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ABSTRACT

Efficient message propagation is critical to node classification in sparse graph
with few labels that remains largely unaddressed until now. Recently popularized
Graph Convolutional Networks (GCNs) lack the ability to propagate message to
distant nodes because of over-smoothing. Besides, GCNs with numerous parame-
ters suffer from overfitting when labeled nodes are scarce. We attack this problem
via building GCNs on Enhanced Message-Passing Graph (EMPG). The key idea
is node classification can benefit from various variants of the original graph that
are more efficient for message propagation, based upon the assumption that each
variant is a potential structure as more nodes are properly labeled. Specifically, we
first map nodes to a latent space through graph embedding that captures structure
information. Considering node attributes together, we construct EMPG by adding
connections between nodes in close proximity in the latent space. With the help of
added connections, EMPG allows a node to propagate message to the right nodes
at distance, so that GCNs on EMPG need not stack multiple layers and therefore
avoid over-smoothing. However, adding connections may cause message prop-
agation saturation or lead to overfitting. Seeing EMPG as an accumulation of
the potential variants of the original graph, we apply dropout to EMPG and train
GCNs on various dropout graphs. The features learned from different dropout
EMPGs are aggregated to compute the final prediction. Experiments demonstrate
a significant improvement on node classification in sparse graph with few labels.

1 INTRODUCTION

Graphs are emerging as a prevalent form of data representation to capture complex structures and
relationships between a set of objects in many fields. A problem that comes up often but remains
largely unaddressed is node classification in sparse graph with few labels. The earlier work was done
by using structural information only. Recently, attention has shifted to graph neural networks (GNN)
that model structure and attributes jointly, including GCN (Kipf & Welling, 2017), SGC (Wu et al.,
2019), GAT (Velickovic et al., 2018), AGNN (Thekumparampil et al., 2018), TAGCN (Du et al.,
2017), DGCN (Zhuang & Ma, 2018), and GIL (Xu et al., 2020) to name some.

Most GCNs work by a message passing scheme. A Graph Convolutional Layer (GCL) can be viewed
as a message propagating step, where each node sends its feature representation, a “message”, to its
neighbors; and then updates its feature representation by aggregating all “messages” received from
its neighbors. Different aggregation and update functions give rise to a new form of GCN. Due to this
flexibility, the class of message passing networks have been widely used, such as publication citation
networks (Kipf & Welling, 2017), social networks (Chen et al., 2018), applied chemistry (Liao et al.,
2019), and natural language processing (Yao et al., 2019).

Despite their success, limitations exist. For example, GCN, which updates node state by aggregating
messages from one-hop neighbors, lacks the ability to receive long-range messages. This suggests
it only works on graphs where nodes from the same class tend to be connected directly. However,
in many practical graph data, the nodes of the same class that possess high structural similarity may
be far apart from each other (Ribeiro et al., 2017). For example, the literatures on the same topic
but published by independent research groups may be separate in the citation network, as shown in
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Figure 1: The framework of our model.

the upper left corner of Fig.1. In cases like this, the performance of the GCNs that lack the ability
to capture long-range messages will drop, especially where labeled nodes are scarce and graph is
sparse (Jia & Benson, 2020; Chien et al., 2021). It is necessary to enhance message propagation
such that the features and structural information of nodes at long distances can be accessed.

One straightforward way to expand message propagation is to stack more layers to build deep GCNs.
Theoretically, a k−layer network can propagate messages from a node to the nodes at k−hop dis-
tance. However, increasing layers tends to cause over-smoothing (Li et al., 2018), because repeatedly
applying Laplacian smoothing would mix node features and make them indistinguishable. Besides,
deep networks may cause over-crashing (Alon & Yahav, 2020) and become difficult to train.

