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Abstract
Random forest is effective for prediction tasks
but the randomness of tree generation hinders in-
terpretability in feature importance analysis. To
address this, we proposed a SAT-based method for
measuring feature importance in tree-based model.
Our method has fewer parameters than random
forest and provides higher interpretability and sta-
bility for the analysis in real-world problems.

1. Introduction
Interpretable machine learning (ML) models are paramount
for their seamless integration in high stake decision
making problems e.g., medical diagnosis (Lakkaraju
et al., 2016; Nemati et al., 2018; Ahmad et al., 2018; Das
et al., 2019; 2022a;b; Adadi & Berrada, 2020), criminal
justice (Angelino et al., 2017; Wang et al., 2022; Liu et al.,
2022), etc. In medical diagnosis, specially in computer
assisted diagnosis (CAD), model accuracy is important, but
it is equally important for the doctor and the patient to know
the features used in CAD modeling (Goodman & Flaxman,
2017; Rudin, 2019). There have been several established
feature selection (FS) algorithms in ML literature, namely
LASSO (Tibshirani, 1996), marginal screening (MS) (Fan
& Lv, 2008), orthogonal matching pursuit (OMP) (Pati
et al., 1993), decision tree (DT) based, etc. Among them,
DT-based FS have been widely studied due to their high
interpretability (Quinlan, 1986; 2014; Breiman et al., 1984).

Constructing an accurate and a small size (hence, better
interpretability) DT is a challenging problem, and has been
an active area of research over last four decades. Most of
the existing methods are ad hoc, and do not have explicit
control over the size and accuracy of a DT. For e.g., there are
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greedy splitting-based (Quinlan, 1986; 2014; Breiman et al.,
1984), Bayesian-based (Denison et al., 1998; Chipman et al.,
1998; 2002; 2010; Letham et al., 2015), branch-and-bound
methods (Angelino et al., 2017) for DT construction.

Random forest (RF)(Breiman, 2001) is a widely used
ensemble decision tree FS method. While RF has shown
improvements in prediction accuracy and mitigating
overfitting risk, due to the heuristic algorithms of decision
tree generation, it often faces challenges such as the
preference for larger trees, lack of statistical interpretability,
randomness in feature importance measurement due the
influence of many parameters, etc.

To handle those challenges, we propose a DT-based FS
methods where we allow the user (e.g., a domain expert) to
explicitly control the size and accuracy of a DT. We leverage
a Boolean satisfiability(SAT)(Biere et al., 2009) encoding
of a DT and perform uniform sampling of the SAT space
with user-specified accuracy and size.Our method is a tree
ensemble FS that generates small-size and high-accuracy
decision trees, and determines the feature importance based
on its emergence probability (i.e., the probability of a
feature appearing in the high accuracy space).

Through numerical experiments, we evaluated our proposed
method using four real-world dataset. We demonstrated
that our method is capable of producing comparable
accuracy as RF, but with small size DTs. We also compared
our encoding with existing SAT-based encoding and
demonstrated that our encoding scheme generates less
variables and computationally more efficient. As we can
uniformly sample form a high accuracy space with a
specific tree size, this will allow us to formulate a statistical
hypothesis testing framework to judge the significance of
selected feature in terms of p-value and confidence interval
which we consider as a potential future work.

2. Method
2.1. Feature importance using DT sampling

To naively determine the feature importance using decision
tree (DT) sampling, one can enumerate all possible DT and
find all the DTs exceeding an accuracy threshold. However,
this naive approach is computationally prohibitive as the
DT search space grows exponentially with the size of DT,
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see Table 4 in appendix for details. Therefore, we propose
a SAT based encoding of DT that reduces the search space
significantly and also improves the sampling efficiency. The
flow diagram of our method is shown in Figure 1. First, we
encode DTs with specific size (#node) and accuracy (thresh-
old) as a SAT problem represented in conjunctive normal
form(CNF). Once the SAT encoding of DTs is constructed,
any solution that satisfies all the constraints in the CNF file
can be decoded into a valid decision tree of specific size
and accuracy. Then, we utilize SAT sampling to generate
multiple decision trees and calculate feature importance
(emergence probability) based on the sampling results.

Figure 1. Feature importance measurement based on DT sampling

2.2. SAT-based DT encoding

Constructing decision trees with high accuracy and small
size is an active area of research in the domain of constraint
programming, and many Boolean satisfiability(SAT)-based
encodings have been proposed in the literature (Bessiere
et al., 2009; Narodytska et al., 2018; Verhaeghe et al., 2020;
Janota & Morgado, 2020). To reduce the search space and
enable fast sampling we proposed an efficient SAT-encoding
of DT. Our encoding method is motivated by the method
proposed in (Narodytska et al., 2018), but developed a
new encoding (only branch node encoding) scheme that
accelerates the process of SAT sampling significantly. We
also introduced additional variables and constraints to make
it possible to encode the DTs with any accuracy that you
want. Encoding DTs with only branch nodes is non-trivial,
the details of which have been provided below.

