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ABSTRACT

Multi-source domain adaptation (MSDA) learns to predict the labels in target do-
main data, under the setting that data from multiple source domains are labelled
and data from the target domain are unlabelled. Most methods for this task focus
on learning invariant representations across domains. However, their success re-
lies heavily on the assumption that the label distribution remains consistent across
domains, which may not hold in general real-world problems. In this paper, we
propose a new and more flexible assumption, termed latent covariate shift, where
a latent content variable zc and a latent style variable zs are introduced in the gen-
erative process, with the marginal distribution of zc changing across domains and
the conditional distribution of the label given zc remaining invariant across do-
mains. We show that although (completely) identifying the proposed latent causal
model is challenging, the latent content variable can be identified up to scaling by
using its dependence with labels from source domains, together with the identifi-
ability conditions of nonlinear ICA. This motivates us to propose a novel method
for MSDA, which learns the invariant label distribution conditional on the latent
content variable, instead of learning invariant representations. Empirical evalua-
tion on simulation and real data demonstrates the effectiveness of the proposed
method.

1 INTRODUCTION

Traditional machine learning requires the training and testing data to be independent and identically
distributed (Vapnik, 1999). This strict assumption may not be fulfilled in various potential real-world
applications. For example, in medical applications, it is common to seek to train a model on patients
from a few hospitals and generalize it to a new hospital (Zech et al., 2018). In this case, it is often
reasonable to consider that the distributions of data from training hospitals are different from the new
hospital (Koh et al., 2021). Domain adaptation is a promising research area to handle such problems.
In this work, we focus on multi-source DA (MSDA) settings where source domain data are collected
from multiple domains. Formally, let x denote the input, e.g. image, y denote the labels in source
and target domains, and D denote the domain index. We observe labeled data pairs (xS ,yS) from
the multiple joint distributions p(x,y|D = 1), ..., p(x,y|D = m), ..., p(x,y|D = M) in source
domains, and unlabeled input data samples xT from the joint distribution p(x,y|DT ) in the target
domain. The training phase of MSDA is to use the sets of (xS ,yS) and xT , to train a predictor so
that it can provide a satisfactory estimation for yT in the target domain. The key for MSDA is to
understand how the joint distribution pD(x,y) change across all different source and target domains.

Most early methods assume that the change of the joint distribution results from Covariate Shift
(Huang et al., 2006; Bickel et al., 2007; Sugiyama et al., 2007; Wen et al., 2014), e.g., pD(x,y) =
pD(y|x)pD(x), as depicted by Figure 1(a). This setting assumes that pD(x) changes across domains,
while the conditional distribution pD(y|x) is invariant across domains. Such assumption may not
always hold for some real applications, e.g., image classification. For example, the assumption
of invariant pD(y|x) implies that pD(y) should change as pD(x) changes. However, we can easily
change style information (e.g., hue, view) in the images to change pD(x) and keep pD(y) unchanged,
which is common in classification but violates the assumption.

In contrast to covariate shift, most current works consider Conditional Shift as depicted by Figure
1(b). It assumes that the conditional pD(x|y) changes while pD(y) is invariant across domains
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(Zhang et al., 2013; 2015; Schölkopf et al., 2012; Stojanov et al., 2021; Peng et al., 2019). This
situation motivates a popular class of methods focusing on learning invariant representations across
domains to approach the latent content variable zc in Figure 1(b) (Ganin et al., 2016; Zhao et al.,
2018; Saito et al., 2018; Mancini et al., 2018; Yang et al., 2020; Wang et al., 2020; Li et al., 2021;
Stojanov et al., 2021). However, the label distribution pD(y) may change across domains in many
real application scenarios (Tachet des Combes et al., 2020; Lipton et al., 2018; Zhang et al., 2013),
for which learning invariant representations may be resulting in degenerating performance. In the-
ory, there exists an upper bound on the performance of learning invariant representations when label
distribution changes across domains (Zhao et al., 2019).

(a) Covariate Shift (b) Conditional Shift (c) Latent Covariate Shift

Figure 1: The illustration of three different assumptions for MSDA. (a) Covariate Shift: pD(x) changes
across domains, while pD(y|x) is invariant across domains. (b) Conditional Shift: pD(y) is invariant, while
pD(x|y) changes across domains. (c) Latent Covariate Shift: pD(zc) changes across domains while pD(y|zc)
is invariant across domains.

In some real-world scenarios, the label distribution pD(y) and the corresponding pD(zc) may vary
across domains. For example, in image classification, zc represents the essential visual semantic
features for discriminating classes (e.g., fur texture or color for animal classification) may vary
across domains (e.g., geographical location) but are also stably associated to specific domains. In
such scenarios, if all domain variant features are excluded from zc, zc will be non-informative for
deciding y. On the other hand, since such varying features are associated with and covariant with
the domain, they can be usable and useful in MSDA. To handle this scenario, we propose a new
assumption, Latent Covariate Shift (LCS), as depicted by Figure 1(c). Unlike the conditional shift,
LCS assumes that there is a latent content variable zc, whose distribution pD(zc) changes across
domains. Meanwhile the label conditional distribution pD(y|zc) is invariant. By combing these
assumptions, LCS enables the label distribution to change across domains.

