” parts of the spectrum significantly degrades the network’s perfor-
mance. To understand this behavior, we consider the case where a weight matrix in the network
architecture is completely random and is kept frozen during training. In this scenario, the network is
still able to learn, but the removal of small and intermediate singular values from the random weights
significantly impacts the overall performance, as the subsequent layers are sensitive to small changes
in the random matrix. In Appendix A, we demonstrate that matrices which have learned robust fea-
tures are highly resilient to such removal, whereas removing singular values from a random matrix
destroys the subtle details that subsequent layers depend upon.

7 FINE-TUNING

Recent studies have debated the relevance of small singular values in transformer networks. Some
argue that these values are crucial for network performance (Hsu et al., 2022), while others have ob-
served performance improvements when they are removed (Sharma et al., 2023). Our RMT analysis
reveals significant deviations only for some of the smaller singular values and their corresponding
vectors, providing a diagnostic tool to assess their importance. This finding supports the notion that
small singular values can play a significant role.

In Figure 8, we investigate the relevance of singular values before and after fine-tuning by removing
deciles of singular values from all weight matrices simultaneously. We observe a clear difference
between the two scenarios: when singular values are removed before fine-tuning and the model
is fine-tuned afterward, the performance is not significantly affected by the removal. However,
when the model is fine-tuned first and singular values are removed afterward, the performance drops
significantly, indicating that these singular values are crucial to the model’s performance after fine-
tuning. This observation explains the differences found in the literature. Hsu et al. (2022) fine-tuned
first and found that the small singular values are important to the network, while Sharma et al. (2023)
found it beneficial to remove them from a model that is directly evaluated on a benchmark without
fine-tuning. We interpret this behavior as evidence that fine-tuning, and potentially alignment, are
encoded in the smaller singular values and their corresponding vectors. Notably, aligning LLMs

9
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Figure 8: Effect on validation accuracy when removing deciles of singular values from all matrices
except the embedding weights of a BERT transformer. Decile one corresponds to the largest 10%
of the singular values, and its removal results in large accuracy drops. This is observed both when
removing singular values and then fine-tuning the model (left panel), and when fine-tuning the model
first and then removing singular values (right panel). For the smallest singular values (block 10),
the scenario changes markedly. When reducing first, removing small singular values has negligible
impact, with changes in final validation accuracy within the error bars of five different full-model
seeds. However, when fine-tuning first, removing the smallest singular values leads to significant
accuracy drops. This demonstrates that fine-tuning primarily affects the smallest singular values and
their corresponding vectors.

can sometimes degrade performance on reasoning tasks (Perez et al., 2022), which may explain
the improvements observed by Sharma et al. (2023) when small singular values are removed. We
conclude that small singular values may be crucial for the alignment of LLMs, and we speculate
that reducing an already aligned model by removing these singular values could be detrimental, as
it may eliminate the alignment.

8 CONCLUSION

In this paper, we used random matrix theory (RMT) to analyze the weight matrices of BERT and
Llama-8B models. Our findings show that certain weight matrices exhibit significant deviations from
RMT predictions, indicating areas where active feature learning occurs. In contrast, other weight
matrices, such as the attention.output matrix, remain close to their initial random state, suggesting
that limited feature learning takes place. These deviations from RMT are consistent across all layers
and persist when moving from BERT to Llama-8B, highlighting a potential structural pattern in
transformer architectures.

We supported our hypothesis that deviations from RMT predictions correspond to learned features
through an analysis of the activation covariance matrices of a BERT transformer. We identified
a strong overlap between the weight’s singular vectors in regions that deviate from RMT predic-
tions and the eigenvectors of the corresponding covariance matrix of activations entering the layer.
Furthermore, we found that removing regions of the weight matrices that deviate most from RMT
predictions leads to significant performance drops, emphasizing the importance of these regions.

Additionally, we provided clarity on the ongoing debate regarding the importance of small singular
values in LLMs. Our results show that while small singular values may not be crucial during pre-
training, they become highly relevant during the fine-tuning process. Removing these small singular
values after fine-tuning leads to significant accuracy drops, suggesting that fine-tuning refines the
model primarily through small singular values and their corresponding vectors.