SAT variables and constraints: We consider the
encoding of decision trees with 2N+1 nodes and the training

Table 1. Description of propositional variables
Var Description of variables
vli 1 iff branch node i has a left branch child, i ∈ [N ]

vri 1 iff branch node i has a right branch child, i ∈ [N ]

lij 1 iff node i has node j as the left child, with j ∈ Child(i)

rij 1 iff node i has node j as the right child, with j ∈ Child(i)

lci 1 iff class of the left leaf child of node i is 1, i ∈ [N ]

rci 1 iff class of the right leaf child of node i is 1, i ∈ [N ]

arj 1 iff feature fr is assigned to node j, r ∈ [K], j ∈ [N ]

urj 1 iff feature fr is being discriminated against by node j, r ∈ [K], j ∈ [N ]

data consists of M samples and K features. Binary decision
tree with 2N+1 nodes comprises N branch nodes and N+1
leaf nodes. The base method (Narodytska et al., 2018) sets
the node ID sequentially as showed in Figure 2.a. Since it
cannot distinguish between branch and leaf nodes by node
IDs, branch and leaf nodes are assigned equivalent variables
and are differentiated by additional constraints. In order to
simplify it, we propose a method that only takes the branch
nodes into consideration, viewing the leaf nodes as one of
the properties of branch nodes as depicted in Figure 2.b.

Figure 2. Node ID in SAT encoding

All the variables required to encode a DT are shown in Table
1, the subscript i and j represent the node ID (or index) while
the subscript r denotes the feature ID(or index). For any nat-
ural number n, we use [m : n] = {m,m+1, . . . , n− 1, n}.
The Function defined as Child(i) = [i+1 : min(2i+1, N)]
can return possible node IDs of the children of ith node.

Figure 3. Four types of branch nodes

There are four types of branch nodes as depicted in Figure
3. We use vli (resp.vri) variable to denote whether the
ith node has a left (resp. right) branch child or not. With
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i ∈ [1 : N ] and C ∈ {0, 1}:

vli = C =⇒
∑

j∈Child(i)

lij = C

vri = C =⇒
∑

j∈Child(i)

rij = C,
(1)

Every branch node (except root) has exactly one parent:

j−1∑
i=⌊ j

2 ⌋

(lij + rij) = 1, with j ∈ [2 : N ] (2)

The IDs of branch nodes are assigned according to level
order of the tree. For example, as shown in Figure 4, if l35 =
1, then l26 or r26 must be 0, because 6th node cannot appear
in front of 5th node. With i ∈ [1 : N − 1], j ∈ Child(i):

lij ∨ rij =⇒
i−1∑
h=1

k=N∑
k=j

(lhk + rhk) = 0

rij =⇒
k=N∑
k=j

lik +

k=N∑
k=j+1

rik = 0

(3)

At any branch node, exactly one feature is assigned.

K∑
r=1

arj = 1, with j ∈ [1 : N ] (4)

Variable urj has the information of whether the rth feature
is discriminated at any node on the path from the root to
this node. If the rth feature has already been assigned to
one of ancestors, then it should not be assigned again. With
r ∈ [1 : K], j ∈ [1 : N ]:

j−1∧
i=⌊ j

2 ⌋

(uri ∧ (lij ∨ rij) =⇒ ¬arj)

urj ⇐⇒ (arj ∨
j−1∨

i=⌊ i
2 ⌋

(uri ∧ (lij ∨ rij)))

(5)

The encoding given by Formula (1)-(5) specify a space
including all of valid decision trees of a given size but can’t
learn from the training data. To learn from the training
data, we need to track if the rth feature was discriminated
positively or negatively along the path from the root to jth

node as proposed in (Narodytska et al., 2018). We adopted
the same strategy in our method.

Furthermore, to sample decision trees with specific accu-
racy, we need to add an accuracy variable wt, which is set

Figure 4. Sequential Node ID

to 1 if and only if the constraints required for correctly clas-
sifying the ith example are satisfied. Formula (6) is used
to constrain the accuracy. For example, if the parameter
threshold = 80%, then the decision trees must correctly
classify 80% samples at least.

1

M

M∑
t=1

wt >= threshold, with threshold ∈ [0, 1] (6)

2.3. Decision Tree Sampling

Sampling method: To obtain samples from the decision
tree space, we employ two SAT samplers: QuickSampler
(Dutra et al., 2018) and UniGen3 (Soos et al., 2020). Quick-
Sampler is a heuristic search algorithm that can generate
large amounts of samples quickly. The algorithm starts with
a random assignment and iteratively modifies the assign-
ment by flipping the truth values of randomly selected vari-
ables. It is very efficient but the uniformity cannot be guaran-
teed. In contrast, UniGen3 is a more sophisticated algorithm
for uniform SAT sampling with solid theoretical guaran-
tees. It requires adding extra clauses to the encoding, which
makes the sampling process computationally expensive.