To understand more deeply and handle LCS, we propose a latent causal model to formulate the
data and label generating process, by introducing the latent style variable zs to complement zc as
depicted in Figure 2. To analyse the identifiability of the proposed causal model, we also introduce
latent noise variables nc and ns, which represent some unmeasured factors influencing zc and zs,
respectively. As a result, we can leverage recent progress in the identifiability result of nonlinear
ICA (Hyvarinen et al., 2019; Khemakhem et al., 2020) to analyse the identifiability of the proposed
latent causal model. We show that although completely identifying the proposed latent causal model
is often not possible without further assumptions due to transitivity in latent space, partially identi-
fying the latent content variables zc up to scaling is tractable, by integrating the identifiability result
of nonlinear ICA with the dependence between nc and y. This motivates us to propose a novel
method to learn the invariant conditional distribution pD(y|zc) for LCS, instead of learning invari-
ant representations. Relying on the guaranteed identifiability on zc, the proposed method provides
a principled way to ensure that the covariant zc can be identified on the target domain data, and the
learned predictor pD(y|zc) can generalize to the target domain. Empirical evaluation on synthetic
and real data demonstrates the effectiveness of the proposed method, compared with state-of-the-art
methods.

Overall, our main contributions can be summarized as follows: (i) Differ from the commonly-used
Conditional Shift as shown in Figure 1 (b), which assume label distribution to be the same across
domains, we propose a new problem setting, latent covariate shift, as shown in Figure 1 (c). (ii)
We propose a latent causal model for latent covariate shift. Leveraging the existing identifiability
results of nonlinear ICA, we provide an analysis about the identifiability of the proposed latent causal
graph, which provides guarantee for identifying the latent causal content variable zc. (iii) Under the
identifiability result, we design a new method for domain adaptation, and empirically evaluate the
proposed method on simulation and real data.
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2 RELATED WORK

Learning invariant representations. Due to the limitation of covariate shift in image data, most
current works for domain adaptation consider the conditional shift, which learns invariant represen-
tations across domains (Ganin et al., 2016; Zhao et al., 2018; Saito et al., 2018; Mancini et al., 2018;
Yang et al., 2020; Wang et al., 2020; Li et al., 2021; Wang et al., 2022b; Zhao et al., 2021). Such
invariant representations can be obtained by applying suitable linear or nonlinear transformations on
the input data. The key of these methods is how to enforce the invariance of the learned representa-
tions. For example, the invariance can be enforced by maximum classifier discrepancy (Saito et al.,
2018), or by a domain discriminator for adversarial training (Ganin et al., 2016; Zhao et al., 2018;
2021), or by moment matching (Peng et al., 2019), or by relation alignment loss (Wang et al., 2020),
or by pseudo labeling (Wang et al., 2022b). However, all these methods require label distribution
to be invariant across domains. As a result, when label distribution is varying across domains, they
may perform well only in the overlapping areas among label distributions in different domains, while
facing with challenges in the non-overlapping areas. To overcome this, recent progress focuses on
learning invariant representations conditional on the label across domains (Gong et al., 2016; Ghi-
fary et al., 2016; Tachet des Combes et al., 2020). One of the challenges in these methods is that the
labels in the target domain is unavailable. More importantly, these methods do not guarantee that the
learnt representations to be consistent with the true relevant information for predicting in the target
domain, thus there is no principled way to guarantee that the learned predictor can generalize to the
target domain.

Learning invariant conditional distribution pD(y|zc). There exist few of works exploring the
invariant conditional distribution pD(y|zc) for domain adaptation (Kull & Flach, 2014; Bouvier
et al., 2019). Differ from these two works, the proposed method provides the identifiability of zc,
so that the learned pD(y|zc) in this work can generalize to the target domain in a principled way.
Besides, in the context of out-of-distribution generalization, some recent works explore learning
invariant conditional distribution pD(y|zc) (Arjovsky et al., 2019; Sun et al., 2021; Liu et al., 2021;
Lu et al., 2021). For example, Arjovsky et al. (2019) imposes learn the optimal invariant predictor
across domains from the viewpoint of an intimate link between invariance and causation, while the
proposed method directly explores conditional invariance given the proposed latent causal model.
Sun et al. (2021) mainly focus on single domain, while the proposed method consider multiple
domains. The proposed method is also different from the work in Liu et al. (2021) in that the
former assume the latent content variable caused by the style variable, while the latter depends on
a confounder to model the causal relation between the latent content variable and the style variable.
Unlike the work in Lu et al. (2021) that the label is treated as a variable causing the other latent
variables, the proposed method assumes that the label have no child nodes.

Causality for Domain Generalization It has been shown that there is closely the connection be-
tween causality and generalization (Peters et al., 2016). Motivated by this, most of current methods
leverage to introduce new methods in various applications, e.g., domain generalization, (Mahajan
et al., 2021; Christiansen et al., 2021; Wang et al., 2022a),text classification (Veitch et al., 2021),
Out-of-Distribution Generalization Ahuja et al. (2021). Perhaps the closest to our problem setting is
domain generalization, where one can not ‘see’ input data x. In general, because one can not ‘see’
input data x for domain generalization, obtaining identifiability result in the setting of domain gener-
alization is generally not possible. In contrast, this work provides the identifiability result, providing
a principled way to guarantee that the learned predictor can generalize to the target domain.