Another way to boost message propagation is to add connections. To develop deep networks, Xu
et al. (2018) introduced jumping connections into feature aggregation mechanism to realize multi-
layer message passing. Li et al. (2019) used residual connections to extract knowledge from long-
distance nodes. On the other hand, some works attempted to combine dense connections with shal-
low GCNs. For example, Kampffmeyer et al. (2019) exploited the hierarchical structure of knowl-
edge graph by a weighted dense connection scheme. SGC (Wu et al., 2019) captures higher-order
information by applying the k−th power of graph convolution matrix in a single layer. Xu et al.
(2020) used between-node paths to propagate messages. Despite the success, adding connections
introduces additional parameters and further complicates models, which is most likely to cause over-
fitting and finally decrease accuracy, especially when labeled nodes are scarce. Moreover, as will be
shown below, dense connections may introduce noise and cause message propagation saturation.

To combat the challenges, we propose a scheme for generating Enhanced Message-Passing Graph
(EMPG) and train GCNs on dropout EMPGs, such that long-distance messages can be aggregated
effectively in shallow GCNs, and the impact of label scarcity and graph sparsity can be avoided. Un-
like the jumping connections used to link the output of low layers to the input of high layers in deep
GCNs (Xu et al., 2018; Chen et al., 2020), we add connections between nodes according to their
relationship in a latent space where the input graph is embedded. These added connections allow
propagating messages between long-range nodes without increasing layers. Our scheme of adding
connections is different from that of Kampffmeyer et al. (2019), where they directly connected the
ancestors and descendants of a node to exploit the hierarchical structure of knowledge graph. In
contrast, our scheme is based on node embedding, considers graph structure and links a node to
distant nodes with structural similarity. Pei et al. (2020) extracted neighbors for aggregation in em-
bedding space also. The major difference lies in the utilization of dense connections. We employed
dropout to avoid side effects of dense connections, whereas they used a bi-level aggregation scheme
to update node features and combated complexity by controlling the number of virtual nodes.

Adding connections introduces additional parameters and complicates GCNs, which is most likely
to lead to overfitting when labeled nodes are scarce (Zhang et al., 2017; Ying, 2019). Furthermore,
dense connections may bring noise in message propagation and cause message propagation satura-
tion. Various techniques have been developed to tackle overfitting, an incomplete list includes early
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stopping (Makarova et al., 2021; Perin et al., 2020), data augmentation (Devries & Taylor, 2017;
Rice et al., 2020), adding statistical noise to inputs (Theunissen et al., 2019) and regularization
(Tian et al., 2020; Wu et al., 2017). Dropout that was first introduced by Hinton et al. (2012) and
subsequently proved to be a stochastic regularization technique by Srivastava et al. (2014) is effec-
tive. Dropout can be applied to nodes (Chen et al., 2018) or edges (Rong et al., 2020). In contrast,
we apply dropout on EMPG. Seeing EMPG as an accumulation of potential variants of the original
graph, we generate a series of variants by dropping EMPG edges out randomly, which is equivalent
to augmenting data. Besides, it reduces noise and prevents message propagation saturation.

Our contributions are summarized as follows. i) We propose a dense connection scheme based on
graph embedding for enhancing message propagation over long-range nodes. ii) We incorporate
dropout with EMPG and implement GCNs on dropout EMPG successfully, which can avoid over-
smoothing and prevent overfitting. iii) We demonstrate the performance of our model in contrast
with other state-of-the-art methods on the task of node classification in sparse graph with few labels.

2 PRELIMINARIES AND MOTIVATION

Notations. Let G = (V,E) denote the undirected graph with nodes vi ∈ V and edges (vi, vj) ∈
E. N = |V | is the number of nodes. The adjacency matrix A ∈ RN×N represents the weight
associated to edge (vi, vj) by element Ai,j . The node features are denoted as X = {x1, . . . ,xN} ∈
RN×D where a D−dimensional feature vector xi is associated with node vi. A label matrix Y ∈
{0, 1}N×C is also given, where C is the number of classes. The node set V is divided into a labeled
node set VL and an unlabeled node set VU . Usually, |VL| ≪ |V |. Our goal is to learn a classifier
fA,X,Y ,vi∈VU

(vi) → y to predict the label of the nodes vi ∈ VU based on A, X , and Y .

