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ABSTRACT

The Cold Posterior Effect (CPE) is a phenomenon in Bayesian Deep Learning
(BDL), where tempering the posterior to a cold temperature often improves the
predictive performance of the posterior predictive distribution (PPD). Although
the term ‘CPE’ suggests colder temperatures are inherently better, the BDL com-
munity increasingly recognizes that this is not always the case. Despite this, there
remains no systematic method for finding the optimal temperature beyond grid
search. In this work, we propose a data-driven approach to select the temperature
that maximizes test log-predictive density, treating the temperature as a model pa-
rameter and estimating it directly from the data. We empirically demonstrate that
our method performs comparably to grid search, at a fraction of the cost, across
both regression and classification tasks. Finally, we highlight the differing per-
spectives on CPE between the BDL and Generalized Bayes communities: while
the former primarily emphasizes the predictive performance of the PPD, the latter
prioritizes the utility of the posterior under model misspecification; these distinct
objectives lead to different temperature preferences.

1 INTRODUCTION

The last two decades have seen substantial advances in the development of machine learning tools.
This has led to deployment across a range of application domains, from image recognition and
natural language processing to autonomous vehicles and medical diagnostics, to name a few. Driven
in no small part by the technological advances that have enabled large-scale training of high-fidelity
models, these models obtain impressive generalization performance and accuracy that are not readily
explained with classical statistical wisdom.

One promising avenue that has been explored for explaining and enhancing performance, as well as
providing much-needed robustness guarantees, is Bayesian deep learning (BDL). However, extend-
ing classical Bayesian techniques to the machine learning setting is a formidable task—the scale of
both the data and model size render naı̈ve extensions intractable. Combined with the fact that neural
network models are typically singular (Wei et al., 2022), the mismatch between the size of the data
and the number of parameters makes many of the classical asymptotics inappropriate when applied
to problems of interest. Furthermore, a number of phenomena have been observed when analyz-
ing deep learning models that were previously considered curiosities or corner-cases in the classical
setting.

A prominent example of this is the so-called cold posterior effect (CPE). Named in analogy with
statistical physics, tempered posteriors are obtained by raising the posterior density to the power of
an artificial inverse-temperature parameter. The CPE refers to improved generalization performance
of the posterior predictive density (PPD) in both regression (Adlam et al., 2020) and classification
(Wenzel et al., 2020) tasks when the temperature T is taken to be cold with 0 < T < 1. This
peculiar effect is frequently viewed as a hack to improve generalization performance, and has led to
a plethora of works that attempt to explain or ‘fix’ the CPE, see Section 5 for a literature review.

Contribution. There is growing recognition in the BDL community that, despite the term ‘CPE’,
colder temperatures do not always result in better predictive performance for the PPD (Adlam et al.,
2020; Zhang et al., 2024). Unfortunately, the common approach of temperature tuning via grid
search is computationally expensive, as it requires extra posterior sampling for multiple T across
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the grid1. Sampling from a cold posterior is challenging and requires careful tuning of the sampler
with temperature diagnostics (Wenzel et al., 2020). To address these issues, we propose a data-driven
method to select an appropriate temperature. To the best of our knowledge, no such dedicated tool
exists without appealing to intermediate approximations (e.g., variational inference (Laves et al.,
2021)). Our method only requires maximizing a likelihood function to find a suitable temperature.
This can usually be done as part of the sampler warm-up phase, and importantly, does not require
any extra posterior sampling.

2 TEMPERED POSTERIORS AND THE COLD POSTERIOR EFFECT

Let {q(x, y), p(x, y|θ), p(θ)} form a triplet representing the truth-model-prior, where the data-
generating mechanism is q(x, y) = q(y|x)q(x), the model p(x, y|θ) = p(y|x, θ)q(x) is indexed
by θ ∈ Θ ⊆ Rd representing neural network weights, and the prior on θ is p(θ). Here, we focus
on a supervised learning setup with a training dataset D = {(xi, yi)}ni=1 containing n observations
drawn from q(x, y). The standard Bayesian update is derived from Bayes’ theorem, resulting in the
standard posterior distribution,

p(θ|D) ∝ p(θ)
∏

(x,y)∈D

p(y|x, θ). (1)

By introducing a ‘temperature’ parameter, we obtain a family of tempered posteriors pβ(θ|D) by
raising the likelihood and prior to the power of the inverse temperature β := 1

T for β > 0,

pβ(θ|D) ∝ p(θ)β
∏

(x,y)∈D

p(y|x, θ)β . (2)

The CPE describes a phenomenon in Bayesian deep learning where the PPD,

pβ(y|x,D) := Epβ(θ|D)[p(y|x, θ)] =
∫
p(y|x, θ)pβ(θ|D) dθ, (3)

which is constructed from Bayesian model averaging, can achieve better performance (in terms of
the test LPD defined below) in regression and classification by artificially tempering the posterior to
β > 1 (Wenzel et al., 2020). While our construction in (2) follows the convention of tempering both
the likelihood and the prior (Wenzel et al., 2020; Fortuin et al., 2022), improvements in performance
have also been observed when only tempering the likelihood (Aitchison, 2021; Bachmann et al.,
2022; Kapoor et al., 2022).

Define the test log predictive density (LPD) of a predictive density p̂(y|x) as

LPD(p̂(y|x)) := Eq(x,y) log p̂(y|x),
where the hat over p indicates dependence on the training data D, and the expectation is only taken
over the ‘new’ observation (x, y). Note that the test LPD is sometimes referred to as the ‘test
log-likelihood’ in the literature, and the negative test LPD is often called ‘negative log-likelihood
(NLL)’. However, we will avoid these terms as they can sound ambiguous. It can be shown that
a predictive density p̂(y|x) with a higher test LPD is closer to the truth q(y|x) in the sense that
the Kullback-Leibler (KL) divergence DKL(q(y|x)∥p̂(y|x)) is smaller. Our primary interest in this
work is to select β such that the test LPD of (3) is high.

2.1 OUTLINE

Following the reasoning that the aleatoric uncertainty in the data can be quantified by β (Adlam
et al., 2020; Kapoor et al., 2022), we advocate a likelihood-based approach to select β directly from
the data; details are presented in Section 3. We empirically show that our method can select a β that
is near-optimal according to the LPD metric. Experimental results are presented in Section 4.

We then conclude with a detailed discussion aimed at dispelling some common misconceptions
surrounding the CPE. In particular, we review recent work in the BDL community that explains

1Consider ResNet20-CIFAR10 for example. Our approach requires only 35 minutes to find the optimal T ,
and an additional 327 minutes to compute the posterior at that optimal T . In contrast, a grid search across 9
temperatures takes a substantial 2944 minutes, resulting in a 8x speedup with our method.
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why colder temperatures do not always lead to better performance in terms of the test LPD metric.
We also address the converse hypothesis sometimes encountered outside the BDL literature—that
warmer temperatures are often better. This hypothesis may hold in certain contexts, such as ensur-
ing posterior consistency (Grünwald, 2012), but it generally does not apply to improving test LPD.
Specifically, in Sections 5 and 6, we examine existing literature on CPE from the perspectives of the
BDL and Generalized Bayes (GB) communities, respectively. We emphasize that these two com-
munities prioritize different objectives: in BDL, the primary focus is on maximizing the predictive
performance of the PPD, while in GB, the emphasis lies on the utility of the posterior under model
misspecification. Furthermore, the types of statistical models and datasets explored in each com-
munity are notably distinct. In BDL, large-scale neural networks are trained on extensive, nearly
noiseless datasets, whereas in GB, the datasets are typically smaller, noisier, and the models are
classical regular statistical models. Consequently, it is not surprising that each community arrives at
different recommendations regarding temperature tuning.

3 TEMPERATURE SELECTION FOR TEST LPD

It is commonly believed that the PPD (3) at β = 1 is optimal for test LPD when the model is
well-specified (Adlam et al., 2020; Aitchison, 2021). However, this is not always the case (see Ap-
pendix A for a counter-example). In fact, Zhang et al. (2024) argues that in the likelihood tempering
case, β = 1 can only be optimal if the expected Gibbs training loss remains unchanged with the
inclusion of new data. We follow the reasoning in Zhang et al. (2024) and reach a similar conclusion
for posterior tempering; see Appendix B for details. This motivates the development of an efficient
method to select the optimal β.

If we could have some theoretical grasp on how temperature affects the test LPD of the PPD in (3),
that is, LPD(pβ(y|x,D)), then it might suggest a methodology for temperature selection. A lit-
tle known result to the BDL and GB communities is the following from singular learning theory
(Watanabe, 2010a, Lemma 3), which applies to both regular and singular models p(y|x, θ):

−ED LPD(pβ(y|x,D)) = −EDEq(x,y) log pβ(y|x,D)

= −Eq(x,y) log p(y|x, θ†) +
[
λ− ν(β)

β
+ ν(β)

]
1

n
+ o

(
1

n

)
(4)

where θ† ∈ argminθDKL(q(y|x)∥p(y|x, θ)). Here λ and ν are strictly positive numbers, respec-
tively known as the learning coefficient and singular fluctuation. They are invariants of the underly-
ing truth-model-prior triplet. Note that λ is independent of β while ν is a (complex) function of β.
The functional dependence of ν on β is unknown in the current singular learning theory literature.

Some comments on (4) are in order. This result allows for both misspecification (θ† is not neces-
sarily such that the KL divergence between the truth and p(y|x, θ†) is zero) and singular models
singular models p(y|x, θ), including neural networks, as well as classical models satisfying standard
regularity conditions. On the other hand, it is an asymptotic result in the sample size n, and hence
the prior plays no role. We also remark that the relation in (4) pertains to the average (negative) test
LPD of the PPD in (3), with the average taken over the training set D, as indicated by the notation
ED. More precise interpretation of (4) can be divided into two settings:

Regular models. For well-specified regular models, λ = ν(β) = d/2 for all β (Watanabe, 2009),
and the second term,

[
λ−ν(β)

β + ν(β)
]

1
n , reduces to d

2n . This implies that for large n, temperature
has little impact (though it may appear in higher-order terms in the expansion). This aligns with
recent work by McLatchie et al. (2024), which arrives at a similar conclusion using different tech-
niques. Under model misspecification, the second term can alternatively be expressed as β

nEDV (n)
(Watanabe, 2010b), where V (n) represents the functional variance and now depends on the temper-
ature in a non-trivial manner.