3 THE PROPOSED LATENT CAUSAL MODEL FOR LATENT COVARIATE SHIFT

We introduce a latent causal model to formulate features and label generative process to handle LCS
as depicted by Figure 2. It introduces the observed domain variable D to denote in which specific
domain data are collected. nc and ns represent some unmeasured factors corresponding to latent
content noise and latent style noise, respectively. nc and ns influence the latent content variable zc
and the latent style variable zs, respectively. Generally speaking, zc and zs should be dependent
given the domain variable D. Here we consider that zc causes zs, to model the correlation between
zs and y. In the proposed latent causal model, pD(zc) change across domains while pD(y|zc) is
invariant across domains, which meets the basic assumption in the proposed latent covariate shift.
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In the following, we discuss two key causal assumptions, which also highlight the novelty of the
proposed latent causal model.

Figure 2: The proposed latent causal model.

zc causes y: Previous works consider the
causal relation between x and y as y → x
(Gong et al., 2016; Stojanov et al., 2019; Li
et al., 2018), while we employ zc → y. We
argue that these two cases are not contradictory
since the labels y in these two cases represent
two different physical meanings. To understand
this point, let ŷ replace y in the first case (i.e.,
ŷ → x) to distinguish from y in the second
case (i.e., zc → y). For the first case, consider
the following generative process of images. A
label should be first sampled, e.g., ŷ, then one
may determine content information regarding to the label ŷ, and finally generate a image, which is
a reasonable assumption in many real application scenarios. In the proposed latent causal model,
nc play a role to replace ŷ and causes the content variable zc. For the second case, zc → y, it
formulates the process that experts extract content information from given images and then provide
reasonable labels according to their domain knowledge. This assumption has been employed by
some recent works (Mahajan et al., 2021; Liu et al., 2021; Sun et al., 2021). Particularly, these two
different labels, ŷ and y, has been simultaneously considered in Mahajan et al. (2021).

zc causes zs: Here we consider having the object essence zc first, from which a latent style zs
springs to render x. The correlation between y and zs can be seen as a spurious correlation that
should not contribute to predicting y. We here employ zc as a confounding factor of both y and zs
to model the spurious correlation. The rationality of this assumption can be further verified from the
viewpoint of the converse. In particular, if we assume that zs causes zc, all high-level information
in input data x, zs and zc would be causally related to the label y, which can not model the spurious
correlation and is obviously unreasonable. Therefore, assuming zc → zs is more persuasive and
consistent with previous works (Gong et al., 2016; Stojanov et al., 2019; Mahajan et al., 2021).
One recent work in Sun et al. (2021) leverages an additional variable as a confounding factor that
influences both the content variable zc and the style variable zs to model their relation. Interestingly,
the identifiability result in Sun et al. (2021) does not depend on the confounding factor. As a result,
the confounding factor can be incorporated into the domain index, which is equivalent to the case
where zc and zs are independent given the domain index. By contrast, the proposed latent causal
model assumes a more general setting where zc and zs are dependent given the domain index, as
depicted by Figure 2. We will further verify the advantages of the proposed latent causal model in
experiments, compared with Sun et al. (2021).

4 IDENTIFIABILITY ANALYSIS OF THE PROPOSED LATENT CAUSAL MODEL

In this section, we provide identifiability analysis for the proposed latent causal model. We first
build a connection between the proposed latent causal model and nonlinear ICA by using the in-
dependence among latent noise variables. We then show that it is still challenging to completely
identify the proposed latent causal model due to transitivity, even with the identifiability result in
nonlinear ICA. We finally show how to partially identify the latent content variable zc, by integrating
the identifiability result of nonlinear ICA (Khemakhem et al., 2020) with the dependence between
nc and y.

4.1 RELATING THE PROPOSED LATENT CAUSAL MODEL WITH NONLINER ICA

The proposed latent causal model splits latent noise variables n into two disjoint parts, nc and
ns, as depicted by Figure 3. Since ni models the noise information, the latent noise variables
ni are assumed to be independent with each other in a causal system (Pearl, 2000; Spirtes et al.,
2001)1 . As a result, it is natural to connect the latent noise variables ni with latent indepen-

1For convenience in the later parts, with a slight abuse of definition, independent ni means that ni are
mutually independent conditional on the observed variable D.

4



Under review as a conference paper at ICLR 2023

dent variables in nonlinear ICA. Specifically, nonlinear ICA aims to separate independent latent
variables conditional on D, e.g., ni, from observed mixing data, e.g., x, generated by a nonlinear
function. Recent progress in Khemakhem et al. (2020) shows that one can recover ni up to per-
mutation and scaling with relatively mild conditions, e.g., there is an auxiliary observed variable,
similar as D in Figure 3, which modulates the distributions of all independent latent variables ni.

Figure 3: Relating with Nonliner ICA.

The identifiability result of ni holds in both
source and target domains, since we have fea-
ture data x from both source and target do-
mains in the training phase for domain adapta-
tion. However, the permutation indeterminacy
implies that we can not determine which re-
covered variables ni correspond to nc (or ns)
without further information. Therefore, using
the identifiability result of nonlinear ICA only
is insufficient to identify nc and ns. We will
further discuss how to handle the permutation
indeterminacy in Section 4.3. Before that, we
first analyze identifiability of the proposed la-
tent causal model to provide a deep insight.