GCNs. The original GCN model was developed by Kipf & Welling (2017). The feed forward
propagation in GCN is recursively conducted as:

H(k+1) = ReLU(ÂH(k)W (k))

where H(k) = {h(k)
1 , . . . ,h

(k)
N } are the hidden vectors of the k−th layer with h

(k)
i as the hidden

feature for node vi; Â = D̂(−1/2) (A+ I) D̂(−1/2) is the re-normalization of the adjacency matrix,
and D̂ is the corresponding degree matrix of (A+ I); W (k) ∈ RD(k)×D(k−1)

is the filter matrix in
the k−th layer, where D(k) refers to the size of the k−th layer. The GCN model of Kipf & Welling
(2017) contains only two convolutional layers. The loss function L used to train GCN is defined as

the cross-entropy error over all labeled nodes, i.e., L := −
∑

vi∈VL

C∑
C=1

YicLnZic.

The success of GCN has attracted more attention and different variants have emerged. For example,
Wu et al. (2019) argued that nonlinearity between GCN layers is not crucial and demonstrated that
the majority of the benefits arises from local weighting of neighboring features and proposed SGC:

H = ÂXW (0)W (1) . . .W (k) = Â(k)XW̃

Besides, APPNP (Klicpera et al., 2019a) with k−hop aggregation is defined as:

H(k+1) = (1− α)ÂH(k) + αH(0)

In deep GCNs, the output of previous layers is used in combination. For example, Xu et al. (2018)
combined all previous representations [H(1), . . . ,H(k)] to learn the final representation. Li et al.
(2019) defined a vertex-wise concatenation function T ( ) to fuse the input graph G0 with all the
intermediate GCN layer outputs:

Gl+1 = T (F(Gk,Wk), . . . ,F(G0,W0),G0)

Similarly, Sun et al. (2021) combined the outputs from different orders of neighbors by AdaBoost:

H = Adaboost(f
(k)
θ (Â · (Â(k−1)X)))
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Figure 2: The organization of GCN and the recursive training process.

Motivation. We now plot the block diagram in Fig.2 that depicts the organization of GCN and the
recursive process to train it. We observe that the main difference between the models described
before lies in the way of using the representations [H(1), . . . ,H(k)] of each layer to learn the final
representation. These works focus either on increasing the number of layers k, or on finding a way
to combine H(1), . . . ,H(k). Instead, we put our effort into making the block Â more efficient for
message propagation, so that the message from a node can reach the right nodes at long distances.
In the GCN of Kipf & Welling (2017), Â = D̂(−1/2) (A+ I) D̂(−1/2) is generated from the graph
with a self-loop attached to each node. The attached self-loop can be regarded as a way of enhancing
node message. In our work, we choose the nodes with structural similarity and link them directly, by
which we construct a new graph called EMPG G

′
= (V,E

′
). EMPG allows messages to propagate

to the appropriate nodes at long distances. So, it does not need to stack many layers into GCN. As
shown in Fig.1, we first map the graph G = (V,E) to a continuous latent space via node embedding,
and then add links between the nodes that are with structural similarity to generate EMPG G

′
=

(V,E
′
). Seeing EMPG as an accumulation of potential variants of the original graph, we remove

some edges from EMPG G
′
= (V,E

′
) randomly and generate dropout EMPG G

′

drop = (V,E
′

drop),
which can be regarded as a alternative structure of the original graph. So, we augment the training
data and reduce the potential risk of over-fitting. Simultaneously, by dropping edges from EMPG,
we mitigate noise in message propagation and avoid message propagation saturation caused by dense
links. Subsequently, we train GCNs on different dropout EMPG G

′

drop = (V,E
′

drop) and combine
them together to produce the final prediction.

