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ABSTRACT

Transformer models have achieved significant improvements in performance for
various learning tasks in natural language processing and computer vision. Much
of their success is attributed to the use of attention layers that capture long-range
interactions among data tokens (such as words and image patches) via attention
coefficients that are global and adapted to the input data at test time. In this pa-
per we study the principles behind attention and its connections with prior art.
Specifically, we show that attention builds upon a long history of prior work on
manifold learning and image processing, including methods such as kernel-based
regression, non-local means, locally linear embedding, subspace clustering and
sparse coding. Notably, we show that self-attention is closely related to the notion
of self-expressiveness in subspace clustering, wherein data points to be clustered
are expressed as linear combinations of all other points with coefficients designed
to attend to other points in the same group, thus capturing long-range interactions.
We also show that heuristics in sparse self-attention can be studied in a more prin-
cipled manner using prior literature on sparse coding and sparse subspace cluster-
ing. We thus conclude that the key innovations of attention mechanisms relative to
prior art are the use of many learnable parameters, and multiple heads and layers.

1 INTRODUCTION

Attention, i.e., the ability to selectively focus on a subset of sensory observations, while ignoring
other irrelevant information, is a central component of human perception. For example, only a few
words in a sentence may be useful for predicting the next word, or only a small portion of an image
may be relevant for recognizing an object. This property of biological systems has inspired the recent
development of attention-based neural architectures (Bahdanau et al., 2014), such as Transformers
(Vaswani et al., 2017), BERT (Devlin et al., 2018), GPT (Radford et al., 2018; 2019), RoBERTa (Liu
et al., 2019), and T5 (Raffel et al., 2019), which have achieved impressive performance in multiple
natural language processing tasks, including text classification (Chaudhari et al., 2019; Galassi et al.,
2020), machine translation (Ott et al., 2018), and question answering (Garg et al., 2020). Attention-
based architectures have also led to state-of-the-art results in various computer vision tasks (Khan
et al., 2021), including image classification (Dosovitskiy et al., 2020), object detection (Carion et al.,
2020; Zhu et al., 2020), and visual question answering (Tan & Bansal, 2019; Su et al., 2019).

Much of the success behind attention-based architectures is attributed to their ability to capture long-
range interactions among data tokens (such as words and image patches) via attention coefficients
that are global, learnable and adapted to the input at test time. For example, while recurrent neu-
ral network architectures in natural language processing predict the next word in a sentence using
information about a few previous words, self-attention mechanisms make a prediction based on in-
teractions among all words. Similarly, while convolutional architectures in computer vision compute
local interactions among image patches using weights that do not depend on the input image at test
time, vision transformers compute global interactions that are adapted to the input at test time.

In this paper, we show that many of the key ideas behind attention, which we briefly summarize
in Section 2, build upon a long history of prior work on manifold learning and image processing.
In Section 3 we show that the scaled dot product attention mechanism is equivalent to kernel-
based regression with the Gaussian kernel (Nadaraya, 1964; Watson, 1964), as recently pointed out
in (Chaudhari et al., 2019; Zhang et al., 2021a), and that more general attention mechanisms can
be obtained by choosing other kernels. We also show in Section 3 that the non-local means image
denoising algorithm (Buades et al., 2005), which can also be understood as a form of kernel-based
regression, is the main building block behind the vision transformer (ViT) (Dosovitskiy et al., 2020).
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As a consequence, we argue that the key innovation of attention relative to kernel-based regression
is not on its ability to capture global long-range interactions that are adapted to the input data (some-
thing that non-local means already does), but rather on the use of many learnable parameters for
defining attention. In contrast, classical kernel methods typically tune only the kernel bandwidth.

In Section 4 we establish several connections between masked attention and Locally Linear Embed-
ding (LLE) (Roweis & Saul, 2000; 2003). Specifically, we show that LLE learns a low-dimensional
representation of a dataset using a masked self-attention mechanism where the masks are defined by
the nearest neighbors of a data point. The resulting coefficients are not constrained to be nonneg-
ative, thus allowing for both positive and negative attention. Moreover, they depend explicitly on
multiple data tokens, unlike attention coefficients which depend only on a pair of tokens. We also
show that LLE’s training objective can be interpreted as a fill in the blanks self-supervised learning
objective. However, a key limitation of LLE is that its local neighborhood is pre-specified, so a data
point cannot attend to any other point. This issue is resolved by self-expressiveness, which connects
every point to every other point and uses sparse regularization to reveal which points to attend to.

