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Abstract

There is growing interest in utilizing large language mod-
els (LLMs) as co-pilots for combinatorial optimization and
constraint programming tasks across various problems. This
paper aims to advance this line of research by introduc-
ing TEXT2ZINC, a cross-domain dataset for capturing opti-
mization and satisfaction problems specified in natural lan-
guage text. Our work is distinguished from previous attempts
by integrating both satisfaction and optimization problems
within a unified dataset using a solver-agnostic modeling lan-
guage. To achieve this, we leverage MINIZINC’s solver-and-
paradigm-agnostic modeling capabilities to formulate these
problems. Using the TEXT2ZINC dataset, we conduct com-
prehensive baseline experiments to compare execution and
solution accuracy across several methods, including off-the-
shelf prompting strategies, chain-of-thought reasoning, and a
compositional approach. Additionally, we explore the effec-
tiveness of intermediary representations, specifically knowl-
edge graphs. Our findings indicate that LLMs are not yet
a push-button technology to model combinatorial problems
from text. We hope that TEXT2ZINC serves as a valuable re-
source for researchers and practitioners to advance the field
further.

Introduction
Generating constraint models from free-form natural lan-
guage descriptions remains a significant challenge despite
the groundbreaking advances in large language models
(LLMs). Similarly, while constraint-solving techniques en-
joy tremendous theoretical and practical advances, the cog-
nitive barrier of translating problem descriptions into for-
mal constraint models persists. This barrier is particularly
acute, as domain experts who deeply understand their prob-
lem domain often lack the specialized knowledge required
for formal modeling. The resulting dependency on mod-
eling experts creates operational bottlenecks and can lead
to misinterpretation of domain-specific requirements during
the translation process.

High-level modeling languages such as MINIZ-
INC (Nethercote et al. 2007), CPMpy (Guns 2019),
and GAMS (Bussieck and Meeraus 2004) have partially
addressed these challenges by providing solver-agnostic
approaches that are powerful and flexible. These modelling
frameworks enable practitioners to focus on describing their
problems without worrying about specific solution methods,

making them especially useful for real-world applications,
where requirements often change over time.

In parallel, LLMs still face significant challenges in han-
dling the mathematical and logical reasoning needed for au-
tomated modeling. While language models are powerful at
interfacing with natural text, they struggle with the consis-
tency and precision required in declarative approaches, from
basic type declarations to complex constraint relations. This
gap between understanding textual descriptions and turning
them into problem formulations indicates that more work is
needed for automated modeling assistants (akin to code co-
pilots).

Our Contributions
Our primary contribution is the introduction of
TEXT2ZINC1, a unified, cross-domain dataset that com-
bines both optimization and satisfaction problems expressed
in natural language. The dataset contains a diverse range of
problem types across multiple domains, carefully curated
from excellent resources including NL4OPT2 (Ramamonji-
son et al. 2022a), NLP4LP3 (AhmadiTeshnizi et al. 2024),
ComplexOR4 (Xiao et al. 2023), CSPLib5 (Jefferson et al.
1999), and Hakank’s collection6 (Kjellerstrand 2025). We
further enhance these problems through reformulation,
metadata enrichment, and curation to ensure consistency
and quality. This comprehensive collection provides a robust
foundation for evaluating language-to-model translation.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews fundamental concepts, including the dis-
tinction between optimization and satisfaction problems, an
overview of MINIZINC, the role of knowledge graphs in
combinatorial modelling, and relevant work utilizing LLMs
for optimization. Section 3 presents a detailed description of
the TEXT2ZINC dataset. Section 4 outlines our methodol-
ogy, and Section 5 discusses our results and analysis. Sec-
tion 6 concludes with discussing our findings and future di-
rections.

1https://huggingface.co/datasets/skadio/text2zinc
2https://github.com/nl4opt/nl4opt-competition
3https://nlp4lp.vercel.app/
4https://github.com/xzymustbexzy/Chain-of-Experts
5https://github.com/csplib/csplib
6http://www.hakank.org/ampl/
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Background
The following section provides background information
about optimization and satisfaction problems, MINIZINC as
a modeling language, and knowledge graphs as a represen-
tation structure.

Optimization vs. Satisfaction Problems
Optimization and satisfaction are two essential categories
of decision-making problems commonly encountered in op-
erations research, artificial intelligence, and mathematics.
Although both require the satisfaction of constraints, their
goals and approaches differ

Optimization: Optimization problems aim to find the best
solution to a given problem by maximizing or minimizing
an objective function under a set of constraints. For instance,
consider the following problem:

“An oil refinery manager has several million barrels of
crude oil of different types allocated for production during
the coming month. These resources can be used to make mul-
tiple different products. Each product has a price at which
it sells. There are multiple production processes, each that
uses some amount of each type of crude oil and produces
some amount of each product. Each process has a cost per
barrel of product produced. The crude oil has no separate
cost as they have already been allocated. How many times
should each process be executed to maximize the revenue
for the next month?”

In this example, the goal is to determine the optimal ex-
ecution frequencies of the production processes to maxi-
mize revenue. Optimization problems have typically been
solved by mathematical programming methods, which have
roots in Linear Programming (LP). In this paradigm, it
is common to utilize a reduction to a simpler inequality-
constrained model, such as a linear program, which can be
solved with highly developed methods that exploit its special
structure (Hooker and van Hoeve 2018).

Satisfaction: Satisfaction problems, in contrast, focus
solely on finding a feasible solution that satisfies a set of
constraints without optimizing a specific objective. A clas-
sic example of a satisfaction problem is the following:

“Lecture timings need to be scheduled for courses across
a limited number of periods. Each course requires a specific
number of lectures and can only be assigned to certain peri-
ods due to availability constraints. Some courses have con-
flicts due to having common students and cannot be sched-
uled simultaneously. Additionally, there is a limited number
of rooms that can be used and, thus, a maximum number of
lectures that can occur simultaneously. How can we allocate
lectures to periods while ensuring all constraints are met?”

Here, the task is to satisfy the constraints dictated by the
requirements to create a valid schedule. Satisfaction prob-
lems have typically been solved by methods in constraint
programming, which has roots in logic programming. This
method is commonly used for both verification and genera-
tion. This method often processes constraints independently,
using domain reduction and propagation. (Hooker and van
Hoeve 2018).

