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Abstract

Prophet inequality concerns a basic optimal stopping problem and states that sim-
ple threshold stopping policies — i.e., accepting the first reward larger than a cer-
tain threshold — can achieve tight 1/2-approximation to the optimal prophet value.
Motivated by its economic applications, this paper studies the robustness of this
approximation to natural strategic manipulations in which each random reward
is associated with a self-interested player who may selectively reveal his realized
reward to the searcher in order to maximize his probability of being selected.
We say a threshold policy is α(-strategically)-robust if it (a) achieves the α-
approximation to the prophet value for strategic players; and (b) meanwhile re-
mains a 1/2-approximation in the standard non-strategic setting. Starting with
a characterization of each player’s optimal information revealing strategy, we
demonstrate the intrinsic robustness of prophet inequalities to strategic reward sig-
naling through the following results: (1) for arbitrary reward distributions, there
is a threshold policy that is 1−1/e

2 -robust, and this ratio is tight; (2) for i.i.d. re-
ward distributions, there is a threshold policy that is 1/2-robust, which is tight for
the setting; and (3) for log-concave (but non-identical) reward distributions, the
1/2-robustness can also be achieved under certain regularity assumptions.5

1 Introduction

The prophet inequality of Krengel and Sucheston [37] is a foundational framework for the theory
of optimal stopping problems and sequential decision-making. In the classic prophet inequality,
a searcher faces a finite sequence of non-negative, real-valued and independent random variables
X1, . . . , XN with known distributions Hi from which a reward of value Xi is drawn sequentially
for i = 1, . . . , N . Once a random reward is realized, the searcher decides whether to accept the real-
ized reward and stop searching, or reject the reward and proceed to the next reward. The searcher’s
objective is to maximize the value of the accepted reward. The performance of the searcher’s stop-
ping policy is evaluated against a prophet value which equals to the ex-post maximum realized
reward. The classic and elegant result of Samuel-Cahn [42] showed that a simple static threshold
policy achieves at least half of the prophet value, and surprisingly, this bound is the best possible
even among dynamic policies. Samuel-Cahn’s policy uses the threshold that is the median of the dis-
tribution of the highest prizes, and then accepts the first realized reward that exceeds this threshold.
The existence of this 1/2-approximation is now known as the prophet inequality.

Recently, there is a regained interest of the prophet inequality due to its beautiful connection to
online mechanism design (see, e.g., [31, 16]), and many different settings of the prophet inequality
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have been studied (see the survey by [40, 19]). For example, Kleinberg and Weinberg [36] extend
the prophet inequality to all matroid constraints and similar to [42], they also show that a threshold
stopping policy with the threshold equal to half of the expected maximum reward can also lead to the
optimal 1/2-approximation. Indeed, it is now well-known that there exists a range of thresholds for
the classic prophet inequality that can achieve the optimal 1/2-approximation (see Definition 2.2).

An important assumption in the classic prophet inequality is that the distribution of each random
variable is an inanimate object and, once the searcher reaches it, it will fully disclose its realized
reward to the searcher. Yet this may not be the case in many real-world applications where each
distribution may often be associated with a strategic player6 who may have incentives to selectively
disclose information to maximize his own probability of being chosen by the searcher. This is
usually the case when information is not controlled by nature but by humans or algorithms. Such
examples are ample in economic activities. For instance, when a recruiter searches for the best
candidate for a position by sequentially interviewing a set of job applicants, each job applicant is
naturally a strategic player and would want to control how much information they disclose about
their characteristics (including strengths, weaknesses, personality, and experience) to the recruiter
(the searcher) so as to maximize the probability of being hired. Similarly, when a venture capitalist
searches for the most promising startup to invest by sequentially visiting each startup, the startups
are strategic players. They have more accurate information about their own potential and can control
how much of this information they disclose to attract the investment from the venture capitalist (the
searcher). Finally, in the real estate market, when a buyer searches for the most attractive property to
purchase, the property sellers are strategic players who can control the amount of information they
disclose about the property’s condition and potential returns to the buyer (the searcher).

Motivated by real-world applications like above, we introduce and study a natural variant of the
prophet inequality where each reward distribution is associated with a strategic player who can de-
cide what information about the realized reward will be disclosed to the searcher. To capture such
partial information revelation, we adopt the standard framework of information design (also known
as Bayesian persuasion [35, 10]) and assume that each player can selectively disclose reward infor-
mation by implementing an information strategy – often referred to as an experiment or signaling
scheme [35, 10] – which stochastically maps the realized reward (unobservable to the searcher) to a
random signal (observable to the searcher). For the motivating applications above, such revelation
strategies encode answers to standard interview questions (e.g., experiences, behavioral questions)
prepared in advance by job candidates, the presentations prepared by startups for the VC, or the
property’s brochures prepared by property sellers. Each player aims to maximize his probability of
being chosen by the searcher, leading to a (constant-sum) competition among them.