In Section 5 we show that self-attention is closely related the notion of self-expressiveness of El-
hamifar & Vidal (2009; 2013); Vidal et al. (2016), wherein the data points to be clustered are ex-
pressed as linear combinations of other points with global coefficients that are adapted to the data
and capture long-range interactions among data points. Such self-expressive coefficients are then
used to define a data affinity matrix which is used to cluster the data. A first difference between
self-attention and self-expressive coefficients is that the latter are not restricted to be non-negative,
thus allowing for both positive and negative attention. A second difference is that self-expressive co-
efficients are not defined as a function of the tokens parametrized by learnable weights. Instead, the
coefficients are learned directly using an unsupervised loss. A third difference is that self-expressive
coefficients are typically regularized to be sparse or low-rank. As a consequence, we argue that
the key innovation of self-attention relative to self-expressiveness is neither in its ability to capture
global long-range interactions that are adapted to the data nor in the ability to learn such interactions
(something that self-expressiveness already does), but rather on the fact that attention mechanisms
use multiple attention-heads in parallel and are stacked into deep architectures.

We conclude with future directions on how to improve self-expressiveness using self-attention and
vice versa. For example, we argue that the use of sparse regularization in (Elhamifar & Vidal, 2009;
2013) to automatically select the most relevant coefficients is a more principled way of handling a
large number of tokens than restricting attention to arbitrary local neighborhoods, as done e.g., in
criss-cross attention (Huang et al., 2019). To achieve this, we suggest unrolling the sparse encod-
ing mechanism in order to induce sparse attention maps through multiple layers of attention. We
conjecture this may not only improve self-attention-based architectures through the use of sparse
regularizers on the attention coefficients, but also improve subspace clustering methods by using
self-attention, as recently proposed in (Zhang et al., 2021b). This could also allow one to extend sub-
space clustering methods to nonlinear manifolds by stacking multiple layers of self-expressiveness.

2 TRANSFORMERS, ATTENTION AND SELF-ATTENTION

2.1 TRANSFORMER

Figure 1: Transformer
encoder architecture
Vaswani et al. (2017).

The transformer architecture was originally designed for processing data
sequences, e.g., a sequence of words in a sentence. As shown in Figure 1,
each element of the sequence is first mapped to a vector space through
a suitable embedding, e.g., a Word2vec embedding of a word. Since the
architecture does not depend on the position and order of the input se-
quence, a positional encoding is added to the each input embedding. The
resulting input tokens are then processed by a multi-head attention layer.
This layer computes output tokens as linear combinations of input tokens
weighted by attention coefficients designed to capture long-range interac-
tions among input tokens, such as word associations. The output tokens are
then processed by a residual connection followed by layer normalization,
a feed-forward network such as an MLP, and another residual connection
and normalization layer. Therefore, the main component of the transformer
architecture is the (multi-head) attention layer, which we describe next.
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2.2 ATTENTION

Figure 2: Scaled
dot product attention
Vaswani et al. (2017).

As illustrated in Figure 2, the attention layer is designed to capture long-
range interactions among three types of input tokens: queries, keys and
values. It does so by comparing queries to keys to produce a set of attention
coefficients, which are then used to generate linear combinations of the val-
ues. Specifically, let us denote the queries by matrix Q = [q1, . . . , qNq

] ∈
Rd×Nq , the keys by matrix K = [k1, . . . ,kNk

] ∈ Rd×Nk , and the corre-
sponding values by matrix V = [v1, . . . ,vNk

] ∈ Rdv×Nk . The attention
layer computes an attention coefficient cij = attn(ki, qj) ∈ [0, 1] for each
key-query pair and returns a linear combination of the values as follows:

zj =

Nk∑
i=1

vicij or Z = V C, where C = attn(K,Q) ∈ [0, 1]Nk×Nq . (1)

Intuitively, the attention coefficient cij measures the importance of key ki for representing query
qj and the representation zj combines the values vi that are most important for qj . The are many
possible choices for the attention mechanism, including additive attention, multiplicative attention
and dot product attention. A common choice is scaled dot product attention, which applies a softmax
operator to the dot product of keys and queries scaled by the square root of their dimension, i.e.:

C = softmax
(K>Q√

d

)
=

exp(k>i qj/
√
d)∑

i exp(k>i qj/
√
d)
. (2)

Since the coefficients are non-negative and add up to one, zj is a convex combination of the values.