MINIZINC

MINIZINC7 (Nethercote et al. 2007) is a high-level con-
straint modeling language that supports both discrete and
continuous optimization and satisfaction problems. Its
solver-agnostic design allows communication with various
solver backends. This enables leveraging different problem-
solving paradigms, including Constraint Programming (CP),
(Mixed) Integer Programming (MIP), and Boolean Satis-
fiability/Lazy Clause Generation (SAT). This flexibility is
achieved through compilation to FLATZINC, an intermedi-
ate language that interfaces with different solvers, allowing
the same MINIZINC model to be used across multiple back-
ends without any code modifications. This enables end users
to write the modeling code once and test different backends
that best suit the task at hand.

A key feature of MINIZINC is its use of global
constraints, a concept originating in CP, which signif-
icantly simplifies the modeling process. For example,
the all different(x1, ..xn) constraint specifies that variables
x1, x2, ...xn must take distinct values, replacing numer-
ous pairwise inequality constraints that would be required
in traditional MIP solvers. These global constraints can
be specialized for particular solvers, often leading to im-
proved performance (van Hoeve and Katriel 2006; Nether-
cote et al. 2007). Listing 1 shows the default expansion of
the all different constraint from MINIZINC to FLATZINC as
binary inequalities. If the solver is interfacing with Gecode,
it can use Gecode’s native all different constraint instead.

% pairwise binary inequalities
predicate all_different(array[int] of

var float:x) =
forall(i,j in index_set(x) where i < j)(

x[i] != x[j]);

% built-in global constraint
predicate all_different(array[int] of

var int:x) =
gecode_all_different(x); % native Gecode

version for ints

Listing 1: All different constraint in MiniZinc.

Global constraints allow end-users to leverage intuitive
higher-level declarative constraints rather than focusing on
low-level decomposition.

MINIZINC’s practical utility for real-world applications
is further enhanced by its clear separation of models (.mzn
files) and instances (.dzn files). Models contain the problem
structure, while instances provide specific input data, allow-
ing a single model to be reused across multiple problem
instances. The language structure is straightforward, con-
sisting of four main components: decision variables, con-
straints, parameters, and an objective function for optimiza-
tion problems or a satisfaction goal. This simple structure
allows end users to create modular programs. Additionally,
MINIZINC supports automated solution checking and model
validation, which help evaluate model correctness during de-
velopment.

7https://www.minizinc.org/

https://www.minizinc.org/


Given its advanced features, we consider MINIZINC an
excellent fit for bridging natural language and solver for-
mulations. We hypothesize that higher-level language con-
structs, as offered by MINIZINC, serve as a good interface
between LLMs and combinatorial formulations.

Knowledge Graphs
Knowledge Graphs (KGs) are structured representations of
information where entities are represented as nodes and
their relationships as edges(Singhal 2012). They have be-
come fundamental tools in various domains, from power-
ing Google’s search engine to organizing scientific literature
in academic databases((Singhal 2012), (Bizer et al. 2009),
(Suchanek, Kasneci, and Weikum 2008), (Ahrabian et al.
2023)). In these graphs, real-world concepts and their re-
lationships are captured in a format that both humans and
machines can process effectively. A knowledge graph is a
particularly effective tool for representing information in a
structured way, especially for combinatorial problems.

In our context, parameters, variables, constraints, and ob-
jectives are depicted as nodes, interconnected through re-
lationships that describe their interactions. For instance, an
objective node is connected to all applicable constraints,
highlighting the dependencies within the problem. Generat-
ing code for less commonly known languages by large lan-
guage models such as GPT-4 can be challenging when re-
lying solely on an unstructured problem description and the
input data. Instead, utilizing a structured knowledge graph
as an intermediate representation can simplify this process.
This graph models the problem at an atomic level, illustrat-
ing the intricate relationships between various components.
This structured representation, mainly when designed to im-
itate the logical structure of code, facilitates a smoother tran-
sition from unstructured problem description to executable
code. It is crucial that this representation is “code-inspired”
to ensure it closely aligns with the final code structure, min-
imizing the gap between the model and this representation.
We document both a knowledge graph generation prompt
and an example knowledge graph in Appendix A2.

Related Work
A growing interest has been in leveraging large language
models for optimization and constraint programming tasks.
Early efforts like (Ramamonjison et al. 2022a) focused on
linear programming problems using entity recognition and
logical forms, achieving promising results with ChatGPT
(92.7% accuracy on NL4OPT). Additionally, Holy Grail
2.0 (Tsouros et al. 2023) proposed a blueprint for build-
ing conversation modeling assistants. Significant improve-
ments in execution accuracy of LLM generated MINIZINC
code were achieved through using in-line annotation of en-
tities in problem descriptions. (Dakle et al. 2023; Kadıoğlu
et al. 2024) Sophisticated approaches emerged with a multi-
agent Chain-of-Experts framework (Xiao et al. 2023), and
LLM-agent, Optimus (AhmadiTeshnizi et al. 2024), which
developed a modular system for handling complex problem
descriptions. However, these systems remain tied to spe-
cific solvers such as Gurobi and Cvxpy. The challenge of

data scarcity was addressed by data augmentation, leverag-
ing CodeT5 to achieve higher accuracy than zero-shot LLM
approaches, although still limited to linear programming
problems using PuLP (Prasath and Karande 2023). Signif-
icant strides were made in training custom LLMs for opti-
mization modeling through their OR-Instruct framework but
remained constrained by single-solver dependency (Huang
et al. 2024). A notable contribution to evaluation methodolo-
gies came from the MAMO benchmark, focusing on LLMs’
mathematical modeling processes rather than solution cor-
rectness. In CP, LLMs’ potential in search space optimiza-
tion has been demonstrated through generating streamlin-
ers using MINIZINC (Voboril, Ramaswamy, and Szeider
2024). Natural language to constraint model translation has
also been explored through a simple decomposition-based
prompting approach with GPT models (Tsouros et al. 2023).
Building on this, in-context learning strategies such as Re-
trieval Augmented Generation (RAG) have been explored to
build constraint models in CPMPY (Michailidis, Tsouros,
and Guns 2024). Domain-specific applications have also
emerged, focusing on supply chain optimization while pre-
serving data privacy (Li et al. 2023) and diagnosing infea-
sible optimization problems through interactive conversa-
tions (Chen, Constante-Flores, and Li 2023).