4.2 COMPLETE IDENTIFIABILITY: THE NON-IDENTIFIABILITY RESULT

Figure 4: Two equivalent graph structures.

Even with the identifiability result of nonlinear
ICA, it is still challenging to completely iden-
tify the proposed latent causal model. In partic-
ular, we have the following result:

Proposition 4.1. With the identifiability result
of nonlinear ICA under certain assumptions 2,
the proposed latent causal model is still uniden-
tifiable without additional assumptions, due to
transitivity in latent space.

Intuitively, the non-identifiability result above
is because we can not determine which path is the correct path corresponding to the net effect of nc

on x; e.g., nc → zc → x and nc → zc → zs → x are equivalent causal structures in Figure 4. This
indeterminacy is due to transitivity, because if zc → zs → x, then zc → x can also be an alternative
graph structure to generate same observed data, without further assumptions. For example, for
simplicity, let us only consider one-dimensional zc and zs. According to the graph structure shown
in the right column of Figure 4, assume that zc := nc, zs := zc + nc and x := f(z1, z2) + ε (case
1). We then consider the graph structure shown in the left column of Figure 4, assume that zc := nc,
zs := nc and x := f ◦ g(zc, zs) + ε where g(zc, zs) = [zc, zc + zs] (case 2). Interestingly, we find
that the causal models in case 1 and case 2 generate the same observed data x, which implies that
there are two different causal models to interpret the same observed data, even with the identifiable
nc and ns. It often appears in latent causal discovery and seriously hinders the identifiability of
latent causal models. For reader who may be interested in that problem, we recommend recent work
by Adams et al. (2021).

4.3 PARTIAL IDENTIFIABILITY: IDENTIFYING zc UP TO SCALING

Although completely identifying the proposed latent causal model is challenging, for domain adap-
tation application, we are only interested in the identifiability of zc, instead of the latent style variable
zs, since label y is only caused by zc. Thanks to the observed yS from source domains, we have
the following identifiability result:

Proposition 4.2. Assume that

(i) all latent noise variables ni can be identified up to permutation and scaling,

2See APPENDIX A.3 for detailed assumptions.
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the latent content variable zc in the proposed latent causal model can be identifiable up to scaling
by using the dependence between nS

c and yS from source domains.

Condition (i) can be obtained from the identifiability result of nonlinear ICA (Khemakhem et al.,
2020). The proposition shows that the content variable zc can be identified up to scaling by using
the identifiability result of nonlinear ICA and the dependence between y and nc, in which the iden-
tifiability result of nonlinear ICA ensures to recover ni up to permutation and scaling, while the
dependence removes the permutation indeterminacy to identify nc and thus zc. The scaling indeter-
minacy of zc results from the scaling indeterminacy of ni and the unknown mapping form nc to zc.
The scaling indeterminacy of zc has no significance and can be ignored in latent space, since it can
be ‘absorbed’ by the nonlinear mapping from zc to y. For example, consider the recovered variable
ẑc and its scaling scaling(ẑc). When we try to learn a invariant predictor g(·) form ẑc to y, the
scaling indeterminacy can be ‘absorbed’ by a composition predictor, e.g., g(scaling(·)).

5 LEARNING INVARIANT pD(y|zc) FOR MSDA

The identifiable zc provides a principled way to guarantee that we can learn the conditional distri-
bution pD(y|zc) that is invariant across domains and thus can be generalized to the target domain.
Furthermore, since the identifiable nc is the only parent node of zc, learning pD(y|zc) can be trans-
ferred into learning pD(y|nc), which is also invariant across domains as depicted by Figure 2. In
this section, we propose a novel method to show how to learn the invariant conditional distribution
pD(y|nc) for MSDA.

5.1 THE PROPOSED METHOD FOR LEARNING INVARIANT pD(y|nc)

As analyzed in Section 4.3, the identifiability of zc is based on the identifiability result of nonlinear
ICA, so we need to identify ni first. To meet the conditions of identifiable ni as mentioned in
Khemakhem et al. (2020), we employ the following Gaussian prior on nc and ns:

p(n|D) = p(nc|D)p(ns|D) = N
(
µnc(D),Σnc(D)

)
N
(
µns(D),Σns(D)

)
, (1)

where µ and Σ denote the mean and variance, respectively. Both depend on the domain variable D
and can be implemented with multi-layer perceptrons. Since ni are to independent noise variables,
Σ here is a diagonal matrix. Some other exponential distributions, e.g., Laplace distribution, also
meet the conditions of identifiable ni and thus are also feasible (Khemakhem et al., 2020). We here
use the Gassian prior since it is easy to leverage the reparameterization trick (Kingma & Welling,
2013). The proposed Gaussian prior equation 1 gives rise to the following variational posterior:

q(n|D,x) = q(nc|D,x)q(ns|D,x) = N
(
µ′

nc
(D,x),Σ′

nc
(D,x)

)
N
(
µ′

ns
(D,x),Σ′

ns
(D,x)

)
,

(2)
where µ′ and Σ′ denote the mean and variance of the posterior, respectively; both of them depend
on the domain variable D and the observed x and can be implemented by multi-layer perceptrons.
Combining this with the Gaussian prior in equation 1, we can derive the following evidence lower
bound (ELBO):

maxEq(n|D,x)

(
p(x|D)

)
−DKL

(
q(n|D,x)||p(n|D)

)
, (3)

where DKL denotes the Kullback–Leibler divergence.

