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Abstract
In this paper, we present a new class of invertible
transformations with an application to flow-based
generative models. We indicate that many well-
known invertible transformations in reversible
logic and reversible neural networks could be de-
rived from our proposition. Next, we propose two
new coupling layers that are important building
blocks of flow-based generative models. In the
experiments on digit data, we present how these
new coupling layers could be used in Integer Dis-
crete Flows (IDF), and that they achieve better
results than standard coupling layers used in IDF
and RealNVP.

1. Introduction
Notation Let us consider a D-dimensional space x ∈ X ,
e.g., X = {0, 1}D, X = ZD or X = RD. We define a
binary invertible operator ◦ : X × X → X . The inverse
operation to ◦ is denoted by •. For instance, for the addition:
◦ ≡ + and • ≡ −, and for the XOR operator: ◦ ≡ ⊕ and
• ≡ ⊕. Further, we use the following notation: Xi:j is a
subset of X corresponding to variables from the i-th dimen-
sion to the j-th dimension, xi:j , we assume that X1:0 = ∅
and Xn+1:n = ∅

Invertible transformations In reversible computing (Tof-
foli, 1980; Fredkin & Toffoli, 1982), invertible logic gates
allow inverting logic operations in order to potentially de-
crease energy consumption of computation (Bennett, 2003).
Typical invertible logic gates are:
− the Feynman gate: For x ∈ {0, 1}2, the gate is defined as
follows (Feynman, 1986):

y1 = x1

y2 = x1 ⊕ x2. (1)

*Equal contribution 1Department of Computer Science, Vrije
Universiteit Amsterdam, Amsterdam, the Netherlands. Correspon-
dence to: Jakub M. Tomczal <j.m.tomczak@vu.nl>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

− the Toffoli gate: For x ∈ {0, 1}3, the gate is defined as
follows (Toffoli, 1980):

y1 = x1

y2 = x2 (2)
y3 = x3 ⊕ (x1 ∧ x2).

− the Fredkin gate: For x ∈ {0, 1}3, the gate is defined as
follows (Fredkin & Toffoli, 1982):

y1 = x1

y2 = x2 ⊕ (x1 ∧ (x2 ⊕ x3)) (3)
y3 = x3 ⊕ (x1 ∧ (x2 ⊕ x3)).

Invertible transformations play also a crucial role in re-
versible neural networks (Gomez et al., 2017; Chang et al.,
2018; MacKay et al., 2018). For instance, an invertible trans-
formation called a coupling layer is an important building
block in flow-based models (Dinh et al., 2016). It is defined
as follows:

y1 = x1

y2 = exp{NNs(x1)} � x2 +NNt(x1), (4)

where � is an element-wise multiplication, NNs(·) and
NNt(·) denote arbitrary neural networks, and the input is
divided into two parts, x = [x1,x2], e.g., along the channel
dimension. If NNs(·) ≡ 1, and we stack two coupling
layers with reversing the order of variables in between, then
we obtain the reversible residual block (Gomez et al., 2017):

y1 = x1 +NNt,1(x2)

y2 = x2 +NNt,2(y1). (5)

Recently, (Hoogeboom et al., 2019) proposed a modification
of the coupling layer for integer-valued variables:

y1 = x1

y2 = x2 + bNNt(x1)e, (6)

where b·e denotes the rounding operation. In order to allow
applying bakcpropagation to the rounding operation, the
straight through gradient estimator is used (Hoogeboom
et al., 2019).
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Flow-based generative models There are three ma-
jor groups of generative models: autoregressive mod-
els (Van den Oord et al., 2016), latent variable mod-
els(Goodfellow et al., 2014; Kingma & Welling, 2013;
Rezende et al., 2014), and flow-based models (Papamakar-
ios et al., 2019). The last approach takes advantage of the
change of variables formula:

p(x) = π(z = f−1(x))|Jf (z)|−1, (7)

where π(·) is a known distribution (a base distribution, e.g.,
Normal distribution), f : X → X is a bijective map, and
Jf (z) denotes the Jacobian matrix.