Our work, TEXT2ZINC, addresses several key limitations
in existing research. First, unlike previous datasets focusing
on single problem types, we uniquely integrate both satis-
faction and optimization problems spanning continuous and
discrete domains. Second, we leverage MINIZINC’s solver-
agnostic modeling capabilities, moving beyond the solver-
specific approaches of previous attempts. Finally, we ex-
plore the effectiveness of knowledge graphs as novel, struc-
tured, intermediate representations, an aspect unexplored in
the existing literature.

TEXT2ZINC
The TEXT2ZINC dataset8 comprises of 110 carefully se-
lected and augmented problem instances from five primary
sources that blends optimization and satisfaction problems.
• NLP4LP (AhmadiTeshnizi et al. 2024)
• ComplexOR (Xiao et al. 2023)
• LPWP (Ramamonjison et al. 2022a)
• CSPLib (Jefferson et al. 1999)
• Hakank’s collection (Kjellerstrand 2025)

From this larger collection, we carefully curated problems
that clearly distinguish between data and parameter compo-
nents. We standardize the diverse input formats (json, dzn,
mzn, html, txt) to our unification format. To serve as su-
pervised labels, we provide ground truth outputs for most
problems to enable validation. Each problem instance is en-
riched with extensive metadata (e.g., domain) to support di-
verse modeling approaches and future research needs. The
dataset spans 11 application domains, as shown in Figure 1.

In the following, we detail the characteristics of each
source and our specific contributions to their respective
problems.

8https://huggingface.co/datasets/skadio/text2zinc

https://huggingface.co/datasets/skadio/text2zinc


Figure 1: Distribution of problems across domains.

• NLP4LP: 65 Problems (AhmadiTeshnizi et al. 2024) A
collection of 67 LP, MILP, and MIP problems, originally
represented in structured natural language. We converted
the data from JSON to DZN format via a Python script
and refined problem statements for clarity. Where in-
cluded, we verified our generated code against the objec-
tive values provided in the dataset. We include 65 prob-
lems from this dataset.

• ComplexOR: 7 Problems (Xiao et al. 2023) A diverse
collection of 37 operations research problems sourced
from academic papers, textbooks, and industry applica-
tions, spanning domains such as supply chain optimiza-
tion, scheduling, and warehouse logistics. We sampled
seven sampled representative problems from this dataset.

• LPWP: 5 Problems (Ramamonjison et al. 2022a) This
is a collection 1101 elementary-level linear program-
ming (LP) problems collected from the Nl4Opt Compe-
tition (Ramamonjison et al. 2022b). For these problems,
we extracted parameters from problem descriptions into
data files and modified problem descriptions accordingly.

• CSPLib: 11 Problems (Jefferson et al. 1999) A compre-
hensive library of 95 test problems for constraint solvers,
featuring problems across various domains, including
bin-packing, combinatorial mathematics, and schedul-
ing. We included 11 problems from this collection and
enhanced their existing MINIZINC solutions with de-
tailed comments.

• Hakank’s Collection: 22 Problems (Kjellerstrand
2025) An extensive collection of over 1000 MINIZINC
models spanning combinatorial problems, puzzles, op-
erations research, and global constraints. We extracted
problem features and descriptions from the extensively
documented model files to standardize 22 problems.

Dataset Format
In our unified TEXT2ZINC format, each problem instance is
divided into four components: Input, Data, Model, and Out-
put. Detailed explanations of each component is as follows:

Input: A JSON file that encapsulates a comprehensive de-
scription of a problem instance. This file is organized into
several key sections:

◦ Problem Description: A standardized natural language
problem description of the problem. To maintain abstrac-
tion, we avoid including specific parameter names and
values, instead incorporating them in the data file. This
retains a neutral language when describing the problem.
◦ Parameters: Additional information about the parame-

ters that are included in the data.dzn file. Each param-
eter is provided with a natural language explanation of its
meaning and format, an associated symbol correspond-
ing to its name in the data.dzn file, and a specification
of its shape, which can be either an n-dimensional list or
a scalar, represented by an empty list.
◦ Output Specification: A detailed explanation of the ex-

pected output format, including the name and shape of
any decision variables to be output. This is required to
evaluate satisfaction problems.
◦ Metadata: Additional contextual information, such as

a descriptive problem title, a domain, and subdomain
that enrich the problem, an objective (one of satisfy,
maximize, or minimize), and a list of automatically
generated keywords that reflect the constraints used in
the problem, such as all different and ≤.
◦ Unique Identifier: A key linking the problem instance

to its source.

Figure 2 presents an example input file.

Model: A MZN file containing the MINIZINC model file
that formulates the problem and serves as a verifier for sat-
isfaction problems. The model can be used as a verifier by
treating the output from the LLM-generated code in DZN
format as input to the model. The constraints are decom-
posed where possible for better clarity.

Figure 3 shows an example model file.



input.json

1 {
2 "parameters": [
3 {
4 "definition": "Number of courses",
5 "symbol": "courses",
6 "shape": []
7 },
8 {
9 "definition": "Number of periods",

10 "symbol": "periods",
11 "shape": []
12 },
13 {
14 "definition": "Number of rooms available",
15 "symbol": "rooms",
16 "shape": []
17 },
18 {
19 "definition": "Binary matrix where A[i,j]=1 indicates lectures of course i

can be scheduled at period j",
20 "symbol": "available",
21 "shape": ["courses", "periods"]
22 },
23 {
24 "definition": "Conflict matrix where M[i,j]=1 if courses i and j have

common students",
25 "symbol": "conflict",
26 "shape": ["courses", "courses"]
27 },
28 {
29 "definition": "Array containing the number of lectures required per course

