
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DR.PO: DUAL REFERENCE AND PREFERENCE OP-
TIMIZATION FOR MACHINE UNLEARNING IN LARGE
LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Most high-performing LLM unlearning methods use preference learning but have
a critical flaw: insufficient or singular positive preferences make post-unlearning
models generate meaningless, inconsistent, or single-category outputs. These dif-
fer in probability distribution from ”fully unlearned” models, causing suboptimal
unlearning quality and privacy risks of unlearned data. We propose DR.PO (Dual
Reference and Preference Optimization). It adopts answers with incorrect facts
and answers indicating information deficiency as positive preferences, with dis-
tinct reference models for each. Instead of random sampling the full dataset for
the retain set (as in existing methods), we match each forget sample to a corre-
sponding retain sample via similarity scores—reducing repeated sampling of the
retain set. Experiments show our method not only achieves better unlearning qual-
ity and better privacy protection but also effectively preserves the model’s original
capabilities.

1 INTRODUCTION

Since deep learning models require the use of massive amounts of data during the training pro-
cess, concerns have been raised by relevant personnel regarding data privacy, copyright, and secu-
rity (Mantelero, 2013; de la Torre, 2018; Wang et al., 2024). Consequently, machine unlearning
for LLMs has attracted significant attention from researchers. In previous studies, researchers have
explored techniques such as gradient ascent, token-level perturbation, and preference learning to im-
plement machine unlearning in LLMs, achieving certain results. Among these, preference learning
methods often demonstrate superior performance.

However, due to the absence or singularity of positive preferences in existing preference learning
methods, there exists a discrepancy between the output distribution of the unlearned model when
exposed to the forgotten data and that of a model that never learned the forgotten data in real scenar-
ios. This makes it challenging to strike an effective balance between unlearning quality and privacy
protection of the forgotten data. To address this, we propose Dual Reference and Preference Op-
timization (DR.PO), a preference learning method that employs dual positive preferences paired
with corresponding reference models. By leveraging dual positive preferences to guide the model’s
unlearning process, DR.PO enables the model to produce an output distribution closer to that of
exact unlearning when encountering the forget data.

Additionally, when examining existing methods, we observed that to maintain model performance,
these methods typically incorporate randomly sampled samples from the retention set in each train-
ing epoch. We argue that this process is problematic in terms of computational resource consumption
and stability, and may amplify the impact of certain retention set samples that are less affected by the
unlearning process. Therefore, we instead use a fixed set of top-k retention samples with the highest
similarity to the forgotten data in the training process, and control the influence of these retention
samples based on their similarity scores.

In summary, our main contributions are as follows:

• Dual Positive Preference: We propose a dual positive preference forgetting method. Through the
synergy of dual positive preferences, answers indicating missing information, and answers with
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incorrect facts, the model can accommodate both preferences simultaneously in its outputs, thus
better protecting the privacy of forgotten data.

• Dual Reference Model: We propose using the pre-finetuning model as the reference model for the
positive preference of missing information. Experiments show that this better-aligned selection of
the reference model can better exert the effect of preference guidance.

• Similarity-scores Retain: We propose to select the retained data participating in unlearning based
on vector similarity, and use vector similarity to restrict their degree of influence. Experiments
show that this method can achieve performance close to that of the original random sampling and
is more stable.

2 RELATED WORK AND PRELIMINARIES

2.1 HOW CAN WE STATE LLM UNLEARNING?

Given an LLM πθ with parameters θ and a dataset D = {(xi, yi)}ni=1, where (xi, yi) means an
question-answer pair in D, we denote the forget set as Df ⊂ D, the retain set as Dr = D−Df , the
LLM that has been trained on D as πfull and the pretrained LLM has not been trained on D as πbase.
The goal of LLM Unlearning is to make the πfull ”forget” the specific information contained in Df

- i.e., to transform πfull into πunl such that the performance of πunl is approximately consistent
with those of πret only trained on Dr. Specially, πunl should not retain dependencies on Df and
ensure the unlearning process only eliminates the influence of Df without distorting the model’s
utility derived from Dr and other datasets.

