
Under review as a conference paper at ICLR 2021

LEARN GOAL-CONDITIONED POLICY WITH INTRINSIC
MOTIVATION FOR DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

It is of significance for an agent to learn a widely applicable and general-purpose
policy that can achieve diverse goals including images and text descriptions. Con-
sidering such perceptually-specific goals, the frontier of deep reinforcement learn-
ing research is to learn a goal-conditioned policy without hand-crafted rewards.
To learn this kind of policy, recent works usually take as the reward the non-
parametric distance to a given goal in an explicit embedding space. From a
different viewpoint, we propose a novel unsupervised learning approach named
goal-conditioned policy with intrinsic motivation (GPIM), which jointly learns
both an abstract-level policy and a goal-conditioned policy. The abstract-level
policy is conditioned on a latent variable to optimize a discriminator and discov-
ers diverse states that are further rendered into perceptually-specific goals for the
goal-conditioned policy. The learned discriminator serves as an intrinsic reward
function for the goal-conditioned policy to imitate the trajectory induced by the
abstract-level policy. Experiments on various robotic tasks demonstrate the effec-
tiveness and efficiency of our proposed GPIM method which substantially outper-
forms prior techniques.

1 INTRODUCTION

Reinforcement learning (RL) makes it possible to drive agents to achieve sophisticated goals in
complex and uncertain environments, from computer games (Badia et al., 2020; Berner et al., 2019)
to real robot control (Lee et al., 2018; Lowrey et al., 2018; Vecerik et al., 2019; Popov et al., 2017),
which usually involves learning a specific policy for individual task relying on task-specific reward.
However, autonomous agents are expected to exist persistently in the world and have the ability to
solve diverse tasks. To achieve this, one needs to build a universal reward function and design a
mechanism to automatically generate diverse goals for training. Raw sensory inputs such as images
have been considered as common goals for agents to practice on and achieve (Watter et al., 2015;
Florensa et al., 2019; Nair et al., 2018; 2019), which further exacerbates the challenge for designing
autonomous RL agents that can deal with such perceptually-specific inputs.

Previous works make full use of a goal-achievement reward function as available prior knowl-
edge (Pong et al., 2018), such as Euclidean distance. Unfortunately, this kind of measurement in
original space is not very effective for visual tasks since the distance between images does not cor-
respond to meaningful distance between states (Zhang et al., 2018). Further, the measure function
is applied in the embedding space, where the representations of raw sensory inputs are learned by
means of using a latent variable model like VAE (Higgins et al., 2017b; Nair et al., 2018) or using the
contrastive loss (Sermanet et al., 2018; Warde-Farley et al., 2018). We argue that these approaches
taking prior non-parametric reward function in original or embedding space as above may limit the
repertoires of behaviors and impose manual engineering burdens (Pong et al., 2019).

In the absence of any prior knowledge about the measure function, standard unsupervised RL meth-
ods learn a latent-conditioned policy through the lens of empowerment Salge et al. (2014); Ey-
senbach et al. (2018); Sharma et al. (2019) or the self-consistent trajectory autoencoder (Co-Reyes
et al., 2018; Hausman et al., 2018). However, the learned policy is conditioned on the latent variables
rather than perceptually-specific goals. Applying these procedures to goal-reaching tasks, similar to
parameter initialization or the hierarchical RL, needs an external reward function for the new tasks;
otherwise the learned latent-conditioned policy cannot be applied directly to user-specified goals.

1

Under review as a conference paper at ICLR 2021

Different from previous works, a novel unsupervised RL scheme is proposed in this paper to learn
goal-conditioned policy by jointly learning an extra abstract-level policy conditioned on latent
variables. The abstract-level policy is trained to generate diverse abstract skills while the goal-
conditioned policy is trained to efficiently achieve perceptually-specific goals that are rendered from
the states induced by the corresponding abstract skills. Specifically, we optimize a discriminator in
an unsupervised manner for the purpose of reliable exploration (Salge et al., 2014) to provide the
intrinsic reward for the abstract-level policy. Then the learned discriminator serves as an intrinsic re-
ward function for the goal-conditioned policy to imitate the trajectory induced by the abstract-level
policy. In essence, the abstract-level policy can reproducibly influence the environment, and the
goal-conditioned policy perceptibly imitates these influences. To improve the generalization ability
of goal-conditioned policy in dealing with perceptually-specific inputs, a latent variable model is
further considered in the goal-conditioned policy to disentangle goals into latent generative factors.

The main contribution of our work is an unsupervised RL method that can learn perceptually-specific
goal-conditioned policy without the prior reward function for autonomous agents. We propose a
novel training procedure for this model, which provides an universal and effective reward function
for various perceptual goals, e.g. images and text descriptions. Furthermore, we introduce a latent
variable model for learning the representations of high-dimensional goals, and demonstrate the po-
tential of our model to generalize behaviors across new tasks. Extensive experiments and detailed
analysis demonstrate the effectiveness and efficiency of our proposed method.

2 PRELIMINARIES

RL: An agent interacts with an environment and selects actions in RL so as to maximize the ex-
pected amount of reward received in the long run (Sutton & Barto, 2018), which can be mod-
eled as a Markov decision process (MDP) (Puterman, 2014). An MDP is defined as a tuple
M = (S,A, p,R, γ), where S and A are state and action spaces, p(·|s, a) gives the next-state
distribution upon taking action a in state s, R(s, a, s′) is a random variable representing the reward
received at transition s a→ s′, and γ ∈ [0, 1) is a discount factor.

Intrinsic Motivation: RL with intrinsic motivation obtains the intrinsic reward by maximizing the
mutual information between latent variables ω and agent’s behaviors τ : I(ω; τ), where the specific
manifestation of τ can be an entire trajectory (Achiam et al., 2018), an individual state (Eysenbach
et al., 2018) or a final state (Gregor et al., 2016); and the specific implementation includes reverse
and forward forms (Campos et al., 2020). Please refer to Aubret et al. (2019) for more details.

Disentanglement: Given an observation x with a dimension of N , VAE (Kingma & Welling, 2013;
Higgins et al., 2017a) is a latent model that pairs a top-down encoder q(z|x) with bottom-up de-
coder network p(x|z) by introducing a latent factor z, where dim(z) < N . To encourage the in-
ferred latent factor z to capture the generative factor of x in a disentangled manner, an isotropic
unit Gaussian prior p(z) ∼ N(0; I) is commonly used to control the capacity of the information
bottleneck (Burgess et al., 2018) by minimizing the KL divergence between q(z|x) and p(z).

3 THE METHOD

In this section, we firstly formalize the problem and introduce the framework. Secondly, we elab-
orate on the process of how to jointly learn the goal-conditioned policy and abstract-level policy.
Thirdly, disentanglement is applied in our setting to improve the generalization ability.

3.1 OVERVIEW

Given perceptually-specific goal g, our objective is to learn a goal-conditioned policy πθ (a|s̃, g) that
inputs state s̃ and g and outputs action a as shown in Fig. 1. The abstract-level policy πµ(a|s, ω)
takes as input state s and a latent variable ω and outputs action a, where ω corresponds to diverse
latent skills. The discriminator qφ is firstly trained at the abstract-level for reliable exploration,
then it provides the reward signal for the goal-conditioned policy to imitate the trajectory induced
by the abstract-level policy. The abstract-level policy is able to generate diverse states s that are
further rendered as diverse perceptually-specific goal g = Render(s). On this basis, πθ (a|s̃, g)

2

Under review as a conference paper at ICLR 2021

Figure 1: Framework of GPIM. We jointly train the abstract-level policy πµ and the discriminator
qφ to understand skills which specify task objectives (e.g., trajectories, the final goal state), and
use such understanding to reward the goal-conditioned policy for completing such (rendered) tasks.
State st+1 (e.g., position of an agent) induced by πµ is converted into a perceptually-specific goal gt
(e.g., image showing the position of the agent) for πθ. Note that the two environments in the figure
are identical, and the initial states s0 of πµ and s̃0 of πθ are sampled from the same distribution.

conditioned on the rendered goal g interacts with the reset environment under the instruction of the
reward function qφ. We use the non-tilde s and the tilde s̃ to distinguish between the states of two
policies respectively. Actually, s̃ and s come from the same distribution.