",
30 "symbol": "requirement",
31 "shape": ["courses"]
32 }
33 ],
34 "output": [
35 {
36 "definition": "Timetable grid where 1 represents a scheduled lecture and 0

represents an unscheduled lecture",
37 "symbol": "timetable",
38 "shape": ["courses", "periods"]
39 }
40 ],
41 "description": "Lecture timings need to be scheduled for courses across a

limited number of periods. Each course requires a specific number of
lectures and can only be assigned to certain periods due to availability
constraints. Some courses have conflicts due to having common students and
cannot be scheduled at the same time. Additionally, there is a limited
number of rooms that can be used and thus a maximum number of lectures that
can occur simultaneously. How can we allocate lectures to periods while

ensuring all constraints are met?",
42 "identifier": "or_lp_ip_scheduling_problem_2",
43 "metadata": {
44 "name": "Timetable Problem", "domain": "Scheduling", "objective": "satisfy",

"source": "hakank", "constraints": [
45 "forall", "<=", "+", "=", "sum"]
46 }
47 }

Figure 2: An example input with description, parameters, metadata, and output fields.



model.mzn

1 include "globals.mzn";
2
3 % Input parameters
4 int: courses;
5 int: periods;
6 int: rooms;
7
8 array[1..courses, 1..periods] of int: available;
9 array[1..courses, 1..courses] of int: conflict;

10 array[1..courses] of int: requirement;
11
12 % Decision variables
13 array[1..courses, 1..periods] of var 0..1: timetable;
14
15 % Solve
16 solve :: int_search(
17 [timetable[c, p] | c in 1..courses, p in 1..periods],
18 most_constrained,
19 indomain_split,
20 complete
21 ) satisfy;
22
23 % Constraints
24 constraint
25 % 1. Conflicts: Courses with common students must not be scheduled at the

same time
26 forall(c1, c2 in 1..courses where c1 < c2) (
27 if conflict[c1, c2] = 1 then
28 forall(p in 1..periods) (
29 timetable[c1, p] + timetable[c2, p] <= 1
30 )
31 else
32 true
33 endif
34 )
35 % 2. Availabilities: Courses can only be scheduled in available periods
36 /\
37 forall(c in 1..courses, p in 1..periods) (
38 if available[c, p] = 0 then
39 timetable[c, p] = 0
40 else
41 true
42 endif
43 )
44 % 3. Rooms: At most ‘rooms‘ lectures can be scheduled per period
45 /\
46 forall(p in 1..periods) (
47 sum([timetable[c, p] | c in 1..courses]) <= rooms
48 )
49 % 4. Number of lectures per course must match the requirement
50 /\
51 forall(c in 1..courses) (
52 sum([timetable[c, p] | p in 1..periods]) = requirement[c]
53 );

Figure 3: An example MINIZINC model.



data.dzn

1 int: courses = 5;
2 int: periods = 20;
3 int: rooms = 2;
4 array[1..courses, 1..periods] of int:

available = array2d(1..courses,
1..periods, [

5 % 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0

6 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1,

7 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,

8 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
1, 0, 1, 1, 1, 1, 0, 1, 1,

9 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1,

10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1

11 ]);
12 array[1..courses, 1..courses] of int:

conflict = array2d(1..courses, 1..
courses, [

13 % Conflict matrix
14 0, 1, 0, 0, 1,
15 1, 0, 0, 1, 0,
16 0, 0, 0, 0, 1,
17 0, 1, 0, 0, 1,
18 1, 0, 1, 1, 0
19 ]);
20 array[1..courses] of int: requirement

= [6, 10, 14, 6, 4];

Figure 4: An example data instance.

Data: A DZN file representing a concrete problem instance.
This instance data is used to validate the code generated by
the language model in conjunction with the ground truth out-
put labels. Figure 4 shows an example data file.

Output: A JSON file containing the assignments of vari-
ables specified in the objective values for a problem. Two
essential elements of the output are the final variable config-
urations (serving as sample solutions for satisfaction prob-
lems) and the optimal value (for optimization problems).
Figure 5 shows an example output file.

Dataset Statistics
TEXT2ZINC is a cross-domain dataset and the first to en-
compass optimization and satisfaction problems.

# LP # MIP # CP

NLP4LP 54 13 0
LPWP 1101 0 0
ComplexOR 25 12 0
TEXT2ZINC 64 31 15

Table 1: Distribution of Problem Types Across Datasets

output.json

1 {
2 "timetable": [
3 [0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0,

1, 0, 1, 0, 0, 0, 0, 0, 0],
4 [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 1, 0, 1, 1, 1, 1, 1, 1],
5 [0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,

1, 0, 1, 1, 1, 1, 0, 1, 1],
6 [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0],
7 [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 1, 0, 0]
8 ]
9 }

Figure 5: An example of output of model execution.

Table 1 shows the distribution of problem instances mod-
eled with LP, MIP, and CP across datasets.

Dataset Verification
Input parameters are validated against DZN files through
automated verification. The output files for instances with
model files contain the complete MINIZINC model results in
JSON format, while instances without models include only
the objective value. Model files are provided for all satisfac-
tion problems, and all included models have been verified
for successful compilation.

TEXT2ZINC dataset is actively evolving and expanding
with subsequent releases. The initial version includes 45
MINIZINC model files, with plans for additional models in
the following updates. All constraint satisfaction problems
have been verified to produce valid solutions.

Experimental Methodology
Given TEXT2ZINC, we present a methodology for using it
to test the performance of state-of-the-art LLMs for auto-
mated modeling. Our main goal is to establish reasonable
baseline performance to serve as a lower bound for emerg-
ing approaches.

The task of MINIZINC model generation from natural lan-
guage can be formally defined with the following Formula-
tion and Evaluation.

Problem Formulation
Let Input = (description, parameters, output,
metadata, data) represent the input specification where:
• description is the natural language description of the

problem
• parameters = {p1, ..., pn} is the set of input parameters

where each pi = (di, si,hi) consists of:
– di: is the natural language definition of the parameter
– si: parameter symbol (e.g., ’num warehouses’,

’num customers’, ’P’)
– hi: is the shape information of the parameter



• output = {o1, ..., ok} is the set of output variables where
each oi = (di, si,hi) consists of:

– di: is the natural language definition of the output
– si: output symbol (e.g., ’X’, ’Y’)
– hi: is the shape information of the output

• metadata: metadata containing problem properties (e.g.,
domain, objective type, constraint types)

Let Data be a concrete data instance specified in a for-
mat like a .dzn file. The objective is to learn a function
f : (Input,Data) →M whereM represents the space of
valid MINIZINC models. Given the input Input and data in-
stance data, the function should generate a data-compatible
model and correctly implement the given specifications.

