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Abstract
As an adaptive method, Shampoo employs a structured second-moment estimation, and its effec-
tiveness has attracted growing attention. Prior work has primarily analyzed its estimation scheme
through the Frobenius norm. Motivated by the natural connection between the second moment and a
covariance matrix, we propose studying Shampoo’s estimation as covariance estimation through the
lens of Kullback-Leibler (KL) minimization. This alternative perspective reveals a previously hidden
limitation, motivating improvements to Shampoo’s design. Building on this insight, we develop a
practical estimation scheme, termed KL-Shampoo, that eliminates Shampoo’s reliance on Adam for
stabilization, thereby removing the additional memory overhead introduced by Adam. Preliminary
results show that KL-Shampoo improves Shampoo’s performance, enabling it to stabilize without
Adam and even outperform its Adam-stabilized variant, SOAP, in neural network pretraining.

1. Introduction

Shampoo [13] has received significant attention [4, 5, 11, 21, 24, 28] due to its strong performance
in training a wide range of neural network (NN) models [8, 15]. A deeper understanding of
this method could help unlock its full potential. Prior work [4, 11, 21, 28] has investigated the
structural preconditioner scheme of Shampoo—which approximate the full-matrix gradient 2nd

moment [9]—through the Frobenius norm. Few studies, however, have examined Shampoo’s scheme
from the perspective of Kullback–Leibler (KL) divergence. Compared to the Frobenius norm, the
KL divergence is more suitable [3, 20] for viewing its scheme as a covariance estimation scheme,
since the gradient 2nd-moment it approximates can be interpreted as a covariance matrix. Moreover,
this divergence naturally respects the symmetric positive-definite (SPD) constraint [6, 23] implicitly
imposed on Shampoo’s preconditioner whereas the Frobenius norm does not. This constraint is
crucial: Shampoo requires its preconditioner to be SPD to ensure that the preconditioned gradient
direction is a descent direction [22].
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In this work, we introduce a KL perspective that interprets Shampoo’s estimation scheme as
the solution to a KL minimization problem. This perspective reveals a key limitation of Shampoo’s
estimation that remains hidden under the Frobenius-norm interpretation and opens new opportunities
for improvement. Unlike existing interpretations, which focus primarily on matrix-valued weights,
our approach extends naturally to tensor-valued settings. Leveraging this perspective, we refine the
design of Shampoo’s estimation and develop a practical KL-based scheme, termed KL-Shampoo,
for training neural networks (NNs). Importantly, KL-Shampoo eliminates the need for step-size
grafting with Adam [2], as required for stabilizing Shampoo [5, 11, 24]. Preliminary results show that
KL-Shampoo is both effective and stable for training NNs, including NNs with tensor-valued weights,
outperforming both Shampoo with step-size grafting and an Adam-stabilized variant—SOAP [25].

2. Background

Notation For notational simplicity, we focus on matrix-valued weights and consider a single
weight matrix Θ ∈ Rda×db , rather than a set of weight matrices for training. We use Mat(·) to
unflatten its input vector into a matrix and vec(·) to flatten its input matrix into a vector. For example,
θ := vec(Θ) is the flattened weight vector and Θ ≡ Mat(θ) is the original (unflattened) weight
matrix. Vector g is a (flattened) gradient vector for the weight matrix. We denote γ, β2 and S to
be a step size, a weight for moving average, and a preconditioning matrix for an adaptive method,
respectively. Diag(·) returns a diagonal matrix whose diagonal entries are given by its input vector,
whilst diag(·) extracts the diagonal entries of its input matrix as a vector.