3 MODEL IMPLEMENTATION

3.1 GENERATING EMPG BASED ON GRAPH EMBEDDING

Graph embedding. Graph embedding transforms nodes vi ∈ V in graph G = (V,E) to low-
dimensional representations zi ∈ Rd and effectively captures the graph topology, which is a critical
step to generate EMPG. d is a small number of latent dimensions. There exist multiple methods
(Perozzi et al., 2014; Yang et al., 2016; Velickovic et al., 2019) for embedding graph nodes into a
latent space. Among them, DeepWalk (Perozzi et al., 2014) relies on truncated random walk and
uses a skip-gram model to generate embeddings. We adopt DeepWalk to embed nodes, since it
preserves the topology patterns of the graph well. Other embedding methods can also be tried out.

Add connections. According to the node representations in the latent space, we extract the structural
neighborhoods Nz (v) for each node v ∈ V , which contains the nodes that are similar to the node v
in terms of the structure, no matter whether or not they are directly linked to the node v in the graph
G = (V,E). We define a distance function dis (·, ·) in the latent space Rd as:

dis (zv, zu) → r ∈ R

where, r represents the structural proximity between nodes v and u in the latent space. We do not
set a proximity threshold to extract the structural neighborhoods Nz (v), like Pei et al. (2020) did.
Instead, we sort r from small to large and include the nodes in a certain range of proximity into
Nz (v). The range is denoted as [start, end] and the structural neighborhoods Nz (v) is defined as:

Nz (v) = {u|u ∈ V, start ≤ #dis (zv, zu) ≤ end}
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where, #dis (zv, zu) means the position of the distance dis (zv, zu) in the sorted queue.

Subsequently, we construct EMPG G
′
= (V,E

′
) using Nz (v). If u ∈ Nz (v) and (u, v) /∈ E, we

add an edge (u, v) to G = (V,E). That is, E
′
= (u, v) ∪ E. In the EMPG G

′
= (V,E

′
), a node

can propagate its message to other nodes at long distances from it but with similar structure. The
added edges do not change the distribution of node degree, since the number of edges added to each
node is nearly same, which is about (start − end). The way of adding links will not lead to the
appearance of large-degree nodes also. The nodes with higher degree are more likely to suffer from
over-smoothing in a multi-layer GCN model, since the repeatedly applying Laplacian smoothing
will converge to be proportional to the square root of node degree (Chen et al., 2020; Li et al., 2018).

Influence range of message propagation. To watch the influence of message propagation on node
classification accuracy, we define influence range of message propagation. Given a node vi ∈ V
and a k−layer GCN, the node vi can receive the messages from the nodes at k−hop distance in the
graph. The influence that the node vi receives from other nodes is defined as

influence(vi) = influencepos(vi)− influenceneg(vi)

where, influencepos(vi) =
∑
j∈V

∑
l∈C

Âk
i,j · δ (Yi,l = Yj,l) and influenceneg(vi) =

∑
j∈V

∑
l∈C

Âk
i,j ·

δ (Yi,l ̸= Yj,l) represent the influence from the nodes with the same label of vi and from the nodes
with different label of vi respectively. δ (⋆) = 1 if the condition ⋆ is satisfied; Otherwise, δ (⋆) = 0.
Furthermore, we define the influence range of message propagation, which is the ratio of the number
of nodes received more messages from the nodes with the same label to the total of nodes:

influence range =

∑
vi∈V δ (influence (vi) > 0)

|V |

3.2 CONSTRUCTING GCNS ON DROPOUT EMPG

Adding edges helps message propagate to long-distance nodes without increasing the network lay-
ers. However, dense connections change the original structure and bring noise. What is worse, they
are most likely to cause message propagation saturation. Moreover, the GCNs constructed on EMPG
directly prone to overfit to the few training data, since each layer has numerous trainable parameters.
A reasonable understanding of EMPG is to regard it as an accumulation of potential variants of the
original graph, so we apply dropout to EMPG to extract the variants.

Dropout was first introduced by Hinton et al. (2012) as a way to train deep neural networks in which a
collection of hidden neurons is stochastically “dropped out” at each iteration of a training procedure.
It has been proven effective in controlling overfitting. Dropout can be understood as a regularizer that
implicitly minimizes the expectation of a stochastic loss function based on predictions from random
subnetworks. Dropout can also be seen as averaging over many neural networks with shared weights
(Baldi & Sadowski, 2013). Here, dropout is used as a data argumentation technique.