Evaluation
Given a dataset of N problems, each with a ground truth
model m∗

i and generated model mi, we define two key met-
rics:

1. Execution Accuracy (Eacc): Measures the proportion of
generated models that successfully compile and execute:

Eacc =
1

N

N∑
i=1

I(execute(mi) = success) (1)

where I(·) is the indicator function.
2. Solution Accuracy (Sacc): Measures the proportion of

models that achieve the same objective value as the
ground truth:

Sacc =
1

N

N∑
i=1

I(obj(mi) = obj(m∗
i )) (2)

where obj(·) returns the objective value and m∗
i is the

ground truth model for instance i.

Solution Approaches
To explore the effectiveness of different prompting ap-
proaches, we conducted experiments on the NLP4LP section
of our dataset, comprising 63 optimization problems. Our in-
vestigation is organized around three main approaches, each
progressively building upon the insights from previous ap-
proaches. Based on these approaches, Algorithm 1 presents
a high-level architecture flow of our LLM-assisted model
generation pipeline.

Vanilla Prompting: Vanilla prompting involves directly
providing the task description and input to the language
model without any additional instructions about reasoning
steps, problem decomposition, or how to approach the solu-
tion.

1. Basic: Baseline approach exposing the LLM to:

• Problem description
• Expected input parameters

2. Basic + Data Nomenclature & Examples: Enhances
baseline approach with:

Algorithm 1: LLM-based MINIZINC Model Generation

Require:
1: Input ▷ Input specification from input.json
2: Data ▷ Data instance from data.dzn
3: LLM ▷ LLM to prompt
4: Solution Approaches:
5: vanilla← {
6: Basic,
7: + Data Nomenclature & examples,
8: + Shape information,
9: + Knowledge Graph information

10: }
11: cot← {
12: CoT + Data Nomenclature,
13: + Examples,
14: + Shape information.
15: }
16: compositional← {
17: Multi-Call + Composition
18: }
19: all approaches← vanilla ∪ cot ∪ compositional
20: for approach ∈ all approaches do
21: prompt← ConstructPrompt(Input, approach)
22: minizinc code← CallLLM(LLM , prompt)
23: SaveToFile(minizinc code, approach)
24: end for
25: function CONSTRUCTPROMPT(Input, approach)
26: return SampleRelevantInfo(Input, approach) ▷

Sample based on strategy
27: end function

• Parameter definitions
• Concrete usage examples sampled from the data in-

stance
3. Basic + Shape Information: Further augments with:

• Parameter dimensionality information
4. Basic + Knowledge Graph: Further integrates:

• Intermediate knowledge representation

Chain-of-Thought (CoT) Approaches: Building upon
vanilla prompting, Chain-of-Thought (Wei et al. 2023)
prompting adds explicit instructions for the language model
to show its reasoning steps, explain its thought process, and
documents how it approaches the solution.
1. CoT: incorporates reasoning and data nomenclature

• Step-by-step reasoning
• Parameter definitions

2. CoT + Examples: Augments with:
• Concrete usage examples sampled from dzn

3. CoT + Shape Information: Further augments with:
• Parameter dimensionality information

Compositional Approach: Building upon vanilla and
Chain-of-Thought prompting, the compositional approach



breaks down the task into smaller, sequential sub-tasks.
These sub-tasks generate the parameters and decision vari-
ables, constraints, and an objective function. The output for
each sub-task is generated independently, and the results are
then combined to form the complete solution.
1. Multi-Call + Composition: Implements:

• Decomposition into sequential sub-tasks
• Followed by combining results together

Overall, each solution approach builds upon its predeces-
sors, methodically incorporating additional information and
structural elements to improve model generation accuracy.
The progression from vanilla approaches to more sophisti-
cated methods allows us to isolate the impact of different
prompting elements and identify the most crucial compo-
nents for successful model generation. We document all our
prompts in Appendix A1 for further visibility.

Experimental Setup
Using language models, our experimental setup systemati-
cally evaluates different prompting strategies for model gen-
eration. As described in the previous section, we implement
three solution approaches: vanilla prompting with progres-
sive enhancements from basic to integration with knowledge
graphs), Chain-of-Thought variants with increasing contex-
tual information and a compositional approach using multi-
ple sequential tasks and combining their results. We use the
model generation pipeline as shown in Algorithm 1.

We use GPT 4.0 in our experiments on NLP4LP prob-
lems from our dataset, which consists of 66 problems. We
excluded problems 9, 26, and 27 due to their nature and
missing data, resulting in a sample of 63 problems.

For each input specification I, we generate MINIZINC
models using each prompting strategy, where the prompt
construction selectively samples relevant information based
on the strategy’s requirements. The generated models are
then evaluated on two metrics: execution accuracy 1 and so-
lution accuracy 2.

Results and Discussion
Table 2 presents our results which are discussed next. In ad-
dition, we release a Hugging Face Leaderboard to bench-
mark approaches on TEXT2ZINC9 and welcome submis-
sions on new solution approaches.

Vanilla Approaches
Our analysis of vanilla prompting approaches reveals several
important insights:

The current limitations of LLMs: The basic approach
achieves only 19.04% execution accuracy, highlighting that
merely exposing the LLM to problem descriptions and pa-
rameters is insufficient. The even lower solution accuracy
(6.34%) suggests that successfully executed models often
fail to capture the underlying modeling logic correctly.

The value of data context: Adding parameter definitions
and examples significantly improves both metrics (36.50%

9https://huggingface.co/spaces/skadio/text2zinc-leaderboard

Prompting Method Execution
Accuracy

Solution
Accuracy

Vanilla Prompting
Basic 0.1904 0.0634
+ Data & examples 0.3650 0.1904
+ Shape 0.1904 0.1269
+ Knowledge Graph 0.3492 0.1111

Chain-of-Thought (CoT)
CoT with data 0.4285 0.1746
+ Examples 0.5873 0.2539
+ Shape 0.5555 0.2063

Compositional
Multi-Call + Composition 0.6031 0.2222

Table 2: Experimental results to compare execution and so-
lution accuracy of TEXT2ZINC baseline approaches.

execution, 19.04% solution), nearly doubling performance.
This suggests that LLMs benefit from concrete examples to
interpret parameters and their data types better.