3.2 PROPOSED GPIM METHOD

Figure 2: Graphical model.

In order to jointly learn the abstract-level policy
πµ(a|s, ω) and goal-conditioned policy πθ (a|s̃, g), we
maximize the mutual information between the state s and
latent variable w for πµ, and simultaneously maximize
the mutual information between the state s̃ and goal g
for πθ. Consequently, the overall objective function to be
maximized can be expressed as follows 1

F(µ, θ) = I(s;ω) + I(s̃; g). (1)

For clarification, Fig. 2 depicts the graphical model for the latent variable ω, state s induced by πµ,
goal g rendered from s, and state s̃ induced by πθ. As seen, the latent variable ω ∼ p(ω)2 is firstly
used to generate state s via the policy πµ interacting with dynamic environment. Then, we use the
state s to generate perceptually-specific goal g. After that, the goal-conditioned policy πθ outputs
action a to interact with the environment to obtain the state s̃ at the next time step. In particular, ω is
expected to generate diverse behavior modes through πµ while πθ behaving like s̃ is to imitate this
behavior by taking as input the rendered goal g. Based on the context, the correlation between s̃ and
g is no less than that between s̃ and w , so that I(s̃; g) ≥ I(s̃;ω) (Beaudry & Renner, 2011). Thus,
we can obtain the lower bound of F(µ, θ):

F(µ, θ) ≥ I(s;ω) + I(s̃;ω)

= 2H(ω)−H(ω|s)−H(ω|s̃)
= Eω,s,s̃ [log p(ω|s) + log p(ω|s̃)− 2 log p(ω)] . (2)

Since it is difficult to exactly compute the posterior distributions p(ω|s) and p(ω|s̃), Jensen’s In-
equality (Barber & Agakov, 2003) is further applied for approximation by using a learned discrimi-

1To further clarify the motivation, we conduct the ablation study to compare our method with that just
maximizing I(s;ω) and that just maximizing I(s; g) in Appendix A.1.

2p(ω) denotes the prior distribution. Fixing p(ω) instead of learning it is to prevent πµ from collapsing to
sampling only a handful of skills. In experiment, we use a categorical distribution for p(ω) following DIAYN.

3

Under review as a conference paper at ICLR 2021

Algorithm 1 Learning process of our proposed GPIM

1: while not converged do
2: Sample skill ω ∼ p(ω).
3: # Step I
4: Sample initial state s0 ∼ p0(s).
5: for t = 0, 1, ..., T steps do
6: Sample action at ∼ πµ(at|st, ω).
7: Step environment: st+1 ∼ p(st+1|st, at).
8: Render goal: gt = Render(st+1).
9: Compute reward rt for policy πµ using (5).

10: Update policy πµ to maximize rt with SAC.

11: Update discriminator (qφ) to maximize
log qφ(ω|st+1) with SGD.

12: end for

13: # Step II
14: Sample initial state s̃0 ∼ p0(s̃).
15: for t = 0, 1, ..., T − 1 steps do
16: Sample action at ∼ πθ(at|s̃t, gt).
17: Step environment: s̃t+1 ∼ p(s̃t+1|s̃t, at).
18: Compute reward r̃t for policy πθ using (7).
19: Update policy πθ to maximize r̃t with SAC

(θ = {ϑE , ϑG} when considering the dis-
entanglement).

20: Update ϑE and ϑD by maximizing Dis loss
in (8) using SGD.

21: end for
22: end while

nator network qφ(ω|·) (see Appendix B.1 for the derivation). Thus,

F(µ, θ) ≥ Eω,s,s̃ [log qφ(ω|s) + log qφ(ω|s̃)− 2 log p(ω)] , J (µ, φ, θ), (3)
where it is worth noting that the identical discriminator qφ with the parameter φ is used for the
variational approximation of p(ω|s) and p(ω|s̃). For the state s induced by skill w and s̃ originat-
ing from g, the shared discriminator qφ assigns a similarly high probability on w for both states
s and s̃ associated with the same ω. Intuitively, we factorize the abstract-level policy and learn
it purely in the space of the agent’s embodiment (i.e., the latent variable ω) — separate from the
perceptually-specified goals (e.g., images and text descriptions). The space of goals in these two
spaces has different characteristics due to the underlying manifold spaces. Therefore, qφ can be
regarded as a reward network shared by the abstract-level policy πµ(a|s, ω) and goal-conditioned
policy πθ (a|s̃, g).

According to the objective function J (µ, φ, θ) in (3), we propose an alternating optimization be-
tween πµ and πθ as follows:

Step I: Fix πθ and update πµ and qφ. In this case, θ is not a variable to update and J (µ, φ, θ)
becomes

J (µ, φ) = Eω,s [log qφ(ω|s)] + Eω,s̃ [log qφ(ω|s̃)− 2 log p(ω)]︸ ︷︷ ︸
Variable independent term

. (4)

According to (4), J (µ, φ) can be thus optimized by setting the reward at time step t for πµ as
rt = log qφ(ω|st+1)− log p(ω), (5)

where the term − log p(ω) is added for agents to avoid artificial termination and reward-hacking
issues (Amodei et al., 2016). We implement this optimization with soft actor-critic (SAC). On the
other hand, the reward network qφ can be updated with SGD by maximizing Eω,s [log qφ(ω|s)].
Step II: Fix πµ and qφ to update πθ. In this case, µ and φ are not variables to update any more and
J (µ, φ, θ) can be simplified as

J (θ) = Eω,s̃ [log qφ(ω|s̃)] + Eω,s [log qφ(ω|s)− 2 log p(ω)]︸ ︷︷ ︸
Variable independent term

. (6)

According to (6), J (θ) can thus be optimized by setting the reward at time step t for πθ as
r̃t = log qφ(ω|s̃t+1)− log p(ω), (7)

where the term − log p(ω) is added for the same reason as above and we also implement this opti-
mization with SAC. These two steps are performed alternately until convergence. The overall GPIM
is summarized in Algorithm 1, which includes the disentanglement (red) in the next subsection.

3.3 IMPROVE GENERALIZATION VIA DISENTANGLEMENT

The goal gt can be further disentangled (Higgins et al., 2017a) so as to improve the generalization
ability of the goal-conditioned policy πθ.

4

Under review as a conference paper at ICLR 2021

Figure 3: Disentanglement of policy πθ.

As shown in Fig. 3, we decompose πθ into two
components: the encoder network E parameter-
ized by ϑE and the generative network G pa-
rameterized by ϑG. So we have πθ(at|s̃t, gt) =
pϑG

(at|s̃t, qϑE
(z|gt)).

To encourage this disentangling property in the
inferred qϑE

(z|gt), we adopt an prior p(z) ∼
N(0; I) to control the capacity of the informa-
tion bottleneck by minimizing the KL diver-
gence between qϑE

(z|gt) and p(z). Hence, the overall objective function of goal-conditioned policy
πθ becomes

max
ϑE ,ϑG,ϑD

Eω,s̃t [r̃t] + α · Egt,z [pϑD
(gt|z)]− β · Egt [KL(qϑE

(z|gt)||p(z))]︸ ︷︷ ︸
,Dis loss

, (8)

where α and β are two hyperparameters. It is worth noting that the update of the encoder E is based
on gradients from both πθ and Dis loss. With this disentanglement, the overall GPIM method is
given in Algorithm 1 as mentioned above.