Our Results. In this work, we stand in the searcher’s shoes and look to understand how robust the
classic prophet inequalities are to the above strategic player behaviors. Like most previous work in
this space, we restrict our attention to threshold stopping policies. We start by characterizing players’
optimal information revealing strategies. Given any threshold stopping policy with threshold T , the
optimal information strategy of player i with prior reward distribution Hi has the following clean
threshold structure (albeit using a threshold different from T ): there exists a reward cutoff ti such
that player i simply reveals whether Xi ≥ ti or Xi < ti. Moreover, ti satisfies E[Xi|Xi ≥ ti] = T .
In words, player i simply pools all the “good rewards” together to make their expectation barely pass
the threshold T .7 This characterization allows us to reduce players’ strategic behaviors to a related
prophet inequality problem with binary reward supports. Our later analysis hence only needs to
further investigate how well the thresholds for classic prophet inequalities perform in this (related)
additional problem.

Armed with the above characterization, next we turn to analyze the intrinsic robustness of the clas-
sic prophet inequality. We say a threshold stopping policy with threshold T is α(-strategically)-
robust if it retains the 1/2-approximation in the classic setting and meanwhile also can achieve α-
approximation in the strategic scenario when all the players optimally reveal information. Our first
main result is that, for arbitrary reward distributions, the threshold policy with T equaling the half
expected max threshold of Kleinberg and Weinberg [36] is 1−1/e

2 -robust (Theorem 4.1). Moreover,

6We refer to the one that controls the reward information as the “player”, and refer to the one that decides
when to stop as the “searcher”.

7More formally, these response strategies form a subgame perfect Nash equilibrium among the sequential-
move game of players (which turns out to be unique as far as players’ utilities are concerned) (see Remark 3.2).
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this competitive ratio of 1−1/e
2 ≈ 0.316 is the best among all known threshold policies that can se-

cure the 1/2-approximation in the classic non-strategic setting (Proposition 4.2). This suggests that
this well-studied threshold policy can also perform robustly well even when players are all strategic,
illustrating the intrinsic robustness of the classic prophet inequality.

When the reward distributions are identical – referred to as IID distributions which have been ex-
tensively studied in literature [41, 18, 6, 30, 1, 33] – we show that there exists a threshold in the
range of known thresholds (Definition 2.2) that is 1/2-robust (Theorem 5.1). Moreover, this 1/2 ap-
proximation ratio is optimal among all possible threshold stopping policies for any IID distributions
(Proposition 5.2). Finally, when the reward distributions are not identical but log-concave, under
certain regularity conditions we show that any threshold between the expected max and the median
of the highest reward [42] is 1/2-robust (Theorem 5.4). Note that log-concave reward distributions
have been considered in previous works on prophet inequality (see, e.g., [6, 18]); moreover, it is
satisfied by a wide range of distributions (e.g., normal, uniform, Gamma, Beta, Laplace, etc., [8])
and is a widely adopted assumption in algorithmic game theory (see, e.g., [15]).

Additional Related Work. Prophet inequality is a fundamental problem in optimal stopping theory
which was introduced in the 70s [38, 37]. Recently there has been a growing interest in prophet
inequalities, generalizing the problem to different settings [2, 7, 18, 21, 22, 36, 17, 4, 6, 20]. Our
discussion here cannot do justice to its rich literature; hence, we refer interested readers to the recent
survey by Lucier [40], Correa et al. [19] for comprehensive overviews of recent developments and
its connections to economic problems. This work takes an informational perspective and associate
each distribution in the prophet inequality with a strategic player that strategically signals reward
information to the searcher. We follow the information design literature [35, 10] and allow players
to design signaling schemes to influence the searcher’s beliefs about the realized rewards. In our
considered game, players are competing with each other for the selection of the searcher. The
players’ game thus also shares similarity with competitive information design [26, 28, 5, 23, 34].