The necessity of shape information: Surprisingly, adding
shape information degrades performance to baseline levels
(19.04% execution). This counter-intuitive result suggests
that additional structural information might overwhelm the
model or lead to over-specification.

Knowledge graph integration: While the KG maintains
improved execution accuracy (34.92%), it leads to poorer
solution accuracy (11.11%). This indicates that structured
intermediate knowledge representations alone do not neces-
sarily improve the quality of generated solutions.

Chain-of-Thought Approaches
The Chain-of-Thought approaches demonstrate a clear pro-
gression in capability.

Baseline CoT: Even the baseline CoT with data nomencla-
ture outperforms all vanilla approaches (42.85% execution),
suggesting that step-by-step reasoning is fundamental for
constraint programming tasks.

The effect of examples: The combination of CoT with ex-
amples produces the best solution accuracy (25.39%) and
near-best execution accuracy (58.73%), indicating that step-
by-step reasoning also benefits from concrete examples.

The necessity of shape: Similar to vanilla approaches,
adding shape information to CoT does not improve perfor-
mance, suggesting an upper limit to beneficial context.

Compositional Approach
Breaking down problems into sequential sub-tasks and
stitching their outputs together reveals the value of decom-
position:

https://huggingface.co/spaces/skadio/text2zinc-leaderboard


Execution vs. Accuracy Trade-off: Achieving the highest
execution accuracy (60.31%), this approach demonstrates
that breaking down model generation into sub-tasks im-
proves the likelihood of producing syntactically valid code.
Despite best-in-class execution accuracy, solution accuracy
(22.22%) falls short of the best CoT approach, suggesting
that component integration might introduce optimization in-
efficiencies, either during individual sub-task generation or
via stitching.

When considering general observations across all ap-
proaches, the following patterns emerge:

Execution-Solution gap: Consistently lower solution accu-
racies (typically 30-50% of execution accuracies) across dif-
ferent strategies suggest how complex the problem of gener-
ating accurate code is. In many cases, we noticed that LLMs
occasionally misinterpret constraint optimization problems
as satisfiability problems. This fundamental misclassifica-
tion suggests gaps in LLMs’ exposure to fundamental com-
binatorial concepts.

Execution issues: In our observation, syntax errors are the
primary cause of execution failures. This can be attributed to
the LLM’s limited training on MINIZINC’s specialized syn-
tax and constraints, which differ significantly from widely-
used programming languages such as Python. Appendix A3
documents a detailed breakdown of these errors for refer-
ence.

Information sweet spot: Both too little (basic vanilla) and
too much (adding shape details) information can be detri-
mental to performance, suggesting a balanced approach for
in-context information.

Reasoning vs. Structure: The superior performance of CoT
and compositional approaches can indicate that how infor-
mation is processed matters more than the quantity of infor-
mation provided.

Conclusion
In this paper, we contribute TEXT2ZINC, a cross-domain
Dataset for modeling optimization and satisfaction prob-
lems in MINIZINC. We go beyond the previous attempts
by integrating both satisfaction and optimization problems
within a unified dataset using a solver-agnostic modeling
language. Our initial findings suggest that LLMs are not yet
a plug-and-play solution for combinatorial modeling despite
their impressive capabilities in various domains. The consis-
tently low solution accuracy rates across different prompt-
ing strategies highlight the inherent challenges in translating
natural language specifications into executable MINIZINC
models. Nevertheless, the improved performance achieved
through Chain-of-Thought reasoning and compositional ap-
proaches offers promising directions.

We emphasize that advancing modeling co-pilots heavily
depends on large-scale, high-quality datasets. We are grate-
ful to the efforts of previous work that inspired and help
shape TEXT2ZINC. We encourage the research community
to contribute to this and similar efforts. Our experiments
with intermediate representations, particularly Knowledge

Graphs, reveal that the path from natural language to ex-
ecutable models is not straightforward. While such repre-
sentations show potential, more research is needed to un-
derstand their best utilization. Future work should explore
alternative intermediate representations, including named
entities, semantic graphs, and agentic frameworks, which
might better capture the nuances of formulating combina-
torial problems.
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A1 Appendix - GPT-4 MiniZinc Code Generation Prompts
We present the details of the prompts used in our experiments below.

A1.1 Vanilla Prompting Approach
A1.1.1 PURE VANILLA

You are an expert MiniZinc developer.

Generate Minizinc code from a given problem description with additional information about the parameters provided.

The MiniZinc code should assume that the data needed, will be provided in a specific format through a .dzn file, so the
generated code should assume the same names defined in the input data nomenclature.

Please do not generate any other token, except the MiniZinc code.

Problem Description:
{problem description}

Input Data Nomenclature:
{data nomenclature}

A1.1.2 VANILLA + DATA NOMENCLATURE + EXAMPLES

You are an expert MiniZinc developer.

Generate Minizinc code from a given problem description with additional information about the parameters provided.

The MiniZinc code should assume that the data needed, will be provided in a specific format through a .dzn file, so the
generated code should assume the same names/data-types defined in the input data nomenclature and examples.

Please do not generate any other token, except the MiniZinc code.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}

A1.1.3 VANILLA + DATA NOMENCLATURE + EXAMPLES + KG GRAPH

You are an expert MiniZinc developer.

Generate Minizinc code from using the following information:

1. Problem Description: A formal description describing the optimization problem.
2. Knowledge Graph: Detailing Parameters, Variables, Constraints and Objective.
3. Input Data Nomenclature: The MiniZinc code should assume that the data needed, will be provided in a specific format
through a .dzn file, so the generated code should assume the same names defined in the input data nomenclature.

Please do not generate any other token, except the MiniZinc code.

Problem Description:
{problem description}

Knowledge Graph:
“‘
{knowledge graph}
“‘



Input Data Nomenclature:
{data nomenclature}

A1.2 Chain-of-Thought (CoT) Approach

A1.2.1 CHAIN-OF-THOUGHT (COT) + DATA NOMENCLATURE + EXAMPLES

You are an expert MiniZinc developer.

Generate Minizinc code from a given problem description with additional information about the parameters provided.

The MiniZinc code should assume that the data needed, will be provided in a specific format through a .dzn file, so the
generated code should assume the same names, shapes and data-types defined in the input data nomenclature and examples.