4 RELATED WORK

Investigating goal distribution: Many prior methods (Schaul et al., 2015; Andrychowicz et al., 2017;
Pong et al., 2018; Hartikainen et al., 2019) assume an available distribution of goals during explo-
ration for sparse-reward problems, where the resampled goals are restricted to states encountered
along the trajectory (Andrychowicz et al., 2017; Levy et al., 2017) or in an embedding space (Nair
et al., 2018). The setting of goals for learning policy has been discussed in Baranes & Oudeyer
(2013). Recently, several works (Colas et al., 2018; Warde-Farley et al., 2018; Florensa et al., 2019;
Nair et al., 2018; Péré et al., 2018) adopt heuristics to design a goal distribution based on previously
visited states. However, many of these (Nair et al., 2018; Pong et al., 2019; Warde-Farley et al.,
2018) assume an ideal matching of the goal space with the state space.

Learning goal-conditioned policy: Several recent works propose various methods for agents to au-
tomatically learn policies by maximizing the mutual information between behaviors (e.g., latent
variables) and tasks (e.g., goals). DISCERN (Warde-Farley et al., 2018) simultaneously learns a
goal-conditioned policy and a goal achievement reward function that measures how similar a state
is to the goal state. Pong et al. (2019) concurrently trains a goal-reaching policy and maximizes
the entropy of the generated goal distribution. Given the difficulty of vision-based RL, Pong et al.
(2019) resorts to RIG (Nair et al., 2018), which obtains reward using prior non-parametric measure
function in embedding spaces. Other unsupervised methods (Sharma et al., 2019; Campos et al.,
2020), capable of learning diverse skills, are difficult to apply directly to user-specified tasks.

Learning disentanglement representation: Many prior works utilize unsupervised learning in RL to
acquire disentanglement representation (Bengio et al., 2013; Higgins et al., 2017a; Chen et al., 2016;
Burgess et al., 2018). Some works take the disentanglement representation as a substitute for states
(Higgins et al., 2017b; Ha & Schmidhuber, 2018; Jonschkowski et al., 2017; Finn et al., 2016; Lange
et al., 2012; Watter et al., 2015; Srinivas et al., 2018; Nair et al., 2019; Srinivas et al., 2018) while
others consider a non-parametric metric in a latent space to acquire a reward function (Nair et al.,
2018; Sermanet et al., 2018). Besides, a few works directly embed manipulation tasks to generalize
to long-horizon tasks (Goyal et al., 2019; Hausman et al., 2018; Mandlekar et al., 2020).

Hindsight, self-play and knowledge distillation: Our method is similar in spirit to goal relabeling
methods like hindsight experience replay (HER) (Andrychowicz et al., 2017) which replays each
episode with a different goal in addition to the one the agent was trying to achieve. However, HER
requires a prior reward function and a hand-crafted goal space. By contrast, GPIM is unsupervised
and able to find its own goal space. The self-play (Sukhbaatar et al., 2017; 2018) is closely related
to our scheme, leading to emergent autocurricula by pitting two versions of the same agent against
one another. However, these approaches generally require prior reward functions. As for knowledge
distillation (Xu et al., 2020), we aim at extracting the relationship between two different tasks.

5

Under review as a conference paper at ICLR 2021

(a) 2D navigation (b) Object manipulation (c) Atari games

(d) Swimmer (e) Half cheetah (f) Fetch

Figure 5: Goals and learned behaviors by GPIM: Dots in 2D navigation (left subfigure, x-y goal) and
atari games denote different final goal states, and curves with same color represent corresponding
trajectories; Goals in 2D navigation (right subfigure, color-shape goal) and object manipulation are
described using the text at the top of the diagram, where the purple lines imply the behaviors; In
mujoco tasks, the first (swimmer, half cheetah and fetch) and third (swimmer and half cheetah) rows
represent the expert trajectories, and each row below represents the corresponding behavior.

5 EXPERIMENTS

Extensive experiments are conducted to evaluate our proposed GPIM method, where the follow-
ing four questions3 will be considered in the main paper: 1) By using the ”archery” task, we
clarify whether qφ can provide an effective reward function on learning the goal-conditioned pol-
icy πθ. Furthermore, more complex tasks including navigation, object manipulation, atari games,
and mujoco tasks are introduced to answer: 2) Does our model learn effective behaviors condi-
tioned on a variety of goals, including high-dimensional images and text descriptions that are het-
erogeneous to states? 3) Does the proposed GPIM on learning a goal-conditioned policy outper-
form baselines? 4) Does the learned reward function produce better expressiveness of tasks, com-
pared with the prior non-parametric function in the embedding space? Video is available under
https://sites.google.com/view/gpim.

1 0 1

ar
ch

er
y

TargetsTargetsTargets angle

Deterministic

1 0 1

ar
ch

er
y

TargetsTargetsTargetsTargetsTargets angle

Stochastic

1 0 1
Final state

0.4

0.6

0.8

1.0

re
wa

rd

Deterministic

goal=1
goal=0
goal=-1

1 0 1
Final state

Stochastic

goal=0
goal=-0.5/+0.5
goal=-1/+1

Figure 4: ”Archery” tasks and learned rewards.

Visualizing the learned reward function. We
start with simple ”archery” task to visualize
how the learned reward function (discriminator
qφ) accounts for goal-conditioned behaviors in
dynamics. The task shown in Fig. 4 requires
choosing an angle at which we shoot an arrow
to the target. The left upper subfigure shows
that in a deterministic environment, given three
different but fixed targets (with different col-
ors), the arrow reaches the corresponding target
successfully under the learned reward function
qφ. The reward as a function of the final location of arrows in three tasks is shown on the right. We
can find that the learned reward functions resemble convexes in terms of the distance between final
states to targets, where vertexes appear in the positions of the corresponding targets. Specifically,
the maximum value of the learned reward function is achieved when the final state is close to the
given target. The farther away the agent’s final state is from the target, the smaller this reward value
is. Similarly, the same conclusion can be drawn from the stochastic environment in the left lower
subfigure, where the angle of the arrow has a 50% chance to become a mirror-symmetric angle.
We see that the learned reward function substantially describes the dynamics and the corresponding
tasks, both in deterministic and stochastic environments. This answers our first question.

3Due to the page limitation, more experimental analysis and results are included in the Appendix.

6

https://sites.google.com/view/gpim

Under review as a conference paper at ICLR 2021

Scaling to more complex tasks. To answer our second question, we now consider more complex
tasks as shown in Fig. 5. 1) In 2D navigation tasks, an agent can move in each of the four cardinal
directions. We consider the following two tasks: moving the agent to a specific coordinate named
x-y goal4 and moving the agent to a specific object with certain color and shape named color-shape
goal. 2) Object manipulation considers a moving agent in 2D environment with one block for
manipulation, and the other block as a distractor. The agent first needs to reach the block and then
move the block to the given location, where the block is described using color and shape. In other
words, the description of the goal contains the color-shape goal of the true target block and the
x-y goal of the target coordinate. 3) Three atari games including seaquest, berzerk and montezuma
revenge require an agent to reach the given final states. 4) We use three mujoco tasks (swimmer, half
cheetah, and fetch) taken from OpenAI GYM (Brockman et al., 2016) to fast imitate given expert
trajectories. Specifically, the goals for πθ in 2D navigation, object manipulation and atari games are
the rendered final state sT induced by abstract-level policy πµ: gt = Render(sT), and the goals for
πθ in mujoco tasks are the rendered trajectories induced by πµ: {g0, g1, ...} = Render({s1, s2, ...}).