Singular models. The asymptotic relation in (4) also applies to singular models, e.g., neural net-
work models (Wei et al., 2022). However, the theoretical values of λ are generally unknown,
except for a few simple models, such as one-layer tanh or reduced rank regression, in the well-
specification setting (Yamazaki & Watanabe, 2003; Aoyagi & Watanabe, 2005; Rusakov & Geiger,
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2005; Zwiernik, 2011). Similarly, the singular fluctuation and its temperature dependence are un-
known, even in the well-specification setting.

Since our setup involves modern deep learning models, we are dealing with singular models, where
λ and ν are unknown. While methods to estimate λ and ν from training data do exist (Lau et al.,
2023; Watanabe, 2010a), they require posterior sampling over neural network weights. In principle,
we could use these sample-based estimates to select the optimal β, but this would require posterior
sampling at multiple temperatures and is no better than a grid search. As this approach is com-
putationally challenging for deep learning applications, we are motivated to propose a data-driven
technique for efficiently determining the optimal temperature, which we detail in the next section.

3.1 SELECTING TEMPERATURE USING THE TEMPERED MODEL

In this section, we introduce a method to select β that corresponds to high test LPD in both regression
and classification tasks. Our approach is grounded in the insight that the tempered posterior can be
reframed as the posterior from an alternative model-prior pair (Zeno et al., 2020; Zhang et al., 2024).
Following these works, we define the tempered model,

p(y|x, θ, β) := p(y|x, θ)β∫
p(y′|x, θ)βdy′

. (5)

From here, the tempered posterior in (2) can be equivalently expressed as

pβ(θ|D) ∝ p̃(θ|β)
∏

(x,y)∈D

p(y|x, θ, β), (6)

where the ‘rest of the terms’, p̃(θ|β) ∝ p(θ)β
∏

x∈D
∫
p(y′|x, θ)βdy′, can be viewed as a prior on

θ with the ‘normalizing constant’ being a function of x in D. Note that p̃(θ|β) can be seen as an
input-dependent prior (Zeno et al., 2020) but we suppress the dependence on x in the notation. The
(inverse) temperature β has an intuitive interpretation of controlling the ‘spikiness’ of the tempered
model. We give two examples with Gaussian (regression) and categorical (classification) models:

Regression. Given an arbitrary scalar function µ(x; θ) and a fixed, known variance σ2, we have a
Gaussian model: p(y|x, θ) = N (y|µ(x; θ), σ2). This leads to

p(y|x, θ, β) = N
(
y

∣∣∣∣µ(x; θ), σ2

β

)
, p̃(θ|β) ∝ p(θ)β

(
2πσ2

β(2πσ2)β

)n/2

.

Therefore, the temperature effectively scales the model and prior variance. For brevity, we suppress
the dependency of p(y|x, θ, β) on the fixed σ2 in the notation.

Classification. InK-class classification, we have p(y|x, θ) = fy(x; θ) for y ∈ {1, . . . ,K}, where
fy(·) denotes the y-th entry of a softmax output f . This leads to

p(y|x, θ, β) = exp(βfy(x; θ))∑K
k=1 exp(βfk(x; θ))

, p̃(θ|β) ∝ p(θ)β
∏
x∈D

∑
k

[fk(x; θ)]
β .

This tempered model is also known as the tempered softmax (Hinton et al., 2015; Agarwala et al.,
2023). For large β, the tempered model will concentrate most of the mass in one class, and the
converse will encourage a more uniform distribution of mass across all classes. For β > 1, the prior
p̃(θ|β) will also favor f that concentrates mass in one class.

As β can be used to capture aleatoric uncertainty in the data (Adlam et al., 2020; Kapoor et al.,
2022), we propose selecting β using a maximum likelihood estimator for the tempered model in (5):

θ̂∗, β̂∗ := argmax
θ,β

1

n

∑
(x,y)∈D

[log p(y|x, θ, β)]. (7)

Standard consistency results imply that, under mild conditions, provided the model is regular and
some tempered model is well-specified, choosing parameters according to (7) recovers the optimal
model as n → ∞ (van der Vaart, 1998, Chapter 5.2). In practice, we optimize this using SGD,
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and stop when the log-likelihood shows no further improvement on a validation set. To ensure
that β remains positive, we reparameterize it as exp(log β) and optimize with respect to log β.
Further implementation details are provided in Appendix C. We also discussed several variants of
our proposed method in Appendix D.

A similar temperature optimization approach was proposed in Guo et al. (2017) for computing a
well-calibrated ‘plug-in’ predictive density p(y|x, θ∗SGD, β), where θ∗SGD is typically an SGD solu-
tion from a standard training workflow. In their method, the optimal β is computed post hoc by op-
timizing a similar objective, argmaxβ

1
n

∑
(x,y)∈Dvalid

p(y|x, θ∗SGD, β), using a validation set, with
θ fixed and only β being optimized. While the difference might seem subtle, we find that jointly
optimizing θ and β is the key to obtaining a good β for constructing PPDs. Detailed experimental
results are provided in Appendix D.

3.2 SUPPORTING THEORY

Ideally, we would like to theoretically show that the temperature selection method in (7) produces
high test LPD of (3). However, it turns out that the theoretical guarantees are more natural for a
related object which is suggested by the reformulation of the tempered posterior in (6). Namely, we
can consider an alternative PPD that is the expectation of the tempered model:

Epβ(θ|D)p(y|x, θ, β) =
∫
p(y|x, θ, β)pβ(θ|D)dθ. (8)

This is also the object of study in Adlam et al. (2020) and is to be contrasted with the PPD in (3).
We emphasize that our temperature selection method can be used with either (3) or (8), and we
will compare the resulting performance of our method for these two PPDs in the experiments in
Section 4.

To study the theoretical properties of the temperature selection method for (8), we consider the
objective at the population level, leading to

θ∗, β∗ := argmax
θ,β

Eq(x,y) log p(y|x, θ, β).

We justify β∗ in the case of Gaussian linear regression, but our temperature methodology can be
applied in far more general settings as we demonstrate in Section 4. We first compute the test LPD
constructed with (8) and show that β∗ approximately maximizes a lower bound of the test LPD.
Lemma 3.1. Consider a linear regression model p(y|x, θ) = N (y|x⊤θ, σ2) with a d-dimensional
input x and known variance σ2, and a prior p(θ) = N (θ|0, σ2

p) with finite variance σ2
p. Let X :=

(x1, . . . , xn)
⊤ ∈ Rn×d and Σ := (X⊤X + σ2

σ2
p
I)−1. The test LPD of the PPD in (8) at a fixed β is

bounded from below:

LPD(Epβ(θ|D)[p(y|x, θ, β)]) > Eq(x,y) log p(y|x, θ̂MAP, β)−
1

2
Eq(x,y) log (1 + x⊤Σx),

where θ̂MAP := ΣX⊤y is the maximum-a-posteriori solution of the posterior pβ(θ|D) at β = 1 and
y := (y1, . . . yn)

⊤ ∈ Rn.

The proof can be found in Appendix E. As our goal is to select β that maximizes test LPD, a
reasonable strategy is to optimize the lower bound presented in Lemma 3.1 with respect to β. As
the second term in the lower bound is independent of β, this is therefore equivalent to maximizing
the first term, Eq(x,y) log p(y|x, θ̂MAP, β). Note that this objective function requires θ̂MAP, which is
often unavailable in closed-form. A straightforward solution is to replace it with an estimate from
an iterative optimizer, before optimizing again with respect to β. This comes at the cost of two
optimization runs (and the effort to tune their hyperparameters). Instead, we propose maximizing
the empirical version of Eq(x,y) log p(y|x, θ, β) with respect to θ and β simultaneously, leading us
back to (7). We study the efficacy of this method empirically in the next section.

4 EXPERIMENTS

We now illustrate the behavior of the PPDs, (3) and (8), across different values of β on a suite
of benchmark datasets for both regression and classification tasks. We refer to (3) as SM-PD and
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(8) as TM-PD, where SM and TM stand for standard model and tempered model, respectively.
Notably, our data-driven procedure for selecting β is agnostic to its downstream use in either SM-
PD or TM-PD. We demonstrate that the proposed method performs well in both according to the
test LPD metric. While our method aims to maximize test LPD and is supported by the theory
discussed in Section 3.2, we also evaluate the point prediction of the PPD. Specifically, we use
ŷ = Epβ(y|x,D)[y] to compute mean squared error (MSE) 1

|Dtest|
∑

(x,y)∈Dtest
(y− ŷ)2 for regression

tasks, and ŷ = argmaxy pβ(y|x,D) to compute accuracy 1
|Dtest|

∑
(x,y)∈Dtest

1[y = ŷ] for classifi-
cation tasks. By definition, these point predictions ŷ are identical across SM-PD and TM-PD, and
their results are consolidated in our reporting. We compare our method against a grid search over
nine β ∈ {0.1, 0.3, 1, 3, . . . , 1000}, corresponding to increments of roughly 0.5 on the log10 scale.
The optimal β from the grid search is selected based on test LPD, MSE, or accuracy on a validation
set2, and the optimal β may differ depending on the metric used.

To illustrate our method, we follow the experimental setup of Wenzel et al. (2020). Regression
tasks are conducted using a one-layer ReLU network on UCI datasets (Concrete, Energy, Naval),
while classification is performed using a CNN on MNIST and a ResNet20 on CIFAR10, both with
and without data augmentation (DA). For the prior on neural network weights, we restrict p(θ) to a
zero-mean isotropic Gaussian, as this is a common choice for achieving state-of-the-art performance
(Izmailov et al., 2021). Further details on the model and prior can be found in Appendix G.

We employ the stochastic-gradient Markov chain Monte Carlo (SGMCMC) algorithm from (Wenzel
et al., 2020) with a cyclical step-size scheduler (Zhang et al., 2020) to sample from the posterior
(details in Appendix H). Hyperparameters are carefully tuned based on the temperature diagnostics
in Wenzel et al. (2020) to ensure sampler convergence to the posterior with the specified β; see
Appendix I and Appendix J for diagnostics and hyperparameters. This approach contrasts with the
common practice of tuning hyperparameters for predictive performance. For CIFAR10, we collect
30 samples per run, and 100 for all other datasets. Each SGMCMC run is repeated five times with
different initializations to generate five sets of posterior samples.