When generating the code, follow this format:

“‘
% Parameters

% Variables

% Constraints

% Objective

“‘

Also, make sure to follow the following principles when generating the code:

General Principles:
1. The generated code should assume that data will be provided via a ”.dzn” file. Do not declare values directly from the input
data nomenclature and examples within the MiniZinc model.
2. Adhere to the input data nomenclature and examples precisely when declaring input parameter names and their data types.
3. Use bounded variables whenever possible. If bounds are explicit (e.g., non-negative), include them as constraints.
4. When defining arrays of variables, ensure bounds are integers. Apply element-wise constraints in a separate constraint block
if bounds depend on array elements.
5. When defining arrays of variables, ensure bounding constraints are applied separately rather than during initialization to
avoid type mismatches.
6. Define explicit bounds for all variables used in linear expressions, either in their declaration or through additional constraints.
7. Separate constraints into distinct constraint blocks whenever possible.
8. Use direct and succinct definitions for constraints in the model.
9. Utilize global constraints as much as possible.
10. Declare all parameters and sets before using them in other declarations to avoid circular dependencies and ordering issues.
11. When using iteration constructs like ‘forall‘, define the range or set being iterated over properly (e.g., use ‘1..M‘ instead of
‘M‘ for iteration).
12. Ensure operands in operations are of compatible types to prevent coercion errors.
13. Declare all identifiers (such as indices or ranges like ‘n‘) before using them in any array or parameter declarations.
14. Ensure type consistency in expressions to avoid coercion errors. Explicitly cast types if necessary.
15. Ensure there is only one objective, which will be a maximization, minimization, or a satisfy problem. Do not forget the
‘solve‘ keyword.
Please do not generate any other token, except the MiniZinc code.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}



A1.3 Compositional Approach
A1.3.1 MULTI CALL PROMPT + COMPOSITION

A1.3.2 Parameters and Variables

You are an expert MiniZinc developer.

Generate MiniZinc code for the Parameters and Variables from a given problem description with additional information
about input data provided.

The MiniZinc code should assume that the data needed will be provided in a specific format through a .dzn file, so the
generated code should assume the same names/data-types defined in the input data nomenclature and examples.

When generating the code, follow this format:

“‘minizinc
% Parameters

% Variables
“‘
Also, make sure to follow the following principles when generating the code:

General Principles:
1. The generated code should assume that data will be provided via a ”.dzn” file. Do not declare values directly from the input
data nomenclature and examples within the MiniZinc model.
2. Adhere to the input data nomenclature and examples precisely when declaring input parameter names and their data types.
3. Use bounded variables whenever possible. If bounds are explicit (e.g., non-negative), include them as constraints.
4. When defining arrays of variables, ensure bounds are integers. Apply element-wise constraints in a separate constraint block
if bounds depend on array elements.
5. When defining arrays of variables, ensure bounding constraints are applied separately rather than during initialization to
avoid type mismatches.
6. Define explicit bounds for all variables used in linear expressions, either in their declaration or through additional constraints.
7. Declare all parameters and sets before using them in other declarations to avoid circular dependencies and ordering issues.
8. Declare all identifiers (such as indices or ranges like ‘n‘) before using them in any array or parameter declarations.
9. Ensure that all indices and sets used in parameter and variable declarations are declared beforehand.
10. When declaring variables, ensure they are appropriately typed (e.g., ‘int‘, ‘float‘).
11. Variables should have meaningful names related to the problem description.
12. Include comments to briefly describe each parameter and variable for clarity.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}

A1.3.3 Constraints

You are an expert MiniZinc developer.

Generate MiniZinc code for the Constraints from a given problem description with additional information about the pa-
rameters provided.

Given the Parameters and Variables part of the code, generate only the constraints.

When generating the code, follow this format:

“‘minizinc
% Constraints

“‘



Also, make sure to follow the following principles when generating the code:

General Principles:
1. Separate constraints into distinct constraint blocks whenever possible.
2. Utilize global constraints as much as possible.
3. When using iteration constructs like ‘forall‘, define the range or set being iterated over properly (e.g., use ‘1..M‘ instead of
‘M‘ for iteration).
4. Ensure operands in operations are of compatible types to prevent coercion errors.
5. Ensure type consistency in expressions to avoid coercion errors.
6. Clearly comment on the purpose of each constraint for clarity and maintenance.
7. Avoid hardcoding values; use parameters and variables instead.
8. Use meaningful names for all constraint blocks.
9. Only generate constraints and do not generate objective.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}

Parameters and Variables:
“‘minizinc
{parameters and variables}
“‘

A1.3.4 Objective
You are an expert MiniZinc developer.

Generate MiniZinc code for the Objective from a given problem description with additional information about the pa-
rameters, variables and constraints provided.

Given the Parameters, Variables, and Constraints sections of the code, generate only the objective.

When generating the code, follow this format:

“‘minizinc
% Objective

“‘

Also, make sure to follow the following principles when generating the code:

General Principles:

1. Ensure there is only one objective, which will be a maximization, minimization, or a satisfy problem. Do not forget
the ‘solve‘ keyword.
2. Ensure the objective function aligns with the problem description.
3. Verify the correct usage of variables, parameters and constraints in the objective function.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}

Parameters and Variables:
“‘minizinc
{parameters and variables}
“‘



Constraints:
“‘minizinc
{constraints}
“‘

A1.3.5 Stitch
You are an expert MiniZinc developer.

Given the Parameters, Variables, Constraints, and Objective sections of the code, stitch them into a complete solution
for the optimization problem.

When stitching the code, follow this format:

“‘minizinc
% Parameters

% Variables

% Constraints

% Objective

“‘

Ensure the following principles for syntactic accuracy and logical consistency:

General Principles:
1. Verify that all intermediate sections (parameters, variables, constraints, objective) are consistent and correctly referenced.
2. Confirm that the final MiniZinc code is syntactically accurate and logically coherent.
3. Ensure that the code sections are properly integrated, maintaining the prescribed format.
4. Check for and resolve any circular dependencies or ordering issues in declarations.
5. Check for and resolve any coercion issues.
5. Validate type consistency across all expressions and declarations.
6. Utilize clear and concise comments to describe each section and its components.
7. Make sure global constraints are utilized where applicable to enhance model efficiency.
8. Ensure only one objective is defined, using the ‘solve‘ keyword appropriately.

