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Abstract

We propose a novel block for causal video modelling. It relies on a time–space–channel
factorisation with dedicated blocks for each dimension: gated linear recurrent units (LRUs)
perform information mixing over time, self-attention layers perform mixing over space, and
MLPs over channels. The resulting architecture TRecViT is causal and shows strong perfor-
mance on sparse and dense tasks, trained in supervised or self-supervised regimes, being the
first causal video model in the state-space models family. Notably, our model outperforms
or is on par with the popular (non-causal) ViViT-L model on large scale video datasets
(SSv2, Kinetics400), while having 3→ less parameters, 12→ smaller memory footprint, and
5→ lower FLOPs count than the full self-attention ViViT, with an inference throughput of
about 300 frames per second, running comfortably in real-time. When compared with causal
transformer-based models (TSM, RViT) and other recurrent models like LSTM, TRecViT
obtains state-of-the-art results on the challenging SSv2 dataset. Code and checkpoints are
available online https://github.com/google-deepmind/trecvit.

1 Introduction

Video understanding requires low-level scene understanding (e.g. how objects move) and high-level reasoning
(e.g. causal relations between events) over a signal that is high-dimensional, can be noisy, and contains high
correlations and redundancies in both spatial and temporal dimensions. E!cient video modelling needs high-
capacity models that can represent the sheer diversity and richness of real-world videos, while operating in
a causal manner with reasonable compute and memory footprint both at training and during inference time
– these e!ciency requirements are critical for Robotics or augmented reality applications. Convolutional
neural networks (Carreira & Zisserman, 2017b; Feichtenhofer et al., 2019; Lin et al., 2019; Kwon et al.,
2020) have been a successful family of causal models for video, but their scaling capabilities (in both data
and parameters) are limited due to their inductive biases (locality, invariance). Recurrent neural networks,
e.g. (Srivastava et al., 2015; Patraucean et al., 2016) have some desirable properties for video modelling
(constant inference cost per timestep independent of the length of the video, causality for unidirectional
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models), but they are slow to train due to their sequential nature and have di!culties in learning over long
complex sequences. Transformers (Vaswani et al., 2017) have emerged as a very powerful family of models
for all modalities, with impressive scaling capabilities. However, they have a significant memory footprint
and latency due to the quadratic complexity of the self-attention operation and their performance degrades
when using causal self-attention masks. Recently, a new family of linear recurrent networks (Gu et al., 2020;
Gu & Dao, 2023; Orvieto et al., 2023b; Beck et al., 2024), referred to as State Space Models (SSMs), has
emerged as an answer to the quadratic complexity of self-attention and the slow training of RNNs, with
promising results for vision and language (De et al., 2024; Li et al., 2024). However, none of the existing
video SSM architectures can run in a causal manner, their performance strongly depends on bidirectional
operation.

In this paper, we propose a hybrid architecture that combines the best of all worlds. It alternates gated linear
recurrent units (LRUs) (De et al., 2024) applied over time, with self-attention blocks over space, and MLP
over feature channels. As opposed to space and channels, time has a natural order ("arrow-of-time") that
LRUs can implicitly and e!ciently model in a causal manner with O(N) complexity in the number of input
frames at training time and O(1) complexity at inference time, making it possible to process in real-time
videos that extend even indefinitely. Space, on the other hand, has a fixed limited dimension, for which the
quadratic cost of self-attention is more accessible. From a practical perspective, using self-attention over
space allows us to naturally process in parallel all the pixels of a given frame, without having to commit
to a particular scanning order (Li et al., 2024), making better use of hardware when parallel resources are
available. Importantly, by restricting the LRUs to temporal-only recurrence, this factorisation reduces the
sequence length by about two orders of magnitude compared to models that apply recurrence across both
space and time (Zhu et al., 2024; Li et al., 2024). Such models typically require bidirectional scanning to
attain strong performance, preventing them from operating in a causal manner.

To further limit the self-attention cost, we use spatial patches as introduced in the successful ViT (Dosovitskiy
et al., 2021) model. But, compared to existing video transformer models, e.g. ViViT (Arnab et al., 2021), the
patches do not have a fixed temporal extent. Instead, the embeddings of the spatial patches are integrated
continuously into the hidden state of the gated LRUs, providing persistent memory of the entire temporal
sequence up to the current frame, leading to a causal architecture. Furthermore, similar to convolutional
networks, the parameters of the LRUs are shared over space, preventing the number of parameters from
exploding as the resolution of the video increases.

We refer to the resulting model as Temporal Recurrent Video T ransformer (TRecViT). TRecViT is highly
flexible and can address various video understanding tasks, both sparse (e.g. video classification) and dense
(e.g. point tracking), trained in a supervised or self-supervised manner, e.g. using masked auto-encoding.
In all our experiments, we use a causal setup that respects the arrow of time, so the model is suitable for
any downstream applications, from e.g. video classification where we have o"ine access to the videos, to
e.g. Robotics, where online processing is required. Overall, our model is significantly more e!cient in both
memory footprint and FLOPs compared to vanilla transformers, and obtains state-of-the-art performance
when compared to causal models, while comfortably running in real time (e.g. throughput of about 300
frames per second for point tracking task).

