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ABSTRACT

In this paper, we propose the hypothesis that CLIP’s representation disentangles
compositional visual attributes into orthogonal, independent subspaces. We test
the hypothesis on five core visual attributes: color, size, counting, camera view,
and pattern. We empirically test in several experiments how these attributes are
represented and used by CLIP and find that they are encoded in low-dimensional
subspaces that are orthogonal to one another, as well as the subject of the image.

1 INTRODUCTION

CLIP-like foundation models are now among the best and most promising models for performing a
range of vision tasks (Radford et al., 2021} [lharco et al.,[2021}; Jia et al.,[2021; |Yu et al.,[2022)). In this
work, we focus on understanding how CLIP has learned to organize and compose visual information
from two billion image-caption pairs. Our hypothesis posits that, facilitated by natural language
alignment, CLIP learns to decompose visual attributes of single-subject images in a way that appears
natural humans. Specifically, we believe that in the latent space of CLIP’s last layers (of both
visual and text encoders), there exist independent subspaces which code for different single-subject
compositional attribute types. The defining quality of a compositional attribute type subspace is
based on the principle of mutual exclusion: if two compositional attributes can and do coexist, then
they belong to different compositional attribute types and thus to different subspaces; if they cannot
coexist, then they belong to the same compositional attribute type and thus to different subspaces.

To test our hypothesis, we focus on five compositional attributes types, namely counting (how many
of the subject are present), color, size, camera view, and pattern (ex. plaid, zebra, leopard, polka
dot). We choose to focus on these five because they align with fundamental compositional attributes
for humans El, though we believe there are many more to which our hypothesis could apply. Future
work should explore potential other compositional attributes such as tactile texture, background
information, and material, and technique (painting, digital rendering, sculpture, photo, etc.) and
relational compositional attributes for multi-subject images. We provide empirical evidence which
supports our hypothesis for the aforementioned five subspaces, as well as some interesting properties
and consequences of the hypothesis, such as default subspace loading (see Section 4.

Previous work is mixed on whether CLIP’s representation is compositional or not. Ma et al.| (2022));
Thrush et al.| (2022) suggest that CLIP is not compositional in multi-object settings, while other
work use complex methods to disentangle compositional attributes from subjects in CLIP (Nayak
et al., 2022} [Jiang et al.l 2022; Xu et al.| [2022). While most previous work analysed the behav-
ior of CLIP on compositional combinations of attributes, we here perform a direct analysis of the
subspaces and their properties of various visual attributes, without extra training. Most similar to
our work are [Lewis et al.| (2022) and Zhou et al.| (2022)). Lewis et al.| (2022) finds that CLIP is
compositional in its simultaneous identification of compositional properties and attributes as well
as subject matter in images. However, they do not analyse the representational subspaces or their
independence. [Zhou et al.| (2022) also makes the independent subspace claim, and provides em-
pirical evidence to support it, but their work is primarily focused on image manipulation on faces
(and not on general understanding like ours), they do not rigorously test the independence of their
subspaces, and they do not propose a general hypothesis for how CLIP organizes its latent space
into fundamental compositional building blocks which mirrors human composition.

1https ://www.getty.edu/education/for_teachers/building lessons/
elements.html


https://www.getty.edu/education/for_teachers/building_lessons/elements.html
https://www.getty.edu/education/for_teachers/building_lessons/elements.html
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Figure 2: Attribute type subspace dimensions.

Figure 1: Overview of our hypothesis.

2 METHOD

In this paper, we use the following method to isolate attribute type subspaces which closely follows
Zhou et al.| (2022}, though we note that other methods could exist as well.

First, we define a list of text prompts for an arbitrary subject which cover the range of the attribute
type subspace we wish to find. For example, to define the size subspace, we use a list of text prompts
such as [“a large subject.”, “a medium-sized subject.”, “a small subject.”’]. Next, we generate text
embeddings of each sentence using the text encoder. Because in our case we are only analyzing the
modification of the subject, and not the subject itself, we subtract the embedding of the subject from
the sentence, to obtain a representation for the modification of the subject. Then, we do PCA on the

subject-subtracted embeddings to obtain an orthogonal basis for the attribute type subspace.

In all of our experiments, we use the OpenCLIP ViT-H-14 model trained on LAION-2B (llharco
et al., 20215 |Schuhmann et al., 2022)).

3 EXPERIMENTS

Ideally, the subspaces we found using PCA should exhibit the following two properties: (1) they
should be concentrated in a low-dimensional subspace, (2) should encode information only about
its respective attribute and not the subject of the image, and (3) should be independent of all other
subspaces in CLIP’s latent space. To test these properties, we perform three experiments, which
we term the following: subspace dimensionality to test (1), subspace generalization to test (2),
attribute transfer to test (2), and inter-subspace independence to test (3).

3.1 SUBSPACE DIMENSIONALITY

Following the methodology laid out in Section 2] we find that four to five dimensions are sufficient
to describe more than 80% of the variance for Counting, Color, Size and Camera View, see Figure
For Pattern, a subspace with 11 dimensions is sufficient. All five visual attributes together thus
fill roughly 2.93% of CLIP’s representation.