We apply dropout to the edges of EMPG G
′
= (V,E

′
). Each edge (vi, vj) ∈ E is removed with a

probability p, independent of others. A dropout EMPG is denoted by G
′

drop = (V,E
′

drop), whose
adjacency matrix A

′

drop can be expressed as A
′

drop = R∗A
′
, where R ∈ {0, 1}|V |×|V | is a random

matrix with Rij ∼ Bernoulli(1 − p) and ∗ denotes an element-wise product. As shown in Fig.
1, GCNs are constructed on various dropout EMPG G

′

drop = (V,E
′

drop). For the i−th channel, we
perform the re-normalization trick on A

′

i drop, leading to Â
′

i drop = D̂(−1/2)(A
′

i drop+I)D̂(−1/2).
The feed forward propagation in the i−th channel GCN is recursively conducted as

H
(k+1)
i = ReLU(Â

′

i dropH
(k)
i W

(k)
i )

The features H(k)
i obtained from different channels are aggregated to compute final prediction, that

is, H(k) =
∑
i

H
(k)
i . Each H

(k)
i is computed independently and each re-normalized adjacency

matrix Â
′

i drop can be computed in advance, thus reducing significantly training time.
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Table 1: Dataset statistics
DATASET NODES EDGES CLASSES FEATURES E-DEN N-DEG

Cora 2708 5429 7 1433 0.148% 4.01
Citeseer 3327 4732 6 3703 0.086% 2.84

4 RELATED WORK

The efforts devoted to improving message propagation in GCNs generally fall into two categories:

i) Efforts towards building deep GCNs. A straightforward solution to realize long-range message
propagation is to deepen GCNs. However, a challenge in deep GCNs is over-smoothing, which
was first discussed in Li et al. (2018). To combat this problem, Xu et al. (2018) employed skip
connections for multi-hop message passing to build deep JK-network. Li et al. (2019) used residual
connections and dilated convolutions to deepen GCNs. Klicpera et al. (2019a;b) proposed a propa-
gation scheme based on personalized Pagerank to aggregate information from a larger and adjustable
neighbors. DAGNN (Liu et al., 2020) incorporates information from large receptive fields through
the entanglement of representation transformation and propagation. GCNII (Chen et al., 2020) pre-
vents over-smoothing by residual connections and identity mapping. Zhao & Akoglu (2020) added
a normalization layer into GCNs, by which they could stack more convolutional layers. Sun et al.
(2021) proposed a deep model AdaGCN by using AdaBoost to combine features of different-order
neighbors. These works have produced promising results. However, stacking multiple layers in-
creases model parameters and complexity and makes training harder in the semi-supervised setting.
Furthermore, deep models with too many parameters are very prone to overfitting with label scarcity.

ii) Efforts based on dense graph connectivity scheme. On the other hand, there are attempts to
improve message propagation with shallow networks. For example, Kampffmeyer et al. (2019) pro-
posed DGP that links distant nodes directly to enhance message propagation. Zhuang & Ma (2018)
proposed DGCN that jointly considers the local- and global-consistency information. Thekumpara-
mpil et al. (2018) and Velickovic et al. (2018) used attention mechanisms to improve message ag-
gregation. SGC (Wu et al., 2019) uses k−th power of graph convolution matrix in a single layer to
capture high-order information. Xu et al. (2020) proposed GIL that considers between-node path
reachability in learning process. Pei et al. (2020) selected structural neighbors in a latent space of
graph embedding for aggregation to extract long-range structural information. These models pro-
duced better results compared to the works without enhancing message propagation. Moreover,
these models are usually computationally efficient because the number of layers is small.

Our method belongs to the second type. In contrast to these works, the major differences lie in the
way of adding and using dense connections. We add connections according to graph embedding and
keep the distribution of node degree unchanged after edge densification. Furthermore, we employ
dropout to leverage the strengths of dense connections and avoid their weakness.