The left subfigure of Fig. 5(a) shows the learned behaviors of navigation in continuous action space
given the x-y goal which is denoted as the small circle, and the right subfigure shows the trajectory
of behavior with the given color-shape goal. More results on discrete navigation can be found in
Appendix D.2. As observed, the agent manages to learn navigation tasks by using GPIM. Further,
2D navigation with color-shape goal (Fig. 5(a) right) and object manipulation tasks (Fig. 5(b)) show
the effectiveness of our model facing heterogeneous goals and states. Specifically, Fig. 5(b) shows
the behaviors of the agent on object manipulation, where the agent is asked to first arrive at a block
(i.e., blue circle and green square respectively) and then push it to the given location inside a dark
circle (i.e., [6.7, 8.0] and [4.8, 7.9] respectively), where the red object exists as a distractor. Fig. 5(c)
shows the behaviors of agents that reach the final states in a higher dimensional (action, state and
goal) space on seaquest, berzerk and montezuma revenge respectively. Fig. 5(d-f) shows how the
agent imitates expert trajectories of swimmer, half cheetah and fetch.

By learning to reach diverse goals generated by the abstract-level policy and then disentangling the
goals, the agent learns the ability to infer new goals later encountered by the agent. For example, as
in Fig. 5(a) (right), learning three behaviors with the goal of red-square, red-circle or blue-square in
a gray background makes the agent accomplish the new goal of blue-circle in a white background.
We further conduct the ablation study in Appendix A.3 to show how the disentanglement affects
the learned behaviors, and use more experiments to show the generalization of the goal-conditioned
policy to unseen goals in Appendix A.4.

Start
Start

Expert behavior Learned behavior

Fetch

Figure 6: Expert behaviors and learned behaviors.

Solving complex temporally-extended tasks is a
long-standing RL problem (Jiang et al., 2019).
For this purpose, we further make agents im-
itate the given composite behaviors (i.e., ex-
pert behaviors) and show their performance in
Fig. 6. Specifically, we consider the fetch task
as in Fig. 5(f), where the gripper of the robot
arm is used to render a series of 3D coordinates
as goals for imitation in training phase. Dur-
ing test, we employ two parameterized complex
curves for the gripper to follow: (x, y, z) = (t sin(t)/50, t cos(t)/50− 1/50,− log(t+ 1)/5) (left)
and (x, y, z) = (t/5, cos(t)/5 − 1/5, sin(t)/5) (right). It is worth noting that during training the
agent is required to imitate a large number of simple behaviors and has never seen such complex
goals before testing. It is observed from Fig. 6 that the imitation curves are almost overlapping with
the given expert trajectories, indicating that the agent using GPIM has the potential to learn such
compositional structure of goals during training and generalize to new composite goals during test.

Comparison with baselines. For the third question, we compare our method to three baselines:
RIG (Nair et al., 2018), DISCERN (Warde-Farley et al., 2018), and L2 Distance. L2 Distance
measures the distance between states and goals, where the L2 distance −||st − sg||2/σpixel is con-
sidered with a hyperparameter σpixel. Note that 2D navigation with the color-shape goal and object
manipulation using text description makes the dimensions of states and goals different, so L2 can-
not be used in these two tasks. In RIG, we obtain rewards by using the distances in two embedding

4Definitions of x-y goal, color-shape goal, and environment details are given in Appendix B.2.

7

Under review as a conference paper at ICLR 2021

0 0.5M 1M 1.5M
0

0.25

0.5

0.75

1.0

No
rm

al
ize

d
Di

st
an

ce
 to

 G
oa

ls

2D Navigation (x-y goal)

0 0.5M 1M 1.5M

2D Navigation (color-shape goal)

0 1M 2M 3M

Object Manipulation

0 2M 4M 6M

Seaquest

0 2M 4M 6M

Berzerk

0 2M 4M 6M
0

0.25

0.5

0.75

1.0

No
rm

al
ize

d
Di

st
an

ce
 to

 G
oa

ls

Montezuma Revenge

0 2M 4M 6M

Swimmer

0 2M 4M 6M

HalfCheetah

0 2M 4M 6M

Fetch

GPIM
RIG
DISCERN
L2

Figure 7: Performance (normalized distance to goals vs. training steps) of our GPIM and three
baselines, where GPIM generally achieves smaller distances to goals in comparison to baselines.

spaces and learning two independent VAEs, where one VAE is to encode states and the other is to en-
code goals. We use the normalized distance to goals 5 as the evaluation metric, where we randomly
sampled 50 samples (tasks) from the goal space.

We show the results in Fig. 7 by plotting the normalized distance to goals as a function of the
number of actor’s steps, where each curve considers 95% confidence interval in terms of the mean
value across three seeds. As observed, our GPIM consistently outperforms baselines in almost all
tasks except for the RIG in 2D navigation (x-y goal) due to the simplicity of this task. Particularly,
as the task complexity increases from 2D navigation (x-y goal) to 2D navigation (color-shape goal)
and eventually object manipulation (mixed x-y goal and color-shape goal), GPIM converges faster
than baselines and the performance gap between our GPIM and baselines becomes larger. Moreover,
although RIG learns fast on navigation with x-y goal, it fails to accomplish complex navigation with
color-shape goal because the embedding distance between two independent VAEs has difficulty in
capturing the correlation of heterogeneous states and goals. Especially in high-dimensional action
space and on more exploratory tasks (atari and mujoco tasks), our method substantially outperforms
the baselines.

0 0.5M 1M 1.5M 2M
Actor Steps

0.2

0.4

r :
 D

ist
an

ce
 to

Re

nd
er

ed
 G

oa
ls

 successfully imitates .

not update
update with q

Figure 8: Abstract-level policy πµ gradually ex-
plores the environment, generating more difficult
goals. qφ encourages πθ to gradually mimic πµ.

To gain more intuition for our method, we
record the distance (∆r) between the final state
induced by πθ and the goal rendered by πµ
throughout the training process of the 2D navi-
gation (x-y goal). For this purpose, in this spe-
cific experiment, we update πµ and qφ but ig-
nore the update of πθ before 200 k steps to show
the exploration of πµ at the abstract level. As
shown in Fig. 8, ∆r steadily increases during
the first 200 k steps, indicating that the abstract-
level policy πµ explores the environment (i.e.,
goal space) to distinguish skills more easily,
and as a result, generates diverse goals for training πθ. After around 1.5 M training steps, ∆r al-
most comes to 0, indicating that the goal-conditioned policy πθ has learned a good strategy to reach
the rendered goals. In Appendix A.2, we visually show the generated goals at the abstract level in
more complex tasks, which shows that our straightforward framework can effectively explore the
environment without additional sophisticated exploration strategies.

Expressiveness of the reward function. Particularly, the performance of unsupervised RL meth-
ods depends on the diversity of autonomously generated goals and the expressiveness of the learned
reward function, which is conditioned on the generated goals. We have shown that our straightfor-
ward framework can effectively explore the environment, achieving competitive performance with
baselines (see appendix A.2). The next question is that: with the same exploration capability to
generate goals for training, does our model achieve competitive performance against the baselines?
Said another way, will the obtained reward (over embedding space) of baselines taking the prior non-
parametric function limit the repertoires of learning tasks in a specific environment? Our next exper-

5Definition and further descriptions can be found in Appendix B.3.