Contributions: We propose a causal video architecture that uses a novel factorisation interleaving LRUs and
ViT blocks. We run ablations for the building blocks to find optimal hyperparameters and present extensive
experiments on multiple tasks and training regimes, showing the versatility and strong performance of our
model.

2 Related work

Transformers for Video. Proposed initially as language models, transformers (Vaswani et al., 2017) have
quickly become the dominant architecture across multiple modalities (images, audio, video). Transformer
blocks alternate between a spatial mixing block represented by self-attention and a (feature) channel mixing
block, typically represented by a gated MLP. Given that the self-attention layer treats the input tokens as a

set, positional encodings must be used in order to specify the location of each token. This also implies that no

parsing order is needed, unlike the case with RNNs. Vision transformers (ViT) (Dosovitskiy et al., 2021; Liu
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et al., 2021) split images into a fixed number of patches that are projected into an embedding space to obtain
tokens and these are then processed by a regular transformer. Several works extended ViT to video (Arnab
et al., 2021; Bertasius et al., 2021; Li et al., 2021; Fan et al., 2021; Patrick et al., 2021), e.g. by replacing
the regular image patches with spatio-temporal ones. The main challenge with transformers, particularly for
video, is the quadratic complexity in the number of input tokens. Multiple approaches have been proposed
to address this: e.g. factorisations of the self-attention operation (Arnab et al., 2021; Bertasius et al., 2021),
iterative attention (Jaegle et al., 2022), sparse sampling of the input frames (Piergiovanni et al., 2023), and
distributed self-attention operations across di#erent devices (Liu et al., 2024). Our proposed model uses a
novel space-time factorisation, where the temporal dimension is handled by LRUs and the spatial dimension
by self-attention, resulting in a causal e!cient video architecture.

As these models scale successfully to large number of parameters, their data needs are e!ciently met by
using self-supervised pre-training like masked autoencoding (MAE) (Tong et al., 2022) or contrastive learn-
ing (Zhao et al., 2024). Due to the factorisation used in our architecture, using such pre-training strategies
is straightforward and we include successful experiments with MAE pre-training in Section 5.

SSM, a type of Linear Recurrent Model. While transformers (Vaswani et al., 2017) can be e!ciently
parallelised during training, at inference they need to pay a quadratic cost in the sequence length. On
the other hand, recurrent networks (Elman, 1990; Hochreiter & Schmidhuber, 1997a; Mikolov et al., 2010;
Bahdanau et al., 2014; Sutskever et al., 2014) are compact and e!cient at inference but slow at training.
State Space Models (SSMs) (Gu et al., 2020; 2021; Orvieto et al., 2023b), a particular type of linear recurrent
networks, have recently been proposed as an answer to the scalability problem of RNNs, and have shown
strong performance in language and other long-range dependencies tasks (De et al., 2024; Gu & Dao, 2023).

SSMs, like S4 (Gu et al., 2021), S4D (Gu et al., 2022), or Mamba (Gu & Dao, 2023) have been introduced
as particular discretizations of a continuous time linear system. On the other hand, the linear recurrent
unit (LRU) (Orvieto et al., 2023b) was designed by identifying the minimal set of changes to a vanilla
RNN (Elman, 1990) that allows it to obtain the same key properties as the S4D architecture (Gu et al., 2021).
Specifically, the nonlinear recurrence typical of a recurrent model was removed to improve the scalability
and controllability of the system, as the linearity allows the recurrent matrix to be diagonalised through
eigenvalue decomposition and absorbing the (dense) eigenvectors matrix into the neighbouring layers. This
gives direct access to the eigenvalues of the Jacobian of the transfer function characterising the system. By
parametrising the diagonal weight matrix containing the eigenvalues such that all entries are constrained to
be below one, the system is guaranteed to be stable, bypassing exploding gradients issues. However, using
only linear recurrence can greatly limit the expressivity of the layer. In (Orvieto et al., 2023a), the authors
show that by using these layers within a typical transformer structure that alternates linear recurrences with
point-wise nonlinearities (e.g. the MLP block), the overall architecture recovers expressivity through depth
and can be shown to be a universal approximator of finite sequence-to-sequence maps.

Improving on the LRU, the gated LRU (De et al., 2024) introduces gating mechanisms similar to LSTM
or GRU architectures, to filter the input sequence, or, for the recurrent gate, to control the rate of the
information decay. Importantly, di#erent from LSTM or GRU, these gates do not depend on the previous
state, which would prevent parallelisation at training time. A series of recent works rely on formulating
the linear recurrence as a form of linear attention, such as Mamba 2 (Dao & Gu, 2024), Gated Delta
Networks (Yang et al., 2025), MesaNetworks (von Oswald et al., 2025), akin to previous observation, providing
a more direct connection to attention. These works exploit this connection to show that the recurrence can
be seen as an update rule of a local objective, similar to interpretability works on in-context learning. In
this line of work, it is also worth noting xLSTMs (Beck et al., 2024), which connects SSMs more explicitly
to traditional non-linear models such as LSTMs (Hochreiter & Schmidhuber, 1997b). In our work, we use
gated LRUs, but we expect similar results when using other gated SSM blocks like Mamba or xLSTM within
our factorisation.