Conceptually, our work also relates to the rapidly growing literature on strategic machine learning
(see, e.g., [45, 32, 29, 24, 43, 46, 9]), which studies learning from strategic data providers. We
also study similar strategic reward providers, albeit in a different algorithmic problem, i.e., optimal
stopping. More generally, our work subscribes to the literature on information design in sequential
decision-making. In particular, our paper relates to the recently increased interests on using online
learning approaches to study the regret minimization when an information-advantaged player re-
peatedly interacts with an information-disadvantaged player [11, 14, 25, 44, 47] without knowing
their preferences. Instead of focusing on regret minimization, we use the competitive ratio (as con-
ventionally used in prophet inequalities) to measure the searcher’s policy. It is worth mentioning
that [30] also studies strategic information revealing in prophet inequality problems. In their setting,
a centralized player strategically discloses reward information to the searcher, while players in our
setting form a decentralized game and each player acts on his own to maximize his payoff.

2 Preliminary

In this section, we first revisit the formulation of the classic prophet inequality problem, and then
formally introduce our setting as its natural variant where each distribution is associated with a
strategic player who will be strategically signaling their reward information.

Classic prophet inequality. In standard settings, a searcher faces a finite sequence of known dis-
tributions H1:N ≜ (Hi)i∈[N ] of N non-negative independent random variables. The outcomes (i.e.,
the rewards) Xi ∼ Hi

8 for i ∈ [N ] are revealed sequentially to the searcher for i = 1, . . . , N .
Let λi ≜ EHi

[Xi] denote the mean reward for distribution Hi. Upon seeing a reward, the searcher
decides whether to accept the observed reward and stop the process, or irrevocably move on to the
next reward. The searcher’s goal is to maximize the expected accepted reward. The searcher’s ex-
pected payoff cannot be more than that of a prophet who knows in advance the realizations of the
rewards, namely, X1, . . . , XN . We denote by OPT ≜ EH1,...,HN

[
maxi∈[N ] Xi

]
the prophet value.

Given a stopping policy q, let X(q) be the accepted reward. The stopping policy q is said to be
α-approximate (of the prophet value) if the following holds for the searcher’s expected payoff for

8Here Hi denotes the cumulative distribution function (CDF) of the reward Xi
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any input distributions H1:N :

E
[
X(q)

]
≥ α · OPT .

The above statement is often referred to as the prophet inequality. For any stopping policy q, the
largest constant α ∈ (0, 1] that satisfies the above inequality is named the competitive ratio. Classic
results of [38, 37] elegantly show that there exist simple threshold stopping policies that achieve the
competitive ratio 1/2, and moreover the ratio of 1/2 is tight.9

Definition 2.1 (Threshold Stopping Policy). A threshold stopping policy is an online algorithm
which pre-computes a threshold value T as a function of the distributions H1:N , and then accepts
the first reward Xi whose value is no smaller than the threshold, i.e., Xi ≥ T .

It is well-known that multiple thresholds can achieve the optimal 1/2-approximation ratio.

Definition 2.2 (1/2-approximation Threshold Spectrum). Let TKW ≜ E[maxi Xi]/2 (Kleinberg
and Weinberg [36]), let T ∗ satisfy T ∗ =

∑
i∈[N ] E[(Xi − T ∗)+], and let TSC ≜ sup{t :

Pr[maxi Xi ≥ t] ≥ 1/2} (Samuel-Cahn [42]). Then any threshold stopping policy with threshold
T ∈ [TKW,max{TSC, T

∗}] guarantees 1/2-approximation to the prophet value.10

Prophet inequality with strategic reward signaling. In the strategic setting, each distribution Hi

may be associated with a strategic player that governs how much information about the realized
reward he would like to reveal to the searcher once the searcher reaches his distribution. Formally,
upon arriving at the reward distribution Hi, the searcher does not directly observe the realized reward
Xi ∼ Hi. Instead, she observes an information signal, designed by the player i with distribution
Hi, that is correlated with the reward Xi. We follow the literature in information design [35] to
model this strategic reward signaling: Each player i chooses a signaling scheme ϕi(· | x) ∈ ∆(Σi),
where Σi is a measurable signal space and ϕi(σ | x) ∈ [0, 1] specifies the conditional probability of
a signal σ ∈ Σi that will be sent to the searcher when the reward Xi = x ∼ Hi is realized. Notice
that, upon seeing a signal σ ∼ ϕi(· | x), together with the prior information Hi from which the
reward is realized, the searcher can update her Bayesian belief about the underlying realized value
Xi, and then decides whether to stop and choose player i, or reject i to continue her search.

Each player i is competing with each other for the final selection from the searcher. Namely, a player
obtains payoff 1 if his reward is accepted and payoff 0 if his reward is not accepted.11 Each player’s
goal is to design an information revealing strategy that maximizes his probability of being chosen
by the searcher. We below give two simple examples of information revealing strategies.