Shampoo Given a matrix gradient G := Mat(g), the original Shampoo method [13] considers
a Kronecker-factored approximation, (Sa)

2p ⊗ (Sb)
2p, of the full-matrix gradient second moment,

Eg[gg
⊤], where p denotes a matrix power, Sa := Eg[GG⊤], Sb := Eg[G

⊤G], and ⊗ denotes
a Kronecker product. In mini-batch settings, we often approximate the expectation with just one
gradient outer product such as gg⊤ ≈ Eg[gg

⊤] [21]. The original shampoo method uses the 1/4
power (i.e., p = 1/4) and other works [5, 21, 24] suggest using the 1/2 power (i.e., p = 1/2). At each
iteration, Shampoo follows this update rule:

Sa ← (1− β2)Sa + β2GG⊤, Sb ← (1− β2)Sb + β2G
⊤G (Kronecker 2nd moment est.),

θ ← θ − γS−1/2g ⇐⇒ Θ← Θ− γS−p
a GS−p

b (preconditioning), (1)

where S := S2p
a ⊗ S2p

b is Shampoo’s preconditioning matrix, and we leverage the Kronecker
structure of S to move from the left expression to the right expression in the second line.

Shampoo’s estimation rule is not motivated as covariance estimation. The original Shampoo’s
Kronecker estimation rule (p = 1/4) [10, 13] is proposed based on a matrix Loewner bound
[19], while recent estimation rules (p = 1/2) [11, 21] focus on bounds induced by the Frobenius
norm. Neither of these sets of works interpret the estimation as covariance estimation.

Shampoo’s implementation employs eigendecomposition. Because computing a matrix p-power
at each step is expensive, Shampoo is implemented [5, 24] by using the eigendecomposition
of Sk, such as QkDiag(λk)Q

⊤
k = eigen(Sk), for k ∈ {a, b}, every few steps and storing

eigenfactors Qk and λk. Therefore, the power of Sk is computed using an elementwise power
in λk such as S−p

k = QkDiag
(
λ⊙−p
k

)
Q⊤

k , where ⊙p denotes elementwise pth power. This
computation becomes an approximation if the decomposition is not performed at every step.
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Using Adam for Shampoo’s stabilization increases memory usage. If the eigendecomposition
is applied infrequently to reduce iteration cost, Shampoo has to apply step-size grafting with
Adam to maintain performance [1, 24]. Unfortunately, this increases its memory usage.

3. Second Moment Estimation via Kullback–Leibler Minimization

We present a new perspective on interpreting and improving the second-moment estimation scheme
of Shampoo, showing that this scheme can be viewed as a structural covariance estimation procedure
via Kullback–Leibler (KL) minimization. This perspective reveals a key limitation of Shampoo’s
estimation rule that remains obscured under the conventional Frobenius-norm interpretation [4, 11,
21, 28], while also guiding the development of new, practical variants. Building on this insight, we
propose a KL-based estimation scheme for Shampoo using QR decomposition, termed KL-Shampoo.

KL Minimization We begin by introducing a KL perspective for a matrix-valued case. For
simplicity, we drop subscripts when referring to the flattened gradient 2nd moment, like E[gg⊤] :=
Eg[gg

⊤], where g = vec(G) is a flattened gradient vector of a matrix-valued gradient G ∈ Rda×db .
The goal is to estimate a Kronecker-structured preconditioning matrix, S = Sa ⊗ Sb, that closely
approximates the 2nd moment, where Sa ∈ Rda×da and Sb ∈ Rdb×db are both symmetric positive-
definite (SPD). Motivated by the natural connection between the second moment and a covariance
matrix, we treat these as covariance matrices of zero-mean Gaussian distributions and achieve this
goal by minimizing the KL divergence between the two distributions:

KL Perspective for Covariance Estimation

KL(E[gg⊤],S) := DKL(N (0,E[gg⊤] + κI) ∥ N (0,S))

=
1

2

(
log det(S)+Tr((E[gg⊤]+κI)S−1)

)
+ const, (2)

where E[gg⊤] and S are considered as Gaussian’s covariance, det(·) denotes the determinant of its
input, and κ≥0 is a damping weight to ensure the positive-definiteness of E[gg⊤]+κI if necessary.