4.1 RESULTS

Optimal temperature of SM-PD and TM-PD across models and datasets. The test LPD across
different temperatures for SM-PD and TM-PD are shown in Figure 1; see Appendix K for additional
figures and Table 8 and Table 9 for tabular versions of the results. For Concrete, Energy, Naval and
MNIST, we observe that TM-PD generally outperforms SM-PD. This is perhaps not surprising, as
we expect the former to better account for aleatoric uncertainty. For Concrete and MNIST, the
peaks of SM-PD and TM-PD also coincide. Surprisingly, TM-PD does not outperform SM-PD in
the CIFAR10 examples.

In terms of the efficacy of our temperature selection method, we find that it can generally recover
β with a good test LPD. An interesting observation here is that our method tends to select the
optimal β for TM-PD in the regression examples, and optimal β for SM-PD in the classification
examples. Moreover, as shown in Figure 1, the optimal β for TM-PD and SM-PD for a given model
are also not always the same. Therefore, we expect that the β̂∗, which is computed by optimizing
(7) irrespective of the construction of the PPD, may only work for either TM-PD or SM-PD, but not
both at the same time.

We also report MSE (for regression) and accuracy (for classification) to assess the point predictions
of the PPDs. As the point predictions are identical across SM-PD and TM-PD by definition, we
consolidate the results in Table 1. In general, we observe that SM-PD and TM-PD outperform both
SGD and the PPD at β = 1 across both metrics. Furthermore, our method can select temperatures
that achieves performance comparable to that of the grid search.

Optimal temperature across data augmentation strength. It has been frequently observed that
data augmentation is one of the key ingredients for observing CPE, and the optimal temperature
may depend on the strength of data augmentation (Bachmann et al., 2022). In view of this, we
conducted an experiment to determine how the optimal temperature differs across different levels
of augmentation. Here we only focus on SM-PD and present the results in Figure 2. We observe

2In contrast, our method tracks the log-likelihood of p(y|x, θ, β) on a validation set
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Figure 1: Test LPD plotted against inverse temperature β. We compare two types of PPD: SM-PD
(green) as defined in (3) and TM-PD (blue) as defined in (8). Zoomed-in versions of these curves
are also provided in Figure 4 and Figure 5, respectively. In each example, we have five evaluations
of β̂∗ from our method. Each of these β̂∗ has a corresponding test LPD computed with SM-PD (red
circle) and TM-PD (red cross). Some of the red crosses in the CIFAR-10 examples are out of range.
Solid lines and shaded areas represent the mean± standard error across five repetitions. The vertical
dotted lines indicate the PPD at β = 1. Higher test LPD is better.

Table 1: MSE (for regression) and accuracy (for classification) of the point predictions of the PPDs
at β = 1, β = β̂∗ (our method), and the optimal β obtained from grid search. We also include
the predictions from SGD as a baseline. The results for SM-PD and TM-PD are consolidated, as
both produce identical point predictions by definition. The presented values are means ± standard
error across five repetitions, with the best value among the four methods boldfaced. The PPDs at
β ̸= 1 generally outperform SGD and the PPD at β = 1, and our method can achieve performance
comparable to that of grid search.

METHOD
MSE ↓ (×10−3) ACCURACY ↑

CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

SGD 106± 20 1.7± 0.2 0.149± 0.063 99.05± 0.11 84.9± 3.4 91.9± 0.3
β = 1 75± 7 2.1± 0.1 0.045± 0.005 99.28± 0.04 89.1± 0.3 88.4± 0.2

β = β̂∗ 82± 4 1.6± 0.1 0.032± 0.009 99.38± 0.03 89.9± 0.2 92.8± 0.2
GRID 76± 8 1.4± 0.1 0.027± 0.008 99.32± 0.05 89.9± 0.2 92.8± 0.4

a subtle and gradual increase in the optimal temperature with the strength of data augmentation.
Moreover, our method can also recover temperatures that produce good test LPD and accuracy under
different augmentation levels. Note that, in addition to the well-known CPE observed in CIFAR-10
with data augmentation, it also manifests in a milder form in our CIFAR-10 experiments without
data augmentation. This contrasts with previous studies reporting the absence of CPE in the same
setup (Izmailov et al., 2021).

Computation time Our approach requires a single SGD run to compute the optimal β and a
SGMCMC run to generate the PPD, whereas the grid search requires 9 SGMCMC runs — one
for each temperature in the grid — to identify the best PPD. The wall-clock times for the main
experiment are reported in Table 2. Overall, our method is 4 times faster than the grid search for the
smaller regression models and 8 times faster for the larger classification models.
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Table 2: Wall-clock time comparison across methods. Our method is about 4 times faster than the
grid search (of 9 temperatures) for the smaller regression models, and 8 times faster for the larger
classification models.

METHOD
WALL-CLOCK TIME (MINUTES)

CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

SGD 0.17 0.16 0.78 1.93 27.90 34.84
β = 1 0.20 0.19 1.40 18.83 260.52 327.12
β = β̂∗ (OURS) 0.37 0.36 2.19 20.77 288.42 361.96
GRID 1.76 1.74 12.64 169.51 2344.15 2944.01
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Figure 2: Test LPD and accuracy of CIFAR-10 plotted against inverse temperature β under various
levels of data augmentation (color). The lines and shaded areas represent the mean ± standard error
across five repetitions. There are five dots for each colored curve, and each of these dots corresponds
to a repetition of β̂∗ from our method. The vertical dotted lines indicate the PPD at β = 1. There
is a subtle shift of peaks from left to right as the augmentation strength increases. Higher test LPD
and accuracy indicate better performance.

5 CPE THROUGH THE LENS OF BAYESIAN DEEP LEARNING

Since the publication of Wenzel et al. (2020), there have been numerous attempts to explain CPE,
with particular focus on predictive metrics such as test LPD, accuracy (for classification), and MSE
(for regression). In addition to the arguments presented in Section 3, we provide a summary of the
popular insights into CPE from the BDL literature here.

Poor posterior approximation. One explanation for the presence or absence of CPE is inadequate
posterior approximation, e.g., an inappropriate choice of step size, or the omission of Metropolis-
Hastings steps in the SGMCMC sampler. However, as shown in Appendices A and B, CPE is not
solely an artifact of poor posterior approximation and can be observed theoretically.

Likelihood corruption due to data augmentation. It has been widely observed that the use of
data augmentation often amplifies CPE (Izmailov et al., 2021), while being less pronounced when
data augmentation is turned off. It is argued that the augmented data violate the usual independent
and identically distributed (i.i.d.) assumption imposed on the data. However, CPE has been found
to persist even after accounting for this assumption violation (Nabarro et al., 2022). Therefore,
CPE is unlikely to be a mere artifact of data augmentation. In a separate analysis, Kapoor et al.
(2022) argues that the SGMCMC sampler will converge to a tempered posterior in the presence
of data augmentation. They concluded that the likelihood is implicitly raised to a power equal
to the number of augmentations, and raising the likelihood to a power reciprocal of this number
should approximately recover the standard posterior. However, they do not find this adjustment
alone sufficient to remove CPE completely.
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Model misspecification. It has been argued that data augmentation and curation may lead to
model misspecification, in particular overestimating the aleatoric uncertainty in the data (Aitchison,
2021; Kapoor et al., 2022). Therefore, tempering is proposed to be an effective tool for correction.
This finding aligns with Bachmann et al. (2022), which showed the optimal temperature dependent
on both the aleatoric uncertainty in the data and the ‘invariance’ of the model to augmented data.

Prior misspecification. While the exact interpretation of a ‘well-specified prior’ is debatable, For-
tuin et al. (2022) conducted a large-scale experiment to study the effect of tempering under Gaussian
(isotropic or with correlated covariance) and heavy-tailed priors (Student’s-t or Laplace) on four
metrics: test LPD, accuracy, expected calibration error (Naeini et al., 2015), and out-of-distribution
detection accuracy. They observed that β = 1 is indeed optimal for test LPD and accuracy when us-
ing a heavy-tailed prior. However, the standard posteriors derived from heavy-tailed priors also tend
to underperform compared to tempered posteriors derived from Gaussian priors. Notably, according
to their experiments, warmer temperatures tend to perform better for expected calibration error, and
there is no general trend in optimal β for out-of-distribution detection accuracy. Therefore, their
work suggests that the optimal β is not only dependent on the truth-model-prior triplet but also on
the evaluation metric.

Attempts to ‘fix’ the CPE. Within much of the CPE literature, tempering is often seen as a ‘hack’
that strays from the Bayesian principle. This has prompted the development of various ‘fixes’ —
models and priors that induce standard posteriors with similar predictive performance to tempered
posteriors (see, e.g., Fortuin et al., 2022; Kapoor et al., 2022; Marek et al., 2024). However, we
argue that this is unnecessary, as tempered posteriors of arbitrary β > 0 are special cases of the
generalized Bayes posterior (Bissiri et al., 2016); see Appendix L for a primer. Therefore, posterior
tempering does not deviate from the Bayesian principle.

6 CPE THROUGH THE LENS OF GENERALIZED BAYES

In GB, it is a standard practice to tune β to improve the utility of the tempered posterior (Zhang,
2006a; Grünwald, 2012; Bissiri et al., 2016). Specifically, the likelihood is frequently (but not
always) tempered to a warmer temperature, which contrasts with the cold temperature used in BDL.
In this section, we review some recent developments in GB to clarify the role of tempering in GB
and this apparent contradiction.

Ensuring posterior concentration on the KL minimizer. Posterior concentration on the KL min-
imizer θ† = argminθDKL(q(y|x)|p(y|x, θ))3 as n → ∞ is often a desired property for many
statistical applications. Proofs establishing this property (Barron & Cover, 1991; Zhang, 2006a;
Grünwald, 2007) typically assume that the following inequality holds for all θ in the parameter
space:

Eq(x,y)

[(
p(y|x, θ)
p(y|x, θ†)

)β
]
≤ 1, for all θ ∈ Θ.

It is easy to verify that the inequality holds at β = 1 for well-specified models, where q(x, y) =
p(y|x, θ†)q(x). The same cannot be said for misspecified models in general. However, Grünwald
(2012) shows that this inequality can still hold for many misspecified models for some warm tem-
peratures β ≤ βcritical < 1, and proposed the SafeBayes algorithm to determine βcritical. Therefore,
SafeBayes is presented as a tool to achieve posterior concentration on θ†.