Example 2.3 (Examples of Information Strategies). (1) No information strategy: the signal is com-
pletely uninformative (e.g., the distribution sϕi(· | x) is a Dirac delta function on a single signal,
i.e., |Σi| = 1), hence the searcher infers an expected reward of λi = E[Xi] as her perceived reward
from player i; (2) Full information revealing strategy: the signal perfectly reveals player i’s value
to the searcher (i.e., ϕi(σ ≡ x | x) = 1 for every realized Xi = x, and Σi = supp(Hi))

In this work, standing in the searcher’s shoes, we are interested in how threshold stopping policies
perform under players’ optimal strategic reward signaling.

Game Timeline. The timeline of our prophet inequality with strategic players problem, where the
searcher employs a threshold stopping policy, can be detailed as follows: (1) Knowing H1:N , the
searcher first announces a threshold stopping policy with threshold T that is a function of H1:N ; (2)
Knowing threshold T , each player then picks a signaling scheme (also known as an experiment in
economics literature [35, 10]) to reveal partial information about the underlying reward; and (3) The
searcher learns all players’ information strategies, and then conducts a search based on her threshold

9See [40, 19] for the hardness example for the 1/2-approximation.
10There also exists other thresholds that could lead to 1/2-approximation, e.g., any T ∈

[min{T SC, TKW}, TKW) where T SC ≜ inf{t : Pr[maxi Xi ≥ t] ≥ 1/2}. However, using these thresholds
requires to modify the policy defined in Definition 2.1 to be a strict stopping policy to obtain 1/2-approximation
(i.e., searcher accepts a first reward that is strictly larger than threshold). Moreover, under strict stopping policy,
there may exist no Nash equilibrium among players’ game that we formulate shortly.

11All of our results hold if each player i has payoff vi if his reward is accepted and payoff ui if his reward is
not accepted as long as vi > ui.
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stopping policy with threshold T (i.e., accepting the first player whose posterior mean of his reward
distribution, given his revealed information signal, exceeds the threshold T ). The assumption that
the searcher knows information strategies as well as realized signals is commonly adopted in the
information design literature [35, 10], and is also well motivated for the domains of our interest.
For instance, when startups persuade VCs or property sellers persuade buyers, the signaling scheme
could correspond to startups’ product exhibitions or sellers’ promotion brochures which determine
what information the searcher could see. Misreporting realized signals corresponds to revealing
untrue information, which not only violates regulation policies and but also causes the players to
lose credibility in the long term.

Slightly abusing the notation, we also use X(q) to denote the accepted reward given the searcher’s
stopping policy q under the strategic reward signaling, and let us(q) ≜ E

[
X(q)

]
be the searcher’s

expected payoff. Notice that here the expectation is not only over the randomness of the distributions
H1:N , but also the information strategies {ϕi(· | x)}. Anticipating the players’ strategic behavior,
the searcher wants a stopping policy that can still guarantee a good performance competing against
the prophet value OPT.

As mentioned earlier, we are particularly interested in how previously studied threshold stopping
policies described in Definition 2.2 perform under the players’ strategic reward signaling. To for-
malize our goal, we introduce the following notion of strategic robustness.

Definition 2.4 (α(-strategically)-robust Stopping Policies). A stopping policy q is α-robust if it
achieves α-approximation to the OPT when players are strategically signaling their rewards, and it
remains a 1/2-approximation in the standard non-strategic setting.

3 Warm-up: Characterizing Optimal Information Revealing Strategy

We start our analysis by showing that when the searcher adopts a threshold stopping policy (Defini-
tion 2.1), each player’s optimal information revealing strategy admits clean characterizations.

Proposition 3.1 (Optimal Information Revealing Strategy). Given a threshold stopping policy as in
Definition 2.1 with threshold T , for each player i:

• if T ≤ λi, then player i’s optimal information revealing strategy is the no information strategy;

• if T > λi, then player i’s optimal information revealing strategy is threshold signaling and de-
termined by a cutoff ti that satisfies T = E[Xi|Xi ≥ ti] =

∫∞
ti

x dHi(x)/(1 −Hi(ti)). That is,
player i’s optimal signaling scheme sends one of two signals: Xi ≥ ti or Xi < ti.12

We highlight the intuition behind Proposition 3.1 below. Under a threshold stopping policy, every
player maximizes his utility by maximizing the probability that the signal’s posterior expected re-
ward is at least T (hence is selected). When the stopping threshold T ≤ λi, this probability is 1 and
hence maximized when player i simply reveals no information. When T > λi, this probability is
maximized when player i blends the highest rewards together to form a posterior mean just equal to
T , which is exactly the scheme described in Proposition 3.1.