Problem Description:
{problem description}

Input Data Nomenclature and Examples:
{data nomenclature}

Parameters and Variables:
“‘minizinc
{parameters and variables}
“‘

Constraints:
“‘minizinc
{constraints}
“‘

Objective:
“‘minizinc
{objective}
“‘



A2 KNOWLEDGE GRAPH GENERATION PROMPT
Given an optimization problem description and the nomenclature to be used for parameters.

Please generate a knowledge-graph.

Problem Description:
{problem description}

Input Data Nomenclature:
{data nomenclature}

Steps to Generate a Knowledge Graph (KG):

1. Identify Parameters:
- Extract each parameter individually, specifying its type and name.
- Ensure that parameter names are aligned with the predefined nomenclature.
- Record any explicit bounds for parameters, if specified.
- Validate against the problem description to ensure that all relevant parameters are included, checking for any implicitly stated
ones.
2. Identify Variables:
- Identify each variable, noting their types and names.
- Align variable names with the nomenclature provided, ensuring consistency.
- Determine and document any bounds (explicit or inferred) for the variables.
- Cross-verify with the problem description to confirm all necessary variables are accounted for, including those not explicitly
mentioned in the nomenclature.
3. Identify Constraints:
- Detail each constraint separately, recording its description, formula, and associated variables.
- Classify constraints based on their nature (e.g., linear, nonlinear, global etc..).
- Highlight if any constraints are global, impacting multiple variables or conditions across the model.
4. Identify Objective:
- Clearly define the objective function, including its description, mathematical representation, and the variables it affects.
- Note the type of optimization (minimization, maximization, satisfy) and any relevant constraints tied to the objective.
- Ensure the objective aligns with the overall goal of the optimization problem as described.
5. Generate Turtle (TTL) Representation:
- Construct the Turtle format representation using the gathered information on parameters, variables, constraints, and the
objective.
- Sequentially organize the definitions of parameters, variables, constraints, and the objective within the Turtle file.
- Avoid generalizing the problem statement; focus on defining each component distinctly as outlined in the steps.

Please do not generate any other token other than the knowledge graph itself. No titles, description or markup neces-
sary.



A2.1 Example Knowledge Graph
Unstructured Description
A firm produces different goods using different raw materials. The firm has a limited amount of each raw material available.
Each good requires a specific amount of raw materials to be produced. Each good results in an amount of revenue produced
per unit. How much of each good should the firm produce to maximize its total revenue?

Knowledge Graph
Listing 2: Knowledge Graph in TTL format

1 @prefix : <\protect\vrule width0pt\protect\href{http://example.org/firm_optimization#}{
http://example.org/firm_optimization#}> .

2
3 # Parameters
4
5 :M a :Parameter ;
6 :name "Number of different goods" ;
7 :type "Integer" ;
8 :description "Total number of different goods produced by the firm" .
9

10 :N a :Parameter ;
11 :name "Number of different raw materials" ;
12 :type "Integer" ;
13 :description "Total number of different raw materials used by the firm" .
14
15 :Available a :Parameter ;
16 :name "Available amount of raw material i" ;
17 :type "1-D Array" ;
18 :description "Amount of each raw material available for production" .
19
20 :Requirements a :Parameter ;
21 :name "Requirement of raw material i to produce one unit of good j" ;
22 :type "2-D Array" ;
23 :description "Amount of each raw material required to produce one unit of each good" .
24
25 :Prices a :Parameter ;
26 :name "Revenue from selling one unit of good j" ;
27 :type "1-D Array" ;
28 :description "Revenue earned by selling one unit of each good" .
29
30 # Variables
31
32 :UnitsProduced a :Variable ;
33 :name "Units produced of good j" ;
34 :type "1-D Array" ;
35 :bounds "0 to infinity" ;
36 :description "Number of units of each good produced" .
37
38 # Constraints
39
40 :MaterialAvailability a :Constraint ;
41 :description "Each good’s production must not exceed available raw materials" ;
42 :formula "Sum(Requirements[i][j] * UnitsProduced[j] for j in 1..M) <= Available[i] for

i in 1..N" .
43
44 # Objective
45
46 :MaximizeRevenue a :Objective ;
47 :description "Maximize the total revenue from selling the goods" ;
48 :formula "Sum(Prices[j] * UnitsProduced[j] for j in 1..M)" ;
49 :type "Maximization" .



A3 Error Analysis

Error Type Commentary
Syntax Errors These errors indicate issues with the MiniZinc code syntax. They

may include unexpected tokens, missing semicolons, or incorrect use
of language constructs. For example: ‘Error: syntax error,
unexpected ’|’’.

Type Coercion Errors These errors happen when there is a mismatch between expected and
provided data types, such as expecting an integer but receiving a
float. Example: ‘Error: type error: cannot determine
coercion from type var float to type var int’.

Undefined Identifiers These errors are due to the use of variables or identifiers that have
not been declared or are out of scope. Example: ‘Error: type
error: undefined identifier ‘i’, did you mean
‘A’?’.

Array and Indexing Issues Errors related to improper use of arrays or indexing problems.
This can include out-of-bounds errors or incorrect array dimen-
sions. Example: ‘Error: evaluation error: Index
set mismatch. Declared index sets of ‘Benefit’
are [1..5,1..3], but is assigned to array with
index sets [1..5, 1..2]’.

Constraint Definition Errors These errors occur when there is an issue with the constraints de-
fined in the model. This can include logical inconsistencies or incorrect
use of constraint functions. Example: ‘Error: solver backend
cannot handle constraint: float lin ne’.

Model Instantiation Errors Errors related to the instantiation of the model, such as problems
with set definitions or parameter initialization. Example: ‘Error:
type error: generator expression must be (par
or var) set of int or array, but is ‘int’.

Missing Data in DZN Files These errors occur when the necessary data is not provided in the DZN
files. This may lead to missing parameters or sets that are required
by the model. Example: ‘Error: type error: variable
‘K’ must be defined (did you forget to specify
a data file?)’.

Table 3: Categorization of MiniZinc Errors with Commentary.
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