However, posterior concentration is not always desirable in the context of maximizing test LPD
under model misspecification. Note that taking β ≤ βcritical results in the corresponding PPD con-
centrating on the ‘plug-in’ predictive density p(y|x, θ†) as n→∞. This may be undesirable if one
prioritizes the test LPD of the PPD, since the plug-in p(y|x, θ†) may not exhibit good test LPD. For
example, when the misspecified model is non-convex, the PPD can lie outside the model family and
be closer to the truth than the plug-in p(y|x, θ†). Therefore, avoiding posterior concentration in this
situation can actually result in a PPD with a higher test LPD.

3In GB, the minimizer is assumed to be unique, though this is often not true for neural network models.
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Calibrating credible and prediction intervals. Constructing well-calibrated credible and pre-
diction intervals with the nominal frequentist coverage probability is known to be challenging, as
obtaining the posterior variance of a misspecified model is difficult (Kleijn & van der Vaart, 2012,
Example 2.1). These issues can be mitigated by appropriately tuning β, which affects the spread of
the posterior. To this end, Syring & Martin (2019) and Wu & Martin (2021) developed algorithms
to select β for calibrating credible and prediction intervals, respectively.

Calibrating prior-to-posterior information gain. In decision-theoretic GB (Bissiri et al., 2016,
see Appendix L for a primer), tempered posteriors (with likelihood tempering only) are seen as
an update rule that combines data information with prior belief. From this perspective, β can be
interpreted as a ‘learning rate’ at which information is ‘transferred’ to the posterior. Hence, it is
reasonable to calibrate the information gain at each update. Temperature selection algorithms that
follow this approach include Holmes & Walker (2017) and Lyddon et al. (2019).

Improving test LPD. Concurrent to our work, McLatchie et al. (2024) analyzed the role of β4 in
improving test LPD theoretically. They concluded that, in the moderately large n regime and assum-
ing posterior concentration at θ†, the test LPD shows little improvement once β becomes sufficiently
large. Although their motivation aligns with ours, their theoretical results do not extend to singular
models (e.g., neural networks) or over-parameterized models (e.g., ResNet20 on CIFAR10).

6.1 LIMITATIONS OF THE GB FRAMEWORK FOR ANALYZING BDL MODELS

The existing theory in GB, though elegant, is limited to regular and under-parameterized models
and cannot fully account for CPE observed in BDL. Moreover, the metrics emphasized by GB often
differ from those prioritized by BDL practitioners, such as test LPD. As a result, GB works do not
provide a prescriptive methodology for selecting an appropriate temperature in BDL. Additionally,
many current temperature selection algorithms (Grünwald, 2012; Syring & Martin, 2019; Wu &
Martin, 2021) require repeated posterior computations, making them impractical for modern deep
learning models. Finally, the GB literature primarily considers posteriors with likelihood tempering
only, i.e., leaving the prior without tempering. However, since many priors p(θ) encountered in BDL
are proper and bounded, prior tempering can be regarded as rescaling the prior (Kapoor et al., 2022,
Section C.2). Therefore, many of the arguments in GB still apply.

7 CONCLUSION

In this work, we proposed a data-driven approach for selecting a good β for use in either of the PPDs
(3) and (8). Our approach circumvents the costly grid search method, i.e., sampling posterior at each
β across the grid, by optimizing a likelihood function (7) to obtain a good β. The β̂∗ obtained via our
method was shown to achieve comparable test LPD to that obtained from a grid search, all without
performing any extra posterior sampling.

Additionally, we presented a detailed discussion to address the seeming contradiction in the opti-
mal β recommendations from the BDL and GB communities. We concluded that the optimal β can
differ depending on the specific downstream task.

Limitation. Our method is subject to several limitations that require future attention. Firstly, a
poorly-tuned optimization procedure may result in a poor estimation of β̂∗. Secondly, our method
has only been empirically tested with the ubiquitous Gaussian priors. Lastly, while our method
is empirically effective for modern neural network models and theoretically justified for Gaussian
linear regression, a formal guarantee for general neural network models is still lacking.

Future directions. We hope that this work will inspire further research on data-driven approaches
to select β, aimed not only at minimizing test LPD but also at optimizing other metrics, such as
expected calibration error.

4In McLatchie et al. (2024), the learning rate and, confusingly, temperature refer to β in this work.
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8 REPRODUCIBILITY STATEMENT

The experiments details are summarized in the introduction of Section 4. Proof of Lemma 3.1 is
given in Appendix E. SGMCMC is described in Appendix H. Diagnostic check of the SGMCMC
is given in Appendix I. Implementation details of our proposed method is given in Appendix C.
The set of hyperparameters to reproduce the experiments is given in Appendix J. Computational
environment and packages are given in Appendix J.1. Evaluation metrics are defined in Appendix F.
Model, prior and datasets are described in Appendix G. Source code is published on https://
anonymous.4open.science/r/tempered-posteriors-106E.
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A OPTIMAL TEMPERATURE OF A GAUSSIAN TOY MODEL

In this section, we compute the optimal temperature that minimizes the 2-Wasserstein distance and
the KL divergence between the truth and PPD of a toy Gaussian model. We show that: 1) the
optimal temperature depends on both the evaluation metric and the truth-model-prior triplet, and 2)
the optimal temperature that maximizes test LPD is not necessarily 1, even in the case of a well-
specified model.

In our setup, we assume a set of i.i.d. samples D = {xi}ni=1 drawn from a univariate Gaussian truth
q(x) = N (x|0, τ2) with a known variance τ2. Our model is given by p(x|µ) = N (x|µ, σ2) with a
fixed variance σ2. We also assume a Gaussian prior on µ, i.e., p(µ) = N (µ|0, σ2

p). While we focus
on the unsupervised setting for the ease of exposition, our argument also applies to the supervised
settings.

The tempered posterior at β = 1
T is given by:

pβ(µ|D) ∝ p(µ)1/T
n∏

i=1

N (xi|µ, σ2T )

= N

(
µ

∣∣∣∣∣nx̄σ2
post

σ2T
, σ2

post

)

= N

(
µ

∣∣∣∣∣x̄
(
σ2

nσ2
p

+ 1

)−1

, σ2
post

)
,

where the posterior variance is given by σ2
post = T

(
1
σ2
p
+ n

σ2

)−1

.

The PPD as defined in (3) is then:

pβ(x|D) =
∫
N (x|µ, σ2)pβ(µ|D)dµ = N

(
x

∣∣∣∣∣nx̄σ2
post

σ2T
, σ2

post + σ2

)

A.1 OPTIMAL TEMPERATURE FOR MINIMIZING 2-WASSERSTEIN DISTANCE

As both q(x) and pβ(x|D) are Gaussian, the 2-Wasserstein distance W2 between these two density
has a closed-form expression:

W2 =

((
σ2

nσ2
p

+ 1

)−1

x̄

)2

+ T

(
1

σ2
p

+
n

σ2

)−1

+ σ2 + τ2 − 2τ

[
T

(
1

σ2
p

+
n

σ2

)−1

+ σ2

]1/2

Taking the gradient ofW2 with respect to T and set it to 0, we can derive the optimal temperature T ∗:

∂W2

∂T
=

(
1

σ2
p

+
n

σ2

)−1

− τ

[
T

(
1

σ2
p

+
n

σ2

)−1

+ σ2

]−1/2(
1

σ2
p

+
n

σ2

)−1

= 0

=⇒ T ∗ = (τ2 − σ2)

(
1

σ2
p

+
n

σ2

)
, T ∗ ∈ (0,∞)

Therefore, we can conclude that the optimal T ∗ → 0 in the well-specified case (τ2 = σ2).
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A.2 OPTIMAL TEMPERATURE FOR MINIMIZING KL DIVERGENCE

We can also obtain the closed-form expression KL divergence, DKL(q(x)∥pβ(x|D)):

DKL(q(x)∥pβ(x|D)) = Eq(x)

[
log

q(x)

pβ(x|D)

]

=

[(
σ2

nσ2
p

+ 1

)−1

x̄

]2
1

2(σ2
post + σ2)

+
1

2

(
τ2

σ2
post + σ2

− 1− ln
τ2

σ2
post + σ2

)
.

Note that this object directly corresponds to test log predictive density (LPD), which is the primary
object of interest in Bayesian deep learning and our work. Taking the derivative of the divergence
with respect to T and set it to 0, we can solve for the posterior variance that minimizes the diver-
gence:

∂DKL

∂T
=

−[( σ2

nσ2
p

+ 1

)−1

x̄

]2
1

(σ2
post + σ2)2

+

(
−τ2

(σ2
post + σ2)2

+
1

σ2
post + σ2

) 1

2

∂σ2
post

∂T
= 0

=⇒ σ2
post =

[(
σ2

nσ2
p

+ 1

)−1

x̄

]2
+ τ2 − σ2

From this posterior variance, we can deduce the optimal T ∗:

T ∗ =

[( σ2

nσ2
p

+ 1

)−1

x̄

]2
+ τ2 − σ2

( 1

σ2
p

+
n

σ2

)

=
( n
σ2
x̄
)2( 1

σ2
p

+
n

σ2

)−1

+ (τ2 − σ2)

(
1

σ2
p

+
n

σ2

)
, T ∗ ∈ (0,∞).

We can see that T ∗ is non-trivial, and T ∗ ̸= 1 in the well-specified case (τ2 = σ2). This contradicts
with the popular belief that the test LPD is maximized by the PPD induced from a well-specified
standard posterior (Adlam et al., 2020).

B OPTIMALITY CONDITIONS FOR TEST LPD AT β = 1

In this section, we follow the work of Zhang et al. (2024) (which assumes likelihood tempering
rather than full posterior tempering) and argue that the PPD (3) is rarely optimal in terms of test
LPD at β = 1. Our approach is to demonstrate that the gradient∇β LPD(pβ(y|x,D)) is rarely zero
at β = 1.

Lemma B.1. Let p(D, θ) = p(θ)
∏

(x,y)∈D p(y|x, θ), where we suppress the conditional depen-
dency on x in p(D, θ). Then, the gradient of LPD(pβ(y|x,D)) with respect to β is given by

∇β LPD(pβ(y|x,D)) = Eq(x,y)

[
Epβ(θ|D∪(x,y))[log p(D, θ)]

]
− Epβ(θ|D)[log p(D, θ)],

where pβ(θ|D ∪ (x, y)) ∝ p(y|x, θ)pβ(θ|D) represents an update to the posterior pβ(θ|D) after
observing an extra data point (x, y) from the truth, and the expectation Eq(x,y)[·] integrates over
(x, y) in p(θ|D ∪ (x, y)).