Let us illustrate the intuition behind attention using the following (overly simplified) examples:

1. Suppose we would like to translate sentences from French to English. Let qj be a feature
embedding for the jth word of a sentence in French, and let ki = vi be an embedding for
the ith word of the corresponding sentence in English. Ideally, the attention mechanism
should be designed such that the coefficient cij is large (cij ≈ 1) only for key-query pairs
(i, j) that correspond to the translation of French word i into English word j, in which case
the output to French query qj will be its translation into English zj = vi.

2. Suppose we are given an image-caption pair and we would like to find which regions in
the image corresponds to each word in the caption. Assume we also have a collection of
bounding boxes extracted from the image, e.g., using an object detector. Let the queries be
feature embeddings for the words in the caption and the keys and values be CNN features
extracted from the bounding boxes. Ideally, the attention mechanism should be designed
such that cij is large when the box i corresponds to word j. That is, the attention mechanism
is designed to tell us which regions to pay attention to for each word.

Of course, in order for multilingual word embeddings to align with each other, or for word embed-
dings to match image features, both features need to be mapped to a common latent space through
a learnable transformation. We discuss such mappings in the next subsection in the context of self-
attention, but such mapping also apply here.

2.3 SELF-ATTENTION

Let X = [x1, . . . ,xN ] ∈ RD×N denote a set of data tokens, such as words or image patches. The
goal of self-attention is to capture long-range interactions among such tokens. Such interactions are
captured by first transforming these tokens into keys, queries and values via learnable coefficient
matrices WK ∈ Rd×D, WQ ∈ Rd×D, and WV ∈ Rdv×d, respectively, as follows:

K = WKX ∈ Rd×N , Q = WQX ∈ Rd×N , and V = WVX ∈ Rdv×n. (3)

Then, we can define a set of transformed tokens using attention, e.g.:

Z = V softmax(K>Q/
√
d). (4)

Let us illustrate the intuition behind self-attention using the vision transformer (ViT) proposed in
(Dosovitskiy et al., 2020). As shown in Figure 2.3, the ViT divides an input image into a collection
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Figure 3: ViT architecture (Dosovitskiy et al., 2020).

of patches and maps those patches to a set
of vectors via a learnable linear projection.
Each projected patch is augmented with a
positional encoding for the location of the
patch in the image. Since ViT is designed
for image classification, an additional (zero)
token is added to the input of the trans-
former. This token is expected to capture
class information and is learned during train-
ing. The transformer encoder processes all
these tokens using self-attention. Specifi-
cally, new tokens are formed as linear com-
binations of patches weighted by attention
coefficients that capture relationships among
image patches. Moreover, attention coeffi-
cients relating the class token to patch tokens are expected to capture which patches to pay attention
to in order to classify the image. The output class token is then passed through an MLP head to pro-
duce class probabilities. The network parameters (input class token, patch projection, self-attention
weights, encoder MLP, MLP head) are learned using a cross-entropy loss for classification.

2.4 MASKED ATTENTION AND SPARSE ATTENTION

As discussed in the introduction, much of the success of attention-based architectures is attributed
to the fact that attention layers capture long-range interactions among data tokens via attention co-
efficients that are global and adapted to the input data at test time. However, the use of the softmax
operator often leads to dense attention maps, whose computation can be both memory and computa-
tionally intensive. Moreover, in applications such as document summarization, question answering
or visual grounding, the attention maps are expected to be sparse. One approach to addressing this
issue is to restrict non-zero attention coefficients to certain patterns, such as the criss-cross pattern
proposed in (Huang et al., 2019). In the architecture shown in Figure 2, this is implemented via
masks, hence the name masked attention. However, pre-defining local attention maps might miss
important long-range interactions. As an alternative, Martins & Astudillo (2016) propose to sub-
stitute the softmax operator by a sparsemax operator, which directly induces sparse attention maps.
However, it is not clear why doing so would automatically lead to selecting tokens that are more
informative. This motivated He et al. (2021) to propose heuristics for combining attention maps
in order to select informative tokens for fine-grained recognition. Overall, a rigorous method for
inducing sparsity while maintaining the most informative long-range interactions remains elusive.