The main challenge of flow-based generative models lies
in formulating invertible transformations for which the Ja-
cobian determinant is computationally tractable. In the
simplest case, we can use volume-preserving transforma-
tions that result in Jf (z) = 1, e.g., linear autoregressive
flows (Kingma et al., 2016; Tomczak & Welling, 2017) or
Householder flows (Tomczak & Welling, 2016). However,
the volume-preserving flows cannot model arbitrary distri-
butions, therefore, non-linear transformations are prefer-
able. In (Rezende & Mohamed, 2015; Berg et al., 2018;
Hoogeboom et al., 2020) a specific form of non-linear trans-
formations was constructed so that to take advantage of
the matrix determinant lemma and its generalization to ef-
ficiently calculate the Jacobian determinant. Recently, the
transformation used in (Rezende & Mohamed, 2015; Berg
et al., 2018) was further generalized to arbitrary contrac-
tive residual networks (Chen et al., 2019) and contractive
densenets (Perugachi-Diaz et al., 2021) with the Russian
roulette estimator of the Jacobian determinant. Coupling
layers constitute a different group of non-linear transforma-
tion that are used in flow-based models like RealNVP (Dinh
et al., 2016) and GLOW (Kingma & Dhariwal, 2018).

In the case of discrete variables, e.g., X = ZD, the change
of variables takes a simpler form due to the fact that there is
no change of volume for probability mass functions:

p(x) = π(z = f−1(x)). (8)

To date, coupling layers with the rounding operator (Eq.
6) are typically used. The resulting flow-based models
are called Integer Discrete Flows (IDF) (Hoogeboom et al.,
2019; Berg et al., 2020) with a mixture of discretized logistic
distributions (Salimans et al., 2017) as the base distribution.

2. Our approach
2.1. General invertible transformations

Our main contribution of this paper is a proposition of a
new class of invertible transformations that generalize many
invertible transformations in reversible computing and re-
versible deep learning.

Proposition 1. Let us take x,y ∈ X . If binary transfor-
mations ◦ and . have inverses • and J, respectively, and
g2, . . . , gD and f1, . . . , fD are arbitrary functions, where
gi : X1:i−1 → Xi, fi : X1:i−1 × Xi+1:n → Xi, then the
following transformation from x to y:

y1 = x1 ◦ f1(∅,x2:D)

y2 = (g2(y1) . x2) ◦ f2(y1,x3:D)

. . .

yd = (gd(y1:d−1) . xd) ◦ fd(y1:d−1,xd+1:D)

. . .

yD = (gD(y1:D−1) . xD) ◦ fD(y1:D−1, ∅)

is invertible.

Proof. In order to inverse y to x we start from the last
element to obtain the following:

xD = gD(y1:D−1) J (yD • fD(y1:D−1, ∅)) .

Then, we can proceed with next expressions in the decreas-
ing order (i.e., from D − 1 to 1) to eventually obtain:

xD−1 = gD−1(y1:D−2) J (yD−1 • fD−1(y1:D−2, xD))

. . .

xd = gd(y1:d−1) J (yd • fd(y1:d−1,xd+1:D))

. . .

x2 = g2(y1) J (y2 • f2(y1,x3:D))

x1 = y1 • f1(∅,x2:D).

Next, we show that many widely known invertible transfor-
mations could be derived from the proposed general invert-
ible transformation. First, for the space of binary variables,
we present that our proposition could be used to obtain three
of the most important reversible logic gates.

Corollary 2 (Feynman gate). Let us consider x ∈ {0, 1}2,
and ◦ ≡ ⊕ and . ≡ ⊕ with • ≡ ⊕ and J≡ ⊕, where ⊕ is
the XOR operation. Then, taking g2 ≡ 0, f1(x2) = 0 and
f2(y1) = y1 results in the Feynman gate:

y1 = x1
y2 = x2 ⊕ x1.

(9)

Proof. The Eq. 9 follows from the idempotency of XOR.

Corollary 3 (Toffoli gate). Let us consider x ∈ {0, 1}3,
and ◦ ≡ ⊕ and . ≡ ⊕ with • ≡ ⊕ and J≡ ⊕, where ⊕ is
the XOR operation. Then, taking g2(y1) ≡ 0, g3(y1:2 ≡ 0,



General Invertible Transformations for Flow-based Generative Modeling

f1(x2:3) ≡ 0, f2(y1, x3) ≡ 0 and f3(y1:2) = y1 ∧ y2
results in the Toffoli gate:

y1 = x1 (10)
y2 = x2 (11)
y3 = x3 ⊕ (y1 ∧ y2). (12)

Proof. The Eqs. 10 - 12 follow from the idempotency of
the XOR operator.