Overall, our work provides a diagnostic tool for identifying critical regions in transformer models
based solely on their weight matrices and offers a new perspective on the role of singular values in
model fine-tuning and alignment. These findings can inform future efforts to optimize transformer
architectures and help explainable AI researchers pinpoint regions of particular interest.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have uploaded all necessary code and materials to generate the figures
in a Zenodo archive (Anonymous, 2024). The provided folders offer different entry points depending
on the user’s requirements: (i) We include Jupyter notebooks that load pre-saved data to quickly re-
produce the figures. (ii) For plots that are less resource-intensive, we provide notebooks that directly
generate the data. (iii) For resource-intensive tasks, we provide SLURM scripts that automate job
submissions, along with the full set of hyperparameters used for fine-tuning. This structure ensures
ease of access for quick figure generation while also supplying full details for in-depth replication
of our experiments.
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A LAZY LEARNING

It is possible to train neural networks in the lazy regime where the final weights of the trained model
are very close to the initial ones (Chizat et al., 2019). By rescaling the input of the softmax function
in the final layer by a constant α > 1

aL = softmax (α(WLaL−1 + bL)) ,

we achieve that very small changes in the output logits prior to the softmax function have a large
effect on the output after the softmax function. To allow for learning with a usual learning rate, the
loss is changed to

l(W , b) = − 1

Nα2

N∑
k=1

y(k) · ln(a(k)
out) , (10)

to incorporate the large differences in the output activations aL induces by small weight changes.

To investigate the effect that the removal of lazy parts from a neural network has on the test-accuracy,
we train a fully connected network with layer dimensions [3072, 512, 512, 512, 10] on the Cifar-10
dataset, both in the lazy regime (α = 15) and with the usual softmax activation function (α = 1).
The model trained with (α = 1) reaches 53% test-accuracy while the one trained in the lazy regime
achieves 44%.

We now analyze the normalized test-accuracy drop when removing singular values in the three layers
with 512 singular values in Fig. 9. We observe that the removal of the smallest 20% of the singular
values has a negligible effect on the test accuracy of the network with α = 1, while the accuracy
of the lazy network drops significantly. This is the case despite the α = 1 network having a much
higher starting accuracy. The curves remain separated up to the point where both approach random
guessing, for 90% of the singular values removed. This indicates that the removal of a seemingly
random area of the network might still negatively impact the generalization performance.

To further test this hypothesis, we train two models with layer sizes [3072,512,512,256,256,10],
where for the second model, we freeze the first two layers during training. The full model achieves
53.5% while the frozen model reaches 46%. When removing singular values in the first two layers
we account for the magnitude of the singular values by setting 80% of the singular value mass
M =

∑
i νi to zero. We find that the model with frozen layers goes to random guessing, while

the network with trained layers remains at 50% test accuracy. This demonstrates that layers after a
lazy trained matrix, can depend strongly on small details of the signal. Such details can easily be
destroyed in a potential network compression algorithm, which results in bad performance. On the
other hand, strong feature learning seems to result in a more robust network.

B LLAMA SPECTRA

To complete the picture of specific spectra shown in the main manuscript, we show the averaged
spectra of all matrix types present in the pretrained Llama-8B model in Fig. 10. We observe that in
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Figure 9: Removing singular values from all layers in a multi-layer perceptron trained in the feature
learning regime (blue curve) and in the lazy regime (green curve). We find that the removal from
the lazy regime is very difficult without losing accuracy.
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Figure 10: Average Spectra for each matrix type for Llama-8B model. We see that similar to BERT,
query and key matrices have pronounced outliers while the attention.output and value matrices do
not.
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Figure 11: Example for removal from a key matrix, similar to main text Fig. 7, where the information
stored in the smallest singular values is accessed by the superglue-WiC task.

general, regularization appears to be much stronger than in the BERT models, significantly shifting
some of the spectra towards small singular values. We incorporate this in the MP theory by using
the empirical variance of the matrix instead of 1/m. In particular, if very little learning occurs (i.e.
gradient updates are small implying α∂WL ≃ 0), the L2 regularisation keeps the Marchenko-Pastur
distribution intact as the learning dynamics

∂tW = −α∂WL − λW ≃ −λW =⇒ W (t) = exp(−λt)W0 (11)

only rescales the matrix. Here, α is the learning rate, λ is the strength of the L2 regularization, and
W0 is the initial weight matrix following the MP law.