3 KERNEL REGRESSION, NON-LOCAL MEANS DENOISING AND ATTENTION

We begin with what arguably is one of the earliest incarnations of the idea of self-attention, namely
kernel regression (Nadaraya, 1964; Watson, 1964). Interestingly, kernel regression is also at the root
of a well-known image denoising algorithm, namely non-local means (Buades et al., 2005), which
we show is strongly connected to the vision transformer (ViT) (Dosovitskiy et al., 2020).

3.1 KERNEL REGRESSION

The connection between attention and kernel regression was recently pointed out in Chaudhari et al.
(2019); Zhang et al. (2021a). Kernel regression (Nadaraya, 1964; Watson, 1964) is a non-parametric
method for fitting a function f : X → Y to samples {(xj ,yj)}Nj=1 drawn from X ×Y , which uses a
kernel density estimator to approximate the minimum-mean-squared-error predictor f̂(x)=E(y|x).
Specifically, given a kernel κ : X ×X → R, Nadaraya (1964) and Watson (1964) show that one can
estimate f̂(x) as a weighted combination of the values of yj , i.e.,

f(x) =

N∑
j=1

α(x,xj)yj =

N∑
j=1

κ(x,xj)∑N
i=1 κ(x,xi)

yj . (5)

Intuitively, the weighting function α(x,xj) encodes the relevance of xj for predicting f(x).
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When κ is a Gaussian kernel, κ(x,xj) = exp(−‖x−xj‖22
2σ2 ), the expression in equation 5 in reduces to

f(x) =

N∑
j=1

exp(−‖x−xj‖22
2σ2 )∑N

i=1 exp(−‖x−xi‖22
2σ2 )

yj =

N∑
j=1

softmax(
−‖x− xj‖22

2σ2
)yj . (6)

Therefore, Nadayara-Watson regression is an attention mechanism where the query is q = x,
the keys are kj = xj , the values are vj = yj , and the attention function is softmax applied to minus
the normalized squared distance between query and key. Further assuming that keys and queries are
normalized as ‖x‖2 = ‖xj‖2 = 1 so that ‖x − xj‖22 = 2(1 − x>xj) yields scaled dot product
attention:

f(x) =

N∑
j=1

exp(
x>xj

σ2 )∑N
i=1 exp(x>xi

σ2 )
yj =

N∑
j=1

softmax(
x>xj
2σ2

)yj . (7)

Despite this obvious connection, we note that kernel regression with the Gaussian kernel is a local
attention mechanism that is unable to capture general long-range interactions. This is because the at-
tention weights depend upon the distance between the key and the query, which is adapted using only
one tunable parameter: σ. When σ is very small, although all pairwise interactions are computed,
large interactions occur only in a local neighborhood, which results in a local attention mechanism.
On the other hand, when σ is very large all weights are similar and we get f(x) ≈ 1

N

∑
yj , which is

clearly not an effective attention mechanism. Therefore, the key advantage of attention with respect
to kernel regression is that it incorporates learnable linear transformations for both key and queries.
Specifically, if we let q = Wx and kj = Wxj , we obtain q>kj = x>W>Wxj . In order for
kernel regression to achieve such a learnable dot product, it would need to use a Gaussian kernel
with a full covariance matrix Σ, and learn the resulting dot product which is given by x>Σ−1xj .

More generally, observe that the expression in equation 5 can be used to define new attention mecha-
nisms by choosing different kernel function κ. For example, the Gaussian, Laplace and Wasserstein
kernels are all members of the exponential family, as they are defined as the exponential of minus a
squared distance, i.e., κ(q,k) = exp(−dist(q,k)2). In this case, the resulting attention mechanism
attn(q,k) = softmax(−dist(q,k)2) is defined based on a notion of similarity (Graves et al., 2014).
On the other hand, it is not clear if all existing attention mechanisms (e.g., additive attention) can be
written in terms of a kernel.

3.2 NON-LOCAL MEANS DENOISING

As the name suggests, image denoising methods aim to remove noise in an mage. The most basic
image denoising method is based on computing the average intensity of a set of neighboring pixels.
Typically, a local Gaussian weighted average is used. Specifically, if xj denotes the 2D coordinates
of pixel j and yj denote its intensity or RGB values, the denoised image at pixel x takes the form
in equation 5. Since σ is typically chosen to be small (say 3-11 pixels) and Gaussian weights decay
very quickly with the distance ‖x − xj‖, it is customary to restrict the sum in equation 5 to a
neighborhood of x of size ≈ 3σ. In this case, the sum becomes a convolution with a Gaussian filter.
Therefore, classical denoising is a local attention mechanism with queries and keys denoting pixel
locations (i.e., qj = kj = xj) and values denoting image intensities (i.e., vj = yj).