By maximizing the ELBO equation 3, we can then recover ni up to scaling and permutation. To
remove the permutation indeterminacy as mentioned in Section 4.3, we can simultaneously maxi-
mize the correlation between yS and nS

i to identify nS
c . Here we employ the mutual information to

maximize the dependence. As a result, we arrive at:

maxλ
(
Eq(n|D,x)

(
p(x|D)

)
−DKL

(
q(n|D,x)||p(n|D)

)︸ ︷︷ ︸
ELBO

)
+ I(nS

c ,y
S)︸ ︷︷ ︸

MI

, (4)

where I(nS
c ,y

S) denotes the mutual information between nS
c and yS in source domains, and λ is a

regularization hyper-parameter that balances the ELBO and the mutual information (MI). The pro-
posed method is termed iLCC-MSDA (identifiable Latent Causal Content for MSDA), including two
components: ELBO and mutual information. The ELBO component ensures that ni can be recov-
ered up to scaling and permutation. The MI component handles the permutation, and thus ensures
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which recovered ni corresponds to the latent content variables nc. In the implementation, we use
the variational low bounder of mutual information proposed by Alemi et al. (2016) to approximate
the mutual information in equation 4.

maxλ
(
Eq(n|D,x)

(
p(x|D)

)
−DKL

(
q(n|D,x)||p(n|D)

))
+ Eq(nc|D,x)

(
p(yS |nS

c )
)
. (5)

A graphical depiction of the proposed iLCC-MSDA is shown in Figure 5.

Figure 5: The proposed iLCC-MSDA to learn the invariant p(y|nc) for multiple source domain
adaptation. C denotes concatenation, and S denotes sampling from the posterior distributions.

Constraining the independence among ni As we discussed, the performance of the proposed
iLCC-MSDA above relies on assumptions on the identifiability of ni, which requires that there
are enough domains across which ni changes in order to well capture the statistical independence.
However, in real applications, we may not have sufficient domains. To mitigate this issue, motivated
by disentangled representations (Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018), we
proposes to use a hyperparameter β to enhance the independence among ni.

Entropy regularization In the loss function in equation 5, we maximize the causal influence be-
tween yS and nS

c ) in source domains with mutual information. To encourage such causal influence
in target domain, we can also maximize the mutual information between ŷT and nT

c by minimizing
the following conditional entropy:

Lent = −E
(
p(ŷT |nT

c ) log p(ŷ
T |nT

c )
)
, (6)

where ŷT denotes the estimated label in the target domain. This regularization has been empirically
used to make label predictions more deterministic in previous works (Wang et al., 2020; Li et al.,
2021), while we consider it from the view of causality.

Therefore, our final loss function is:

maxλ(Eq(n|D,x)(p(x|D))−βDKL
(
q(n|D,x)||p(n|D)

)
)+Eq(nc|D,x)

(
p(yS |nS

c )
)
+γLent, (7)

where β, λ, γ are hyper-parameters that trade off the independence of nc and ns, the classifier and
the entropy regularization loss terms.

6 EXPERIMENTS

6.1 EXPERIMENTS ON SYNTHETIC DATA

Dataset We conduct experiments on synthetic data, generated by the following process: we divide
the latent variables into 5 segments, which are corresponding to 5 domains. Each segment includes
1000 examples. Within each segment, we first sample the mean and the variance from uniform
distributions [1, 2] and [0.3, 1] for the latent exogenous variables nc and ns, respectively. Then for
each segment, we generate zc, zs, x and y according to the following structural causal model:

zc := nc, zs := z3c + ns, y := z3c , x := MLP (zc, zs), (8)

where following (Khemakhem et al., 2020) we mix the latent zc and zs using a multi-layer percep-
tron to generate x.
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Results In implementation, we use the first 4 segments as source domains, and the last segment
as target domain. Figure 6(a) shows the true and recovered distributions of the exogenous variables
nc. Due to the support of nonlinear ICA, the proposed iLCC-MSDA obtain the mean correlation
coefficient (MCC) 0.96 between the original nc and the recovered. Due to the invariant conditional
distribution p(y|nc), even with the change of distribution of the exogenous variables nc as shown
in Figure 6(a), the learned p(y|nc) can generalize to target segment in a principle way as depicted
by the Figure 6(b). Due to the limited space, Figure 6(b) only shows 200 samples for the true and
predicted y.

(a) Recovered nc (b) Predicted y on the target segment

Figure 6: The Result on Synthetic Data.