Proof. Let Epβ
[·] := Epβ(θ|D)[·] represent the expectation with respect to the tempered posterior

pβ(θ|D), and let the normalizing constant of the tempered posterior be Z(D, β) :=
∫
p(D, θ)βdθ.
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We begin by deriving an identity that will be useful for the gradient computation. For any arbitrary
f : Rd → R, the following identity holds:

∇βEpβ
f(θ) =

∫
∇β [f(θ)pβ(θ|D)]dθ

=

∫
f(θ)∇β log pβ(θ|D)pβ(θ|D)dθ

= Epβ
[f(θ)∇β log pβ(θ|D)]

= Epβ
[f(θ)∇β log p(D, θ)β ]− Epβ

[f(θ)]∇β logZ(D, β)
= Epβ

[f(θ) log p(D, θ)]− Epβ
[f(θ)]Epβ

[log p(D, θ)],

where∇β logZ(D, β) in the second last line becomes

∇β logZ(D, β) =
∫
∇βp(D, θ)βdθ
Z(D, β)

=

∫
log p(D, θ)p(D, θ)

β

Z(D, β)
dθ = Epβ

[log p(D, θ)].

The gradient can then be computed as follows:

∇β LPD(pβ(y|x,D)) = ∇βEq(x,y) logEpβ
p(y|x, θ)

= Eq(x,y)

∇βEpβ
p(y|x, θ)

Epβ
p(y|x, θ)

= Eq(x,y)

[Epβ
[p(y|x, θ) log p(D, θ)]

Epβ
p(y|x, θ)

]
− Epβ

[log p(D, θ)]

= Eq(x,y)[Epβ(θ|D∪(x,y)) log p(D, θ)]− Epβ
[log p(D, θ)],

where the term inside Eq(x,y)[·] in the third equality simplifies to

Epβ
[p(y|x, θ) log p(D, θ)]

Epβ
p(y|x, θ)

=

∫
log p(D, θ) p(y|x, θ)pβ(θ|D)∫

p(y|x, θ′)pβ(θ′|D)dθ′
dθ

= Epβ(θ|D∪(x,y)) log p(D, θ).

We can view the terms in the RHS of Lemma B.1 as a training loss under a posterior ρ:

EρL(D, θ) := Eρ[− log p(D, θ)] = Eρ[− log p(θ)−
∑

(x,y)∈D

log p(y|x, θ)].

This is similar to the training loss as defined in Zhang et al. (2024), but with an additional regularizer
p(θ) included in the loss. Then, we can define underfitting as Eq(x,y)[Epβ(θ|D∪(x,y))L(D, θ)] <
Epβ(θ|D)L(D, θ), i.e., the posterior pβ(θ|D ∪ (x, y)) will, on average, have a lower training loss
than the original pβ(θ|D) after receiving an extra observation (x, y) from the truth. Similarly, we
can define the converse as overfitting.

Therefore, it is not difficult to imagine that the posterior is rarely well-fitted at β = 1, and we should
not expect optimality in terms of the test LPD from the PPD at β = 1.

C DETAILS OF THE TEMPERATURE SELECTION ALGORITHM

Our proposed procedure for constructing a PPD at an optimal temperature is summarized in Algo-
rithm 1 with the following details:

1. We first run SGD to maximize the log-likelihood of the tempered model on a training set.
We track the validation log-likelihood at the end of every ⌊L/20⌋-th epoch, where L is the
total number of epochs, to save computation time. We then select the temperature with the
largest validation log-likelihood as our optimal temperature β̂∗.
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2. Subsequently, we run SGMCMC to draw samples from the tempered posterior at β̂∗. We
only start collecting samples after a burn-in phase. During the burn-in phase, we use a
linear ramp function to control T = 1

β in (13), i.e. we first run SGMCMC at T = 0, then

ramp up T from 0 to T̂ ∗ = 1
β̂∗ and continue the burn-in at T̂ ∗. This SGMCMC scheme is

almost identical to Wenzel et al. (2020, Appendix A.1), except that we run extra burn-in
epochs at T̂ ∗.

Algorithm 1: Procedure to construct a PPD at the optimal temperature.
Input: Training data D, Validation data Dvalid

Initialize θ ← some initializer, β ← 1;
Set (θ̂∗, β̂∗)← (θ, β);
repeat

∆← Compute and scale ∇θ,log β

∑
(x,y)∈D log p(y|x, θ, β);

(θ, log β)← (θ, log β) + ∆;
if
∑

(x,y)∈Dvalid
log p(y|x, θ, β) >

∑
(x,y)∈Dvalid

log p(y|x, θ̂∗, β̂∗) then
(θ̂∗, β̂∗)← (θ, β)

end
until Convergence or resource exhausted;
S ← Draw θ from the tempered posterior pβ(θ|D) with SGMCMC at T = 1

β̂∗ ;

Output: The PPD pβ(y|x,D) ≈ |S|−1
∑

θ∈S p(y|x, θ) from the set of samples S

D VARIANTS OF THE TEMPERATURE SELECTION METHOD

In this section, we compare a variant of (7) by solving

argmax
θ,β

1

n

∑
(x,y)∈D

[log p(y|x, θ, β) + log p(θ)]. (9)

We refer to this approach as the maximum-a-posteriori (MAP) method, as θ is now constrained
by a prior p(θ). This contrasts with the maximum likelihood (MLE) method introduced in (7).
Additionally, we compare our method to the popular temperature scaling approach proposed in Guo
et al. (2017). In their method, θ in the objective (7) is fixed to a solution obtained from the standard
training workflow (e.g., θ∗SGD), and the temperature β is optimized by solving

argmax
β

1

n

∑
(x,y)∈Dvalid

log p(y|x, θ∗SGD, β)

on a validation set. In contrast, both MLE and MAP jointly optimizes θ and β within a single SGD
run.

We compare the methods on the CIFAR-10 experiments, reporting the test LPD and accuracy in
Table 3. The PPDs are constructed from SM-PD (3). In general, MAP and MLE yield similar
β values, while the β obtained from Guo et al. (2017) differs substantially. Moreover, Guo et al.
(2017) generally underperforms relative to MAP and MLE when the CPE is most pronounced, such
as when data augmentation is enabled. This outcome is perhaps unsurprising, as Guo et al. (2017) is
designed for computing a well-calibrated tempered model p(y|x, θ, β), whereas our method targets
the PPD pβ(y|x,D).
The results also suggest that optimizing θ and β together is critical for determining a good β. We
conjecture that p(y|x, θ∗, β∗), with both θ∗ and β∗ obtained through our procedure, provides a rea-
sonable approximation of the PPD with the highest test LPD. In contrast, fixing θ to a predetermined
value (e.g., θ∗SGD) limits the search space and leads to a poor approximation of the PPD.

Another possible strategy here is the ‘marginal likelihood method’ which selects β that maximizes
the marginal likelihood of the tempered posterior. However, marginal likelihood is generally com-
putationally intractable. Existing methods that rely on Laplace approximations Immer et al. (2021)
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Table 3: Comparison between methods to select β on the CIFAR10 experiments. Reported values
are mean± standard error across five repetitions. All values are evaluated on a test set. The accuracy
and LPD are all within one standard error of difference between MAP and MLE.

Data Method Accuracy ↑ LPD ↑ β̂∗

CIFAR10
Guo et al. (2017) 89.86± 0.2 −0.317± 0.003 1.75± 0.18

MAP 89.89± 0.25 −0.321± 0.010 10.54± 9.60
MLE 89.92± 0.25 −0.317± 0.006 10.44± 9.54

CIFAR10 (DA)
Guo et al. (2017) 90.47± 0.14 −0.286± 0.004 1.61± 0.05

MAP 92.81± 0.27 −0.232± 0.008 14.28± 0.52
MLE 92.81± 0.20 −0.232± 0.007 12.79± 3.06

are generally unreliable due to the singularity of neural network models Wei et al. (2022), although
progress has been made to address this limitation (Hodgkinson et al., 2023).
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E PROOF OF LEMMA 3.1

Lemma E.1. Consider a linear regression model p(y|x, θ) = N (y|x⊤θ, σ2) with a d-dimensional
input x and known variance σ2, and a prior p(θ) = N (θ|0, σ2

p) with finite variance σ2
p. Let X :=

(x1, . . . , xn)
⊤ ∈ Rn×d and Σ := (X⊤X + σ2

σ2
p
I)−1. The test LPD of the PPD in (8) at a fixed β is

bounded from below:

LPD(Epβ(θ|D)[p(y|x, θ, β)]) > Eq(x,y) log p(y|x, θ̂MAP, β)−
1

2
Eq(x,y) log (1 + x⊤Σx),

where θ̂MAP := ΣX⊤y is the maximum-a-posteriori solution of the posterior pβ(θ|D) at β = 1 and
y := (y1, . . . yn)

⊤ ∈ Rn.

Proof. Let σ2
β = σ2

β . The tempered posterior can be shown to follow a Gaussian distribution

pβ(θ|D) ∝ N (θ|0, σ2
p/β)

∏
x,y∈D

N (y|x⊤θ, σ2
β) ∝ N (θ|θ̂, σ2

βΣ).

Therefore, the PPD (8) of linear regression can be derived using the identities of conditional Gaus-
sian densities (see Bishop, 2006, Section 2.3.3)

logEpβ(θ|D)[p(y|x, θ, β)] = log

∫
p(y|x, θ, β)pβ(θ|D)dθ

= log

∫
N (y|x⊤θ, σ2

β)N (θ|θ̂, σ2
βΣ)dθ

= logN (y|x⊤θ̂, σ2
β(1 + x⊤Σx))

= −1

2
log
(
1 + x⊤Σx

)
− 1

2
log
(
2πσ2

β

)
− (y − x⊤θ̂)2

2σ2
β(1 + x⊤Σx)

> −1

2
log
(
1 + x⊤Σx

)
− 1

2
log
(
2πσ2

β

)
− (y − x⊤θ̂)2

2σ2
β

= −1

2
log (1 + x⊤Σx) + logN (y|x⊤θ̂, σ2

β)

= −1

2
log (1 + x⊤Σx) + log p(y|x, θ̂, β)

Note that Σ is positive definite, and thus 1+x⊤Σx > 1 and the inequality holds. Taking expectation
with respect to q(x, y) at both sides of the inequality concludes the claim.