Non-local means introduces two key modifications to classical image denoising. First, it computes
the weighted average of the intensities of all pixels, not just of a local neighborhood of x, as in
equation 5. Second, it uses a Gaussian kernel based on the intensity value yj rather than the pixel
location xj . This allows the algorithm to be non-local in that it finds other (possibly far away) pixels
with similar intensities. Specifically, in its simplest form, non-local means denoises the image as

f(x) =

N∑
j=1

exp(−‖y−yj‖2
2σ2 )∑N

i=1 exp(−‖y−yi‖2
2σ2 )

yj . (8)

Therefore, this simplified form of non-local means denoising is a self-attention mechanism with
queries, keys and values denoting image brightness (i.e., qj = kj = vj = yj).

A slightly more general form of the non-local means algorithm computes a Gaussian kernel not on
the intensities y and yj of a single pixel, but on the intensities of patches centered at pixels x and
xj , respectively. This allows the algorithm to attend to distant patches that are similar and hence
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useful for denoising. Therefore, non-local means denoising is an attention mechanism where the
queries and keys are the intensities of image patches and the values are the intensities of the central
pixel. This connection had been noted in Wang et al. (2018), but surprisingly it is not mentioned in
(Dosovitskiy et al., 2020). Indeed, notice that the steps of non-local means are equivalent to:

1. Extract a set of overlapping patches from the image.

2. Flatten these patches.

3. Apply an attention mechanism with the keys and queries being the flattened patches and
the values being the intensity of their central pixel.

Therefore, non-local means denoising is closely related to the vision transformer, except that (a)
there is no additional classification token, (b) the projection of patches is fixed as the identity rather
than learned, (c) no positional encoding is added to the embedded patches, and (d) a single-head and
single-layer self-attention mechanism is used without normalization or fully connected layers.

4 LOCALLY LINEAR EMBEDDING (LLE) AND LOCAL SELF-ATTENTION

In this section, we show that LLE learns a low-dimensional representation of a dataset by using a
masked local self-attention mechanism. Specifically, we show that LLE coefficients can be inter-
preted as local attention weights with masks defined by the nearest neighbors. We note that LLE
coefficients are not constrained to be nonnegative, thus allowing for both positive and negative atten-
tion, and LLE coefficients depend explicitly on multiple data tokens, unlike additive attention and
scaled dot product which depend only on a pair of tokens (except for softmax). Finally, we show that
LLE’s training objective can be interpreted as a fill in the blanks self-supervised learning objective.

4.1 LOCALLY LINEAR EMBEDDING

Let us first recall that LLE aims to learn a locally-linear low-dimensional embedding {yj}Nj=1 ⊂ Rd

of a given data set {xj}Nj=1 ⊂ RD, where D is the data dimension and d � D is the embedding
dimension. LLE computes this low-dimensional embedding by first expressing each data point xj
as an affine combination of its K-nearest neighbors, i.e., by finding coefficients cij ∈ R such that
xj ≈

∑
i∈Nj

xicij and
∑
i∈Nj

cij = 1, where Nj ⊂ {1, . . . , N} is the set of K-nearest neighbors
of xj . More specifically, LLE finds the coefficients by minimizing the reconstruction error

min
{cij}

N∑
j=1

∥∥xj −∑
i∈Nj

xicij
∥∥2
2

s.t.
∑
i∈Nj

cij = 1 ∀j = 1, . . . , N. (9)

Once these coefficients have been found, LLE finds a low-dimensional representation that is centered
at the origin, has unit covariance, and minimizes the same reconstruction error, i.e.

min
{yj}

N∑
j=1

∥∥yj −∑
i∈Nj

yicij
∥∥2
2

s.t.
N∑
j=1

yj = 0 and
N∑
j=1

yjy
>
j = I. (10)

4.2 LLE VERSUS LOCAL-ATTENTION

In order to show that LLE uses a masked local self-attention mechanism, observe that the coefficient
cij in the expression xj ≈