Justification of using the KL divergence Many existing works [4, 11, 21, 28] focus on matrix-
valued weights and interpret Shampoo’s estimation rule for such weights from the Frobenius-norm
perspective. However, this norm does not account for the SPD constraint implicitly imposed on
Shampoo’s preconditioner S to ensure that the preconditioned direction is a descent direction [22].
As emphasized in the literature [6, 23], it is more appropriate to consider a “distance” that respects
this constraint. We adopt the KL divergence because it naturally incorporates the SPD constraint, is
widely used for covariance estimation [3, 20], and provides a unified framework to reinterpret and
improve Shampoo’s estimation rule, even for tensor-valued weights.

3.1. Interpreting Shampoo’s estimation as covariance estimation

Similar to existing works [11, 21, 25], we disable the moving average (i.e., let β2 = 1) for our
descriptions and focus on Shampoo with power p = 1/2, presenting a KL minimization perspective
and interpreting its estimation rule from this perspective. We will show that Shampoo’s estimation
rule can be obtained by solving a KL minimization problem.

Shampoo’s estimation rule as Kronecker-based covariance estimation According to Claim 1,
Shampoo’s estimation rule with power p = 1/2 in Eq. (1) can be viewed as the optimal solution
of a KL minimization problem (up to a constant scalar) when one Kronecker factor is updated
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Figure 1: Preliminary results (random search using 120 runs for each method, Appx. A) on language
models demonstrate that KL-Shampoo removes the need for step-size grafting with Adam.
Shampoo without grafting does not perform well. In particular, Shampoo with power
p = 1/2 fails to train the RWKV7 model in all 120 runs when grafting is disabled.

independently and the other is fixed as the identity, which is known as a one-sided preconditioner
[4, 28]. For preconditioning, the constant scalar is 1/

√
dadb, which could help align with the scaling

of Adam. Here, we approximate the required expectations using a single sample [21] such as
E[GG⊤] ≈ GG⊤ and E[G⊤G] ≈ G⊤G. This KL interpretation highlights a key limitation of
Shampoo’s estimation rule: it is not the optimal solution to the KL problem when both factors are
learned jointly. This limitation motivates our improved schemes, which we introduce in Sec. 3.2.

Claim 1 (Shampoo’s Kronecker-based covariance estimation) The optimal solution of KL min-
imization minSa KL

(
E[gg⊤],S

)
with a one-sided preconditioner S = (1/dbSa) ⊗ Ib is S∗

a =
E[GG⊤], where dk is the dimension of matrix Sk ∈ Rdk×dk for k ∈ {a, b} and G = Mat(g).

Likewise, we can obtain the estimation rule for Sb by considering S = Ia ⊗ (1/daSb).

3.2. Improving Shampoo’s estimation: Idealized KL-Shampoo

Our KL perspective reveals a key limitation of Shampoo’s Kronecker factor estimation: this scheme
does not adequately solve the KL minimization problem when both factors are learned jointly.
Motivated by this observation, we design an improved estimation rule that updates the two factors
simultaneously. We refer to this scheme as idealized KL-Shampoo.

Claim 2 (Idealized KL-Shampoo’s covariance estimation for Sa and Sb) The optimal solution of
KL minimization minSa,Sb

KL
(
E[gg⊤],S

)
with a two-sided precontioner S = Sa ⊗ Sb is

S∗
a =

1

db
E[G

(
S∗
b

)−1
G⊤], S∗

b =
1

da
E[G⊤(S∗

a

)−1
G]. (3)

Idealized KL-Shampoo’s estimation Claim 2 establishes a closed-form expression (see Eq. (3))
when simultaneously learning both Kronecker factors to minimize the KL problem. This expression
was originally considered as a theoretical example [17, 18] for covariance estimation and later,
Vyas et al. [26] consider a similar expression based on a heuristic motivated by gradient whitening.
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Figure 2: Preliminary results (random search using 120 runs for each method, Appx. A) on language
models demonstrate KL-Shampoo meets or exceeds SOAP’s efficiency using QR decom-
position. We also include the best Shampoo run in the plots for completeness.