SSMs for Video. While SSMs have mostly been explored in language, several architectures like S4 and
Mamba have also been adapted to image and video understanding (Zhang et al., 2024) and generation (Gao
et al., 2024). ViS4mer (Islam & Bertasius, 2022) uses a ViT image encoder to process videos frame by frame,
and integrates their representations over time using S4 blocks at the top. TranS4mer (Islam et al., 2023)
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Figure 1: Left: TRecViT architecture. Each video frame is divided into non-overlapping patches that are
linearly projected into a token embedding space. We then add a learnt spatial positional encoding. The
tokens are passed through gated linear recurrent units (LRUs) that share parameters across space. The
outputs of the recurrent blocks are then processed by a ViT block. The recurrent operation followed by ViT
is repeated N times. Right: TRecViT block. The input is a batch of videos, each frame with N tokens. We
apply recurrent units over temporal tubes to integrate information over time, and self-attention and MLP
across tokens within each frame. Note that the recurrent units share parameters, but the information is not
mixed across temporal tubes. Similarly, the ViT blocks share parameters, but the information is not mixed
across frames. There are skip connections around each block, not included here to reduce clutter.

uses self-attention over short clips and integrates these with gated S4 blocks. More recently, the Mamba
architecture was extended to images and videos by having it process a flattened 1D sequence of image or
video patches. This requires defining a processing order for the patches, and di#erent orders have been
proposed, e.g. bidirectional and following a column or row order (Zhu et al., 2024; Li et al., 2024; Shi et al.,
2025; Lu et al., 2025). As opposed to these Mamba-based architectures, our factorisation naturally uses
the arrow-of-time to decide the scanning order, resulting in a causal model. Another important benefit of
our hybrid architecture is that we can initialise the ViT blocks with strong existing pre-trained weights.
This leads to strong performance even at larger scale, as opposed to VideoMamba (Li et al., 2024) where
the authors report severe overfitting issues, requiring distillation from smaller models when training in a
supervised fashion or distillation from CLIP features (Radford et al., 2021) for self-supervised training.

Causal video models. All the models mentioned above process the videos in an o"ine manner, i.e.
require access to all frames at the same time, making their application in streaming setups (e.g. Robotics,
virtual reality) sub-optimal. A few works have proposed adaptations of convnets and Transformers to causal
operation (Lin et al., 2019; Zhao et al., 2023; Yang et al., 2022). In (Zhao et al., 2023), the authors store
the keys and values from previous frames to perform cross attention with queries from the current frame,
but they still use a non-causal temporal transformer for action recognition tasks. The closest to our work is
RViT (Yang et al., 2022), which proposes a linear attention-based gating for processing videos in a recurrent
manner. In the experiments section, we show that our recurrence based on LRUs leads to state-of-the-art
results in causal operation settings and competitive performance with non-causal models.

3 TRecViT Architecture

Notations: Let X ↑ [0, 1]T ↑H↑W ↑3 be an RGB video with T frames and H → W pixels. The video frames
are split into N non-overlapping patches pk

t
of size n → n → 3, with t ↑ {1, T} and k ↑ {1, N}. Let xk

t
be the

tokens obtained after the linear projection of the patches and the addition of the spatial positional encoding,
with token size 1→1→d, where d is the token feature dimension. A temporal tube is a sequence {xk

t
|t = 1, T}

containing the tokens from the same spatial location across frames.
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The proposed architecture, TRecViT, is composed of repeated identical blocks, each performing a sequence
of information mixing steps across the di#erent dimensions of the video signal: time, space, and channels;
see Figure 1. The mixing over the time dimension is handled by gated linear recurrent units (LRUs), similar
to the one introduced in (De et al., 2024) for language. Each spatial token is associated with an LRU
that processes the tokens within the same temporal tube over time, without mixing the information across
temporal tubes, so each LRU has its own state – we use LRU1, LRU2,... in Figure 1 to highlight this. The
LRUs share parameters over space, similar to a convolutional network. When applying this temporal mixing
operation, the space dimension is transposed into the batch dimension.

The mixing over spatial and channel dimensions is handled by a standard ViT block, which first performs
the spatial mixing through a self-attention operation, then the channel mixing by using an MLP. When
performing the spatial and channel mixing, the time dimension is transposed into the batch dimension. We
first perform temporal mixing, followed by spatial and channel mixing. We found this time-space order to
produce better results compared to space-time order. We hypothesise that, by applying LRUs first, this
allows them to focus on more local, easier to model, information at the first layer, instead of operating
directly on features that mix information across the entire frame.

Empirically, we show that this time-space-channel factorization and choice of building blocks is more e!cient
for understanding temporal dynamics compared to video transformer approaches (e.g. ViViT (Arnab et al.,
2021)) or pure SSM models. By applying self-attention over the spatial dimensions, we allow all tokens
to attend to all the other tokens in parallel, without having to commit to a particular order (unlike in
VideoMamba). We employ strong transformer blocks from ViTs for this operation, including their Imagenet
pre-trained weights. The recurrence of the temporal processing enables e!cient frame-by-frame inference
over long videos, with constant memory footprint and causal operation.

3.1 Gated LRUs for Video

We adopt the gated variant of the LRU (De et al., 2024) to design our proposed block for video modelling.
Although LRUs have been proposed for language, we hypothesise that they can e#ectively model video
signals, given the continuous nature of the video and LRUs’ inspiration from time continuous systems. We
run extensive analysis and ablations for the di#erent components and hyperparameters of the gated LRU
block to find a configuration that works well for video; see analysis below and ablations in section 5.1.