∑
i∈Nj

xicij can be interpreted as an attention weight that measures the
contribution of point xi to point xj . Specifically, note that the optimization problem in equation 9
can be decoupled as N optimization problems, one for each xj , and that the optimal coefficients
for xj are a function of the query xj and the keys {xi}i∈Nj

, i.e., {c∗ij}i∈Nj
= f(xj , {xi}i∈Nj

)1.
All other coefficients {c∗ij}i 6∈Nj

are set to zero, thus the K nearest neighbors define a local attention

1If j1, j2, . . . , jK are the indices of the K-NN of xj , cj = [cj1,j , cj2,j , . . . , cjK ,j ]
> ∈ RK is its vector of

affine coefficients and Gj = [gjil] ∈ RK×K is its local Gram matrix defined as gjil = (xi − xj)
>(xl − xj) if

xi and xj that are K-NN of xj , then the optimal solution is cj =
G−1

j 1

1>G−1
j 1

.
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mask. Note also that the constraint in equation 9 ensures the weights add up to 1 without requiring a
softmax post-processing. Finally, notice that the training objective in equation 9 is a fill in the blanks
objective, where the nearest neighbors of xj , {xi}i∈Nj

, are used to predict the missing token xj .

Despite these similarities between LLE and existing attention mechanisms, there are some important
differences. First, most existing attention mechanisms compute a score function applied to a single
query-key pair and then apply the softmax function so that attention weights are between 0 and 1.
In contrast, LLE coefficients are not constrained to be nonnegative, thus allowing for both positive
and negative attention. Moreover, LLE coefficients depend on both the query and multiple keys.
Another difference, perhaps the most important one, is that in most existing attention mechanisms
cij is a parametrized function of the query-key pair whose weights are learned during training. In
sharp contrast, LLE learns the values of cij directly, which makes it more difficult to evaluate the
coefficients for new data, as the optimization problem in equation 9 needs to be solved anew.

Despite these differences, we note many of the key ingredients of attention (key, query, value, mask)
were already present in the original LLE formulation, albeit for different purposes. In particular,
LLE is based on the idea that each query attends its K nearest neighbors by writing itself as an
affine combination of such neighbors. The attention weights thus capture the local geometry of the
data manifold and are hence used to find the low-dimensional embedding as per equation 10.

5 SUBSPACE CLUSTERING, SELF-EXPRESSIVENESS AND SELF-ATTENTION

A key limitation of LLE is that its local neighborhood is pre-specified, so a data point cannot attend
to any other point. In this section we show that this issue is resolved by self-expressiveness (El-
hamifar & Vidal, 2009; 2013; Vidal et al., 2016), which connects every point to every other point
and uses sparse regularization to reveal which points to attend to. Specifically, we show that self-
expressiveness based subspace clustering methods such as sparse subspace clustering (Elhamifar
& Vidal, 2009; 2013; Wang & Xu, 2013), low-rank subspace clustering (Liu et al., 2010; Vidal &
Favaro, 2014), least squares regression (Lu et al., 2012) and extensions (Wang et al., 2013) compute
a data affinity using a global masked self-attention mechanism where the queries, keys and values
are the data points to be clustered, and the self-expressive coefficients of a data point are designed to
attend to other points in the same subspace. We note, however, that self-expressive coefficients are
not constrained to be nonnegative, thus allowing for both positive and negative attention. We also
show that self-expressive coefficients are global in that they truly depend on multiple data points,
unlike most attention mechanisms that depend only on a pair of tokens (except for softmax). Finally,
we show that the subspace clustering training objective can be interpreted as a fill in the blanks self-
supervised learning objective where each data point is regressed with respect to all other data points.

5.1 SUBSPACE CLUSTERING AND SELF-EXPRESSIVENESS

Subspace clustering refers to the problem of clustering data drawn from a union of subspaces. Self-
expressiveness based methods solve this problem by expressing each data point as a linear combi-
nation of all other data points. The resulting self-expressive coefficients reveal information about
which points belong to the same subspace, hence they can be used to define a suitable data affinity
matrix. The clustering of the data is then obtained by applying spectral clustering to such an affinity.