2.2 WHAT ARE THE EXISTING LLM UNLEARNING METHODS?

Due to the massive parameter size of deep learning models, the method of achieving exact unlearn-
ing through retraining with a retain set faces the challenge of high computational costs in practical
scenarios. Consequently, researchers tend to focus on developing a series of approximate unlearn-
ing methods, which fine-tune model parameters using a forget set. Such approaches have already
yielded beneficial results in fields including federated learning (Halimi et al., 2022; Dhasade et al.,
2023; Gu et al., 2024; Jin et al., 2023), lifelong learning (Du et al., 2019; Parisi et al., 2019), im-
age generation (Li et al., 2024a; Zhang et al., 2024c; Gandikota et al., 2023; Zhang et al., 2024b),
graph neural networks (Li et al., 2024c; Cheng et al., 2023; Tan et al., 2024), and recommendation
systems (Sinha et al., 2025; Li et al., 2023).

In complex LLM Unlearning tasks, researchers have proposed a series of benchmark tests. These
include WMDP, which focuses on the unlearning of hazardous knowledge (Li et al., 2024b); TOFU,
which centers on personal privacy information (Maini et al., 2024); and MUSE, which addresses the
privacy/copyright issues of data owners (Shi et al., 2025).

Methodologically, some researchers have attempted Gradient Ascent (Maini et al., 2024) and its
derived methods, namely Gradient Difference (Liu et al., 2022) and WGA (Wang et al., 2025),
based on the idea of Gradient Ascent; some have explored token-level unlearning methods, such as
UNDIAL (Dong et al., 2025), SatImp (Yang et al., 2025), and PDU (Entesari et al., 2025); others
have proposed RMU (Li et al., 2024b), which perturbs model parameters related to the data to
be unlearned. Although the aforementioned methods that directly perform unlearning on model
parameters have shown certain effects, their performance in terms of unlearning efficacy, model
performance, and privacy protection of the unlearned data is unsatisfactory, leading to inconsistent
or incoherent responses generated by the model.

Therefore, some other researchers have started from preference learning and designed a series of
methods based on DPO (Rafailov et al., 2023). (β in the following equations is the regularization
strength)

NPO (Zhang et al., 2024a) retains only the negative preference component and guides the model to
avoid generating correct responses:

LNPO = − 2

β
logσ(−βlog

πθ(yf |xf )

πfull(yf |xf )
) (1)
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Figure 1: The framework of DR.PO.

SimNPO (Fan et al., 2024) is improved based on NPO: it removes the reliance on reference models
and sets up a reward margin control to avoid uneven allocation of optimization resources(γ is the
reward margin parameter):

LSimNPO = E[− 2

β
logσ(− β

|yf |
logπθ(yf |xf − γ)] (2)

IdkPO (Maini et al., 2024) uses answers indicating missing information as positive preference re-
sponses, guiding the model to be more inclined to indicate missing information when dealing with
unlearned data(yidk is a response randomly selected from a number of pre-prepared answers indi-
cating missing information):

LIdkPO = − 2

β
logσ(βlog

πθ(yidk|xf )

πfull(yidk|xf )
− βlog

πθ(yf |xf )

πfull(yf |xf )
) (3)

AltPO (Mekala et al., 2025) uses prompts to require the model to generate a set of answers with
incorrect facts based on the correct answers to forget data. It takes these answers with incorrect facts
as positive preference responses and guides the model to provide factually incorrect answers(yalt is
the generated factually incorrect answers):

LAltPO = Eyalt
[− 2

β
logσ(βlog

πθ(yalt|xf )

πfull(yalt|xf )
− βlog

πθ(yf |xf )

πfull(yf |xf )
)] (4)

3 METHODS

Figure 1 shows the overview of our method.