6.2 EXPERIMENTS ON REAL DATA
Dataset We further evaluate the proposed iLCC-MSDA on benchmark domain adaptation dataset
PACS dataset (Li et al., 2017) and Terra Incognita (Beery et al., 2018). In the original PACS, the
label distributions for any two domains is very similar (i.e., DKL ≈ 0.1). This data is suitable
for domain adaptation with conditional shift as shown in Figure 1 (b) where the label distribution
remains unchanged, while it is not appropriate for the proposed setting where the label distribution
changes across domains, as shown in Figure 1 (c). Therefore, we randomly sample the original PACS
dataset to provide new PACS dataset where the label distribution changes, to generate three datasets,
PACS (DKL = 0.3), PACS (DKL = 0.5) and PACS (DKL = 0.7). Here DKL = 0.3(0.5, 0.7)
denotes that KL divergence of label distributions in any two different domains is approximately 0.3
(0.5, 0.7). See APPENDIX for details of label distributions.
Baselines We compare the proposed method with state-of-the-art methods to verify its effective-
ness. Particularly, we compare the proposed methods with empirical risk minimization (ERM),
MCDA (Saito et al., 2018), M3DA (Peng et al., 2019), LtC-MSDA (Wang et al., 2020), T-SVDNet
(Li et al., 2021), IRM (Arjovsky et al., 2019), IWCDAN (Tachet des Combes et al., 2020) and
LaCIM (Sun et al., 2021). In these methods, MCDA, M3DA, LtC-MSDA and T-SVDNet learn
invariant representations for MSDA, while IRM, IWCDAN and LaCIM learn invariant conditional
distributions, allowing label distribution to change. Details of implementation, including network
architectures and hyper-parameter setting, are in the APPENDIX. All the proposed methods are
averaged over 3 runs with standard deviation.
Ablation studies The bottom of Table 1 and 2 presents the results for ablation studies. We can
observe that entropy regularization equation 6 significantly increases the performance (around 10%
and 5%) of the proposed method on both dataset. This justifies the importance of the causal relation
between y and nc, which is consistent with our model assumption. Besides, the hyper-parameter β
also boosts the performance by enforcing the independence among the latent variables ni.
Results The results by different methods on PACS are presented in Table 1. We can observe that as
the increase of KL divergence of label distribution, the performance of MCDA, M3DA, LtC-MSDA
and T-SVDNet, which are based on learning an invariant representations, gradually degenerates.
When the KL divergence is about 0.7, the performance of these methods is worse than traditional
ERM. Compared with IRM, IWCDAN and LaCIM, which allows label distribution to change across
domains, the proposed iLCC-MSDA obtains the best performance, due to our theoretical supports.
Table 2 depicts the results by different methods on challenging Terra Incognit. The proposed iLCC-
MSDA achieves a significant performance gain on the challenging task →L7. Compared with the
other methods, the proposed iLCC-MSDA is the only one that is superior to ERM.

7 CONCLUSION

The key for domain adaptation is to understand how the joint distribution of features and label
changes across domains. Previous works usually assume covariate shift or conditional shift to inter-
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Table 1: Classification results and ablation study on PACS data.

PACS (DKL = 0.3)

Methods Accuracy

→Art →Cartoon →Photo →Sketch Average

ERM 82.3 ± 0.3 81.3 ± 0.9 94.9 ± 0.2 76.2 ± 0.7 83.6
MCDA ((Saito et al., 2018)) 76.6 ± 0.6 85.1 ± 0.3 96.6 ± 0.1 70.1 ± 1.3 82.1
M3SDA (Peng et al., 2019) 79.6 ± 1.0 86.6 ± 0.5 97.1 ± 0.3 83.3 ± 1.0 86.6
LtC-MSDA (Wang et al., 2020) 82.7 ± 1.3 84.9 ± 1.4 96.9 ± 0.2 75.3 ± 3.1 84.9
T-SVDNet (Li et al., 2021) 81.8 ± 0.3 86.5 ± 0.2 95.9 ± 0.2 80.7 ± 0.8 86.3
IRM (Arjovsky et al., 2019) 79.6 ± 0.7 77.0 ± 2.2 94.6 ± 0.2 71.7 ± 2.3 80.7
IWCDAN (Tachet des Combes et al., 2020) 84.0 ± 0.5 78.1 ± 0.7 96.0 ± 0.1 75.5 ± 1.9 83.4
LaCIM (Sun et al., 2021) 63.1 ± 1.5 72.6 ± 1.0 82.7 ± 1.3 71.5 ± 0.9 72.5
iLCC-MSDA(Ours) 86.4 ± 0.8 81.1 ± 0.8 95.9 ± 0.1 86.0 ± 1.0 87.4

PACS (DKL = 0.5)

ERM 85.4± 0.6 76.4 ± 0.5 94.4 ± 0.4 85.0 ± 0.6 85.3
MCDA ((Saito et al., 2018)) 81.6 ± 0.1 76.8 ± 0.1 93.6 ± 0.1 84.1 ± .6 84.0
M3SDA (Peng et al., 2019) 81.2 ± 1.2 77.5 ± 1.3 94.5 ± 0.5 84.3 ± 0.5 84.4
LtC-MSDA (Wang et al., 2020) 85.2 ± 1.5 75.2 ± 2.6 94.9 ± 0.6 85.1 ± 2.7 85.1
T-SVDNet (Li et al., 2021) 84.8 ± 0.3 77.6 ± 1.7 94.2 ± 0.2 86.4 ± 0.2 85.6
IRM (Arjovsky et al., 2019) 81.5 ± 0.3 71.1 ± 1.3 94.2 ± 0.1 78.7 ± 0.7 81.4
IWCDAN (Tachet des Combes et al., 2020) 79.2 ± 1.6 72.6 ± 0.7 95.6 ± 0.1 82.1 ± 2.2 82.4
LaCIM (Sun et al., 2021) 67.4 ± 1.6 66.6 ± 0.6 81.0 ± 1.2 82.3 ± 0.6 74.3
iLCC-MSDA(Ours) 89.0 ± 0.7 77.6 ± 0.5 95.0 ± 0.3 87.4 ± 1.6 87.3