More formally, let X = [x1, . . . ,xN ] be a set of points drawn from a union of n subspaces of RD of
dimension d� D which we wish to cluster. Assume that the data from each subspace is sufficiently
rich so that any d points from one group span the subspace associated to that group. Then, each data
point xj can be expressed as a linear combination of d other points in its own subspace. That is, for
all j = 1, . . . , N , there exist at most d non-zero coefficients cij ∈ R such that:

xj =
∑
i 6=j

xicij , or X = XC and diag(C) = 0, (11)

where C ∈ RN×N is the matrix of coefficients. Notice that in the above constraint data points are
expressed as linear combinations of each other, hence the name self-expressiveness.

Since our goal is to use the self-expressive coefficients to define an affinity matrix for clustering the
data, ideally the coefficients should have the property that cij 6= 0 only if points xi and xj are in
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the same subspace. Coefficients that satisfy such a property are guaranteed to exist since a point
can always be expressed in terms of d points in its own subspace. Moreover, if d � N , i.e., if the
subspaces are low-dimensional and the number of data points is sufficiently large, such coefficients
are sparse. This motivates the sparse subspace clustering objective (Elhamifar & Vidal, 2009)

min
{cij}
‖xj −

∑
i6=j

xicij‖22 + λ
∑
i 6=j

|cij |, or min
C:diag(C)=0

‖X −XC‖2F + λ‖C‖1, (12)

where the first term measures how well a data point is reconstructed in terms of other data points, the
second term uses `1 regularization to encourage sparsity, and λ > 0 is a regularization parameter.
More generally, one can use other regularizers Θ and write the objective in terms of the matrix C

min
C
‖X −XC‖2F + λΘ(C). (13)

Once the coefficients have been computed (see next subsection), it is common to select the largest
nonzero coefficients to induce additional sparsity and to normalize the columns of C so that they add
up to one (Elhamifar & Vidal, 2013). Alternatively, once can add an `1-normalization constraints
to the optimization problem in equation 13, as is commonly done in affine subspace clustering
(Elhamifar & Vidal, 2013; Li et al., 2018; You et al., 2019). Interestingly, it appears that sofmax
normalization of the coefficients has never used in the subspace clustering literature. Finally, given
C, the data is clustered by applying spectral clustering to an affinity matrix that is often constructed
by symmetrizing the absolute values of the self-expressive coefficients, i.e., A = |C|+ |C>|.

5.2 SELF-EXPRESSIVE COEFFICIENTS FOR DIFFERENT REGULARIZERS

The least squares regression approach (Lu et al., 2012) uses Θ(C)=‖C‖2F and gives a closed form
solution for C = (X>X + λI)−1X>X = V (Σ2 + λI)−1Σ2V >, where X = UΣV > is the
SVD of the data. Therefore, the self-expressive coefficient cij = v>i (Σ2+λI)−1Σ2vj is a weighted
dot product of rows of V . When λ is large enough we get a scaled dot product of the data points

C ≈ 1

λ
X>X. (14)

The low-rank subspace clustering approach (Liu et al., 2010; Vidal & Favaro, 2014) uses a nuclear
norm regularizer Θ(C) = ‖C‖∗ to induce low-rank coefficients. The solution can be computed in
closed form from the SVD of the data as C = V ReLUλ(Σ)V >, where ReLUλ(x) = max(x−λ, 0).
As before, this can be interpreted as a weighted dot product of rows of V , except that some weights
can be zero to induce low-rank.

The sparse subspace clustering approach (Elhamifar & Vidal, 2009; 2013; Wang & Xu, 2013) uses
the `1 norm Θ(C) = ‖C‖1 to induce sparse coefficients. In this case, the coefficients cannot be
computed in closed form. However, a common approach is to use the Iterative Shrinkage Thresh-
olding Algorithm (ISTA) proposed by (Beck & Teboulle, 2009), which can be written as:2

Ck+1 = ReLUλ
(
(I − εX>X)Ck + εX>X

)
= ReLUλ

(
Ck + εX>(X −XCk)), (15)

Figure 4: Towards a
sparse transformer?

where ε > 0 is a step size. We note that equation 15 is the point of the
departure for the unrolling approach proposed in (Gregor & LeCun, 2010),
which connects sparse coding with neural networks. In that approach, the
iterates are interpreted as activation functions of a neural network and the
linear transformations (I − εX>X) and X>X as learnable weights.