F EVALUATION METRICS

In addition to the LPD evaluated on a test set Dtest,

Eq(x,y)[log pβ(y|x,D)] ≈
1

|Dtest|
∑

x,y∈Dtest

log pβ(y|x,D),

we also report MSE for the regression examples

1

|Dtest|
∑

x,y∈Dtest

(y − ŷ)2, ŷ = Epβ(y|x,D)[y]

and accuracy for the classification examples

1

|Dtest|
∑

x,y∈Dtest

1[y = ŷ], ŷ = argmax
y

pβ(y|x,D)

where 1 is an indicator function. Note that the MSE and accuracy are indifferent to the constructions
of PPD (3) and (8), as they both produce identical point predictions ŷ in our setup.
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Table 4: Details of the datasets, size of neural network and prior variance. We use the same prior for
both CIFAR10 experiments with or without data augmentation.

CONCRETE ENERGY NAVAL MNIST CIFAR10

dim(x) 8 8 14 28× 28× 1 32× 32× 3
dim(θ) 641 641 1025 824458 273258
|D| 824 614 9547 60000 50000
|Dvalid| 103 77 1194 5000 5000
|Dtest| 103 77 1193 5000 5000
PRIOR VARIANCE σ2

p 0.1 0.1 1 0.1 1

G MODEL AND PRIOR DETAILS

G.1 NETWORK ARCHITECTURE AND DATASETS

The network architecture and datasets are described in this section. The dimension of x and θ, and
the sizes of the training, validation and testing sets are presented in Table 4.

One-layer ReLU network on UCI datasets. The scalar mean function µ(·; θ) is parameterized
with a 64-neuron hidden layer using ReLU activations. The datasets are Concrete (Yeh, 2007), Naval
(Coraddu & Figari, 2014) and Energy (Tsanas & Xifara, 2012). They are all provided under the CC
BY 4.0 license from UC Irvine Machine Learning Repository.

CNN on MNIST. We utilize the convolutional neural network (CNN) provided in the MNIST
example within the Flax tutorial. In broad terms, it comprises two convolutional layers (with 32
and 64 filters, respectively), followed by two fully connected layers (with 256 and 10 outputs). The
convolutional layers employ 3×3 convolutions with ReLU activations and 2×2 average pooling. The
MNIST dataset (LeCun et al., 2010) is provided under the CC BY-SA 3.0 license. Code for the CNN
model can be found in https://github.com/google/flax/blob/main/examples/
mnist/train.py under the Apache License, Version 2.0.

ResNet20 on CIFAR10. We use the ResNet20 architecture (He et al., 2016) as implemented and
ported from Wenzel et al. (2020). We also use the following data augmentation scheme, as in Wenzel
et al. (2020):

• Random left and right flipping, then;

• Border-padding 4 zero values in both horizontal and vertical direction, followed by random
cropping of the image to its original size.

The CIFAR10 dataset (Krizhevsky, 2009) can be found in https://www.cs.
toronto.edu/˜kriz/cifar.html. Code for the ResNet20 model can be found in
https://github.com/google-research/google-research/blob/master/
cold_posterior_bnn/models.py under the Apache License, Version 2.0.

G.2 ERROR VARIANCE OF THE GAUSSIAN REGRESSION MODEL

As the training data y in our experiment is standardized to unit variance, it is safe to assume that
error variance σ2 of the trained model will be less than 1. Therefore, we set σ2 = 0.1.

G.3 PRIOR VARIANCE

We use an isotropic GaussianN (0, σ2
p) for the neural network weights. The variance σ2

p is specified
in Table 4.
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H SGMCMC

We use the implementation of SGMCMC as presented in Wenzel et al. (2020). This corresponds to
the stochastic gradient Hamiltonian Monte Carlo (Chen et al., 2014) with rescaled hyperparameters
and an adaptive scaling on the Gaussian noise to ensure efficient sampling from a tempered posterior.
The samples of pβ(θ|D) ∝ exp{−βU(θ)} = exp{−U(θ)/T}, where U(·) is the posterior energy
function defined as

U(θ) := − log p(θ)−
∑

x,y∈D
log p(y|x, θ), (10)

can be drawn by simulating the following Langevin stochastic difference equation (SDE) over θ ∈
Rd and momentum m ∈ Rd

dθ = M−1m dt, (11)

dm = −∇θU(θ) dt− γm dt+
√

2γTM1/2dW, (12)

for any friction γ > 0. Here, W is a Wiener process, which can be loosely interpreted as a general-
ized Gaussian distribution (Leimkuhler & Matthews, 2015). The mass matrix M is a preconditioner
that can help in speeding up the convergence to the limiting distribution of this SDE. We also prefer
working with T instead of the inverse temperature β in the sampler to facilitate sampler diagnostics
and temperature ramp-up.

In practice, the gradient of U(θ) is approximated by a minibatch gradient estimator

∇θŨ(θ) := −∇θ log p(θ)−
|D|
|B|

∑
x,y∈B

∇θ log p(y|x, θ),

where B denotes a minibatch, and |B| and |D| denote the batch size and number of training samples
respectively. The SDEs are then solved numerically with a first-order symplectic Euler discretization
scheme using this minibatch gradient estimator, resulting in the following update equations

m(t) = (1− hγ)m(t−1) − h∇θŨ(θ(t−1)) +
√
2γhTM1/2R(t) (13)

θ(t) = θ(t−1) + hM−1m(t)

where R(t) ∼ N (0, Id) is a standard Gaussian vector. Note that the temperature shows up in the
update equations and effectively scales the random noise. This is helpful for drawing samples from
cold posteriors, which tend to have narrow, high density regions. The scaling prevents the Markov
chain from taking steps that are too large and missing the high-density region.

The step size h is often also modulated with a scheduler C(t) : R+ → [0, 1]

h = h0C(t), (14)

where h0 is the initial step size. Where appropriate, we also use the layerwise preconditioner as
proposed in Wenzel et al. (2020) to speed up convergence and reduce approximation error.

I SGMCMC DIAGNOSTICS

In this work, we use the kinectic temperature diagnostic (Wenzel et al., 2020) to assess the quality
of SGMCMC samples. This is a departure from the common practice of using test LPD as a proxy
for the posterior approximation error, since this been shown to be a poor proxy (Deshpande et al.,
2022). In addition, we also report the rank-normalized split-R̂ statistics (Vehtari et al., 2021) on the
(unnormalized) posterior density, which are invariant to the permutation of neural network weights.

I.1 KINETIC TEMPERATURE

We report the expected kinetic temperature of each SGMCMC chain at different temperatures, as
proposed in Wenzel et al. (2020, Appendix I). The kinetic temperature estimator is given by

T̂ (m) =
m⊤M−1m

dim(m)
(15)
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where m and M are the (random) momentum and the mass matrix in the SDE (11)-(12). For
a perfect simulation of the SDE, (15) is an unbiased estimator of the temperature of the system,
i.e., E[T̂ (m)] = T (Leimkuhler & Matthews, 2015, Section 6.1.5).

In Table 5, the expected kinetic temperatures were computed by averaging over the temperature
samples over the whole Markov chain. We use these estimates to gauge the simulation quality of the
SDEs — an estimate closer to the target temperature indicates a better approximation of the SDEs.
We generally expect the simulation quality to worsen in the lower temperature regime, due to the
errors from both discretization and gradient sub-sampling becoming more prominent relative to the
randomness in m. Otherwise, there is no major concern about the sample quality, as observed in
Table 5.

I.2 RANK-NORMALIZED SPLIT-R̂

In Table 6, we report the rank-normalized, split-R̂ (Vehtari et al., 2021) on the potential energy (10),
which is invariant to the permutation of neural network weights. This statistic is a strict improvement
over the traditional potential scale reduction factor R̂ (Gelman & Rubin, 1992) and split-R̂ (Gelman
et al., 2013). The R̂ statistic compares between-chain and within-chain variances, thus requiring
multiple independently-initialized Markov chains to compute. It was designed based on the idea
that, for Markov chains that are mixing well, they should converge to the same limiting distribution
regardless of initialization. Therefore, the between-chain and within-chain variances should roughly
be the same, and a R̂ closer to 1 is considered better. The term ‘split’ indicates that the Markov
chains are divided in half, resulting in double the number of Markov chains with half the original
length. The variances are computed across these doubled number of Markov chains to detect poor
convergence within an original chain. The ‘traditional’ R̂ is computed on the original values of the
potential energy, while the ‘rank-normalized’ R̂ is computed on the rank-normalized values of the
potential energy and does not require the limiting distribution to have a finite mean or variance.

In Bayesian deep learning, the posterior distribution is almost always multi-modal (Izmailov et al.,
2021), and we should not expect the independently-initialized Markov chains to always converge to
the same limiting distribution. Therefore, we should not be overly alarmed by the relatively ‘large’
readings of R̂ in Table 6. These values are large by the usual standard in Bayesian statistics but are
common in Bayesian deep learning (Izmailov et al., 2021; Fortuin et al., 2022).

J HYPERPARAMETERS AND THE COMPUTE ENVIRONMENT

In this section, we provide a detailed explanation of the hyperparameters for SGD and SGMCMC.
The values are summarized in Table 7.

Learning rate and scheduler (SGD). This is the learning rate scheduler. The cosine schedule
starts from the indicated learning rate and gradually decreases to 0 throughout the entire SGD run.
The ‘piecewise’ scheduler is used in Wenzel et al. (2020), where the initial learning rate is multiplied
by a value at specified epochs. We write it in the format of (epoch, multiplier): (80, 0.1), (120, 0.01),
(160, 0.001), (180, 0.0005).

Weight decay. We subtract a weight decay term from the transformed gradient before scaling the
transformed gradient with a learning rate. This subtraction is performed because we are maximizing
the likelihood rather than minimizing a loss.

Gradient clipping. We clip the gradient norm to a specified threshold, as implemented in Optax
(DeepMind et al., 2020). This helps stabilize the training procedure.

Learning rate and momentum (SGMCMC). The learning rate and momentum terms will con-
trol both the initial step size h0 and the friction γ. The relationship between them is given in Wenzel
et al. (2020, Appendix B) and is repeated here:

h0 =
√

learning rate/n, γ = (1− momentum)/h0,

where n is the size of the training set.
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Scheduler and cycle length (SGMCMC). This is the scheduler C(t) in (14) that modulates h.
During the burn-in phase, the scheduler is fixed at 1, i.e. h = h0. Then, during the sampling phase,
the step size is modulated with a cyclical cosine schedule (Zhang et al., 2020) with a period of the
specified epoch. One sample is collected at the end of each cycle.