Remark 3.1 (Addressing Point Masses). For ease of presentation, Proposition 3.1 assumes the
distribution Hi is continuous. When Hi has point masses, Proposition 3.1 still holds, but with a
more subtle description of the pooling cutoff ti. We provide more detailed discussions in the full
version of the paper.

Remark 3.2. In game-theoretic terminology, Proposition 3.1 characterizes the subgame Perfect
Nash equilibrium (SPNE) for the multi-player sequential game induced by any threshold stopping
policy that the searcher commits to. This SPNE happens to enjoy simple structures; indeed, each
player’s equilibrium strategy is only a function of the threshold T and not on other players’ strate-
gies or their order. This clean characterization is a consequence of the simple structure of (static)
threshold policies. If the searcher’s stopping policy is instead dynamic (i.e., allowing the decision
of player i to depend on previously realized rewards), SPNE is also well-defined but will adopt sig-
nificantly more complex structures. While analyzing the SPNE under these dynamic policies may
also be interesting, it is beyond the scope of this work since our focus is to study the power of static

12In the corner case when T is larger than the upper bound of player i’s distribution, player i will never get
chosen and thus they have no strategy
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threshold policies, which is also a central theme in the study of prophet inequalities. Finally, we
note that the optimal strategies characterized in Proposition 3.1 are not unique but they all result in
the same utility for every player. This is because player i is actually indifferent on how to disclose
the reward when Xi ≤ ti, leading to many different but utility-equivalent information strategies.

Equivalent Representation of Optimal Information Revealing Strategy. When T > λi, player
i’s optimal information revealing strategy described in Proposition 3.1 pools all the rewards Xi ∼ Hi

above ti together to forge a conditional mean value of T , and pools the remaining smaller rewards
into another signal. We hence also refer to ti as the pooling cutoff. This threshold signaling scheme
can be equivalently represented as a binary-support distribution Gi supported on two realizations
corresponding to the two signals respectively:

Prx∼Gi [x = T ] = 1−Hi(ti), Prx∼Gi [x = ai] = Hi(ti) where ai ≜
λi − T (1−Hi(ti))

Hi(ti)
. (1)

In the literature of information design, this distribution Gi is also known as a mean-preserving
contraction of prior reward distribution Hi [27, 12, 13].

Viewing the player i’s optimal information strategy as the distribution Gi, one can simplify the
interaction between the searcher and player i as the following when the searcher visits player i:
a random reward Xi ∼ Gi is realized, and the searcher stops if and only if Xi ≥ T . With this
observation, one can also reduce the original interaction to the following simplified protocol: (1)
the searcher first decides a stopping threshold T ; (2) each player i chooses the distribution Gi as
in Equation (1) according to his prior Hi and the threshold T ;13 and (3) the searcher visits each Gi

sequentially and stops when the first realized reward Xi ≥ T where Xi ∼ Gi.

We emphasize that in the above reduction, given a threshold stopping policy with threshold T ,
the searcher’s expected payoff under the strategic reward signaling can be computed as us(T ) =
E
[
X(q)

]
where the expectation is over distributions G1:N and X(q) is the first realized Xi ∼ Gi

such that X(q) ≥ T .

4 Achieving 1−1/e
2

-robustness for Arbitrary Distributions

In this section, we show that for any distributions H1:N , there exists a 1−1/e
2 (-strategically)-robust

threshold stopping policy using a threshold within the spectrum in Definition 2.2. The main result
in this section is stated below.
Theorem 4.1. For any distributions H1:N , a threshold stopping policy with threshold T = TKW is
1−1/e

2 -robust.t

From Definition 2.2, we know that using the threshold stopping policy with threshold TKW can
achieve the optimal 1/2-approximation in the classic prophet inequality for any distributions H1:N .
Theorem 4.1 above shows another desired property of the threshold TKW: it can achieve 1−1/e

2 -
approximation even when distributions H1:N are strategically signaling their rewards, thus estab-
lishing its 1−1/e

2 -robustness. Given the optimality of the threshold TKW in the non-strategic setting,
it would be intriguing to ask whether this threshold TKW can also achieve 1/2-approximation un-
der the strategic setting, or if there exists a threshold within the spectrum in Definition 2.2 that can
achieve 1/2-approximation under the strategic setting. Below we show that the answer is No. In fact,
any threshold stopping policy using a threshold from the spectrum in Definition 2.2 cannot achieve
( 1−

1/e
2 + ε)-approximation for any ε > 0 under strategic reward signaling.

