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Abstract

Low ejection fraction (EF), an indicator of impaired heart function, often goes
undiagnosed and can lead to avoidable heart failure and arrhythmias. We developed
and externally validated a deep learning model for detecting low EF from 12-lead
electrocardiograms. The model achieved 85.8% sensitivity and 83.0% specificity
on an independent validation cohort, with consistent results across demographic
subgroups. These findings supported FDA 510(k) clearance of the model. Clinical
net benefit analysis further showed that the model provides greater clinical value
than default screening approaches, confirming its meaningful potential impact for
clinical practice.

1 Introduction

Left ventricular ejection fraction (EF) is a critical marker of cardiac function, with EF < 40%
indicating increased risk for heart failure and arrhythmias. Many cases go undiagnosed because
symptoms are non-specific and echocardiography (echo), the standard clinical diagnostic, requires
specialized staff and resources. This makes routine screening difficult in many settings. While
electrocardiograms (ECGs) are inexpensive and widely used, clinicians cannot reliably detect low EF
from ECGs alone. Recent advances in machine learning have shown that deep neural networks can
identify complex patterns in ECG data that are not apparent to clinicians, enabling scalable screening
for low EF (1} 2). However, most prior work has lacked large-scale, diverse, external validation (3).

In this work, we developed and externally validated a deep learning model for low EF detection from
12-lead ECGs, using a multi-institutional dataset and an independent cohort of over 16,000 patients
from four US health systems. The model achieved high sensitivity and specificity across demographic
subgroups, supporting its FDA 510(k) clearance. We further assessed clinical utility using net benefit
analysis, demonstrating that the model provides greater value than default screening strategies and is
well-suited for real-world deployment.

2 Methods

2.1 Training Data

We assembled a multi-year dataset of paired 12-lead ECGs and transthoracic echos (TTEs) from nine
hospitals and clinics for model training. ECGs were used as model inputs, and the EF value from
the TTE served as the ground truth for each case, with low EF defined as < 40%. The final training
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Figure 1: Model architecture

cohort consisted of 930,689 ECG-TTE pairs. We ran extensive experiments and ablation studies
to optimize data selection, testing different prevalence rates, time windows around TTE, and the
inclusion of paced and noisy ECGs. Results showed that the best outcome was achieved by including
all ECGs from patients who never had low EF, and only ECGs taken within 30 days of a positive TTE
for patients with low EF. Additionally, training with noisy ECGs improved robustness, but training
with paced ECGs did not.

2.2 Model Architecture

During model development, we tested several model architectures, including transformers and
convolutional neural networks (CNN). We found that an ensemble of 10 CNNs consistently performed
best. Each CNN in the ensemble has the same architecture, differing only by random seed. Model
inputs consist of 10-second, 8-lead ECG waveforms in millivolts. The architecture includes a
convolutional feature extractor (convolutional layers, batch normalization, ReLU activations) followed
by three fully connected layers and a final sigmoid output. Models were trained with the Adam
optimizer, binary cross-entropy loss, early stopping, and learning rate reduction on plateau. The
ensemble output score is calculated by averaging the predicted probabilities from the 10 models. The
final binary classification is obtained by applying an operating point threshold (OP) to this averaged
score. Separate OPs are used for the following populations: females <65, females 65+, males <65,
and males 65+. All OPs were chosen to minimize the difference between sensitivity and specificity.

2.3 External Validation

This was a retrospective observational cohort study that was designed to evaluate the performance of
our model using real-world data from four geographically diverse health systems in the United States,
including a community hospital, academic medical center, integrated delivery system, and unified
health system. Importantly, none of the data or patients at the external validation sites were used to
develop the model. Power analysis using a one-sample proportion Z-test determined that a minimum
sample size of 16,000 cases was required to achieve 80% power for sensitivity and 90% power for
specificity. The power calculations used lower-bound estimates of sensitivity (83%) and specificity
(84%) based on cross-validation experiments. Each of the four sites contributed at least 4,000 patients
with linked resting ECG-TTE pairs. Eligible patients were required to be at least 40 years old at the
time of ECG acquisition, to be at risk of heart failure, and to have at least one ECG-TTE pair, with
the ECG performed within 30 days prior to the TTE. To ensure demographic diversity, pairs were
selected in reverse chronological order and stratified by race and ethnicity to reflect the US census
population.
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The primary endpoints of the study were sensitivity and specificity with 95% Wilson confidence
intervals. Both metrics were considered equally important for validating the model’s clinical utility.
For the study to be considered successful, the lower bound of the confidence interval for both
sensitivity and specificity was required to exceed 80%. Secondary endpoints included positive
predictive value (PPV), negative predictive value (NPV), and diagnostic odds ratio (DOR).