The gated LRU operation is described by the below equations:

it = ω(Wxxt + bx) input gate (1)
rt = ω (Wωxt + bω) recurrence gate (2)
εt = ω(ε)C·rt (3)

ht = εt ↓ ht↓1 +
√

1 ↔ ε2
t

↓ (it ↓ xt) (4)

where ht ↑ Rd is the state of the LRU, εt ↑ Rd is a vector containing the eigenvalues of the (diagonal)
recurrence matrix1, it ↑ Rd is the input gate controlling whether xt ↑ Rd is integrated within the state ht

of the LRU or not, and rt ↑ Rd is the recurrence gate. The weights and biases of the LRU (Wx ↑ Rd↑d,
Wω ↑ Rd↑d, bx ↑ Rd, bω ↑ Rd) are initialized using LeCun init (LeCun et al., 2012).

The (learnable) recurrence weights ε are passed through a sigmoid function to ensure they are between 0
and 1, and are initialised such that ω(ε) is sampled uniformly in [εmin, εmax]. These recurrent weights are
raised to the power C · rt, which e#ectively acts as a gate controlled by rt ( equation equation 2). rt is
defined as a linear projection, with parameters Wω and bω, followed by a sigmoid function to ensure again
the range [0, 1]. By raising element-wise ω(ε) to rt, the e#ective recurrence weight at some position j can
change between the j-th entry of ω(ε) when the corresponding gate entry is 1 and 1 when the gate entry is
0.

1
Similar to (De et al., 2024), we implement the recurrence weights ωt as exp(→C · softplus(ω) · rt), which is mathematically

equivalent but numerically more stable.
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The additional constant coe!cient C ↑ R, typically set to 8 as in (De et al., 2024), increases the range to
be between ω(ε)C to 1, providing additional flexibility. E.g. if ω(ε) is 0.9 and we set C = 8, we extend the
range from [0.9, 1] to [0.43, 1]. More importantly, we change the learning dynamics (e.g. gradient norms)
and resolution we have over the range during learning. Specifically, for xt in some fixed interval and similar
magnitude Wω, as it is the case at initialisation, a higher value of C implies εt will concentrate more towards
the edges of the range. Note also that this is the dynamic range in which the recurrent weights can vary
during inference as a function of the input tokens.

In (De et al., 2024), the authors found that setting εmin = 0.9 and εmax = 0.999 leads to the best results. An
eigenvalue of 0.9 implies that it will take at least 10 time steps for the information to decay to roughly 35%
of its magnitude, while for an eigenvalue of 0.999 it will take 1000 time steps to decay by the same amount.
When using the same range for video modelling, we observed that the eigenvalues are pushed significantly
towards εmin during training, with a small number of eigenvalues becoming smaller than εmin; see Figure 2.
We experimented with extending the range and obtained better results with εmin = 0.6; see Table 1. This
leads to faster decay of information initially and might reflect the importance for videos of having enough
recurrent units focused on short term information, in order to disentangle fast changing dynamics from slow
ones.

Figure 2: Distribution of the eigenvalues of the recurrent matrix at the beginning and end of training on
long video memorisation task (see subsection 5.4) for di#erent initialisation ranges.

Finally, note that when diagonalising the recurrence matrix, the eigenvalues ε could, in theory, have complex
values. We conducted experiments using complex eigenvalues, but we did not see improvements compared
to using only real eigenvalues. The same observation was made in (De et al., 2024; Gu & Dao, 2023) as well.

3.2 Video block based on gated LRU

We use the gated LRU in a similar block structure as the one employed in (De et al., 2024), see Figure 1b.
Given a 1D input (temporal tube), the block first applies a normalisation layer, then the signal is routed on
two di#erent paths. On the first one, it gets linearly projected to same dimensionality d and then the GeLU

activation is applied. On the other path, the signal is also linearly projected to the same dimensionality
d, then we apply a 1D convolution followed by the gated LRU described in equation 4. The output of the
LRU and the GeLU branch are element-wise multiplied and then linearly projected to the same dimension
d. Note that, in line with (De et al., 2024), we use a separable convolution, which allows mixing information
only over time, not over channels. We sweep the width of the convolutional kernel and find that a window
of 4 gives the best results, similar to (De et al., 2024). Di#erent from (De et al., 2024), we do not use an
MLP block after the LRU for feature mixing. We apply the MLP after the self-attention block, as done in
ViT.

Given the diagonal form of the recurrence, on device, the gated LRU computations are memory-bound, i.e.
the data transfer takes longer than the actual computations done on that data. Similar to (De et al., 2024)
we use a specialised Pallas (Bradbury et al., 2018) kernel that minimizes the number of bytes that need to
be moved between HBM and VMEM (the Vector Processing Unit’s cache). The parameters added by the
linear projections within the block, as well as the parameters of the convolution and the LRU, are learned.
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Figure 3: Left: Memory comparison; Right: FLOPs comparison. Our model demonstrates increasingly
greater memory and compute savings compared to ViViT full self-attention as the number of frames in-
creases. The e!ciency of ViViT factorised self-attention is very similar to TRecViT’s, but its performance
is significantly lower. The factorised encoder variant of ViViT-L is very e!cient, but it performs well mainly
on sparse tasks.