5 EXPERIMENTS AND DISCUSSIONS

5.1 DATASETS AND EXPERIMENTAL SETUP

We experimented with two citation datasets: Cora and Citeseer. Their statistics are reported in Table
1. Note that the average edge density and the average node degree of Citeseer are much lower than
those of Cora. For each dataset, we split all instances into three parts: 1% to 5% labeled data in
each class were randomly selected for training, 500 for validation, and 1000 for the test. We built
a two-layer SGC using PyTorch and trained it for 600 epochs using Adam with learning rate 2e-
2. The L2 regularization parameter was set to 5e-4. In addition, we used step decay schedule to
drop the learning rate by 0.97 half every 60 epochs. We employed the same experimental setup
when observing the influence of a certain factor on the model performance. However, we performed
delicate parameter selection when trying to push node classification accuracy.
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Cora Citeseer

Figure 3: Comparisons of the influence range in the original graph (blue) and the enhanced graph
(orange) as the training label rate increases on Cora (left) and Citeseer (right).

Cora Citeseer

Figure 4: Accuracy obtained in the original graph (blue) and the enhanced graph (orange) as the
training label rate increases on Cora (left) and Citeseer (right).

5.2 EXPERIMENTAL RESULTS

Enhancement of influence range. The aim of adding connections is to enlarge the influence range
of message propagation. Figure 3 compares the influence range in the original graph (blue) and the
enhanced graph (orange) with the increasing label rate on Cora (left) and Citeseer (right) respec-
tively. We can observe that the influence range in the enhanced graph is always larger than in the
original graph. This is as expected, since the added connections provide more paths for message
propagation. When only few labeled nodes are given, the added connections lead to the rapid in-
crease in influence range. The green curves indicate the enhancement of influence range. We can
observe that the enhancement increases fast initially and drops gradually as the training label rate
increases over 3%. When the label rate continuously rises above 10%, the label messages propagate
to nearly the entire EMPG, reaching saturation. In addition, we can find that the enhancement on
Citeseer is larger than on Cora. The reason is that the edge density of Citeseer is much lower than
that of Cora. The added connections play a more important role in message propagation on Citeseer.

Accuracy of node classification. We further investigate how the accuracy of node classification
benefits from the enhancement of influence range. As illustrated in Fig.4, for Cora, the accuracy
obtained on EMPG (orange) is consistently better than on the original graph (blue). For Citeseer,
when very few labeled nodes are given (< 3%), the rise of accuracy is evident. When the label
rate increases from 3% to 10%, the accuracy on EMPG is still better but the gap drops. When the
label rate increases over 10%, the improvement is very limited and sometimes the accuracy may
get worse. The green curves in Fig.4 indicate the rise of accuracy. Compared to the enhancement
of influence range shown in Fig.3, we can easily observe that, for both datasets, the tendency of
accuracy improvement is consistent with the enhancement of influence range, which confirms the
effect of dense connections. Furthermore, once the influence range increases close to saturation
(label rate > 10%), the accuracy increases a little bit or even becomes worse.

Table 2 compares the node classification accuracy of our model and the recent state-of-the-art models
metioned in section 1. The results of the compared models are taken from the relative references. All
experiments are run on the standard benchmark data split used in most literatures (Yang et al., 2016).
Table 2 shows that our model achieves a performance comparable to or exceeding the performance of
the competitive models on Cora. However, our model outperforms the compared models by obvious
margins on Citeseer. The result suggests that our model is more suitable for node classification in
extremely sparse graphs with low label rate like Citeseer.
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Table 2: Summary of results in terms of classification accuracy (in percent)

DATASET DeepWalk GCN SGC GAT AGNN TAGCN DGCN OURS

Cora 67.2 81.5 81.0 83.0 83.1 83.3 83.5 83.5
Citeseer 43.2 70.3 71.9 72.5 71.7 71.4 72.6 73.3
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Figure 5: Accuracy for varying start and end on Cora (up) and Citeseer (down) with training label
rate 1% (left), 2% (middle) and 5% (right).