Ramp start and end. As we run our SGMCMC algorithm from T = 0 and only start increasing
T after a specified number of epochs, these two hyperparameters indicate the epoch when T was
gradually increased and the epoch when T reaches the target temperature.

Burn-in epochs, total epochs and usable samples (SGMCMC). The ‘total epochs’ indicate the
total number of epochs run by SGMCMC, including epochs during the burn-in phase. ‘Usable
samples’ indicate the number of samples collected after the burn-in phase.

J.1 COMPUTATIONAL ENVIRONMENT AND RESOURCES

The algorithms were implemented in JAX (Bradbury et al., 2018). We used Flax (Heek et al.,
2023) and Tensorflow Probabilities (Dillon et al., 2017) to implement neural networks
and models. Plots were generated with tidyverse (Wickham et al., 2019) and ggplot2 (Wick-
ham, 2016). Rank-normalized split-R̂ was computed with the posterior package (Bürkner et al.,
2023). We also used xarray (Hoyer & Hamman, 2017) and arviz (Kumar et al., 2019) to con-
duct explanatory analysis, and wandb (Biewald, 2020) to track our experiments. Our code will be
released.

The experiment was conducted on Google Cloud Platform utilizing TPU-V3. In each machine, there
are 8 TPU cores with 16GB of TPU memory attached to each core (i.e., totaling 128GB of memory
in each machine). However, we only utilize one TPU core due to the difficulty in parallelizing the
MCMC chains across different cores, and effectively only have access to 16GB of memory in each
machine.

On a CIFAR10 experiment, a SGD run (for our proposed algorithm) takes roughly 0.5 hour to com-
plete. A SGMCMC run at a particular temperature takes roughly 4.5 hours. In our main experiment,
as we are computing over a grid of 9 temperature plus the optimal temperature, one repetition of the
experiment takes 45.5 hours. Multiplying this by five repetitions and we get 227.5 hours to produce
one of the CIFAR10 subplot in Figure 1. The rest of the subplot are considerably cheaper: 16 hours
for MNIST, and less than an hour for each of Concrete, Naval and Energy.

In total, it takes 474 hours to generate the posterior samples for computing Table 1 and Figure 1. It
takes an additional 279 hours for the experiment that varies data augmentation strength, i.e., Figure 2.
Hyperparamters tuning takes an additional 200 hours. We have also spent roughly 100 compute-
hours to try out various prior for β.

J.2 STANDARD ERROR CALCULATION

The standard error (SE) of the means are computed with sd routine in R. More specifically, it
computes the square root of an unbiased estimate of the variance. The upper and lower bound of the
shaded areas in all figures are ‘mean + SE’ and ‘mean − SE’ respectively.

K EXTRA FIGURES AND TABLES FROM THE MAIN EXPERIMENT

In this section, we provide additional figures and tables to complement the results presented in the
main text.

We first show the validation LPD plotted against the temperature in Figure 3 and find that our method
can recover temperatures in the high-performing regions. We further improve the visualization of
Figure 1 by separating the test LPD computed with SM-PD (3) and TM-PD (8) into Figure 4 and
Figure 5, respectively. A tabular version of the results is also provided in Table 8 and Table 9, with
an SGD reference included in all the results.
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Figure 3: Validation LPD plotted against inverse temperature β. This is computed with SM-PD as
defined in (3). Solid lines and shaded area represent mean ± standard error across five repetitions.
The vertical dotted lines indicate the PPD at β = 1. There are five red dots in each plot, each of them
corresponding to a repetition of β̂∗ from our method. Higher LPD indicates better performance.
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Figure 4: Test LPD plotted against inverse temperature β with SGMCMC (green, solid). This is
computed with SM-PD as defined in (3). The SGD solution (horizontal, black, dashed) is included
as a reference. The SGD reference in MNIST and CIFAR10 examples performs considerably worse
and is out of range. Lines and shaded area represent mean ± standard error across five repetitions.
The vertical dotted lines indicate the PPD at β = 1. There are five red dots in each plot, each of them
corresponding to a repetition of β̂∗ from our method. Higher LPD indicates better performance.

Finally, we show the performance of point predictions across different temperatures in Figure 6,
complementing Table 1. Note that the point predictions are identical for SM-PD and TM-PD. We
observe that predictions from tempered posteriors generally outperform SGD.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

−4

−3

−2

−1

0

0.1 1 10 100 1000

Concrete

1.00

1.25

1.50

1.75

2.00

0.1 1 10 100 1000

Energy

0

1

2

3

4

0.1 1 10 100 1000

Naval

−0.05

−0.04

−0.03

−0.02

0.1 1 10 100 1000

MNIST

−1.2

−0.8

−0.4

0.1 1 10 100 1000

CIFAR10

−1.2

−0.8

−0.4

0.1 1 10 100 1000

Inverse temperature T−1

Te
st

 L
P

D

CIFAR10 (DA)

Method

SGD

SGMCMC

Figure 5: Test LPD plotted against inverse temperature β with SGMCMC (blue, solid). This is
computed with TM-PD as defined in (8). The SGD solution (horizontal, black, dashed) is included
as a reference. Lines and shaded area represent mean ± standard error across five repetitions. The
vertical dotted lines indicate the PPD at β = 1. There are five red dots in each plot, each of them
corresponding to a repetition of β̂∗ from our method. Higher LPD indicates better performance.
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Figure 6: Test MSE (Concrete, Energy, Naval) and accuracy (MNIST, CIFAR10) of the point pre-
dictions of the PPDs, plotted against inverse temperature β. The results for SM-PD (3) and TM-PD
(8) are consolidated, as both produce identical point predictions by definition. The SGD solution
(horizontal, black, dashed) is included as a reference. Lines and shaded area represent mean± stan-
dard error across five repetitions. The vertical dotted lines indicate the PPD at β = 1. There are five
red dots in each plot, each of them corresponding to a repetition of β̂∗ from our method. Note the
MSE has been reversed, and higher value indicates better performance in all plots.
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L THE DECISION-THEORETIC GENERALIZED BAYESIAN FRAMEWORK

The classical Bayesian rule (1) updating prior belief p(θ) to the posterior belief p(θ|D) arises from
Bayes’ Theorem. An implicit assumption in this procedure for optimal performance is that the model
is correctly specified: there exists some θ0 such that p(y|x, θ0) = q(y|x) for all (x, y). The adage
that “all models are wrong” (Box, 1976) highlights that this assumption should not be expected to
hold. Consequently, it does not make sense to infer on a parameter θ that lacks a connection to the
true data-generation distribution.

Using a decision-theoretic argument, Bissiri et al. (2016) offers an alternative justification for us-
ing (1), even when the model is misspecified. Suppose that we are interested in a quantity θ0 that
minimizes the expected loss under the truth q(x, y), that is,

θ0 := argmin
θ

∫
ℓ(θ, x, y)q(x, y) dy dx (16)

for some loss function ℓ. Then, we would like to derive an update rule ψ that takes an observation
(x1, y1) and updates our prior belief on θ0 to a posterior belief,

p(θ|x1, y1) = ψ{ℓ(θ, x1, y1), p(θ)}.
Furthermore, the update rule should be coherent. That is, suppose that we would like to update our
posterior with two data points {(x1, y1), (x2, y2)}, the update rule should satisfy

ψ{ℓ(θ, x2, y2), ψ{ℓ(θ, x1, y1), p(θ)}} ≡ ψ{ℓ(θ, x2, y2) + ℓ(θ, x1, y1), p(θ)}.
The coherent property will ensure that the same posterior arises regardless of the order which the
data are processed. Bissiri et al. (2016) shows that all coherent update rules take the form

pGB(θ|D) ∝ p(θ) exp

− ∑
(x,y)∈D

ℓ(θ, x, y)

 , (17)

which we will refer to as the general Bayesian update, and the associated posterior pGB(θ|D) as
the generalized Bayes posterior, which has been widely analyzed (Zhang, 2006a;b; Jiang & Tanner,
2008; Bhattacharya et al., 2019; Alquier et al., 2016; Alquier & Ridgway, 2020). Note that we must
take care to have a finite normalizing constant to (17),

0 <

∫
exp

− ∑
(x,y)∈D

ℓ(θ, x, y)

 p(θ)dθ < +∞.

Under certain regularity conditions, the generalized Bayes posterior will concentrate on θ0 as
n→∞; a proof can be found in McLatchie et al. (2024, Lemma 5). The key advantage of this
framework in lies in its ability to directly infer the quantity of interest (i.e., θ0) using a loss function,
without necessitating any probabilistic assumptions that relate θ0 to the data. For formal proofs, we
direct interested readers to (Bissiri et al., 2016, Section 1).

L.1 CALIBRATING INFORMATION GAIN

The tempered posterior, as defined in (2), is a special parameterisation of the generalized Bayes
posterior achieved by setting the loss to be − log p(y|x, θ) and scaling it by a factor of β > 0,
i.e. ℓ(θ, x, y) = −β log p(y|x, θ), and concentrating the prior to an equivalent extent. Therefore,
the tempered posterior has an interpretation of a coherent update rule for the KL minimizer θ† =
argminθ −β log p(y|x, θ) = argminθDKL(q(y|x)∥p(y|x, θ)), as defined in the main text. From
this perspective, the temperature has the role of controlling the amount of information being ‘added’
to the prior in each update step. Holmes & Walker (2017) proposed setting β such that the expected
information gain of our setup (LHS of (18)) matches that of a hypothetical experiment (RHS of (18)),∫

D(pβ(θ|D), p(θ))q(x, y)dydx =

∫
D(p(θ|D), p(θ))p(y|x, θ†)q(x)dydx (18)

where D is a divergence that measures the information gain from a prior to a posterior, and pβ is a
tempered posterior (with likelihood tempering only).
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On the LHS of (18), we are measuring the expected information gain in our existing setup,
i.e., q(x, y) is unknown, from a prior to a tempered posterior pβ . Note that this integral is a function
of β. Then, Holmes & Walker (2017) proposed picking a β that matches up the expected informa-
tion gain from a well-specified experiment that targets the same quantity of interest θ†, i.e., having
the truth be p(·|x, θ†)q(x). In the well-specified setting, the optimal β is 1, and thus the information
gain is computed from the prior to a posterior at β = 1. This proposed method is based on the
principle that the expected information gain should match across posteriors that are targeting the
same quantity of interest. In their follow up work, Lyddon et al. (2019) proposed selecting β such
that the asymptotic Fisher information number of the generalized Bayes posterior to match to that
derived from the “loss-likelihood” bootstrap method, which is a sampling method for general Bayes
posteriors.