However, we cannot directly apply this expression due to the correlated update between Sa and Sb.
For example, solving S∗

a requires knowing S∗
b in Eq. (3) or vice versa. To overcome this, we use an

estimated Sk to approximate S∗
k for k ∈ {a, b} and propose a moving average scheme:

Sa ← (1− β2)Sa +
β2
db

E[GS−1
b G⊤], Sb ← (1− β2)Sb +

β2
da

E[G⊤S−1
a G]. (4)

We can justify this scheme and establish a formal connection to the theoretical approach of Lin
et al. [17, 18] using the proximal-gradient framework [16]. Notably, our approach uses S−1/2

for preconditioning (Eq. (1)), following Shampoo, whereas Lin et al. [17, 18] propose using S−1.
A straightforward implementation of our scheme is computationally expensive, since it requires
additional matrix inversions (highlighted in red in Eq. (4)) as well as the slow eigendecomposition
needed for Shampoo-type preconditioning (e.g., S−1/2). However, these issues can be alleviated—in
the next section we propose a computationally efficient implementation of our method.

4. Efficient Implementation: KL-Shampoo with QR Decomposition

The eigendecomposition used in Shampoo’s implementation [24] is more computationally expensive
than QR decomposition [25]. Motivated by this observation, we aim to improve KL-Shampoo’s
computational efficiency by replacing the eigendecomposition with QR decomposition. However,
incorporating QR decomposition into KL-Shampoo is non-trivial because the eigenvalues of the
Kronecker factors are required, and QR does not provide them. Specifically, the eigenvalues are
essential for a reduction in the computational cost of KL-Shampoo in two reasons: (1) they remove the
need to compute the matrix −1/2 power, S−1/2 = (QaDiag(λ

⊙−1/2
a )Q⊤

a )⊗ (QbDiag(λ
⊙−1/2
b )Q⊤

b ),
used for KL-Shampoo’s preconditioning; (2) they also eliminate expensive matrix inversions in its
Kronecker estimation scheme (Eq. (4)), such as S−1

b in the update for Sa:

Sa ← (1− β2)Sa +
β2
db

E[GS−1
b G⊤] = (1− β2)Sa +

β2
db

E[GQbDiag(λ⊙−1
b )Q⊤

b G
⊤], (5)

where Qk and λk are eigenbasis and eigenvalues of Sk for k ∈ {a, b}, respectively.
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Shampoo with power p = 1/2 versus
Our idealized KL-Shampoo

1: Gradient Computation g := ∇ℓ(θ)
G := Mat(g) ∈ Rda×db

2: Covariance Estimation (each iter)(
Sa

Sb

)
← (1− β2)

(
Sa

Sb

)
+ β2

(
∆a

∆b

)
∆a :=

{
GG⊤

GQbDiag(λ⊙−1
b )Q⊤

b G
⊤/db

∆b :=

{
G⊤G

G⊤Qa Diag(λ⊙−1
a )Q⊤

a G/da
3: Eigen Decomposition (every T ≥ 1 iters)

λk,Qk ← eig(Sk) for k ∈ {a, b}
4: Preconditioning using Q := Qa ⊗Qb

θ ← θ − γ(QDiag(λa ⊗ λb)
−1/2Q⊤)g

Replacing the slow eigen decomposition with
more efficient QR updates (replaces Step 3)

3a: Frequent Eigenvalue Estimation with Moving Average
(each iter)(
λa

λb

)
← (1− β2)

(
λa

λb

)
+ β2

(
diag(Q⊤

a ∆aQa)

diag(Q⊤
b ∆bQb)

)
3b: Infrequent Eigenbasis Estimation using QR

(every T ≥ 1 iters)
Qk ← qr(SkQk) for k ∈ {a, b}

Figure 3: Left: Simplified update schemes without
momentum, damping, and weight decay.
Right: For computational efficiency, we re-
place the eigen step with our eigenvalue
estimation and infrequent eigenbasis esti-
mation using QR, where we estimate eigen-
values λk using an outdated eigenbasis Qk

for k ∈ {a, b} and use the QR procedure.