Effect of densification strength. The pair of parameters [start, end] control the number of added
connections, which reflect the densification strength. Figure 5 shows the accuracy when start and
end change from 0 to 9 on Cora (up) and Citeseer (down) with training label rate 1% (left), 2% (mid-
dle) and 5% (right). The block color represents the value of accuracy, with lighter colors indicating
higher values and darker colors indicating lower ones. We find that, in general, good classification
performance is obtained when start is set a little less than the average node degree and end is set
around the double of the average node degree. This is understandable, as the nodes with the closest
proximity may have been linked by edges in the original graph. On the other hand, adding more
than double edges will bring more noise and make message propagation saturate soon.

Effect of dropout rate. Dropout rate p is a tunable parameter that indicates the probability of
removing the edges of EMPG G

′
= (V,E

′
). We increased p from 0 to 0.9 with an increment of 0.1

and examined how the accuracy depends on it. Figure 6 shows the validation accuracy (blue) and
the test accuracy (yellow) for varying p on Cora (up) and Citeseer (down) with training label rate
1% (left), 2% (middle) and 5% (right). We can observe that as p increases, both accuracies on Cora
continue to increase till p reaches over 0.8, no matter with training label rate 1% and 2%. For the
training label rate 5%, p could be set to a larger value. Meanwhile, both accuracies on Citeseer drop
continuously with the increasing p for the training label rate 1% and 2%. For the training label rate
5%, both accuracies on Citeseer increase till p = 0.4 and then take a turn for the worse.

Considering the average node degree and the edge density of both datasets, the densification strength
and the training label rate jointly, we may be able to give some clues to the complex phenomenon.
These factors are working together to determine message propagation. No matter which factor
changes, if it expands influence range, the accuracy will increase. Otherwise, the accuracy will
drop. Adding connections enhances message propagation but may lead to message propagation
saturation with high label rate. Meanwhile, dropping edges reduces noise, prevents message propa-
gation saturation, augments training data and mitigates overfitting. The two seemingly contradictory
operations play in different roles, which actually complement one another to raise accuracy.

Assessment of robustness. To assess model robustness, we randomly selected 10% to 50% samples
from training dataset and changed their label. Figure 7 shows the accuracy obtained in the original
graph (yellow) and EMPG (blue) for varying noise level on Cora (up) and Citeseer (down), given
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Figure 6: Validation accuracy (blue) and test accuracy (yellow) for varying dropout rate p on Cora
(up) and Citeseer (down) with training label rate 1% (left), 2% (middle) and 5% (right).

Figure 7: Accuracy obtained in original (yellow) and enhanced graph (blue) for varying noise level
on Cora (up) and Citeseer (down), given training label rate 1% (left), 2% (middle) and 5% (right).

three training label rate 1% (left), 2% (middle) and 5% (right). It is clear that the accuracy decreases
as noise level rises. However, for Cora, the accuracy obtained on EMPG is consistently better, and
the gap is obvious and enlarges as noise level increases. For Citeseer, for the low training label rate
1% and 2%, the accuracy obtained on EMPG fluctuates up and down around that obtained on the
original graph. For the label rate 5%, the accuracy obtained on EMPG is always better, but the gap
decreases as the noise level increases. In short, the model built on EMPG is more robust.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a new GCN framework to address semi-supervised node classification
in sparse graph with few labels, whose distinguishing feature is a dense connection scheme based
on graph embedding, by which a node message can propagate over long distances and towards the
right nodes without the need of stacking multiple layers. This is very useful for avoiding prob-
lems like over-smoothing and computational complexity in deep networks. By incorporating with
dropout technique, our model mitigates the negative effects of dense connections such as message
propagation saturation and augments training data, thus prevents overfitting and raises accuracy. Ex-
periments on benchmark datasets demonstrate the effectiveness of the proposed method. In future
work, we plan to explore techniques for adding connections adaptively and dynamically. It will be
worthwhile to model the relationship among graph properties, densification strength and message
propagation range. We will also apply the proposed method to more real applications.
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