Proposition 4.2 (Tightness of Theorem 4.1). There exist distributions H1:N such that no threshold
from the spectrum in Definition 2.2 can achieve α-robustness where α > 1−(1−1/(N−1))N−1

2 .

Notice that limN→∞
1−(1−1/(N−1))N−1

2 = 1−1/e
2 . Thus, the above Proposition 4.2 establishes the

tightness of the results in Theorem 4.1.
Remark 4.1. We point out a subtlety in the above lower bound, which leads to an intriguing open
problem. Proposition 4.2 shows that any threshold within the spectrum in Definition 2.2 cannot

13When T ≤ λi, distribution Gi is a point mass at mean value λi.
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achieve ( 1−
1/e
2 + ε)-approximation under strategic reward signaling. However, this does not rule

out the possibility of having a threshold outside that spectrum that achieves 1/2-robustness. This
is an interesting open question to resolve, though necessarily challenging since it is even already
quite non-trivial to prove 1/2-approximation in the non-strategic setting for thresholds outside the
spectrum of Definition 2.2, let alone achieving 1/2-approximation simultaneously in both worlds.

Theorem 4.1 holds for all distributions, regardless of being discrete or continuous. In the remainder
of this subsection, we present the proof of Theorem 4.1 only for the continuous distribution case.
The proof of this case carries our core ideas but is cleaner to present.

4.1 (Partial) Proof of Theorem 4.1: The Case of Continuous Distributions

Our proof starts by upper bounding the prophet value OPT.14

Lemma 4.3 (Upper Bounding OPT via Pooling Cutoffs). Given a threshold stopping policy with
threshold T , let ti be the pooling cutoff for each player i defined as in Proposition 3.1. Let I ≜
argmaxi∈[N ] ti, then we have OPT ≤ HI(tI)tI +

∑
i T (1−Hi(ti)).

Proof of Lemma 4.3. Let us fix a threshold T , and let ti be the pooling cutoff for player i defined in
Proposition 3.1. Define bi ≜ (Xi − ti)

+. By definition, for each i, we have Xi ≤ ti + bi. Thus,

OPT = EH1:N

[
max

i
Xi

]
≤ max

i
ti +

∑
i

EHi
[bi]

(a)

≤ max
i

ti +
∑
i

(T − ti) · (1−Hi(ti))

(b)

≤ tIHI(tI) +
∑
i

T (1−Hi(ti)) ,

where inequality (a) follows from the definition of pooling cutoff ti in Proposition 3.1 and inequality
(b) follows from the definition of I , ti ≥ 0, and rearranging the terms.

With the above upper bound of prophet value, we have the following results:

Lemma 4.4. Let T † satisfy
∏N

i=1 Hi(t
†
i ) = (N−1

N )N where t†i is defined in Proposition 3.1 with

threshold T †, then searcher’s expected payoff us(T †) ≥ T †
(
1−

∏
i Hi(t

†
i )
)
≥ 1−(N−1

N )N

2 ·OPT.15

Proof of Lemma 4.4. Given a stopping threshold T , by Proposition 3.1, we can lower bound the
searcher’s expected payoff as follows: us(T ) ≥ T ·

(
1−

∏N
i=1 Hi(ti)

)
. Thus, together with

14All our analysis in the main text implicitly consider the case where maxi λi < OPT/2. If we have
maxi λi ≥ OPT/2, then the searcher can simply choose the threshold T = OPT/2 which lies in the range of
the thresholds defined in Definition 2.2 to obtain payoff us(T ) ≥ OPT/2. To see this, by Proposition 3.1, if
maxi λi ≥ OPT/2 = T , then there exists at least one player j whose λj ≥ OPT/2 will choose the no information
revealing strategy, and the searcher surely obtains a payoff no smaller than OPT/2.