KL-based estimation rule for the eigenvalues λa and λb using an outdated eigenbasis We aim
to estimate the eigenvalues using an outdated eigenbasis to replace the slow eigendecomposition
with a fast QR decomposition in KL-Shampoo. Eschenhagen et al. [11] propose estimating the
eigenvalues from a Frobenius-norm perspective, using λ(Frob)

k := diag(Q⊤
k SkQk) for k ∈ {a, b}.

However, our empirical results indicate that this approach becomes suboptimal when an outdated
eigenbasis Qk is reused to reduce the frequency and cost of QR decompositions. In contrast, our KL
perspective (Claim 3) provides a principled alternative, allowing us to use an outdated eigenbasis.
Building on this insight, we introduce a moving-average scheme (Fig. 3) for eigenvalue estimation,
which can be justified through the proximal-gradient framework [16]. This allows us to update the
eigenvalues every iteration while only updating the eigenbasis at a lower frequency via an efficient
QR-based procedure, similar to SOAP. Since this scheme naturally scales the eigenvalues by the
Kronecker factors’ dimensions, according to Eschenhagen et al. [11], step-size grafting should not
be necessary for KL-Shampoo, which we confirm empirically (Appx. A).

Claim 3 (Estimation rule for eigenvalues λa and λb) The optimal solution of KL minimization
minλa,λb

KL
(
E[gg⊤],S

)
with preconditioner S = (QaDiag(λa)Q

⊤
a )⊗ (QbDiag(λb)Q

⊤
b ) is

λ∗
a =

1

db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

)
, λ∗

b =
1

da
diag

(
Q⊤

b E[G⊤P ∗
aG]Qb

)
, (6)

where P ∗
k := QkDiag

(
(λ∗

k)
⊙−1

)
Q⊤

k is considered as an approximation of S−1
k for k ∈ {a, b}

when using an outdated eigenbasis Q = Qa ⊗Qb precomputed by QR.

5. Conclusion

We introduced a KL perspective for interpreting Shampoo’s structured second-moment estimation
scheme. This perspective uncovers a previously unrecognized limitation, motivates an alternative
estimation strategy to overcome it, enables a practical implementation of our approach, and extends
naturally to tensor-valued estimation. Preliminary experiments demonstrate the effectiveness of our
method and underscore its potential to further unlock Shampoo’s performance.
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Appendix A. Experimental Setup and Preliminary Results

We evaluate KL-Shampoo on four language models based on existing implementations: NanoGPT
[14] (123 M), NanoRWKV7 [7] (162 M), Llama [12] (134 M), and NanoMoE [27] (227 M). We
consider NanoMoE, as it contains many 3D weight tensors. This model provides a natural testbed
for evaluating a tensor extension of KL-Shampoo, derived directly from our KL perspective. In
doing so, we demonstrate that our approach retains the same flexibility as Shampoo in handling
tensor-valued weights. We consider several strong baselines, including Shampoo with p = 1/2 and
p = 1/4 powers using a state-of-the-art implementation [24], and an improved variant of Shampoo:
SOAP [25]. We train NanoGPT and NanoRWKV7 using a subset of FineWeb (1 B tokens), Llama
using a subset of C4 (2 B tokens), and NanoMoE using a subset of OpenWebText (2.5 B tokens).
All models except NanoMoE are trained using mini-batches with a batch size of 0.5 M. We use
a batch size of 0.25 M to train NanoMoE to reduce the run time. We use the default step-size
schedulers from the source implementations; NanoGPT and NanoRWKV7: linear warmup + constant
step-size + linear cooldown; Llama and NanoMoE: linear warmup + cosine step-size. We tune all
available hyperparameters of each method using random search with 120 runs. In our experiments,
Shampoo performs eigendecomposition every 10 steps, while KL-Shampoo and SOAP perform QR
decomposition every 10 steps. Preliminary results demonstrate KL-Shampoo outperforms Shampoo
(Fig. 1) without needing grafting, and outperforms SOAP while matching its efficiency (Fig. 2).