Sampling set: Unigen3 and Quicksampler allow users
to assign a subset of all the variables as sampling set. If the
sampling set contains Y variables, the size of the solution
search space will be 2Y . The samplers provide uniformity
within the sampling set and increasing Y may adversely
affect the sampling efficiency. Only part of valuables will
be in the sampling set. For example, uij is used to ensure
that there are no repeated assigned features in any decision
path but we don’t need it during the decoding process. In ad-
dition, either the set {vli, vri} or the set {lij , rij} contains
all the information needed to decode the tree structure, we
only need to add one of them in the sampling set. Therefore,
the smallest sampling set is {vli, vri, lci, rci, arj}.

Feature importance measurement: (Li et al., 2022) mea-
sured the importance of elements in sequences based on the
distribution under a qualification threshold. Inspired by this
concept, we define feature importance as the contribution of
each feature to a high accuracy space. Specifically, within
a space consisting of decision trees surpassing a given
threshold, the contributions can be evaluated based on the
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Table 2. Comparison of encoding size. #b,#f denotes the number of training samples and the number of features respectively. #var
denotes the number of variables used to build the encoding of the decision tree. #var cnf ,#cls cnf denotes the number of variables
and the number of clauses in the Conjunctive Normal Form(CNF) file generated by tseitin transformation(Tseitin, 1983) provided in
z3-solver(De Moura & Bjørner, 2008). #Ave.time denotes the time to generate 100 samples by unigen. We ran all the experiments
(including the base encoding) on Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz.

Dataset #b #f #n thres. #var #var cnf #cls cnf Ave. time

mouse 50 15 13 1.00 896/406 3599/1274 20586/8397 31.76/0.25
50 15 11 0.90 747/336 3260/1990 22890/24689 1028.02/567.08

car 40 10 17 1.00 866/390 3956/1406 21625/9495 260.68/65.47
50 15 11 0.90 747/336 3436/2152 26218/33473 1722.26/310.99

breast 40 15 17 1.00 1206/550 5821/2041 32400/13663 96.34/2.32
50 12 13 0.90 740/334 3759/2198 24732/27869 407.32/125.81

heart 40 19 13 1.00 1104/502 4572/1590 26063/10697 79.87/11.62
50 10 13 0.90 636/286 3241/2108 21568/25552 1671.18/327.89

probability of each feature appearing in this space (we name
it as emergence probability). Since we sample decision trees
from uniform distribution, we can estimate the probability
by just counting how many times each feature appears.
Random forest often uses feature permutation or mean
decrease in impunity to calculate feature importance. It’s
also possible to apply these approaches to our framework.

3. Results
Comparison between DT-sampler and RF: We com-
pared our method with RF on several real-world benchmark
datasets(Dua & Graff, 2017). As shown in Table 3, our
method can provide similar accuracy compared with
random forest even if we only sample decision tree in small
space. Relying on heuristic rules to build decision trees,
random forest tends to generate larger decision trees. Be-
sides, the randomness of tree generation makes it difficult to
generate stable results for feature importance measurement
(see Figure 7 in appendix for details). In the appendix (see
Figure 8), we provide more detailed results on the stability
of our method’s feature importance measurements.

Table 3. Comparison of tree sizes and accuracy. Grid search on
parameters = {’max leaf nodes’:[3,6,9,12,15,18,21,None]} is uti-
lized to run random forest and all the results are the average of three
experiments on different subsets of the corresponding datasets,
shown in the order of RF/ours. #b,#f denotes the number of train-
ing samples and the number of features respectively.
Dataset #b #f thres.(%) #node training acc.(%) test acc.(%)
mouse 50 15 92.0 6.90/7 98.00/96.00 91.67/93.33

car 100 15 92.0 16.93/11 98.00/93.00 88.57/88.32
breast 150 15 81.6 19.00/11 83.33/80.89 73.49/74.54
heart 170 19 81.0 23.00/15 89.21/84.50 83.93/81.36

Comparison with existing SAT encodings: Our new
encoding of tree structure reduces a large part of variables
and constraints compared to the encoding method in

(Narodytska et al., 2018). The results on several benchmark
datasets proved the acceleration in the process of SAT
sampling as shown in Table 2.