4 Training TRecViT

The proposed architecture can be trained in a supervised or self-supervised regime. Given a tokenised video
input, the output of TRecViT will have the same dimension and shape as the input, meaning that we can
easily recover the spatio-temporal structure of the input video, which can be useful for dense tasks like pixel
reconstruction, depth estimation, or point tracking. At inference time, the architecture can be applied over
all the video frames at once, or frame-by-frame by carrying over the state of the LRUs. Depending on the
task, one can choose to keep all the outputs from all time-steps to make a prediction (similar to ViViT), or
just the outputs from the last step, given that the LRU integrates the previous history in its state. In our
experiments, we use mainly the former for fairer comparison with ViViT, but we also experiment with the
latter to analyse LRU’s capability of remembering over a very long context; see subsection 5.4.

4.1 Self-supervised pre-training

Given the factorised nature of the proposed architecture and the redundancy present in the video signal, it
comes natural to apply masked auto-encoding to enable self-supervised pre-training from scratch on large-
scale unlabelled datasets.

We follow the same recipe as in the original VideoMAE paper (Tong et al., 2022). Specifically, we use
tube masking where a 2D random mask is generated and repeated for all the frames in the video. For our
architecture, this is equivalent to dropping temporal LRUs. The training objective is simply L2 reconstruction
error of the entire frames. We sweep the value of the masking ratio and we find that 0.90 leads to best
performance on downstream tasks. When using the pre-trained representations for downstream tasks, we
keep all the tokens of the video and we add a decoder or readout head that is fine-tuned for the respective
tasks.

4.2 Computational complexity and e!ciency analysis

We discuss here the computational complexity of the proposed architecture and its e!ciency compared to
di#erent variants of ViViT. Our model’s parameter count (111M) falls between that of ViViT-B (90M) and
ViViT-L (310M). We focus on ViViT-L as the main point of comparison in our e!ciency and SOTA analysis
(Section 5.2) as this is the strongest representative of the ViViT family reported in the original ViViT
paper. Furthermore, since our architecture is suitable for both sparse and dense video tasks, we compare
the e!ciency benefits mainly against the more general full self-attention ViViT-L variant, which is utilised
by influential follow-up works (e.g., VideoMAE Tong et al. (2022)) over the specialised Factorised Encoder
(FE) version, which models temporally only one token per frame, being suitable for classification tasks, but
not for dense tasks.

7



Published in Transactions on Machine Learning Research (12/2025)

We consider a video with T frames, each frame with N spatial tokens of dimension D, and a model with L
layers. The full self-attention ViViT flattens the video sequence and computes attention scores between all T ·

N pairs of tokens followed by a token-wise MLP block, resulting in a complexity O(LT 2N2D+LTND2), with
the first term associated to self-attention dominating the overall computation. For our hybrid architecture,
we consider the complexity of the ViT blocks and the gated LRU blocks separately. The L ViT blocks perform
spatial attention over the N tokens within each frame, resulting in O(LT (N2D + ND2)) complexity. The L
gated LRU blocks perform temporal processing across the T frames for all N tokens in parallel, contributing
O(LTND2) complexity. Hence the total complexity for the proposed model is O(LTN2D + LTND2). The
main di#erence is that ViViT full self-attention scales quadratically with the number of frames (T 2) and
the number of spatial tokens (N2), whereas our model scales linearly with the number of frames (T ) and
quadratically with the number of spatial tokens (N2).

This di#erence is reflected in the memory footprint and FLOPs count of the two types of models; see Figure 3.
The profiling results are obtained by cost and memory analysis of lowered Jax HLO on CPU backend to be
aligned with the theoretical numbers (JaxAuthors, 2018). We consider as input a video of size 224 → 224
and we vary the length of the video to analyse the savings provided by our architecture as the length of the
video increases. The peak memory and number of flops for TRecViT are significantly lower as the number of
frames increases, e.g. at 32 frames (the number of frames typically used in video classification experiments),
TRecViT’s peak memory is ↗12→ smaller than that of ViViT-L full self-attention and the FLOPs count
is 5→ lower. When going to 64 frames, the peak memory is ↗24→ smaller and FLOPs count is 8→ lower.
This is due to the fact that TRecViT maintains its history in a fixed-sized compressed state, whereas full
self-attention Transformer-based models store in cache the keys and values for the full history. Similarly,
the FLOPs count grows exponentially for ViViT due to its quadratic complexity, where each input token
attends to every other token in the video. The factorised self-attention and factorised encoder variants are
significantly more e!cient than the full self-attention and comparable to TRecViT. However, the performance
of the factorised self-attention version is significantly worse (see ablations in Table 2), whereas the factorised
encoder is tailored specifically for sparse tasks, modelling only one class token per frame.

5 Experiments

We present results for supervised video classification and self-supervised masked auto-encoding with frozen
representations evaluated on two downstream tasks: video classification and point tracking. To analyse the
memory capabilities of our model, we also include a reconstruction task of frames seen in the distant past.
Using the same task, we study the generalisation capabilities to longer sequences than seen during training.
We follow the ViT scaling configurations and, unless otherwise stated, we use the Base version for our model
for all our experiments. We specify the number of parameters for all models considered in our experiments,
and we include in the supplementary material all the model configurations, training hyperparameters, and
data augmentations used in all experiments.