Corollary 4 (Fredkin gate). Let us consider x ∈ {0, 1}4,
and ◦ ≡ ⊕ and . ≡ ⊕ with • ≡ ⊕ and J≡ ⊕, where ⊕
is the XOR operation. Then, taking x1 ≡ 0, g2(y1) ≡ 0,
g3(y1:2) ≡ 0, g4(y1:3) ≡ 0, f1(x2:4) = x2 ∧ (x3 ⊕ x4),
f2(y1,x3:4) ≡ 0, f3(y1:2, x4) = y1 and f4(y1:3) ≡ y1
results in the Fredkin gate:

y1 = x1 ⊕ (x2 ∧ (x3 ⊕ x4)) (13)
y2 = x2 ⊕ 0 (14)
y3 = x3 ⊕ y1 (15)
y4 = x4 ⊕ y1 (16)

Remark 5 (On the Fredkin gate). Comparing equations
13–16 with the definition of Fredkin gate we notice that
in Corollary 4 we have to introduce an additional equa-
tion to be consistent with the Proposition 1. Moreover, we
introduced a dummy variable x1 that always equals 0.

Moreover, we observe that our proposition generalizes in-
vertible layers in neural networks.

Corollary 6 (A coupling layer). Let us consider x =
[x1,x2]

>, where Xi = RDi , and ◦ ≡ +, . ≡ � with
• ≡ − and J≡ �, where � and � denote element-
wise multiplication and division, respectively. Then, tak-
ing g2(y1) = exp(NNs(y1)), f1(x2) = 0 and f2(y1) =
NNt(y1), where NNs, NNt are neural networks, results in
the coupling layer (Dinh et al., 2016):

y1 = x1 (17)
y2 = exp(NNs(y1))� x2 +NNt(y1). (18)

Corollary 7 (A reversible residual layer). Let us consider
x = [x1,x2]

>, where Xi = RDi , and ◦ ≡ +, . ≡ �
with • ≡ − and J≡ �, where � and � denote element-
wise multiplication and division, respectively. Then, taking
g2(y1) ≡ 1, f1(x2) = NN1(x2) and f2(y1) = NN2(y1),
where NN is a neural network, results in the reversible
residual layer proposed in (Gomez et al., 2017):

y1 = x1 +NN1(x2) (19)
y2 = x2 +NN2(y1). (20)

Remark 8 (On the reversible residual layer). According
to Proposition 1, we can further generalize the reversible

residual layer proposed in (Gomez et al., 2017) by taking
g2(y1) = exp(NN3(y1)) that would result in the following
invertible layer:

y1 = x1 +NN1(x2) (21)
y2 = exp(NN3(y1))� x2 +NN2(y1). (22)

Interestingly, we can calculate the Jacobian of such trans-
formation that takes the following form:

J(z) =

 ∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2

 =

 A B

C D

 (23)

where A = I, i.e., the identity matrix. Then, AC = CA
and according to Theorem 3 on determinants of block ma-
trices in (Silvester, 2000), the logarithm of the Jacobian-
determinant equals:

log |detJ(z)| =
∑
i

NN3,i(y1). (24)

Corollary 9 (A reversible differential mutation). Let us
consider x1,x2,x3 ∈ RD, γ ∈ R+, and ◦ ≡ +, . ≡ �
with • ≡ −. Then, taking g2(y1) ≡ 1, g3(y1:2) ≡ 1,
f1(x2:3) = γ(x2 − x3), f2(y1,x3) = γ(x3 − y1), and
f3(y1:2) = γ(y1 − y2), results in the reversible differential
mutation proposed in (Tomczak et al., 2020):

y1 = x1 + γ(x2 − x3) (25)
y2 = x2 + γ(x3 − y1) (26)
y3 = x3 + γ(y1 − y2). (27)

2.2. General Invertible Transformations for Integer
Discrete Flows

We propose to utilize our general invertible transformations
in IDF. For this purpose, we formulate two new coupling
layers that fulfill Proposition 1, namely:
−We divide the input into four parts, x = [x1,x2,x3,x4]:

y1 = x1 + bNNt,1(x2:4)e
y2 = x2 + bNNt,2(y1,x3:4)e
y3 = x3 + bNNt,3(y1:2,x4)e
y4 = x4 + bNNt,4(y1:3)e

(28)

− We divide the input into eight parts, x = [x1, . . . ,x8].
Then, we formulate the coupling layer analogically to (28).