2.4 Clinical Net Benefit

To assess the clinical value of our model beyond metrics traditionally used in machine learning, we
performed a clinical net benefit analysis (4). Net benefit is a measure that quantifies the trade-off
between true positives (TP) and false positives (FP) at a given net benefit probability threshold (p;).
Importantly, net benefit has the added advantage of being more interpretable to clinicians, as it allows
them to incorporate their own expectations about disease prevalence and the number of acceptable
procedures needed to find a positive case—without requiring specialized knowledge of machine
learning or statistics. Net benefit is defined as follows:

TP FP  p
Net benefit = —— — ——
etbenefit = = = N X 1,

ey

where N is the number of total samples, TP is true positives, FP is false positives, and p; is the risk
level at which a clinician would order further testing (i.e., echo). If p; equals 10%, for example,
any patient with a predicted risk of having low EF at or above 10% would be referred for follow-up.
Clinicians routinely apply thresholds like this in practice by weighing medical history, symptoms,
and risk estimates to guide care. The threshold (p;) reflects the trade-off between detecting true cases
and minimizing unnecessary follow-up, and it can vary based on clinician preferences and resource
availability. To capture this variability, we calculated net benefit across a range of thresholds, each
representing the number of follow-ups a clinician would be willing to perform to find one true case
of low EF. This approach allows assessment of clinical net benefit under different, realistic decision
scenarios. For additional context, we compared the model’s net benefit to the strategies of screening
all patients or no patients; this provides a benchmark to ensure the model offers greater clinical value
than simply referring everyone or no one for further testing. Given that clinicians cannot currently
screen for low EF using only ECGs, the current standard of care is equivalent to screening no patients.

3 Results

3.1 External Validation

A total of 15,125 patients met the eligibility criteria for inclusion in the validation study. Of these, 201
were marked as unclassifiable due to poor quality and were excluded from the analysis set. This left
us with a total of 14,924 ECG-TTE pairs (49% female; >25% from racial and ethnic minority groups).
Low EF prevalence in this dataset was 10.7% overall. The median age was 70 years, with good
representation across both younger (35% aged 40-64) and older (65% aged 65+) patient populations.

For the primary endpoints, the device achieved a sensitivity of 85.8% (lower bound: 84.0%) and a
specificity of 83.0% (lower bound: 82.4%), both exceeding the prespecified acceptance criterion of
80%. Secondary endpoints included a PPV of 37.7%, NPV of 98.0%, and DOR of 29.49. Subgroup
analyses showed that the device performed consistently across age, sex, race, ethnicity, clinical
site, and ECG manufacturer. These results demonstrate robust clinical performance and support the
device’s value for identifying patients with low EF.

3.2 Clinical Net Benefit

The number of follow-up procedures needed to find one true positive depends on the prevalence
of low EF, which varies by clinical setting and is often underestimated due to underdiagnosis. In
populations with clinically acquired ECGs, studies estimate the prevalence of undiagnosed low EF to
be between 5% and 10% (5)). The net benefit analysis showed that if a provider is willing to order
five echos to find one new case, using the model is beneficial in a population with a 5% prevalence.
However, if the provider is only willing to order three echos per positive case, the model should be
used in a population with at least a 10% prevalence. The net benefit of the device is also influenced
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Figure 2: Clinical net benefit results. The figure compares the net benefit of three approaches: using
the model to select patients for echo (yellow), echoing all patients (blue), and not performing any
follow-up echos (green). The colors illustrate when each approach has the greatest net benefit as
compared to the other approaches. Horizontal lines mark the lower and upper bound estimates of
disease prevalence. When clinicians prefer to perform very few extra echos per true positive, or
when disease prevalence is low, not performing additional echos yields the highest net benefit (green).
Conversely, echoing all patients has the highest net benefit when disease prevalence is high and
clinicians are willing to perform >14 follow-up echos to find one positive (blue). Everywhere else
(yellow), the ECG model maximizes net benefit.

by the operating point (OP). For example, using a lower sensitivity OP would reduce the number
of follow-ups needed per new case. Future work could optimize the OP to better match clinician
preferences. Overall, these results demonstrate that the model provides meaningful clinical value
in realistic screening scenarios. By quantifying this trade-off, net benefit analysis can help guide
practical decisions about model adoption in diverse healthcare settings.

4 Conclusions and Future Work

Our model achieved high sensitivity and specificity for detecting low EF from resting 12-lead ECGs,
with robust performance across demographic and clinical subgroups. Importantly, our use of clinical
net benefit analysis moves beyond traditional metrics to quantify the real-world value of the model,
showing that it provides tangible benefit over baseline strategies in typical clinical scenarios. With
FDA clearance, this model can now be integrated into hospital systems, allowing us to observe how
clinicians use the tool in practice and to measure its real-world impact on patient care and healthcare
delivery. Future work will focus on understanding clinician adoption, workflow integration, and the
downstream effects of model-guided screening on clinical outcomes and resource utilization.
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