8

Under review as a conference paper at ICLR 2021

Wall

Start

Start: Goal:

RIG: Reward function
3k

DISCERN: Learning Process of the reward function
0k 1k 2k 3k

GPIM: Learning Process of the reward function
0k 1k 2k 3k

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
re

wa
rd

0 1M 2M 3M
0

0.25

0.5

0.75

1.0

No
rm

al
ize

d
Di

st
an

ce
 to

 G
oa

ls The maze task (x-y goal)

GPIM
DIAYN+RIG

DIAYN+DISCERN

Figure 9: (Left) The maze environment and reward functions. The heatmaps depict (the learning
process of) the reward function conditioned on the specific task reaching the left-bottom star (RIG
and DISCERN) or ”imitating” the trajectory induced by abstract-level policy (GPIM). Specifically,
the learning process of DISCERN’s reward function refers to the learning process of embedding
state. Note that the reward functions of baselines are conditioned on the goals, while GPIM’s reward
function is conditioned on the skill ω. So, the induced trajectory by GPIM conditioned on the same
skill refines over training steps (at the abstract-level), as shown in the bottom. (Right) Learning
curves for GPIM and the enhanced baselines (DIAYN+RIG and DIAYN+DISCERN). Compared
with our model, baselines ignoring the dynamic of the maze environment exhibit poor performance.

iment studies the expressiveness of the learned reward function. For better graphical interpretation
and comparison with baselines, we simplify the complex Atari games to a maze environment shown
in Fig. 9, where the middle wall poses a bottleneck state. Campos et al. (2020) shows that the canon-
ical information-theoretic skill discovery methods suffer from a poor coverage of the state space.
Here, borrowing the idea from state marginal matching (Lee et al., 2019), we set the reward for the
abstract-level policy as (Jabri et al., 2019) r′t = λ [log qφ(ω|st+1)− log p(ω)]+(λ−1) log qν(st+1),
where qν is a density model, and λ ∈ [0, 1] can be interpreted as trade off between discriminability of
skills and task-specific exploration (here we set λ = 0.5). Note that we modify r′t for improving the
exploration on generating goals, and we do not change the reward for training the goal-conditioned
policy πθ. To guarantee generation of the same diverse goals for training goal-conditioned poli-
cies of baselines, we adopt DIAYN taking the modified reward r′t to generate goals for RIG and
DISCERN, denoted as DIAYN+RIG and DIAYN+DISCERN respectively.

In Fig. 9, we show the visualized learned reward on a specific task reaching the left-bottom star, and
the learning curves on the maze task, where the testing-goals are random sampled. We can see that
the learned reward functions of RIG and DISCERN produce poor signal for the goal-conditioned
policy, which makes learning vulnerable to local optima. Our method builds up the reward function
after exploring the environment, the dynamic of which itself further shapes the reward function. In
Fig. 9 (left), we can see that our model provides the reward function better expressiveness of the task
by compensating for the dynamic. This produces that, even with the same exploration capability to
generate diverse goals, our model sufficiently outperforms the baselines, as shown in Fig. 9 (right).

6 CONCLUSION

We propose a novel GPIM method to learn goal-conditioned policy in an unsupervised manner.
Specifically, we optimize a discriminator in an unsupervised manner for the purpose of reliable
exploration to provide the intrinsic reward for the abstract-level policy. The learned discriminator
then serves as an intrinsic reward function for the goal-conditioned policy to imitate the trajectory
induced by the abstract-level policy. Experiments on a variety of robotic tasks demonstrate the effec-
tiveness and efficiency of our proposed method which substantially outperforms prior unsupervised
techniques.

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

9

Under review as a conference paper at ICLR 2021

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pp. 5048–5058, 2017.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Adria Puigdomenech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. arXiv
preprint arXiv:2003.13350, 2020.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically mo-
tivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

David Barber and Felix V Agakov. The im algorithm: a variational approach to information maxi-
mization. In Advances in neural information processing systems, pp. None, 2003.

Normand J Beaudry and Renato Renner. An intuitive proof of the data processing inequality. arXiv
preprint arXiv:1107.0740, 2011.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

Victor A. Campos, A. Trott, Caiming Xiong, R. Socher, Xavier Giro i Nieto, and J. Torres. Explore,
discover and learn: Unsupervised discovery of state-covering skills. ArXiv, abs/2002.03647,
2020.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey
Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajec-
tory embeddings. arXiv preprint arXiv:1806.02813, 2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial
autoencoders for visuomotor learning. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 512–519. IEEE, 2016.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Ried-
miller. Self-supervised learning of image embedding for continuous control. arXiv preprint
arXiv:1901.00943, 2019.

10

Under review as a conference paper at ICLR 2021

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. arXiv preprint arXiv:1901.10902, 2019.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. In International Conference on
Learning Representations, 2019.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. Iclr, 2(5):6, 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1480–1490. JMLR. org, 2017b.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
supervised curricula for visual meta-reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 10519–10531, 2019.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 9419–9431, 2019.

Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin Riedmiller. Pves: Position-
velocity encoders for unsupervised learning of structured state representations. arXiv preprint
arXiv:1705.09805, 2017.

Rawal Khirodkar, Donghyun Yoo, and Kris M Kitani. Vadra: Visual adversarial domain randomiza-
tion and augmentation. arXiv preprint arXiv:1812.00491, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Autonomous reinforcement learning on
raw visual input data in a real world application. In The 2012 international joint conference on
neural networks (IJCNN), pp. 1–8. IEEE, 2012.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S Hu, and Joseph J Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

11

Under review as a conference paper at ICLR 2021

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Ajay Mandlekar, Danfei Xu, Roberto Martı́n-Martı́n, Silvio Savarese, and Li Fei-Fei. Learn-
ing to generalize across long-horizon tasks from human demonstrations. arXiv preprint
arXiv:2003.06085, 2020.

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey Levine.
Contextual imagined goals for self-supervised robotic learning. arXiv preprint arXiv:1910.11670,
2019.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Vi-
sual reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Unsupervised learn-
ing of goal spaces for intrinsically motivated goal exploration. arXiv preprint arXiv:1803.00781,
2018.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Ve-
cerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep rein-
forcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an introduction. In Guided
Self-Organization: Inception, pp. 67–114. Springer, 2014.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320, 2015.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141. IEEE,
2018.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. arXiv preprint arXiv:1804.00645, 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learning goal embeddings
via self-play for hierarchical reinforcement learning. arXiv preprint arXiv:1811.09083, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30.
IEEE, 2017.

12

Under review as a conference paper at ICLR 2021

Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, and Jon Scholz. A prac-
tical approach to insertion with variable socket position using deep reinforcement learning. In
2019 International Conference on Robotics and Automation (ICRA), pp. 754–760. IEEE, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. Knowledge distillation meets self-
supervision. arXiv preprint arXiv:2006.07114, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 586–595, 2018.

13

Under review as a conference paper at ICLR 2021

A ADDITIONAL EXPERIMENTS

A.1 COMPARISON WITH DIAYN AND ITS VARIANT

In this section, we expect to clarify the difference and connection with DIAYN (Eysenbach et al.,
2018) experimentally, and indicate the limitations of maximizing I(s;ω) and maximizing I(s; g)
separately on learning goal-conditioned policy.

(a) DIAYN-Imitator: I(s;ω). (b) DIAYN-Goal: I(s; g). (c) GPIM: I(s;ω) + I(s; g)

Figure 10: 2D navigation with (a) DIAYN-Imitator, (b) DIAYN-Goal, and (c) our proposed GPIM.
In (a), (b) and (c-left), the open circle denotes the user-specified goal, and the line with a solid circle
at the end is the corresponding behavior. Specifically, the white lines in (a) are the learned skills in
training, where we show 10 diverse skills. We can see that neither DIAYN-Imitator nor DIAYN-
Goal approaches the corresponding goals, while our model succeeds in reaching the goal as shown
in (c-left). In (c-right), we also show the generative factor z by disentangling goals in (c-left), where
the open circles with different colors in (c-right) correspond to the goals in (c-left).

In DIAYN, authors show the ability of the model to imitate an expert. Given the goal, DIAYN uses
the learned discriminator to estimate which skill was most likely to have generated the goal g:

ω̂ = arg max
ω

qφ(ω|g). (9)

Here we call this model DIAYN-Imitator. We also directly substitute the perceptually-specific goals
for the latent variable in DIAYN’s objective to learn a goal-conditioned policy. We call this model
DIAYN-Goal:

max I(s; g), (10)

where g is sampled from the prior goal distribution p(g). Please note that we do not adopt the prior
non-parametric distance as in DISCERN (Warde-Farley et al., 2018) to calculate the reward. We
obtain the reward as in normal DIAYN using the variational inference: rt = qφ(gt|st+1).