Further, we use the discretized two-parameter logistic distri-
bution. It could be expressed as a difference of the logistic
cumulative distribution functions (Salimans et al., 2017) or
analytically (Chakraborty & Chakravarty, 2016).
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3. Experiments
Data In the experiment, we use a toy dataset of handwritten
digits available in Scikit-learn1 that consists of 1, 797 im-
ages. Each image consists of 64 pixels (8px×8px).
Models In the experiment, we compare the following mod-
els: RealNVP with uniform dequantization and the standard
Gaussian base distribution (REALNVP), RealNVP with the
coupling layer in Remark 8 and the standard Gaussian base
distribution (REALNVP2), IDF with the coupling layer
in (6) (REALNVP), IDF with the coupling layer in (28)
(IDF4), IDF with the coupling layer for eight parts (IDF8).
In all models, we used the order permutation (i.e., a matrix
with ones on the anti-diagonal and zeros elsewhere) after
each coupling layer.
In order to keep a similar number of weights, we used 16
flows for IDF, 8 flows for REALNVP, 4 flows for REAL-
NVP2, 4 flows for IDF4, and 2 flows for IDF8. All models
have roughly 1.32M weights. For IDF, IDF4, and IDF8
we utilized the following neural networks for transitions
(NNt):

Linear(Din, 256)→ LeakyReLU→ Linear(256, 256)→

LeakyReLU→ Linear(256, Dout)

and for REALNVP, we additionally used the following
neural networks for scaling (NNs):

Linear(Din, 256)→ LeakyReLU→ Linear(256, 256)→

LeakyReLU→ Linear(256, Dout)→ Tanh

Training & Evaluation We compare the models using the
negative-log likelihood (nll). We train each model using
1, 000 images, and the mini-batch equals 64. Moreover, we
take 350 images for validation and 447 for testing. Each
model is trained 5 times. During training, we use the early
stopping with the patience equal 20 epochs, and the best
performing model on the validation set is later evaluated
on the test set. The Adam optimizer with the learning rate
equal 0.001 was used.
Code The experiments could be reproduced by run-
ning the code available at: https://github.com/
jmtomczak/git_flow

Results In Figure 1, we present aggregated results for the
five models. Moreover, in Figure 2, examples of uncondi-
tional samples are presented, together with a real sample.

First, we notice that IDF performs better than REALNVP
and REALNVP2. In this paper, we use fully-connected neu-
ral networks and small toy data. Nevertheless, it is interest-
ing to see that IDF could perform better than a widely used

1https://scikit-learn.org/stable/
datasets/index.html#digits-dataset
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Figure 1. The aggregated results for the four models on the test set.

real IDF REALNVP

REALNVP2 IDF4 IDF8
Figure 2. Unconditional samples from the five models.

continuous flow-based model with dequantization. More-
over, it seems that the new coupling layer presented in Re-
mark 8 is more stable in terms of final results, however,
the difference in performance is statistically insignificant.
Second, we observe that our proposition of invertible trans-
formations results in improved nll. The proposed coupling
layer with 8 partitions performed the best in terms of nll,
and the coupling layer with 4 partitions also outperformed
IDF, REALNVP and REALNVP2. We want to highlight
that all models have almost identical numbers of weights,
thus, these results are not caused by taking larger neural
networks. The samples presented in Figure 2 are rather hard
to analyze due to their small size (8px×8px). Nevertheless,
we notice that all IDFs generated crisper images than RE-
ALNVP and REALNVP2. Moreover, it seems that IDF4
and IDF8 seem to produce digits of higher visual quality.

4. Conclusion
In this paper, we proposed a new class of invertible transfor-
mations. We showed that many well-known invertible trans-
formations could be derived from our proposition. More-
over, we proposed two coupling layers and presented how
they could be utilized in flow-based models for integer val-
ues (Integer Discrete Flows). Our preliminary experiments
on the digits data indicate that the new coupling layers result
in better negative log-likelihood values than for IDF and
REALNVP. These results are promising and will be pursued
in the future on more challenging datasets.

https://github.com/jmtomczak/git_flow
https://github.com/jmtomczak/git_flow
https://scikit-learn.org/stable/datasets/index.html#digits-dataset
https://scikit-learn.org/stable/datasets/index.html#digits-dataset
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