Appendix B. Proof of Claim 1

We will show that the optimal solution of KL minimization minSa KL
(
E[gg⊤],S

)
with a one-sided

preconditioner S = (1/dbSa)⊗ Ib is S∗
a = E[GG⊤].

By definition in Eq. (2) and substituting S = (1/dbSa) ⊗ Ib, we can simplify the objective
function as

KL
(
E[gg⊤],S

)
=

1

2

(
log det(S) + Tr(S−1E[gg⊤])

)
+ const.

=
1

2

(
db log det(

1

db
Sa) + Tr(S−1E[gg⊤])

)
+ const. (Kronecker identity for matrix determinant)

=
1

2

(
db log det(Sa) + Tr(S−1E[gg⊤])

)
+ const. (identity for a log-determinant)

=
1

2

(
db log det(Sa) + E[Tr(S−1gg⊤)]

)
+ const. (linearity of the expectation)

=
1

2

(
db log det(Sa) + E[Tr(dbS−1

a GIbG
⊤)]

)
+ const. (identity for a Kronecker vector product)

=
db
2

(
log det(Sa) + E[Tr(S−1

a GG⊤)]
)
+ const.

=
db
2

(
− log det(Pa) + E[Tr(PaGG⊤)]

)
+ const.,

where G = Mat(g) and Pa := S−1
a .
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If we achieve the optimal solution, the gradient stationary condition must be satisfied regardless
of the gradient with respect to Sa or S−1

a ≡ Pa, such as

0 = ∂S−1
a
KL

(
E[gg⊤],S

)
= ∂PaKL

(
E[gg⊤],S

)
=

db
2

(
− P−1

a + E[GG⊤]
)

(matrix calculus identities)

=
db
2

(
− Sa + E[GG⊤]

)
.

Thus, the optimal solution must be S∗
a = E[GG⊤] to satisfy this stationary condition.

Appendix C. Proof of Claim 2

We will show that the optimal solution of KL minimization minSa,Sb
KL

(
E[gg⊤],S

)
with a two-

sided preconditioner S = Sa ⊗ Sb is S∗
a = 1

db
E[G

(
S∗
b

)−1
G⊤] and S∗

b = 1
da

E[G⊤(S∗
a

)−1
G].

Similar to the proof of Claim 1 in Appx. B, we can simplify the objective function as

KL
(
E[gg⊤],S

)
=

1

2

(
log det(S) + E[Tr(S−1gg⊤)]

)
+ const.

=
1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1gg⊤)]

)
+ const. (identity for a log-determinant)

=
1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const. (identity for a Kronecker-vector-product)

=
1

2

(
− db log det(Pa)− da log det(Pb) + E[Tr(PaGPbG

⊤)]
)
+ const.,

where Pk := S−1
k for k ∈ {a, b}.

The optimal solution must satisfy the gradient stationarity condition with respect to {Sa,Sb}.
Notice that the gradient with respect to {S−1

a ,S−1
b } can be expressed in terms of the gradient with

respect to {Sa,Sb} as ∂S−1
a
KL = −Sa

(
∂SaKL

)
Sa and ∂S−1

b
KL = −Sb

(
∂Sb

KL
)
Sb. Thus, the op-

timal solution must satisfy the following gradient stationarity condition with respect to {S−1
a ,S−1

b }.