15Note that for non-continuous distributions T † always exists but is defined a bit differently, please see the
full version of the paper for more details.
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Lemma 4.3, we have

us(T )

OPT
≥

T ·
(
1−

∏N
i=1 Hi(ti)

)
OPT

(a)

≥
T ·
(
1−

∏N
i=1 Hi(ti)

)
tIHI(tI) +

∑
i T (1−Hi(ti))

(b)

≥
1−

∏N
i=1 Hi(ti)

HI(tI) +
∑

i(1−Hi(ti))

(c)

≥
1−

∏N
i=1 Hi(ti)

N + 1−
∑

i Hi(ti)

(d)

≥
1−

∏N
i=1 Hi(ti)

N + 1− (
∏N

i=1 Hi(ti))
1
N

,

where inequality (a) is by Lemma 4.3; inequality (b) is by the fact that ti ≤ T for all i ∈ [N ];
inequality (c) is due to HI(tI) ≤ 1; and inequality (d) is by the AM-GM inequality. Now consider
the function f(x) ≜ 1−x

N+1−Nx
1
N

over x ∈ [0, 1]. By choosing x† = (N−1
N )N , we have f(x†) =

1−(N−1
N )N

2 . This implies that we have T †
(
1−

∏
i Hi(t

†
i )
)
≥ 1−(N−1

N )N

2 · OPT.

With the above Lemma 4.4, we are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. From Lemma 4.4, we showed

T †

(
1−

∏
i

Hi(t
†
i )

)
≥ OPT ·

1− (N−1
N )N

2
,

where t†i is the pooling cutoff defined in Proposition 3.1 with the threshold T †. By definition of T †,
we have

∏
i Hi(t

†
i ) = (N−1

N )N ≤ 1/e. Thus we can deduce that T † ≥ OPT/2 = TKW. Now let t‡i be
the pooling cutoff when the searcher uses the stopping threshold TKW. Then we have

us(TKW) ≥ TKW ·

(
1−

∏
i

Hi(t
‡
i )

)
(a)

≥ TKW ·

(
1−

∏
i

Hi(t
†
i )

)
≥ OPT · 1−

1/e

2

where inequality (a) is due to T † ≥ TKW, and thus we have t†i ≥ t‡i .

5 Achieving 1
2
-robustness for Special Distributions

The preceding section showed the (1 − 1/e)/2-robustness of the TKW-threshold stopping policy for ar-
bitrary reward distributions. In this section, we show that this ratio can be improved to 1/2-robustness
when the distributions H1:N satisfy certain conditions: (1) IID distributions – all reward distributions
are identical, namely, H ≡ Hi for all i ∈ [N ] (see Section 5.1); and (2) Log-concave distributions –
reward distribution Hi has log-concave density (see Section 5.2). We also show that 1/2-robustness
is tight under IID distributions.

5.1 IID Distributions

Our main findings for IID distributions are stated below:
Theorem 5.1. For any distributions H1:N where H ≡ Hi,∀i ∈ [N ], a threshold stopping policy
with threshold T = T ∗ is 1

2 -robust where T ∗ is defined in Definition 2.2.

For IID distributions, we show that the searcher is able to achieve a better robustness approximation
ratio compared to arbitrary distributions. Below we argue that this 1/2-robustness is tight in the sense
that there exists no threshold policy that can achieve better robustness approximation ratios.
Proposition 5.2 (Tightness of Theorem 5.1). There exist IID distributions such that there exists no
threshold stopping policy that can achieve α-robustness where α > 1

2 + ε for any ε > 0.
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We note that Proposition 5.2 is a slightly stronger lower bound than Proposition 4.2 as it rules out the
possibility for all possible threshold stopping polices, being within the spectrum in Definition 2.2 or
beyond. We prove Proposition 5.2 by constructing a hard instance. In particular, we construct IID
distributions with binary support. With this instance, we show that any threshold policy that achieves
competitive ratio at least 1/2 in non-strategic setting will have competitive ratio approaching to 0 in
the strategic setting. Please see

A crucial requirement in our robustness study so far is that we insist that the threshold policy should,
first of all, remains an 1/2-approximation in the non-strategic setting16, conditioned on which we look
for additional guarantee for in the strategic setting. We conclude this section by pointing that if one
was willing to give up the 1/2-approximation in the non-strategic setting, then it is indeed possible to
have a threshold policy that achieves better approximation (specifically, an (1− 1/e)-approximation)
in the strategic setting. While this does not satisfy our robustness requirement, it is useful to note.
Corollary 5.3. For any IID distributions, there exists a threshold stopping policy that is (1 − 1/e)-
approximation under strategic reward signaling. Moreover, there exist IID distributions such that
no threshold stopping policy can achieve (1− 1/e + ε)-approximation for any ε > 0.