L.2 DATA AUGMENTATION IN GENERALIZED BAYES

Accounting for data augmentation in BDL is non-trivial, as the data are no longer i.i.d. This has led
to the development of several techniques to address this issue (Nabarro et al., 2022; Kapoor et al.,
2022). However, data augmentation can be easily incorporated into decision-theoretic GB (Bissiri
et al., 2016), as the generalized Bayes posterior is derived from iterative belief updates rather than
relying on the independence assumption. We can then regard the posterior as reflecting our belief in
the KL minimizer from the ‘augmented’ truth to our model.

For example, in the ResNet20-CIFAR10 example with SGMCMC in Wenzel et al. (2020), the data
was augmented in each epoch, and we effectively have Mn (instead of n) number of observations
in the training set D̃ = {(x̃i, yi)}Mn

i=1 , where M is the number of epochs, and x̃i represents an
augmented image. Then, setting ℓ(x, y, θ) = − log p(y|x, θ) and working ‘backward’, the posterior
can be regarded as representing our belief in a new quantity θ̃†. This quantity is the minimizer of the
KL divergence from an ‘augmented’ truth q̃(x, y) = q̃(y|x)q̃(x), from which the augmented data
have arisen, to the model p(y|x, θ)

θ̃† = argmin
θ

Eq̃(x)DKL(q̃(y|x)∥p(y|x, θ)) .
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Table 5: The expected kinetic temperatures of each SGMCMC chain are presented here. In this
table, the temperatures are inverted. Kinetic temperatures that are closer to the target indicate better
simulation of the SDE. The kinetic temperatures in the β̂∗ row differ across repetitions due to the
variety of β̂∗ obtained from SGD in each repetition.

TARGET β CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

0.1

REP. 1 0.08 0.08 0.10 0.10 0.10 0.10
REP. 2 0.10 0.09 0.10 0.10 0.10 0.10
REP. 3 0.09 0.09 0.10 0.10 0.10 0.10
REP. 4 0.08 0.09 0.10 0.10 0.10 0.10
REP. 5 0.09 0.09 0.10 0.10 0.10 0.10

0.3

REP. 1 0.29 0.24 0.30 0.30 0.30 0.30
REP. 2 0.30 0.29 0.30 0.30 0.30 0.30
REP. 3 0.30 0.30 0.30 0.30 0.30 0.30
REP. 4 0.30 0.26 0.30 0.30 0.30 0.30
REP. 5 0.30 0.25 0.30 0.30 0.30 0.30

1

REP. 1 1.00 1.00 1.00 1.00 1.00 1.00
REP. 2 0.99 1.00 0.98 1.00 1.00 1.00
REP. 3 0.99 0.99 1.00 1.00 1.00 1.00
REP. 4 0.99 1.00 0.99 1.00 1.00 1.00
REP. 5 1.00 0.99 0.99 1.00 1.00 1.00

3

REP. 1 2.98 2.97 2.98 3.00 2.99 2.99
REP. 2 2.95 3.00 2.95 3.00 2.99 2.99
REP. 3 2.98 2.99 2.98 3.00 2.99 2.99
REP. 4 2.98 2.99 2.95 3.00 2.99 2.99
REP. 5 2.96 2.98 2.96 3.00 2.99 2.99

10

REP. 1 9.87 9.94 9.82 9.99 9.96 9.92
REP. 2 9.88 10.00 9.69 9.99 9.96 9.93
REP. 3 9.87 9.97 9.89 9.99 9.96 9.92
REP. 4 9.88 9.97 9.68 9.99 9.96 9.93
REP. 5 9.90 9.97 9.78 9.99 9.96 9.93

30

REP. 1 29.61 29.80 28.48 29.98 29.77 29.50
REP. 2 29.28 29.85 28.64 29.98 29.77 29.59
REP. 3 29.39 29.76 28.73 29.96 29.77 29.54
REP. 4 28.93 29.91 27.61 29.96 29.77 29.55
REP. 5 29.04 29.85 28.73 29.97 29.77 29.63

100

REP. 1 95.81 99.07 84.76 99.87 98.21 96.34
REP. 2 92.08 98.88 85.24 99.88 98.20 97.12
REP. 3 92.25 97.94 85.66 99.83 98.19 96.58
REP. 4 92.20 99.26 72.74 99.81 98.15 96.69
REP. 5 91.28 98.51 87.84 99.86 98.21 97.34

300

REP. 1 259.87 293.28 196.04 299.19 285.58 276.00
REP. 2 248.86 293.13 207.08 299.19 285.32 280.62
REP. 3 228.33 287.56 187.88 299.06 285.15 276.42
REP. 4 221.00 289.86 133.78 298.99 285.40 276.79
REP. 5 229.55 293.08 213.83 299.14 285.24 281.91

1000

REP. 1 547.10 939.37 346.19 992.38 860.32 775.48
REP. 2 649.51 943.01 399.87 992.25 857.79 821.73
REP. 3 503.20 875.31 286.99 991.97 853.45 792.92
REP. 4 436.40 880.59 202.85 991.61 853.14 798.56
REP. 5 446.14 958.23 432.83 991.98 855.56 844.81

β̂∗

REP. 1 0.16 7.44 47.53 2.65 21.04 7.28
REP. 2 0.17 4.86 44.12 2.68 3.49 13.93
REP. 3 0.11 7.91 33.33 4.13 3.44 13.72
REP. 4 0.08 4.12 42.88 3.58 3.46 14.17
REP. 5 0.10 4.58 27.26 2.03 20.48 14.28
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Table 6: The split-R̂ values for the log-posterior at different (inverse) temperatures. These split-R̂
values are computed from 5 SGMCMC chains initialized at different θ. Values closer to 1 indicate
better mixing of the Markov chains. β̂∗ is left out as the temperature (and hence the posterior) differs
across repetitions.

β CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

0.1 1.26 1.19 1.82 1.07 1.01 1.04
0.3 1.04 1.16 1.83 1.03 1.02 1.08
1 1.54 1.09 1.94 1.02 1.13 1.07
3 2.09 1.10 2.24 1.03 1.17 1.46

10 2.79 1.30 2.78 1.14 1.69 1.99
30 2.68 1.77 3.07 1.27 1.42 2.30

100 2.83 2.38 3.25 1.27 1.24 2.29
300 2.81 2.40 3.10 1.19 1.19 2.19

1000 3.97 2.87 3.20 1.16 1.15 2.38

Table 7: Hyperparameters for SGD and SGMCMC. We use the same set of hyperparameters for
both CIFAR-10 experiments, with or without data augmentation.

CONCRETE ENERGY NAVAL MNIST CIFAR10

S
G

D

LEARNING RATE 10−6 10−6 10−8 10−6 10−6

SCHEDULER COSINE COSINE COSINE COSINE PIECEWISE
MOMENTUM 0.9 0.9 0.9 0.9 0.9
NESTEROV NO NO NO NO NO
WEIGHT DECAY 1 1 1 1 500
BATCH SIZE FULL FULL 128 128 128
TOTAL EPOCHS 15000 15000 10000 10 200
GRADIENT CLIPPING 106 106 104 106 106

S
G

M
C

M
C

LEARNING RATE 10−3 10−3 10−4 0.01 0.1
SCHEDULER CYCLICAL CYCLICAL CYCLICAL CYCLICAL CYCLICAL
CYCLE LENGTH 200 200 100 10 50
PRECONDITIONER NONE NONE NONE NONE LAYERWISE
MOMENTUM 0.98 0.98 0.98 0.98 0.98
BATCH SIZE FULL FULL 128 128 128
RAMP START (EPOCH) 4800 4800 900 10 100
RAMP END (EPOCH) 5000 5000 1000 20 150
BURN-IN EPOCHS 10000 10000 5000 200 500
TOTAL EPOCHS 30000 30000 15000 1200 2000
USABLE SAMPLES 100 100 100 100 30
GRADIENT CLIPPING 106 106 106 106 106

Table 8: Test LPD of the regression models. The values presented are means± standard errors across
five repetitions, with the best value among the four methods highlighted in bold. TM-PDs generally
have better performance for the regression models. Higher LPD indicates better performance.

METHOD CONCRETE ENERGY NAVAL

S
M

-P
D SGD −3.904± 1.000 1.299± 0.011 1.376± 0.003

β = 1 −0.506± 0.255 1.221± 0.005 1.376± 0.000

β = β̂∗ −0.186± 0.049 1.287± 0.009 1.382± 0.000
GRID −0.216± 0.121 1.312± 0.003 1.382± 0.001

T
M

-P
D SGD −0.319± 0.076 1.75± 0.054 2.95± 0.162

β = 1 −0.506± 0.255 1.22± 0.005 1.38± 0.000

β = β̂∗ −0.13± 0.069 1.78± 0.063 3.16± 0.106
GRID 0.019± 0.035 1.85± 0.017 3.71± 0.194
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Table 9: Test LPD of the classification models. The presented values are the means ± standard
error across five repetitions, with the best value among the four methods boldfaced. SM-PDs tend
to perform better on CIFAR-10, while SM-PD and TM-PD have similar performance on MNIST.
Higher LPD indicates better performance.

METHOD MNIST CIFAR10 CIFAR10 (DA)

S
M

-P
D SGD −0.076± 0.032 −1.138± 0.306 −1.234± 0.176

β = 1 −0.021± 0.000 −0.333± 0.001 −0.343± 0.002

β = β̂∗ −0.018± 0.000 −0.317± 0.006 −0.232± 0.007
GRID −0.018± 0.000 −0.319± 0.003 −0.229± 0.004

T
M

-P
D SGD −0.030± 0.003 −0.55± 0.036 −0.284± 0.004

β = 1 −0.021± 0.000 −0.333± 0.001 −0.343± 0.002

β = β̂∗ −0.017± 0.000 −0.719± 0.443 −0.811± 0.221
GRID −0.017± 0.001 −0.333± 0.001 −0.279± 0.007
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