0 = ∂S−1
a
KL

(
E[gg⊤],S

)
; 0 = ∂S−1

b
KL

(
E[gg⊤],S

)
.

Simplifying the left expression

0 = ∂S−1
a
KL

(
E[gg⊤],S

)
= ∂PaKL

(
E[gg⊤],S

)
=

1

2

(
− dbP

−1
a + E[GPbG

⊤]
)

gives us this equation

0 =
1

2
(−dbS∗

a + E[G
(
S∗
b

)−1
G⊤])
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that the optimal solution must satisfy.
This naturally leads to the following expression:

S∗
a =

1

db
E[G

(
S∗
b

)−1
G⊤].

Likewise, we can obtain the following expression by simplifying the right expression of the
gradient stationary condition.

S∗
b =

1

da
E[G⊤(S∗

a

)−1
G].

Appendix D. Proof of Claim 3

We will show that the optimal solution of KL minimization minλa,λb
KL

(
E[gg⊤],S

)
with a two-

sided preconditioner S = (QaDiag(λa)Q
⊤
a )⊗(QbDiag(λb)Q

⊤
b ) is λ∗

a = 1
db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

)
and λ∗

b = 1
da
diag

(
Q⊤

b E[G⊤P ∗
aG]Qb

)
, where P ∗

k := QkDiag
(
(λ∗

k)
⊙−1

)
Q⊤

k , and Qk is known
and precomputed by QR for k ∈ {a, b}.

Let Sk := QkDiag(λk)Q
⊤
k for k ∈ {a, b}. Because Qk is orthogonal, it is easy to see that

S−1
k := QkDiag(

(
λk

)⊙−1
)Q⊤

k .
Similar to the proof of Claim 2 in Appx. C, we can simplify the following objective function by

substituting Sa and Sb. Here, we also utilize the the orthogonality of Qk.

KL
(
E[gg⊤],S

)
=

1

2

(
db log det(Sa) + da log det(Sb) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const.

=
1

2

(
db log det(QaDiag(λa)Q

⊤
a ) + da log det(QbDiag(λb)Q

⊤
b ) + E[Tr(S−1

a GS−1
b G⊤)]

)
+ const.

=
1

2

(
(db

∑
i

log(λ(i)
a )) + (da

∑
j

log(λ
(j)
b )) + E[Tr(QaDiag(λ⊙−1

a )Q⊤
a GQbDiag(λ⊙−1

b )Q⊤
b G

⊤)]
)
+ const.

The optimal λa and λb should satisfy the gradient stationary condition.

0 = ∂λaKL
(
E[gg⊤],S

)
=

1

2

(
dbλ

⊙−1
a + ∂λaE[Tr(QaDiag(λ⊙−1

a )Q⊤
a G

=Pb︷ ︸︸ ︷
QbDiag(λ⊙−1

b )Q⊤
b G⊤)]

)
=

1

2

(
dbλ

⊙−1
a + ∂λaE[Tr(Diag(λ⊙−1

a )Q⊤
a GPbG

⊤Qa)]
)

=
1

2

(
dbλ

⊙−1
a + ∂λaE[λ⊙−1

a ⊙ diag
(
Q⊤

a GPbG
⊤Qa

)
]
)

(utilize the trace and the diagonal structure)

=
1

2

(
dbλ

⊙−1
a − E[λ⊙−2

a ⊙ diag
(
Q⊤

a GPbG
⊤Qa

)
]
)

=
1

2

(
dbλ

⊙−1
a − λ⊙−2

a ⊙ diag
(
Q⊤

a E[GPbG
⊤]Qa

))
⇐⇒ 0 = dbλa − diag

(
Q⊤

a E[GPbG
⊤]Qa

))
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We obtain the optimal solution by solving this equation.

λ∗
a =

1

db
diag

(
Q⊤

a E[GP ∗
b G

⊤]Qa

))
Similarly, we can obtain the other expression.
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