5.2 Log-concave Heterogeneous Distributions

In this subsection, we show that when the distributions H1:N satisfy certain regularity assumptions,
there exist threshold stopping policies with thresholds from Definition 2.2 that can also achieve
1/2-robustness. The main result in this section is stated as follows:
Theorem 5.4. For α, β > 0, let Fα,β be the family of distributions with log-concave probability
density functions f on support [0, 1] such that f(1) ≥ α and f ′(1) ≥ −β. If the distributions
H1, . . . ,HN are all from Fα,β and N ≥ 1 + β

α2 , then we always have 2 · TKW ≤ TSC and any
threshold T satisfying 2 · TKW ≤ T ≤ TSC is 1/2-robust.

A few remarks on the assumptions in Theorem 5.4 are worth mentioning. First, log-concavity of
probability density functions17 is a commonly used assumption; they include but are not limited
to: normal, beta, gamma, and exponential distributions. The restriction to support on [0, 1] is for
normalization reasons, hence without loss of generality. The main non-trivial restriction is that this
result holds when the number of players N is large enough, formally N ≥ 1 + β

α2 . This condition
becomes less restrictive when α (lower bounding f(1)) becomes larger and/or β (upper bounding
−f ′(1)) becomes smaller. These together, intuitively, imply that f decreases slowly within [0, 1].

Define H̄(x) ≜
∏N

i=1 Hi(x). Theorem 5.4 follows directly from the following Lemma 5.5 and
Lemma 5.6.
Lemma 5.5. If H̄ is convex, then 2·TKW ≤ TSC and any threshold stopping policy with the threshold
T satisfying 2 · TKW ≤ T ≤ TSC, where TKW, TSC are defined as in Definition 2.1, is 1/2-robust.

Lemma 5.6. If the distributions H1, . . . ,HN are all from Fα,β and N ≥ 1+ β
α2 , then H̄ is convex.

6 Conclusion and Future Directions

In this paper, we study a variant of the prophet inequality problem where each random variable
is associated with a strategic player who can strategically signal their reward to the searcher. We
first fully characterize the optimal information strategy of each player, then we show the threshold
stopping policies that can perform robustly well under both the strategic and non-strategic settings.

Our novel consideration of natural strategic manipulations in prophet inequalities open the door
for many interesting future directions. First, it is interesting to see if we can improve the 1−1/e

2 -
robustness guarantee for arbitrary reward distributions by using not commonly used thresholds out-
side the spectrum of Definition 2.2. This may be technically challenging since finding a threshold

16Note that in non-strategic setting, unlike the case for arbitrary distributions where there exists no policy
that can achieve better than 1/2-approximation, for IID distributions, (1− 1/e)-approximation can be achieved
by fixed threshold together with some careful probabilistic tie-breaking rule [3] (or 0.7451-approximation with
an adaptive threshold policy [39]). However, in our work, we focus on fixed threshold policy with deterministic
tie-breaking rule where 1/2-approximation is still optimal for IID distributions.

17A probability density function f : R → R+ is log-concave if log(f) is concave.
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outside this spectrum with optimal 1/2-approximation for the classic non-strategic prophet inequality
is already non-trivial. Another interesting direction is to go beyond threshold policies. That leads
to a different research theme, not about robustness of the classic prophet inequality, but rather in
the search of potentially much more complex best-of-both-world policies. Our preliminary result
reveals that a dynamic threshold stopping policy (using different thresholds for different players)
has the potential to help the searcher to achieve more than 1−1/e

2 -approximation under the strategic
setting. However, it is still unclear whether 1/2-robustness is achievable under threshold stopping
policies, no matter whether it is static threshold or dynamic threshold. Finally, even if one only cares
about the performance under the strategic reward signaling (and ignore the non-strategic world), it
is still unclear which static threshold stopping policy achieves the highest competitive ratio. The au-
thors in [20] study a model with a very similar mathematical structure and proved that this best upper
bound is strictly less than 1/2 in Section 4.1, but an interesting direction is improving this bound fur-
ther. We note that all our constructed examples in the hardness results (e.g., Proposition 4.2 and
Proposition 5.2) do not rule out the existence of such 1/2-approximation threshold stopping policies.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately summarize our results. In the main
text, we provide all rigorous statements and proofs for these results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are discussed in conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are clearly stated, and proofs are rigorously written.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theory work, no experiment is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No data and code is used.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No violation of NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies a theoretical problem, to the best of our knowledge, there
is no societal impact of the work that we need to address.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable to our paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: No new assets as this is a theory work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This project is not a crowd sourcing project and has no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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The full version of this paper, including detailed proofs, can be found at https://arxiv.org/
pdf/2409.18269
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