Datasets: We use mainly two large-scale real-world datasets for ablations and for SOTA comparison on
the supervised video classification task. Kinetics400 (Carreira & Zisserman, 2017a) contains 241,512 videos2

across train, validation, and test splits, 10s-long (25fps), spanning 400 classes. This dataset is known
to require modelling appearance for successful action recognition. To challenge our model’s capability of
understanding motion, we also use SSv2 dataset (Goyal et al., 2017), which contains 220,847 shorter videos
(2-6s long), sampled at 12fps, representing 174 classes. This dataset includes actions that di#er in finer
motion-related details, requiring a deeper temporal understanding, e.g. pouring something into something

vs pretending to pour something into something.

5.1 Ablations

Gated LRU block: We ran multiple ablations for the components of the gated LRU block used in TRecViT
using SSv2 supervised classification as task, see Table 1. We study the impact of the di#erent components and

2
Kinetics is a dynamic dataset (videos may be removed from YouTube). Our current version has 241,512 videos, compared

to 267,000 videos reported in (Arnab et al., 2021), so a decrease of almost 10%, noticeable in the final performance.
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of the initialisation range for the eigenvalues of the recurrent matrix, as mentioned in section 3.1. We report
top-1 classification accuracy, i.e. the percentage of videos for which the model’s highest-confidence prediction
matches the ground truth label. The results show that the skip connection is essential to successful training;
without it, we need to lower the learning rate for the training to take o# at all, and the final performance
is still very poor. Removing the input and recurrent gates leads to slightly reduced performance, in line
with the observations on SSM in language. The input gate adds selectivity on the input, while the recurrent
gate modulates how far in the past the model looks. Removing the 1D convolutional layer leads to a bigger
decrease, which again is in line with the original Gri!n paper that mentioned the important role of the
Conv1D layer in extracting local temporal features.

Ablation Top-1(%)
Gated LRU block [0.6, 0.999] (ours) 66.7
Gri!n range [0.9, 0.999] 66.2

No skip connection (lower lr) 15.5

No input gate, no recurrent gate 66.0

No convolutional layer 64.9

Table 1: Ablation on Gated LRU components and eigenvalue initialisation. Task: SSv2 classification. Metric:
top-1 accuracy (higher is better).

Training from scratch: We run an experiment to compare the proposed factorisation against simpler
adaptations of LRU to video, similar to the ones used in ViViT and VideoMamba, i.e. patchify and flatten
the entire video, add spatio-temporal positional embeddings, and apply 1D self-attention or SSM blocks as
done in language tasks. Figure 4 compares the proposed TRecViT with these two baselines, with all models
being trained from scratch on supervised classification on SSv2. We consider the Small version for all models
as the larger Base version shows stability issues when trained from scratch, as reported in other works as
well (Li et al., 2024; Arnab et al., 2021). As expected, the performance on this challenging dataset when
training from scratch is far from SOTA, but it clearly shows that the proposed factorisation has superior video
modelling capabilities compared to baselines, ViViT-S with full self-attention being the closest competitor.
PureLRU’s performance is very poor, which is in line with the findings from VideoMamba that bidirectional
(non-causal) processing of the input is needed for good performance.

Same factorisation, di"erent temporal blocks: We compare our proposed hybrid architecture against
other factorised variations that have similar e!ciency; see Figure 5 in the appendix for memory footprint
and FLOPs comparison. The results are included in Table 2 and clearly show that the proposed hybrid
architecture is superior in performance and in training throughput compared to architectures using LSTM
or factorised self-attention to integrate temporal information. The model using Conv1D as temporal module
is faster to train, but its accuracy is far from competitive.

Additional ablations: We include in the appendix ablations by running supervised classification on SSv2
using di#erent hyperparameter values: temporal dimension of video patches, minimal radius for eigenvalue
initialisation, window size for the 1D convolution in LRU. We also include an experiment considering multiple
seeds and report mean and variance.

Temporal module (w skip) Top-1 (%) Steps per sec (training)
ViViT factorised self-attention 62.4 8.3

ViT-LSTM 63.7 6.0

ViT-Conv1D 40.3 10.5

TRecViT 66.7 8.9

Table 2: Comparison of di#erent temporal modules used in hybrid setups similar to our proposed TRecViT.
Task: SSv2 classification. Metric: Top-1 accuracy (higher is better).
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Figure 4: TRecViT compared to baselines on supervised video classification on SSv2 dataset, trained from
scratch. The plot shows the evolution of the evaluation accuracy as training progresses (higher is better).

5.2 SOTA comparison on supervised video classification

We compare the performance of TRecViT against top models in the literature, considering both causal and
non-causal architectures; see Table 3 for SSv2 results and Table 4 for Kinetics400 results. On SSv2, our
model achieves state-of-the-art performance compared to causal baselines (TSM, RViT, causal ViViT) and
outperforms or is competitive with all non-causal baselines. Notably, it outperforms the popular ViViT-L
by 2.3% despite having about 3→ less parameters.