3.1 DR.PO: DUAL REFERENCE AND PREFERENCE OPTIMIZATION

Although Preference Optimization (PO)-type methods have achieved better unlearning performance,
due to the way positive preferences are selected, they often perform poorly in terms of the privacy
of forget data. Specifically, IdkPO only selects missing information answers as positive preferences,
and AltPO only selects factually incorrect responses as positive preferences. All these issues result
in a tendency toward a single response pattern.

For the reasons as mentioned above, and considering the fact that LLMs randomly generate either
answers indicating missing information or answers with incorrect fact when addressing unknown
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questions—with the former typically being what humans expect and require the model to output
during fine-tuning (He et al., 2025), and the latter arising from the hallucination phenomenon of
LLMs—we propose a method that can simultaneously integrate the positive preferences of IdkPO
and AltPO, namely DR.PO: Dual Reference and Preference Optimization.

Building on the integration of IdkPO and AltPO losses (Maini et al., 2024; Mekala et al., 2025),
DR.PO modifies the loss function of IdkPO. Since the effectiveness of Preference Optimization
(PO)-type methods depends to some extent on the choice of reference model, and PO is conceptu-
ally based on responses that the model itself could generate with a certain probability, it is clearly
more appropriate to use a pre-trained model πbase that has not been exposed to the unlearned data as
the reference model for responses indicating missing information. Meanwhile, for correct responses,
the model πfull is still used as the reference model. Furthermore, due to the use of different refer-
ence models for positive and negative preferences, the original loss form cannot be mathematically
retained; instead, we adopt two single-preference losses as substitutes.

Lidk = Eyidk
[− 2

β
(logσ(βlog

πθ(yidk|xf )

πbase(yidk|xf ))
) + logσ(−βlog

πθ(yf |xf )

πfull(yf |xf ))
))] (5)

Lalt = Eyalt
[− 2

β
logσ(βlog

πθ(yalt|xf )

πfull(yalt|xf )
− βlog

πθ(yf |xf )

πfull(yf |xf )
)] (6)

LDR.PO = Lidk + Lalt (7)

where β is the regularization strength, as in other PO methods.

3.2 RETAIN DATA PROCESSING BASED ON KL AND VECTOR SIMILARITY

Most LLM Unlearning methods involve fine-tuning with part of the retained dataset. Typically,
random sampling is performed on the complete retained dataset, and a subset of the retained dataset
is used for training. This approach can be traced back to Gradient Difference (Liu et al., 2022), which
adds the log-likelihood loss on a random subset of the retained dataset to the loss of the unlearned
dataset—a practice that has been adopted consistently by subsequent methods (Zhang et al., 2024a;
Maini et al., 2024; Mekala et al., 2025).

Although this approach to using the retained dataset has been proven effective on benchmarks, we
still have concerns: random sampling means that the coverage is completely random. While it may
achieve effective coverage for small datasets, for large datasets, it will likely require sampling more
samples to maintain model performance, thereby increasing computational costs. Based on our
intuition, we propose selecting only retained dataset samples with high similarity to the unlearned
samples for training. We use vector similarity as a coefficient and utilize these retained dataset
samples in the form of KL divergence (Maini et al., 2024) to constrain the similarity of responses
on the retained dataset between the model undergoing unlearning and the non-unlearned model,
which we have proven effective.

Lretain =

k∑
i=1

sim(πfull(x
(i)
r , y(i)r ), πfull(xf , yf ))KL(πfull(y

(i)
r |x(i)

r )||πθ(y
(i)
r |x(i)

r )) (8)

LDR.PO−with−retain = Lidk + Lalt + Lretain (9)

where k represents the number of top-k retained data set samples selected based on the highest sim-
ilarity to the unlearned samples. sim computes the vector similarity between two distributions; we
use the vector of the last token from the output of the model’s final hidden layer as the feature vector
for the input question-answer pair. KL measures the divergence between the output distributions of
the two models.