PACS (DKL = 0.7)

ERM 86.1 ± 0.6 76.8 ± 0.3 94.6 ± 0.4 81.3 ± 2.0 84.7
MCDA ((Saito et al., 2018)) 80.8 ± 0.7 74.1 ± 1.2 94.4 ± 0.4 77.9 ± 0.4 81.8
M3SDA (Peng et al., 2019) 82.7 ± 1.3 76.2 ± 1.0 94.5 ± 0.7 80.8 ± 1.2 83.6
LtC-MSDA (Wang et al., 2020) 83.7 ± 1.6 74.6 ± 1.4 95.0 ± 0.7 80.8 ± 0.6 83.5
T-SVDNet (Li et al., 2021) 83.3 ± 0.8 74.7 ± 0.6 95.2 ± 0.3 74.5 ± 3.3 81.9
IRM (Arjovsky et al., 2019) 84.3 ± 0.8 73.3 ± 1.8 94.3 ± 0.1 69.4 ± 4.6 80.3
IWCDAN (Tachet des Combes et al., 2020) 76.3 ± 0.8 73.9 ± 1.6 93.1 ± 0.5 77.6 ± 3.8 80.2
LaCIM (Sun et al., 2021) 63.6 ± 0.9 68.7 ± 1.4 77.5 ± 3.8 77.8 ± 2.2 71.9
iLCC-MSDA(Ours) 90.7 ± 0.3 74.2 ± 0.7 95.8 ± 0.3 83.0 ± 2.2 86.0
iLCC-MSDA(Ours) with β = 1 90.2 ± 0.5 73.4 ± 0.8 95.7 ± 0.4 82.7 ± 0.7 85.5
iLCC-MSDA(Ours) with γ = 0 81.1 ± 1.5 70.0 ± 1.6 92.0 ± 0.5 59.6 ± 0.7 75.7

Table 2: Classification results on TerraIncognita.

Methods Accuracy

→L28 →L43 →L46 →L7 Average

ERM 54.1 ± 2.8 62.3 ± 0.7 44.7 ± 0.9 74.5 ± 2.6 58.9
MCDA ((Saito et al., 2018)) 54.9 ± 4.1 61.2 ± 1.2 42.7 ± 0.3 64.8 ± 8.1 55.9
M3SDA (Peng et al., 2019) 62.3 ± 1.4 62.7 ± 0.4 41.3 ± 0.3 57.4 ± 0.9 55.9
LtC-MSDA (Wang et al., 2020) 51.9 ± 5.7 54.6 ± 1.3 45.7 ± 1.0 69.1 ± 0.3 55.3
T-SVDNet (Li et al., 2021) 58.2 ± 1.7 61.9 ± 0.3 45.6 ± 2.0 68.2 ± 1.1 58.5
IRM (Arjovsky et al., 2019) 57.5 ± 1.7 60.7± 0.3 42.4 ± 0.6 74.1 ± 1.6 58.7
IWCDAN (Tachet des Combes et al., 2020) 58.1 ± 1.8 59.3 ± 1.9 43.8± 1.5 58.9 ± 3.8 55.0
LaCIM (Sun et al., 2021) 58.2 ± 3.3 59.8 ± 1.6 46.3 ± 1.1 70.8 ± 1.0 58.8
iLCC-MSDA(Ours) 64.3 ± 3.4 63.1 ± 1.6 44.7 ± 0.4 80.8 ± 0.4 63.2
iLCC-MSDA(Ours) with β = 1 56.3 ± 4.3 61.5 ± 0.7 45.2 ± 0.3 80.1 ± 0.6 60.8
iLCC-MSDA(Ours) with γ = 0 54.8 ± 1.4 58.9 ± 1.8 46.8 ± 1.4 73.1 ± 0.6 58.4

pret the change of the joint distribution, which may be restricted in some real applications. Hence,
this work considers a new and milder assumption, latent covariate shift. Specifically, we propose
a latent causal model to precisely formulate the generative process of input features and label. We
show that the latent content variable in the proposed latent causal model can be identified up to
scaling. This inspires a new method to learn the invariant label distribution conditional on the latent
causal variable, resulting in a principled way to guarantee generalization to target domains. Exper-
iments demonstrate the theoretical results and the efficacy of the proposed method, compared with
state-of-the-art methods across various data sets.
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A APPENDIX

Data Details The commonly used datasets for multi-source domain adaptation, such as Digits-
five, Office-Home, PACS, and DomainNet, are not considered in this work, because for these dataset
the label distributions of any two domains is very similar, which is suitable for domain adaptation
with conditional shift as shown in Figure 1 (b). However, these datasets are not appropriate for
the proposed setting where the label distribution changes across domains, as shown in Figure (c).
Therefore, we resample the original PACS (Li et al., 2017) dataset, which contains 4 domains, Photo,
Artpainting, Cartoon and Sketch, which shares the same seven categories. The KL divergence of
label distributions of any two domains in the original PACS is very small, round 0.1. For obtain-
ing dataset that meets the requirement of the proposed latent covariate shift, we filter the original
dataset by re-sampling it, and obtain three new datasets with different the KL divergences of label
distributions as depicted by Figure 7. The resampling process just randomly select some sample
from the original PACS dataset, so that the labels distribution changes across domains. The labels
distribution are depicted by Figure 7 . For Terra Incognita (Beery et al., 2018), the label distribution
is long-tailed at each domain, and each domain has a different label distribution, which is naturally
applicable for our setting. This work uses the four domains from the original data, L28, L43, L46
and L7, which shares the same seven categories: bird, bobcat, empty, opossum, rabbit, raccoon,
skunk, as depicted by Figure 8. (Here ’L8’ denotes the image data is collected from the location 28.)