Fig. 10 shows the comparison of our GPIM with DIAYN variants including DIAYN-Imitator and
DIAYN-Goal, where the 2D navigation task is considered. As observed, DIAYN-Imitator can reach
seen goals but not unseen goals in Fig. 10(a), because it cannot effectively accomplish the interpo-
lation between skills that are induced in training. And behaviors generated by DIAYN-Goal cannot
guarantee consistency with the preset goals in Fig. 10(b). The main reason is that this objective
only ensures that when g (or ω) is different, the states generated by g (or ω) are different. However,
there is no guarantee that g (or ω) and the state generated by the current g (or ω) have semantically
consistent behavior information. Our proposed GPIM method, capable of solving interpolation and
consistency issues, exhibits the best performance in this 2D navigation task.

Moreover, when the user-specified goals are heterogeneous to the states, the learned discriminator
qφ in DIAYN is unable to estimate which skill is capable of inducing given goals. Specifically, when
the goals are visual inputs, and the states in training is feature vectors (e.g., joint angles), the learned
discriminator is unable to choose the skills due to a lack of models for converting high-dimensional
figure into low-dimensional feature vectors. On the contrary, there are lots of off-the-shelf models
to render low-dimensional feature vectors into perceptually-specific high-dimensional inputs (Tobin
et al., 2017; Khirodkar et al., 2018).

A.2 AUTOMATED GOAL-GENERATION FOR EXPLORATION

In general, for unsupervised RL, we would like to ask the agent to carry out autonomous ”practice”
during training phase, where we do not know which particular goals will be provided in test phase.

14

Under review as a conference paper at ICLR 2021

(a) Decoded latent goals (RIG).

(b) Goals (DISCERN). (c) Goals (GPIM).

0 0.5M 1M 1.5M
Actor Steps

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Di

st
an

ce
 to

 G
oa

l

GPIM
RIG
DISCERN

(d) Performance.

Figure 11: Distribution of sampled goals for the goal-conditioned policy, where the initial state is
[5,2] (the red star) and the actor step is 20 for each rollout. (a) The goals (images) are obtained by
decoding 30 sampled latent goals zg in VAE framework; (b) The goals (colored dots) are sampled
from the agent’s behaviors by random exploration; (c) The goals (colored dots) are rendered from
the states induced by our abstract-level policy. (d): Evaluation on reaching user-specified goals,
where GPIM significantly outperforms baselines.

In order to maximize the state coverage, the ability to automatically explore the environment and
discover diverse goals is crucial. In this section, we will further analyze the goal distribution of
three methods (RIG (Nair et al., 2018), DISCERN (Warde-Farley et al., 2018), GPIM) in a new
2D obstacle navigation task as shown in Fig. 11(a), Fig. 11(b), and Fig. 11(c). The size of the
environment is 10 × 10, the initial state is set as [5, 2], and there are two obstacles that prevent the
agent from passing through each of which is 3× 6 in size.

DISCERN samples goals during training by maintaining a fixed sized buffer G of past observations.
We simply mimic the process of goal generation by taking random actions for 20 environment steps
after initialization of the method. As in Fig. 11(b), we generate 100 goals with different colors.
We can see that the majority of goals locate between the two obstacles, which limits the further
exploration of the environment.

RIG samples a representation (latent goals zg) from the learned VAE prior, which represents a
distribution over latent goals and state observation. The policy network takes the representation
as a substitute for the user-specified goal. For a clear visualization of the distribution of the sampled
latent goals, we further feed the sampled latent goals into the decoder to obtain the real goals in the
user-specified space. The decoded latent goals are shown in Fig. 11(a), where we sample 30 goals. It
is shown that the majority of goals are also between the two obstacles because the goals for training
the VAE prior come from the same distribution as in DISCERN.

Our method, GPIM, obtains goals from the behaviors induced by the abstract-level policy. Maximiz-
ing I(s;ω) encourages different skills to induce different states that are further rendered to goals.
This objective ensures that each skill individually is distinct and the skills collectively explore large
parts of the state space (Eysenbach et al., 2018). As shown in Fig. 11(c), our method provides better
coverage of the state space than DISCERN and RIG.

Fig. 11(d) shows the performance of the three methods, where we randomly sample goals from the
whole state (or goal) space at test phase. We can see that our method significantly outperforms
the baselines. The most common failure mode for prior methods is that the goal distribution col-

15

Under review as a conference paper at ICLR 2021

lapses (Pong et al., 2019), causing that the agent can reach only a fraction of the state space, as
shown in Fig. 11(a) and 11(b).

Exploration is a well-studied problem in the field of RL, and there are many proven approaches with
different benefits to improve the exploration (Colas et al., 2018; Campos et al., 2020). Note that these
benefits are orthogonal to those provided by our straightforward GPIM, and these approaches could
be combined with GPIM for even greater effect. We leave combing our method with sophisticated
exploration strategies to future work.

A.3 ABLATION STUDY

0.1M 0.3M 0.5M 0.7M 0.9M 1.1M 1.3M 1.5M

GPIM
w/o Rec.
w/o KL.
w/o Pol.

2-D Navigation (x-y goal)

0.25 0.50 0.75
Normalized

distance
to goals Goals w/o KL: z GPIM: z

Figure 12: Ablation study and disentanglement.

Here we conduct the ablation study on 2D navi-
gation task to analyze how the disentanglement
of goals in GPIM affects the learned behaviors
in terms of the generalization to new tasks?.
For convenience, we remove certain component
from GPIM and define the new method as fol-
lows: w/o Rec - removing the reconstruction
loss (i.e. α = 0); w/o KL - removing the KL
loss (i.e. β = 0); w/o Pol - removing the policy
loss updating ϑE as shown in Fig. 3.

The performance is reported in Fig. 12. It is observed that w/o. Pol performs worse than all other
methods, which is consistent with the performance of RIG that trains VAE and policy separately.
The main reason is that the disentanglement fails to figure out the required latent factors on given
tasks. Moreover, although GPIM has a similar performance with the other three methods on 2D
navigation task, GPIM has better interpretability to behaviors. As shown at the bottom of Fig. 12,
considering a series of goals from the first red to the last green (left) in a counterclockwise order,
GPIM can successfully disentangle them and learn effective latent z (right), but w/o KL fails to keep
the original order of goals (middle).

0.4M 1.2M 2M 2.8M 3.6M 4.4M 5.2M 6M

GPIM
w/o Rec.
w/o KL.
w/o Pol.

HalfCheetah

0.4M 1.2M 2M 2.8M 3.6M 4.4M 5.2M 6M
Steps

Swimmer

0.4M 1.2M 2M 2.8M 3.6M 4.4M 5.2M 6M
Steps

GPIM
w/o Rec.
w/o KL.
w/o Pol.

Fetch

0.2 0.3 0.4 0.5 0.6 0.7

Normalized Distance to Goal

Figure 13: Ablation study on mujoco tasks.

Ablation study on mujoco tasks. We further study the impact of disentanglement part in our
framework. The performance is reported in Fig. 13. It is observed that w/o Pol performs worse than
all other methods, which is consistent with the performance in 2D navigation task6. And we can
find that when we remove the reconstruction loss (α = 0), the performance of w/o Rec degrades
in these three environments. The main reason is that the process of learning generative factors
become more difficult without the supervised reconstruction loss. While in 2D navigation task, the
reconstruction loss has little impact on the performance. Even though that w/o KL has a similar
performance with our full GPIM method, GPIM demonstrates better interpretability to behaviors as
shown in Fig. 10(c).

6The results of 2D navigation task are shown in the full paper.