4 EXPERIMENTS

4.1 BENCHMARK

Proposed in 2024, TOFU is currently the most commonly used LLM Unlearning benchmark, on
which most existing methods have been evaluated. It mainly includes information on 200 fictional

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Data Type TOFU 1% TOFU 5% TOFU%10
Forget data 40(2 authors) 200(10 authors) 400(20 authors)
Retain data 3960(198 authors) 3800(190 authors) 3600(180 authors)

All Finetune data 4000(200 authors)

Table 1: The Information of TOFU.

authors, sets three difficulty levels (1%, 5%, and 10% unlearning)(see in Table 1), and provides a
variety of model evaluations. We selected TOFU as the benchmark for our experiments and chose
Llama3.2-1B as the experimental model based on computational resources. (Maini et al., 2024)

Meanwhile, we used OpenUnlearning as our evaluation framework and the implementation frame-
work for baselines. Proposed in 2025, OpenUnlearning is an LLM Unlearning framework that
includes complete evaluation functionality for the TOFU Benchmark and provides implementations
of a series of baseline methods. (Dorna et al., 2025)

4.2 METRICS

Based on the four aspects that need to be considered in LLM Unlearning - accuracy of unlearning,
knowledge preservation, privacy protection training, and fluency in dialogue generation - we selected
four metrics, namely Forget Quality, Model Utility, Privacy Leakage, and Forget Gibberish - for
evaluation (Maini et al., 2024; Shi et al., 2025; Dorna et al., 2025).

Forget Quality(FQ): The metric proposed by TOFU for measuring forget quality compares the truth
ratio distributions of two models through the Kolmogorov-Smirnov Test (KS-Test), and quantifies
forget quality using the p-value of the test: a higher p-value indicates a smaller difference between
the distributions of the two models, thus a better forgetting effect. (Maini et al., 2024)

Model Utility(MU): The metric proposed by TOFU to measure the extent to which a model retains
performance on non-unlearned data aggregates three indicators—probability, ROUGE-L, and truth
ratio—across three datasets (Retain Set, Real Authors, and World Facts) using the harmonic mean.
(Maini et al., 2024)

Privacy Leakage(Priv.): MUSE proposes that although most existing unlearning algorithms can
reduce verbatim or knowledge memorization, they generally suffer from severe privacy leak-
age—either ”over-unlearning” leading to abnormal behaviors or ”under-unlearning” retaining train-
ing traces. Therefore, this metric is designed to measure the degree of privacy leakage: a value
greater than 0 indicates ”over-unlearning,” while a value less than 0 indicates ”under-unlearning.”
(Shi et al., 2025; Hayes et al., 2024)

Forget Gibberish(Gibb.): OpenUnlearning proposed this metric to measure whether a model ex-
hibits the phenomenon of ”gibberish” on the forget set after unlearning. OpenUnlearning uses the
”autonlp-Gibberish-Detector-492513457” model to evaluate outputs, where a lower score indicates
a higher likelihood that the output text is ”gibberish”. (Dorna et al., 2025; Jindal, 2021)

4.3 IMPLEMENTATION DETAILS

All our experiments were conducted on a single NVIDIA A800 GPU. For yalt in Lalt, we used the
generation script of AltPO to generate factually incorrect answers in the default recommended quan-
tity of AltPO, i.e., five answers. Meanwhile, for yidk in Lidk, we selected five answers from the 100
optional answers provided by IdkPO in each epoch. For the baselines, we configured the experi-
mental settings by referring to the recommended parameters preset in the corresponding papers and
open-unlearning. Details can be found in the appendix.