3.1. Interpretation

We define feature importance as its emergence probability
in the high accuracy space as mentioned in 2.3. Parameter
threshold is used to describe what a high accuracy space
means and its value depends on specific real-world scenarios
and the desired level of strictness regarding accuracy re-
quirements. To demonstrate our method, we utilize decision
tree sampling on a subset of the breast-cancer dataset, which
consists of 150 samples and 15 selected features (refer to
Figure 6 in appendix). Initially, we set the threshold to 0, al-
lowing for the random sampling of any decision tree. In this
case, each feature is assigned to any branch node with equal
probability, resulting in an emergence probability of 1

15 for
each feature. However, as we increase the threshold, the
emergence probabilities of the features differ. Features with
an emergence probability ≥ 1

15 are considered important.

4. Conclusion
We proposed a method to measure feature importance using
DT sampling and compared our method with random forest
using four real-world datasets. Due to the randomness in
tree generation and over-dependence on many parameters,
RF-based feature selection generates unstable results. Our
method provides a principled framework to measure feature
importance based on sampling results from a high accuracy
space with a clear threshold, which provides stable analysis
results for real-world problems. Potential future research
direction can be the development of a statistical hypothesis
testing framework on top of our proposed DT sampling
method to judge the reliability of feature selection and
or the development of a fast SAT solver using quantum
annealing or other QUBO-based solver.
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A. Appendix
A.1. Ground Truth of sampling

Generating all decision trees of size 2N+1 can be done by
following procedures.

1. generate all possible binary trees of size N. The number
of binary trees of a given size is the Catalan number CN ,
which is given by the formula: CN = (2N)!

((N+1)!×N !) .
2. Add N+1 leaf nodes to each tree and assign decision
values to the leaf nodes. Since every leaf node can be 0 or
1, N+1 leaf nodes will have 2N+1 different combinations.
3. Assign a feature to each branch node. Note that we
always obey the rule that there is no repeated features in any
path from root to any leaf.

The ground truth of the sampling result is the distribution of
all the decision trees in the whole space. We calculated the
ground truth of the decision tree distribution when #node ≤
11 on a subset of binarized car dataset with 10 features.
As showed in Table 4, the computation time will increase
rapidly along with the increment of size, which is also the
reason why we need to do sampling instead of enumerating.
Figure 5 shows the comparisons among the ground truth
and the sampling results obtained by different samplers.

Table 4. The time to get all of decision trees. The time results
of the two last rows are estimated and we didn’t consider any
multi-thread or multi-process strategies here.

#nodes #valid
structures

#decision trees
(Upper Bound) Time

3 1 1× 101 fast
5 2 2× 23 × 102 fast
7 5 5× 24 × 103 fast
9 14 14× 25 × 104 365s
11 42 42× 26 × 105 6h approx.
13 132 132× 27 × 106 377h est.
15 429 429× 28 × 107 24,505h est.

A.2. Interpretation

The results of feature importance change with the definition
of high accuracy space. As shown in Figure 6, if we consider
decision trees with an accuracy of at least 75% as effective,
the important features would be {f6, f7, f9, f10, f11, f15}.
On the other hand, if we raise the accuracy requirement
to a minimum of 83% for each effective decision tree, the
important features would change to {f6, f7, f10, f11, f15}.

A.3. Comparisons of Feature Importance between
DT-sampler and RF

We did experiments on a subset with 100 samples of breast-
cancer dataset to compare our method with random forest
in feature importance measurement. Our method shows

6
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Figure 5. Comparisons of sampling effectiveness

Figure 6. Feature importance results on breast dataset with different thresholds. Orange lines denote the emergence probability of features
assigned completely randomly. The meaning of each feature: {f1: age, f2: menopause, f3-5: tumor-size, f6-8: inv-nodes, f9: node-caps,
f10-12: deg-malig, f13: breast, f14: breast-quad, f15: irradiat}

superior stability compared to Random Forest. In Figure 7,
we observe that when different random seeds or parameters
are used, the distribution of decision trees generated by
Random Forest consistently changes. This variability in tree
generation directly impacts the feature importance results,
leading to significant differences.

Furthermore, Random Forest tends to generate a large num-
ber of trees with low accuracy, making it unreliable to mea-
sure feature importance for real-world problems. In con-
trast, our method calculates feature importance based on
decision trees sampled exclusively from a high accuracy
space, which ensures the stability and interpretability of our
results as depicted in Figure 8.
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Figure 7. Drawbacks of random forest. The four rows of figures show the results of three experiments on breast dataset using different
random seeds and splitting criterion as random forest parameters. The first column shows the training accuracy distribution of the decision
trees generated by random forest. The second and third columns show the feature importance measured by mean decrease in impurity and
feature permutation respectively.
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Figure 8. Stability of decision tree sampling. The two rows of figures show the results of two experiments on breast dataset using different
random seeds during decision tree sampling. The first column shows the training accuracy distribution of the sampling results. The second
and third columns show the feature importance measured by emergence probability and mean decrease in impurity respectively.
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