On Kinetics400, TRecViT outperforms convolutional architectures (I3D) and some Transformer-based ar-
chitectures (TimeSformer, ViViT-B, causal ViViT-L). Compared to RViT and ViViT-L, the performance is
competitive, but slightly lower. We attribute this in part to the reduced number of videos in the dataset as
mentioned above – when training both TRecViT and ViViT-L on the same number of videos, the perfor-
mance gap is significantly reduced. In addition, this result could also reflect the di#erence between the two
datasets mentioned above (appearance vs motion) and highlights that TRecViT is superior at modelling mo-
tion compared to baselines, but on Kinetics400 where the appearance is enough for successful classification,
the performance is on par.

5.3 Self-supervised masked autoencoding

We use Kinetics400 for self-supervised pre-training from scratch and we report results on multiple downstream
datasets and tasks by fine-tuning attention readout heads on top of frozen representations. We choose this
setup, as opposed to fine-tuning end-to-end, as the performance in this case more clearly reflects the quality
of the pre-trained representations. As mentioned in the previous section, we use a large masking ratio (0.90),
which makes pre-training very e!cient. We report the number of parameters for every model considered.
Note that the number of parameters for TRecViT is di#erent from the one reported in the previous section
due to the addition of the readout heads.

Video classification: We report video classification accuracy as downstream task using attention readout
heads on SSv2 and Kinetics400. We compare the performance against VideoMAE-L (Tong et al., 2022) in
Table 5. Our model obtains slightly better performance on both datasets compared to this strong baseline,
despite having almost 3→ less parameters.

Point tracking: To demonstrate that our model can handle dense(r) tasks as well, we evaluate the same
frozen MAE representations for the point tracking task. We use the recurrent architecture in MooG (van
Steenkiste et al., 2024) as a readout head due to its simplicity. MooG uses light cross-attention layers to
process the embeddings of each frame in order, and the readout state is carried over time. We finetune the
readout head using MOVi-E dataset (Gre# et al., 2022) as done in popular point tracking works (Doersch
et al., 2023). We evaluate these fine-tuned representations on two datasets: Perception Test (P$tr$ucean
et al., 2023) and DAVIS dataset (Pont-Tuset et al., 2017) with point tracks extracted in (Doersch et al., 2022).
We report average Jaccard metric, i.e. the percentage of predicted points that fall within a certain threshold
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Model Pre- Top-1 Param FLOPs Mem

Train (%) (M) (T) (G)

non-causal
I3D K400 51.3 25.0 N/A N/A

SlowFast R50 K400 61.9 34.1 0.19 3.35

SlowFast R101 K400 63.1 53.3 0.32 4.20

MSNet IN-21K 64.7 54.6 0.07 6.54

TimeSformer-L IN-21K 62.4 121.4 5.1 >24

VidTr-L - 63.0 N/A 10.5 N/A

ViViT-L32 - 65.9 310.8 7.75 6.11

Mformer-B IN-21K 66.5 114.0 1.10 7.3

MViT-B32 K400 67.1 36.6 0.51 10.7

MViT-B64 K400 67.7 36.6 1.36 >24

MViT-B-2432 K600 68.7 36.6 1.36 >24

VideoMamba IN-21K 68.4 74.0 0.33 N/A

VideoMambaPro IN-21K 69.4 72.0 2.2 N/A

causal
TSM* K400 63.3 42.9 0.19 5.98

cViViT-L32 IN-21K 64.4 310.8 N/A N/A

RViT-L32 K400 66.1 72.0 1.34 2.12

RVIT-XL64 K400 67.9 107.7 3.99 2.33

TRecViT32 IN-21K 66.8 111.3 1.44 1.79

TRecViT64 IN-21K 68.2 111.3 2.89 3.16**

Table 3: Performance comparison on SSv2 dataset, considering causal and non-causal baselines. cViViT-L
is a causal ViViT model that we trained using causal attention masking for the self-attention block. We
do not include FLOPs and Mem for this model as they will heavily depend on the implementation of the
causal masking. Where present, the subscript indicates the number of frames used at inference time. Metric:
Top-1 accuracy (higher is better). *Result reported in (Yang et al., 2022). **For TRecViT, the memory at
inference is independent of the number of frames, here we run causally on the entire sequence in parallel,
hence the memory increase.

Model Pre-Train Top-1 (%) Param (M)

non-causal
I3D IN-1K 72.1 25.0

TimeSformer IN-21K 78.0 121.4

Mformer-B IN-21K 79.7 114.0

ViViT-L IN-21K 80.3 320.0

ViViT-B IN-21K 78.1 91.2

ViViT-L IN-21K 78.7 310.9

causal
RViT-XL IN-21K 81.5 107.7

cViViT-L IN-21K 76.3 310.9

TRecViT IN-21K 76.5 111.2

Table 4: Performance of TRecViT compared to convolutional and transformer-based baselines on Kinetics400
dataset. For fair comparison, we trained ViViT-B and ViViT-L models on the current Kinetics400 dataset
version; see footnote 2. The numbers in gray correspond to results obtained on the original larger Kinetics400
dataset, reported by their authors. Metric: Top-1 accuracy (higher is better).

from the ground truth points (Doersch et al., 2022), for TRecViT compared with MooG and VideoMAE;
see Table 7. TRecViT obtains better performance on both datasets compared to baselines, which reinforces
the observation that our proposed model has strong motion modelling capabilities. We include qualitative
results for this task in the appendix.