3.2 SUBSPACE GENERALIZATION

Design To test whether the subspaces we found using CLIP’s text encoder generalize to the image
domain, we searched the web for images containing combinations of a 3-4 test attributes across 4
subjects, except for color. For color, we tested four basic shapes (plus, circle, square, and triangle)
with four colors (blue, green, red, turquoise). For example, to test the pattern subspace, using an in-
ternet search we found 16 images across 4 patterns (zebra, leopard, polka dot, striped) and 4 subjects
(dress, pants, shirt, socks) with each image combining a different pattern and subject. We encoded
the images using the image encoder, projected the image embedding onto the respective attribute
type subspace, and then computed pairwise similarity matrices between the 16 image embeddings
before and after projection. If the subspace is indeed coding for the target attribute type, then the
similarity matrices should display a diagonal block structure, with each block corresponding to one
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Figure 3: Subspace Generalization. The first row contains the pairwise cosine similarity matrices
before projection onto the respective attribute type’s subspace, the second row contains the
pairwise cosine similarity matrices after projection, and the third row contains the pairwise dot
product matrices after projection.

Attribute Type | Src Subject Match | Tg Subject Match | Src Attribute Match | Tg Attribute Match
Counting 0 0 -100.00 +89.58
Color 0 0 -91.67 +56.94
Size -1.39 0 -61.11 +50.00
Camera View 0 0 -81.25 +81.25
Pattern 0 0 -100.00 +99.31

Table 1: Attribute Transfer. “Src Subject Match” refers to the change in percentage of times the
source subject was predicted via vector arithmetic. “Tg Subject Match” refers to the change in
percentage of times the target subject was predicted. “Src Attribute Match” refers to the change in
percentage of times the source’s attribute was predicted. “Tg Attribute Match” refers to the change
in percentage of times the target’s attribute was predicted.

of the 4 test attributes only after projection. We repeated this process for each of the attribute type
subspaces. We only use test attributes that were present in the subspace basis creation process.

Results Results are displayed in Figure[3] In most cases, we find a fairly pronounced diagonal block
structure, with each block corresponding to the same test attribute. Additionally, the similarity
matrices also seem to show that hierarchical information is also encoded in the subspace bases.
For instance, in the color subspace, the “turquoise” block is very similar to the “blue* and “green*
blocks.

3.3 ATTRIBUTE TRANSFER

Design In this experiment, for each attribute type subspace, we take the images found for the sub-
space generalization experiment, and encode them to get corresponding image embeddings. Then,
we perform vector arithmetic to transfer the given test attribute of one image to another’s. To this
end, consider a projection P, into the subspace of attribute a, a source embedding z, and a target
embedding z;. Then the transferred embedding is computed as

7 xz—aP]P,(z, —z) (1)

which we normalise to norm one. We then compute similarities between the transferred embeddings
to text embeddings of captions combining every test attribute and subject before and after the at-
tribute transformation. If the modifier subspaces are coding for their respective attribute types and
act independently of content, then we should see that the predicted subject should not change before
and after the vector arithmetic, but the predicted test attribute should. We throw out results for pairs
containing the same attribute or content. In our experiments we found that o = 3 worked well.
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Figure 5: Default Subspace Loading. Attribute-
less flower text embeddings load a flower’s default
or most frequent colors into the color subspace.

Figure 4: Inter-Subspace Independence.
Columns explain variance for rows.

Results Results are displayed in Table|l} In every case, the transformations successfully transfer an
image embedding’s attribute without significantly changing the subject.

3.4 INTER-SUBSPACE INDEPENDENCE

Design To determine inter-subspace independence, we take ImageNet (Russakovsky et al., [2014)
validation set embeddings, project them onto one attribute type’s subspace, measure the variance,
and then project the projections onto a second attribute type’s subspace, measure the variance, and
then take the ratio between the two variances. The intuition is that independence might be gauged
by measuring how much of one subspace is explained by another.

Results Results for this experiment are displayed in Figure ] All of the subspaces are highly
independent by this metric.

4 DEFAULT SUBSPACE LOADING

In this section, we explore an interesting property of our hypothesis which we call default subspace
loading. Default subspace loading occurs in the text encoder when a caption including a subject
without specific attributes is embedded. In the absence of specific attributes, the text encoder loads
default representations into the attribute subspaces which are determined during training. For exam-
ple, when creating a text embedding of “a lion”, CLIP will load a representation for yellow in the
color subspace, because CLIP has learned to associate yellow with lions. To test this property, we
create text embeddings of “a red cube”, “a yellow cube”, “a white cube”, and “a blue cube”, and
then project these embeddings into the color subspace. Then we take text embeddings of “a rose”
(red default), “a sunflower” (yellow default), “a daisy” (white default), and “a delphinium” (blue de-
fault), and project these embeddings onto the color subspace, and compute cosine similarities with
each of the first set of projected colored cube embeddings. Results can be seen in Figure[5] This
phenomenon explains why prompt engineering for zero-shot classification is so important: doing so
would remove spurious correlations which exist because of the default associations and subspace
loading.

5 CONCLUSION

In this paper, we posit that, facilitated by the natural language alignment objective, CLIP isolates
visual information into orthogonal subspaces in a way similar to how humans compose images. Ac-
cording to the dimension of the subspaces we found, we explained about 2.93% of this CLIP model’s
final layer. Future work should try to increase this percentage by identifying more compositional
attributes for single and multi-subject images.
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