4.4 RESULTS

4.4.1 COMPARATIVE EXPERIMENT

Table 2 presents the experimental results of our method and other existing methods on the TOFU
Benchmark under three settings: 1%, 5%, and 10%. From the results, it can be observed that
methods of the PO type are more likely to achieve superior performance compared to other methods.
In particular, AlterPO has basically reached the SOTA level, while other methods (Grad Ascent,
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Table 2: Performance of various unlearning methods of TOFU 1%, 5% and 10% on Llama3.2-1B.
We use (↑) to indicate that a higher metric value is better, and (→ 0) to indicate that a metric value
closer to 0 is better. In the ”FQ” and ”Priv.” columns, the optimal results are highlighted in bold, and
the suboptimal results are underlined; in the ”MU” column, results that are close to those of ”Full”
and ”Retain” are highlighted in bold, indicating no impairment caused by unlearning.

Method
TOFU 1% TOFU 5% TOFU 10%

FQ MU Priv. Gibb. FQ MU Priv. Gibb. FQ MU Priv. Gibb.
(↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑)

Full 6.76e-03 0.5992 -100.0000 0.8944 1.43e-12 0.5992 -99.9922 0.8584 3.91e-22 0.5991 -99.4574 0.8606
Retain 1.00e+00 0.5986 0.0000 0.8739 1.00e+00 0.5991 0.0000 0.9045 1.00e+00 0.5911 0.0000 0.9043

Grad Ascent 2.86e-02 0.5903 -59.5041 0.8979 1.94e-119 0.0000 -31.6578 0.1030 1.06e-239 0.0000 -17.8960 0.3702
Grad Difference (Liu et al., 2022) 2.86e-02 0.5206 -62.1015 0.8183 8.05e-07 0.4497 -13.1744 0.7453 1.60e-12 0.4365 20.2932 0.4159

WGA (Wang et al., 2025) 2.86e-02 0.5993 -86.8123 0.8847 2.96e-05 0.5952 -42.8227 0.8475 4.46e-06 0.5984 3.2658 0.7086
UNDIAL (Dong et al., 2025) 1.43e-02 0.6097 -83.8253 0.6561 6.57e-12 0.6090 -96.6692 0.7469 2.21e-19 0.5973 -97.0055 0.6709

SatImp (Yang et al., 2025) 1.43e-02 0.6023 -98.7485 0.9184 1.21e-10 0.5965 -97.6357 0.8977 1.18e-17 0.5996 -97.1979 0.8889
RMU (Li et al., 2024b) 5.41e-02 0.5595 -49.4687 0.7212 8.78e-02 0.5743 21.8240 0.5488 7.75e-04 0.5831 59.0735 0.0386

PDU (Entesari et al., 2025) 6.76e-03 0.6036 -100.0000 0.8744 5.951e-11 0.5974 -98.5296 0.8095 1.371e-07 0.5837 -40.1460 0.5656
NPO (Zhang et al., 2024a) 1.65e-01 0.5977 -48.4061 0.9202 4.31e-03 0.5939 -68.7696 0.9016 3.09e-06 0.5957 -70.5473 0.8895
SimNPO (Fan et al., 2024) 2.86e-02 0.5982 -83.2349 0.9028 2.38e-06 0.5918 -78.8347 0.8834 3.65e-11 0.5954 -74.8132 0.8711
IdkPO (Maini et al., 2024) 5.41e-02 0.5837 -72.7273 0.9016 1.39e-06 0.5901 -81.1598 0.9082 7.83e-12 0.5905 -76.2882 0.9030

AltPO (Mekala et al., 2025) 9.19e-01 0.5952 -54.3329 0.8580 9.24e-01 0.5891 -30.0012 0.8460 5.23e-01 0.5844 -9.6435 0.8528
DR.PO(Ours) 9.90e-01 0.5954 0.9445 0.9315 8.66e-01 0.5960 -12.0491 0.8995 8.64e-01 0.6020 7.7646 0.8933

(a) TOFU 1% (b) TOFU 5% (c) TOFU 10%

Figure 2: The corresponding relationship between Forget Quality and Privacy Leakage during the
unlearning process of TOFU 1%, TOFU 5%, and TOFU 10% on Llama3.2-1B of various PO-type
unlearning methods.