5.4 Long video memorisation task

Transformer models for language are known to be excellent at retrieving information from context, as they
cache the keys and values for the entire history. On the other hand, LRUs / SSMs and RNNs in general
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Model Dataset Top-1 (%) Param (M)

VideoMAE Kinetics400 45.8 330

TRecViT Kinetics400 46.0 128

VideoMAE SSv2 53.7 330

TRecViT SSv2 53.9 128

Table 5: Performance of TRecViT compared to VideoMAE on video classification using frozen MAE repre-
sentations, pre-trained on Kinetics400. Metric: Top-1 accuracy (higher is better).

Model Num frames train Num frames test PSNR

ViViT-L 96 96 32.2
TRecViT 96 96 29.1

ViViT-L 64 96 15.1

TRecViT 64 96 26.4

Table 6: Comparison between TRecViT and ViViT-L on the long video memorisation task, when the models
are evaluated on the same number of frames as seen in training (top) or on longer sequences (bottom).
Metric: Peak Signal-To-Noise Ratio (PSNR); higher is better.

struggle with such needle-in-the-haystack style tasks as they need to perform the retrieval based on the
compressed history kept in their recurrent state (Jelassi et al., 2024; De et al., 2024).

We are interested in studying this aspect in the video domain as well. We set up a simple reconstruction
task where the model has to remember the frame seen at a given time-step in the past. For example, we
train the models with sequences of length T = 96 frames to reconstruct the 16th frame. Using the same
task, we also analyse the generalisation capabilities to sequences longer than those seen during training, i.e.
the models are trained with sequences of length T = 64 frames to reconstruct the 16th frame, and then are
evaluated on video sequences with T = 96 frames to reconstruct the same 16th frame.

We employ Walking Tours dataset (Venkataramanan et al., 2024), which contains hour-long videos, and
the scenery changes constantly, hence we are guaranteed that the video frames seen most recently will be
very di#erent compared to the frames seen earlier on. We scale the videos to 224 → 224 pixels. We adopt
ViViT-L as baseline, and we train both models using Imagenet pretrained weights. For ViViT-L, we keep all
the outputs from all T time steps and apply temporal pooling and a 1 → 1 convolution to get the expected
shape for the reconstructed frame. For TRecViT, we simply keep the output of the last layer at time step
T and reshape it to the expected shape. When evaluating on longer sequences, the ViViT model needs to
adapt the positional encoding – we use interpolation to nearest neighbour to obtain the desired length; cubic
interpolation led to worse results. TRecViT can run on any sequence length without modification.

Table 6 includes quantitative results measured in terms of Peak Signal-to-Noise Ratio (PSNR), which is
defined based on the mean squared error (MSE) between the pixel values of the original video and the re-
constructed video; more quantitative and qualitative results are included in the Appendix. When evaluated
on the same sequence length, ViViT-L is better than TRecViT as it manages to better preserve the higher

Model Dataset AJ Param (M)

MooG DAVIS 0.687 35

VideoMAE DAVIS 0.703 330

TRecViT DAVIS 0.706 128

MooG Perception Test 0.760 46.5M

VideoMAE Perception Test 0.761 330M

TRecViT Perception Test 0.783 128M

Table 7: Performance of TRecViT compared to baselines on point tracking task on DAVIS and Perception
Test datasets. All models use frozen representations evaluated using the readout head from MooG. In line
with MooG, we use 8 frames for the DAVIS dataset and 16 frames for the Perception Test. Metric: average
Jaccard (AJ); higher is better.
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frequencies in the visual signal. However, when evaluated on longer sequences, ViViT’s PSNR drops signifi-
cantly, showing strong artefacts, whilst TRecViT’s output quality remains quite satisfactory (see qualitative
results in the appendix, Figures 8 and 9). We consider this to be a very promising result that warrants
further investigation into the memorisation capabilities of our model – we leave this as future work.

6 Conclusion

We propose a novel causal video architecture TRecViT that alternates gated linear recurrent units (LRUs)
modelling the temporal dynamics in the video with ViT blocks modelling the spatial and channel dimensions.
Notably, this is the first causal architecture in the SSM video models family. The proposed model outper-
forms or obtains competitive performance compared to strong causal and non-causal baselines on supervised
and self-supervised tasks, while having a much smaller number of parameters and significantly reduced mem-
ory footprint and FLOPs count compared to vanilla Transformer video models. Our study indicates that
temporal linear recurrence combined with spatial self-attention is a natural and e#ective parameterisation
for video modelling, given the sequential nature of videos as defined by the arrow-of-time.

Limitations and Future Work: While this study presents the first exploration into leveraging LRUs for
the video domain, some key aspects necessitate further investigation. First, we plan to conduct a deeper
investigation into the memorisation limitations of our architecture, particularly in needle-in-haystack prob-
lems. Second, we aim to understand our model’s capabilities in a multi-step generative context, specifically
by integrating it within video di#usion models. Finally, given LRUs’ inspiration from continuous time sys-
tems, we plan to explore its capabilities of modelling variable frame rate videos across various complex
applications, including video-language tasks and Robotics.
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