16

Under review as a conference paper at ICLR 2021

A.4 GENERALIZATION ON THE GRIDWORLD TASK

Here we introduce an illustrative example of gridworld task and then show the generalization when
the dynamics and goal conditions are missing in the gridworld task.

= 1000 0100 0010 0001
0

1

0 8k 0 8k 0 8k 0 8k

Abstract-level policy

goal='green' 'orange' 'magenta' 'blue'
0

1

0 8k 0 8k 0 8k 0 8k

Goal-conditioned policy

Figure 14: Gridworld tasks. Y-axis is the percent-
age of different rooms that the robot arrives in.

Illustrative example. We start with a simple
gridworld example: the environment is shown
on the left of Fig. 14, where the goal for the
agent is to navigate from the middle to the given
colored room. By abstract-level training, our
method quickly acquire four skills to reach dif-
ferent rooms. Each time the agent arrives in a
room induced by πµ, we train πθ conditioned
on the room’s color (e.g., green), allowing the
agent to be guided to the same room by the cur-
rent reward function. The learning process is shown on the right of Fig. 14. It is concluded that
the agent can automatically learn how to complete tasks given semantic goals in an unsupervised
manner.

= 1000 0100 0010 0001
0

1

0 8k 0 8k 0 8k 0 8k

Abstract-level policy

goal= 'blue'/10 'green'/00 'orange'/01 'magenta'/11
0

1

0 8k 0 8k 0 8k 0 8k

Goal-conditioned policy

Figure 15: Gridworld tasks. The Y-axis is the percentage of different rooms that agent arrives in.

Generalization on the gridworld task. We further show the generalization when the dynamics and
goal conditions are missing in the gridworld task, where there are four rooms in different colors:
blue, green, orange and magenta. We consider the situation where we train the goal-conditioned
policy in the blue room, the green room and the orange room, and test in the magenta room.

As shown in Fig. 15, we quickly acquire four skills for different rooms through the training at the
abstract level. After the agent reaches at the colored rooms, we rendered the corresponding room as
a two-bit representation: Render(’blue’) = 10, Render(’green’) = 00, and Render(’orange’) = 01
; we do not render the magenta room. We take the magenta room corresponding to 11 as the test
goal to verify the generalization ability.

In lower part of Fig. 15, we show the learning process of the goal-conditioned policy. We can
find that the blue room tasks are learned quickly, and the green and magenta room tasks are learned
relatively slowly, but the agent is still able to complete the test task successfully (the magenta room).
Compared to the task in Fig. 14 that renders all the rooms as goals, the whole learning process in
Fig. 15 is much slower. We hypothesize that the main reason is that the agent needs to further infer
the relationship between different goals. The lack of goal information (i.e., missing magenta 11)
leads to a lower efficiency and unstable training.

B IMPLEMENTATION DETAILS

B.1 DERIVATION OF THE VARIATION BOUND

Eω,s,s̃ [log p(ω|s) + log p(ω|s̃)− 2 log p(ω)]

= Eω,s,s̃ [log qφ(ω|s) + log qφ(ω|s̃)− 2 log p(ω)]

+KL(p(ω|s)||qφ(ω|s)) +KL(p(ω|s̃)||qφ(ω|s̃))
≥ Eω,s,s̃ [log qφ(ω|s) + log qφ(ω|s̃)− 2 log p(ω)]

17

Under review as a conference paper at ICLR 2021

B.2 ENVIRONMENT DETAILS

We introduce the details of environments and tasks here, including the environment setting of 2D
navigation (x-y goal and color-shape goal), object manipulation, three atari games (seaquest, berzerk
and montezuma revenge), and the mujoco tasks (swimmer, half cheetah and fetch).

2D navigation tasks: In 2D navigation tasks, the agent moves in each of the four cardinal directions,
where the states denote the 2D location of the agent. We consider the following two tasks: moving
the agent to a specific coordinate named x-y goal and moving the agent to a specific object with
certain color and shape named color-shape goal.

• 2D Navigation (x-y goal): The size of the environment is 10× 10 (continuous state space)
or 7 × 7 (discrete state space). The state is the location of the agent, and the goal is the
location of the final location.

• 2D Navigation (color-shape goal): The size of the environment is 10 × 10. The state
consists of the locations of the agent and three objects with different color-shape pairs (one
real target and two distractors). The goal is described by the color and shape of the real
target, encoded with one-hot.

Object manipulation: More complex manipulation considers a moving agent in 2D environment
with one block for manipulation, and the other as a distractor. The agent first needs to reach the
block and then move the block to the given location, where the block is described using color and
shape. The size of the environment is 10 × 10. The state consists of the locations of the agent and
two blocks with different color-shape pairs (one real target and one distractor). The goal consists
of the one-hot encoding of the color-shape of the target block that needs to be moved, and the 2D
coordinate of the final location of the movement.

Table 1: The repetition length of the action.
Environments k

Seaquest-ram-v0 2, 3, 4, 5
Berzerk-ram-v0 34, 36, 38, 40

MontezumaRevenge-ram-v0 2, 3, 4, 5

Atari games: We test the performance on three atari games: seaquest, berzerk, and montezuma re-
venge. In order to reduce the difficulty of training, we adopt the RAM-environment (i.e., Seaquest-
ram-v0, Berzerk-ram-v0, and MontezumaRevenge-ram-v0), where each state represents a 128-
dimensional vector. Each action repeatedly performs for a duration of k frames, where k is uniformly
sampled from Table 1.

Mujoco tasks: We consider to make diverse agents to fast imitate a given goal trajectory, including
the imitation of behaviors of a swimmer, a half cheetah, and a fetch, where the states in the trajectory
denote the positions of agents. Such experiments are conducted to demonstrate the effectiveness of
our proposed method in learning behaviors over a continuous high-dimensional action space, which
is more complicated in physics than the 2D navigation.

Note that the goals in all the experiments are images 50× 50× 3 (3 channels, RGB) in size, except
that the color-shape goal is encoded with one-hot.

B.3 METRICS, NETWORK ARCHITECTURES AND HYPERPARAMETERS

Here we give a clear definition of our evaluation metric – ”normalized distance to goal”:

I: When the goal is to reach the final state of the trajectory induced by πµ (Figs. 5(a), 5(b) and 5(c)),
the distance to goal is the L2-distance between the final state s̃kT−1 induced by πθ(·|·, gk) and the
goal state gk randomly sampled from the goal (task) space:

Dis =
1

N

N∑
k=1

L2(s̃kT−1, g
k),

where N is the number of testing samples. We set N = 50 for 2D navigation, object manipulation
and atari games (seaquest, berzerk and montezuma revenge).

18

Under review as a conference paper at ICLR 2021

II: When the goal is to imitate the whole trajectory induced by πµ (Figs. 5(d), 5(e) and 5(f)),
the distance is the expectation of distance over the whole trajectory {s̃k0 , s̃k1 , ..., s̃kT−1} induced by
πθ(·|·, {gk0 , gk1 , ..., gkT−1}) and goal trajectory {gk0 , gk1 , ..., gkT−1} randomly sampled from the trajec-
tory (task) space:

Dis =
1

N

N∑
k=1

(
1

T

T−1∑
t=0

L2(s̃kt , g
k
t)

)
,

where N is the number of testing samples. We set N = 50 for mujoco tasks (swimmer, half cheetah
and fetch) .

The term ”normalized” means that the distance is divided by a scale factor.