As a future research direction, we suggest further exploring the connections
between sparse subspace clustering and transformers via unrolling, which we
conjecture will allow us to extend subspace clustering to nonlinear manifolds
through the use of (deep) multi-layer attention models. More specifically,
notice that we can partially re-interpret equation 15 as the update of one
attention layer. This is because in equation 15, the term X − XCk can
be interpreted as applying attention Ck to input data X and then adding a
(negative) residual connection with the input X . Then, the multiplication by
X> in in equation 15 and the ReLU nonlinearity can be interpreted as the
feedforward layer of the transformer. Of course, the analogy is not perfect
because the addition of Ck is not quite a residual connection.

2We have neglected the constraint diag(C) = 0 for ease of exposition
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5.3 SELF-EXPRESSIVENESS VERSUS SELF-ATTENTION

Notice from equation 11 that self-expressiveness can be interpreted as a self-attention mechanism
where the query qj = xj is expressed as a linear combination of all values vi = xi, i = 1, . . . , N,
with attention coefficients cij determined by the queries qj = xj and the keys ki = xi. However,
we note that self-expressive coefficients (SEC) are more general than self-attention coefficients.

1. SEC are not restricted to be nonnegative, allowing for both positive and negative attention.
2. SEC are not restricted to be an explicit function of a single key-query pair. For example, the

closed form solution to least squares regression has a term of the form (λI + X>X)−1,
which makes cij a function of all key-query pairs. The only case where self-expressive
coefficients yield an explicit function of a single key-query pair is when λ is large that as
per equation 14, which resembles a scaled dot product attention.

3. SEC are not defined as a function of the tokens parametrized by learnable weights. Instead,
the coefficients are learned directly using an unsupervised loss. This is, however, a potential
disadvantage of self-expressiveness, as it makes it difficult to compute coefficients at test
time. This issue is addressed in (Zhang et al., 2021b) by using learnable coefficients.

4. SEC are typically regularized to be sparse or low-rank. We argue that the use of sparse
regularization in (Elhamifar & Vidal, 2009; 2013) to automatically select the most relevant
coefficients is a more principled way of handling a large number of tokens than restricting
attention to arbitrary local neighborhoods, e.g., in criss-cross attention (Huang et al., 2019).

As a consequence, we argue that the key innovation of self-attention relative to self-expressiveness
is neither in its ability to capture global long-range interactions that are adapted to the data nor in the
ability to learn such interactions (something that self-expressiveness already does), but rather on the
fact that attention mechanisms have been stacked into deep architectures and with multiple attention-
heads in parallel. As suggested in the previous section, further exploring the connections between
sparse subspace clustering and transformers via unrolling might lead to (deep) multi-layer subspace
clustering models. Alternatively, one may use attention mechanisms to parametrize self-expressive
coefficients, as recently suggested in (Zhang et al., 2021b).

5.4 SPARSE CODING AND SPARSE ATTENTION

The connections made between self-expressiveness and self-attention also suggest new directions
towards improving transformers via sparse encoding. Specifically, recall that in standard sparse cod-
ing, a data point y is expressed as a sparse linear combination of dictionary atoms A = [a1, . . . ,aN ]
with coefficients c by solving the optimization problem

min
c
‖y −Ac‖22 + λ‖c‖1. (16)

Reinterpreting the data point y as the query q and the dictionary A as the set of keys K, and solving
the problem for multiple queries Q leads to an attention mechanism of the form

Z = V C∗ where C∗ = arg min
C
‖Q−KC‖22 + λ‖C‖1. (17)

Since solving a sparse coding problem can be costly, we unroll sparse coding iterates and obtain:
Z = V CK where Ck+1 = ReLUλ((I − εK>K)Ck + εK>Q), k = 1, . . . ,K. (18)

Observe that the update has a rather interesting structure. The term K>K is dot product self-
attention, while the term K>Q is dot product attention. Therefore, the update equation combines
standard attention and self-attention to produce a new sparse attention map.

6 CONCLUSIONS

We have shown that attention builds upon a long history of prior work on manifold learning and im-
age processing, including methods such as kernel-based regression, non-local means, locally linear
embedding, subspace clustering and sparse coding. In particular, we showed that many of the key
ideas behind attention, such as its ability to capture global long-range interactions that are learned
and adapted to the input, had already appeared in the literature. Therefore, the key innovations of
attention mechanisms relative to prior art are the use of many learnable parameters, and multiple
heads and layers.
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