Nevertheless, the key observations described for the BERT model in the main text hold true. The
value and attention.output matrices create very little outliers and their singular values spectra remain
below νi = 2.5. In contrast, the corresponding matrices with identical shapes (key and query,
respectively) have significantly larger values and more pronounced outliers. This further supports
our hypothesis of lazy learning in the Value and attention.output matrix.

C EXAMPLE FOR SIGNIFICANCE OF SMALL SINGULAR VALUES IN KEY
MATRICES OF BERT

We showed in the main text how the removal of singular values that correspond to singular vectors
that deviate from the RMT prediction leads to a particularly large accuracy drop. While this was
generally the case, the key matrices of BERT showed a significant deviation from RMT in their sin-
gular vectors corresponding to smaller singular values, not reflected in an accuracy drop on BoolQ
when removing them. We argued that the information learned in these singular vectors during pre-
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Figure 12: Effects on the spectra and p-values for specific matrices when fine-tuning a BERT trans-
former on the superglue-BoolQ dataset. For all three matrices, we observe little to no changes in
the spectra (pretrained: blue, fine-tuned: green). However, the p-values of the singular vectors with
small or intermediate singular values do change slightly, indicating that fine-tuning may take place
in directions other than the ones corresponding to the largest singular values.

training is not accessed by the BoolQ dataset and show an example where the small singular values
do play a role for the superglue-WiC dataset in Fig. 11.

D FINE-TUNING WEIGHTS

We concur with earlier findings, which suggest that fine-tuning on datasets like glue (Wang et al.,
2019b) and superglue (Wang et al., 2019a) induces minimal changes in the model’s weights and
does not substantially impact the spectrum of the model. This is supported by our RMT analysis
in Fig. 12, where the spectra remain nearly unchanged after fine-tuning. Similarly the p-values of
the corresponding singular vectors change very little. This is especially pronounced for the larger
singular vectors indicating that fine-tuning may be happening particularly in directions that differ
from the largest singular vectors.

E ACTIVATION COVARIANCE MATRIX

In the main text, we compute several activation covariance matrices and analyze the overlap of their
eigenvectors with the singular vectors of the weight matrices. However, the activation covariance
matrix is an interesting object to study on its own. For completeness, we provide spectra of the
activation covariance matrix in Fig. 13. We show activation covariance matrices of a pretrained
BERT model, where the activations are obtained using the BoolQ training dataset. We compute the
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Figure 13: Activation covariance matrix of several matrices computed for the BoolQ training dataset.
We find very large outliers which are most likely due to the positional encoding in BERT. We again
find that that outliers in the attention output matrix are much smaller than the ones of other matrices.
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Figure 14: Reduction of a BERT transformer based on a projection onto the eigenvectors of the
corresponding activation covariance matrix. We find that similar to the singular values and vectors,
the eigenvectors corresponding to the smaller eigenvalues are not important when reducing first (left
panel). However, when reducing after fine-tuning (right panel), these eigenvectors are suddenly
more important than some of the larger percentiles.

activation prior to the considered matrices. The displayed activation covariance matrices have large
outliers, which are completely beyond the rest of the spectrum. These outliers are most likely due
to the positional encoding which has a significant influence on the activation covariance matrix as it
occurs in every batch. We see that the pattern of much smaller outliers in the attention output matrix
also repeats for the activation covariance matrix.

F ACTIVATION COVARIANCE MATRIX PROJECTION

We showed in the main text that the removal of the smallest singular value percentiles leads to a
significant reduction in validation accuracy. To show that other methods that reduce the rank of a
matrix also fall into the trap of removing important information encoded in the smallest singular
values, we also showcase a different method. We apply a projection onto the eigenvectors f of
the activation covariance matrix F as described in Ashkboos et al. (2024). We therefore convert
the layer-norm to RMS-norm and apply projections before and after the RMS-norm to reduce the
model.

We group the eigenvectors f in percentiles according to the magnitude of their eigenvalues and
project the signal prior to the norm into a lower dimensional space using a projection matrix P ,
which contains all eigenvectors f except for the excluded percentile as columns. After the layer
norm, PT is used to rotate back into the original space to keep the network compatible with the
following matrices.

Reducing BERT in rank groups of eigenvectors, leads to similar behavior as for the rank group
reduction of singular values in the main text, as shown in Fig. 14. When reducing first, we find
no relevance in the smaller eigenvectors. However, when fine-tuning first, we see that the smallest
eigenvectors are more important than three of the larger percentiles, showcasing their relevance.
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