Note that, for three atari games (seaquest, berzerk, and montezuma revenge), the L2-distance for
evaluation7 is the difference between the position of controllable agent and the target’s position,
where the position is obtained by matching the pixel on the imaged state. See the Python code
below.

def obtainxy_seaquest(img):
temp = np.where((img[:,:,0]==187)&(img[:,:,1]==187)&(img[:,:,2]==53))
global seaquestxy
if len(temp[0])==0:

temp = seaquestxy
else:

seaquestxy = temp
xy = np.array([np.mean(temp[0]), np.mean(temp[1])])/100

return xy

def obtainxy_montezuma_revenge(img):
img[:20] = 0
temp = np.where((img[:,:,0]==200)&(imgo[:,:,1]==72)&(img[:,:,2]==72))
global montezumaxy
if len(temp[0])==0:

temp = montezumaxy
else:

montezumaxy = temp
xy = np.array([np.mean(temp[0]), np.mean(temp[1])])/100

return xy

def obtainxy_berzerk(img):
temp = np.array(img)
temp[1:-1, 1:-1] = temp[:-2, :-2]/3+temp[2:,2:]/3+temp[1:-1,1:-1]/3
temp = np.where((temp[:,:,0]==240)&(temp[:,:,1]==170)&(temp[:,:,2]==103

))
global berzerkxy
if len(temp[0])==0:

temp = berzerkxy
else:

berzerkxy = temp
xy = np.array([np.mean(temp[0]), np.mean(temp[1])])/100

return xy

In our implementation, we use two independent SAC architectures (Haarnoja et al., 2018) for
abstract-level policy πµ and goal-conditioned policy πθ. We find empirically that having two net-
works share a portion of the network structure will degrade the experimental performance. We adopt
universal value function approximates (UVFAs) (Schaul et al., 2015) for extra input (goals). For the
abstract-level policy πµ, to pass latent variable ω to the Q function, value function, and policy, as
in DIAYN, we simply concatenate ω with the current state st (and action at). For goal-conditioned

7The reward function for our baseline L2 Distance still calculates the L2-distance directly on the original
state space, instead of the distance of the agents’ positions after pixel matching here.

19

Under review as a conference paper at ICLR 2021

policy πθ, we also concatenate gt with current state s̃t (and action at). We update the ϑE using the
gradients from both the Dis loss and Q function’s loss of the goal-conditioned policy πθ.

The hyper-parameters are presented in Table 2.

C BROADER IMPACT

The main concern in the research area of goal-conditioned policy is how to find numerous diverse
goals as well as obtain the reward function. Particularly, in practical application, the goal and state
are often heterogeneous data with high variability of data types and formats, which further aggra-
vates the difficulty of policy learning. Our model addresses these problems by allowing agents to in-
teract with objects or environment, and learn the behaviors in a fully autonomous way on the basis of
intrinsic motivations. Bridging with the render function between abstract level and goal-conditioned
policy, we could obtain diverse and versatile policies. By optimizing the intrinsic reward, our GPIM
makes an agent capable of solving diverse tasks, which fits for wide-range applications such as quick
imitation on behavior states, interactive navigation and object manipulation, and so on.

Moreover, our model provides an approach to address the Robot open-Ended Autonomous Learning
(REAL). This framework is likely to speed up the progress of the general-purpose robots that can
achieve complex tasks given the corresponding goals, and drive the development of autonomous
robot learning in a life-long learning mode.

By autonomous exploration of the environment, the agent is likely to generate some useful behaviors
as well as the majority of useless skills. Of particular concern is that the use of autonomous explo-
ration is likely to generate a strategy that will induce dire consequences, such as a collision skill in
an autonomous driving environment. How to generate useful behaviors for user-specified tasks and
how to use these induced skills are also open problems. An alternative solution is to use an extrinsic
reward to guide the exploration or the offline reinforcement learning (Levine et al., 2020). While
another issue comes from the exploration-exploitation trade-off. We would encourage further work
to understand the limitations of REAL interacting with the environment autonomously. We would
also encourage research to understand the risks arising from autonomous robot learning.

Another limitation is that our learning framework needs an extra abstract-level policy training for
rendering goals and providing a reward function. This requires twice as much interaction time with
the environment as learning a single policy network. For practical application, a simulation platform
is preferred for pre-training. We also encourage researchers to mitigate the difference between the
simulation platform and the actual environment. We also pursue the effective models of transfer
learning.

D MORE RESULTS

D.1 LEARNED BEHAVIORS ON TEMPORALLY-EXTENDED TASKS

More experimental results are given in Fig. 16 to show the imitation on several temporally-extended
tasks.

D.2 LEARNED BEHAVIORS FROM GPIM

More experimental results are given in Fig. 17 to show the learned behaviors on 2D nav-
igation, object manipulation, three atari games (seaquest, berzerk and montezuma revenge),
and the mujoco tasks (swimmer, half cheetah and fetch). Videos are available under
https://sites.google.com/view/gpim.

20

https://sites.google.com/view/gpim

Under review as a conference paper at ICLR 2021

Table 2: Hyper-parameters
Hyper-parameter value

Batch Size 256
Discount Factor 0.99

Buffer Size 10000
Smooth coefficient 0.05

Temperature 0.2

Learning Rate

2D Navigation
x-y goal 0.001

color-shape goal 0.001

Object Manipulation 0.001

Mujoco tasks
Swimmer 0.0001

HalfCheetah 0.0001
Fetch 0.0001

Atari games
Seaquest 0.0003
Berzerk 0.0003

Montezuma Revenge 0.0003

Path Length

2D Navigation
x-y goal 20

color-shape goal 20

Object Manipulation 20

Mujoco tasks
Swimmer 50

HalfCheetah 50
Fetch 100

Atari games
Seaquest 25
Berzerk 25

Montezuma Revenge 25

Hidden Size

2D Navigation
x-y goal 128

color-shape goal 128

Object Manipulation 128

Mujoco tasks
Swimmer 256

HalfCheetah 256
Fetch 256

Atari games
Seaquest 256
Berzerk 256

Montezuma Revenge 256

Dimension of Generative Factor

2D Navigation
x-y goal 2

color-shape goal 2

Object Manipulation 4

Mujoco tasks
Swimmer 3

HalfCheetah 4
Fetch 4

Atari games
Seaquest 16
Berzerk 16

Montezuma Revenge 16

α 1
γ 5

δpixel 255

21

Under review as a conference paper at ICLR 2021

Start StartStart

Expert behavior
Learned behavior

Start

Expert behavior
Learned behavior

Start
Start Expert behavior

Learned behavior

StartStartStartStart

Expert behavior
Learned behavior

Figure 16: Expert behaviors and learned behaviors. The four expert trajectories are described para-
metrically as: (x, y, z) = (log10(t + 1) + t/50, sin(t)/5 + t/5, t/5), (x, y, z) = (t/5, cos(t)/5 −
1/5 + t/5, sin(t)/5), (x, y, z) = (cos(t)/5 + t/50 − 1/1, sin(t)/5 + t/5, t/5), and (x, y, z) =
(sin(t)− sin(2t)/2,−t/5, cos(t)/2− cos(2t)/2).

22

Under review as a conference paper at ICLR 2021

red circle green square

red triangle blue square

blue square green square

red square red circle

(a) 2D navigation (discrete x-y goal; continous x-y goal; color-shape goal)

(b) Object manipulation

(c) Swimmer (d) Half cheetah

(e) Fetch

(f) Seaquest

(g) Berzerk

(h) Montezuma revenge

Figure 17: Discovered goal-conditioned behaviors. (f-h): The left subfigure shows the expert be-
haviors (goals); The middle subfigure shows the learned behaviors by GPIM; The right subfigure is
the stacked view of goals and GPIM behaviors.

23

	Introduction
	Preliminaries
	The Method
	Overview
	Proposed GPIM Method
	Improve Generalization via Disentanglement

	Related Work
	Experiments
	Conclusion
	Additional Experiments
	Comparison with DIAYN and its Variant
	Automated Goal-Generation for Exploration
	Ablation Study
	Generalization on the Gridworld Task

	Implementation Details
	Derivation of the Variation Bound
	Environment Details
	Metrics, Network Architectures and Hyperparameters

	Broader Impact
	More Results
	Learned Behaviors on temporally-extended tasks
	Learned Behaviors from GPIM