(a) (b) (c)

Figure 7: Label distributions of the filtered PACS data.

(a)

Figure 8: Label distributions of Terra Incognita data used in this work.

Implementation Details For the synthetic data, we used a encoder, e.g. 3-layer fully connected
network with 30 hidden nodes for each layer, and decoder, e.g. 3-layer fully connected network with
30 hidden nodes for each layer. We use 3-layer fully connected network with 30 hidden nodes for
prior model. Since this is a ideal environment to verify the proposed method, for hyper-parameters,
we set β = 1 and γ = 0 to remove the heuristic constraints, and we set λ = 1e−2. For the real data,
all methods used the same network backbone, ResNet-18 pre-trained on ImageNet. Since it can be
challenging to train VAE on high-resolution images, we use extracted features by ResNet-18 as our
VAE input. We then use 2-layer fully connected networks as the VAE encoder and decoder, use
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2-layer fully connected network for the prior model, use 2-layer fully connected network to transfer
nc to zc. For hyper-parameters, we set β = 4, γ = 0.1, λ = 1e− 4 for the proposed method on all
datasets.

A.1 THE PROOF OF PROPOSITION 4.1

To prove non-identifiability, it is sufficient to show that several different graph structures can lead
to the same observed data. In particular, let us consider the net effect of nc on x. There are two
different paths to ‘explain’ the net effect of nc on x. One path is nc → zc → x. In this case, since
we have no limitation on the function class of edges, we can cut the path zc → zs off (e.g., the left
sub-figure of Figure 4) and obtain the same observed data depicted by the right sub-figure of Figure
4. Therefore, there is a causal graph depicted by the left sub-figure of Figure 4 are equivalent with
the proposed latent causal model as depicted by the right sub-figure of Figure 4.

A.2 THE PROOF OF PROPOSITION 4.2

As mentioned in Section 4.1, there are the permutation indeterminacy and scaling indeterminacy in
identifiable ni. The permutation indeterminacy implies that we are uncertain of which the recovered
variable n̂i are corresponding to the latent content variable nc. If we can solve this permutation
problem, since the parent node of zc includes nc only, zc can be identifiable up to scaling, i.e.,
zc = f(nc) where f can be any nonlinear function. Let us consider the relationships between each
n̂i and y in the proposed causal model, it is clear that the label y depends on nc, and is independent
with ns, given the domain variable D. As a result, we can compute the correlations (e.g., by mutual
information) between yS from source domains and n̂S

i from source domains to determine which
recovered variables n̂i are corresponding to the latent content variable nc.

(a) (b)

(c) (d)

Figure 9: The t-SNE visualizations of learned features nc of different domains on the →L7 task in
TerraIncognita. (a) The learned features nc in the L28 domain (b) The learned features nc in the
L43 domain (c) The learned features nc in the L46 domain (d)The learned features nc in the L7
domain. We can observe that the distribution of learned feature nc by the proposed method changes
across domains, which is very different with the previous methods based on learning invariant rep-
resentations.
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A.3 ASSUMPTIONS FOR NONLINEAR ICA

Our theoretical results, e.g., Propositions 4.1 and 4.2, rely on the identifiability result of nonlin-
ear ICA. For completeness, we present assumptions for the identifiability result Khemakhem et al.
(2020); Sorrenson et al. (2020), as follows:

Theorem A.1. Khemakhem et al. (2020); Sorrenson et al. (2020) Suppose the following conditional
generative model:

ni :∼ N (βi,1(D), βi,2(D)), (9)
x := f(n) + ε. (10)

Assume the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero (i.e., has at most countable number of
elements), where φε is the characteristic function of the density pε.

(ii) The function f in Eq. 10 is bijective.

(iii) There exist 2d+ 1 distinct points D0, d1, ..., D2d such that the matrix

L = (η(D1)− η(D0), ...,η(D2d)− η(D0)) (11)

of size 2d×2d is invertible, where d is the dimension of n, η(D) denotes the vector of their
coefficients, which depends on βi,1 and βi,2.

then the true latent variables n are related to the estimated latent variables n̂ by the following
relationship:

n = Pn̂+ c,

where P denotes the permutation matrix with scaling, c denotes a constant vector.

Eq. 9 is enforcing Gaussian distributions on the latent noise variables n. Note that the assumptions
of nonlinear ICA (Khemakhem et al., 2020) on the noise could be broad exponential family distri-
bution, e.g., Gaussian distributions, Laplace, Gamma distribution and so on. This work consider
Gaussian distribution, mainly because we implement it in our experiment, as shown in Eqs. 1 and 2.
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