Grad Difference, WGA, RMU, UNDAIL) tend to exhibit performance degradation relative to the
original model.

Across all three scales, our method achieves a better balance between Forget Quality and Privacy
Leakage. Specifically, under the 1% and 10% settings, our method reaches SOTA in both Forget
Quality and Privacy Leakage, demonstrating better forgetting effectiveness and privacy compared to
existing methods. Under the 5% setting, compared with AlterPO (which achieves SOTA in Forget
Quality), our method obtains significantly superior Privacy Leakage at the cost of slightly lower
Forget Quality—indicating that our method offers better privacy with comparable forgetting quality.

Meanwhile, compared to other methods, our method also maintains excellent performance in the
two metrics of Model Utility and Forget Gibberish, which shows that our method can effectively
avoid performance damage to the model caused by unlearning.

Figure 2 shows the combined variation of Forget Quality and Privacy Leakage during the unlearning
process of PO-type methods. It can be seen that as Forget Quality increases, Privacy Leakage will
also increase and eventually tend to be stable. The curves show that compared with other methods,
our method often has better Privacy Leakage at the same Forget Quality, which indicates that our
method has a better effect on the privacy protection of forgotten data than other methods.

In order to examine the impact of double positive feedback on the final answers generated by the
model, we additionally used the unlearned models obtained using various PO-type unlearning meth-
ods to generate responses for questions related to the forget data. We classified the generated answers
into categories using the Deepseek API: Irrelevant Answer, Missing Information Answer, or Fac-
tually Incorrect Answer. For each question related to the forget data, we instructed the model to
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Figure 3: Regarding data forgetting questions, the proportion of various types of answers generated
by different PO-type unlearning methods

generate 5 different responses and classify these answers using the Deepseek API (Liu et al., 2024;
Guo et al., 2025). Figure 3 presents our experimental results. It can be observed that, compared
to IdkPO and AltPO, our method is closer to the retain model in terms of the distribution of Miss-
ing Information Answers. However, our method produces more Irrelevant Answers, though it still
outperforms NPO, which does not use positive preference. Meanwhile, the distribution of the three
types of answers generated by our method is more stable compared to other methods—it does not
exhibit significant changes due to fluctuations in the forgetting percentage, which is more consistent
with the behavior of the retain model. This demonstrates that our method is indeed closer to the
performance of the retain model when answering questions, and thus better protects the privacy of
the forget data.

4.4.2 ABLATION EXPERIMENT ON FORGET LOSS

To verify the effectiveness of the design of the forgetting loss in our method, we conducted abla-
tion experiments on the forgetting loss component of our method. Our method mainly features the
following aspects: (1) Adoption of a dual positive preference approach; (2) For answers indicating
missing information, the model πbase without fine-tuning on D is used as the reference model; (3)
For answers indicating missing information, a dual one-way preference superposition format is em-
ployed due to differences in reference models; (4) For answers indicating missing information, we
adopt the same method of calculating expectations over multiple samples as that used for factually
incorrect responses.

Preference Ablation(no idk, no alt): To verify Feature (1), we ablated Lidk and Lalt from the
forgetting loss respectively and observed the effects.

Reference Model Replacement(idk ref full): To verify Feature (2), we replace Lidk with a form
that, like Lalt, has dual preference outputs and both take πfull as the reference model. In this case,
Lidk changes to:

Lidk = Eyidk
[− 2

β
logσ(βlog

πθ(yidk|xf )

πfull(yidk|xf )
− βlog

πθ(yf |xf )

πfull(yf |xf )
)] (10)

Don’t Split Idk(idk no split): To verify Feature (3), we retain the original form of the DPO loss
and only modify the reference model in the positive preference part to πbase. At this point, Lidk is
changed to:

Lidk = Eyidk
[− 2

β
logσ(βlog

πθ(yidk|xf )

πbase(yidk|xf )
− βlog

πθ(yf |xf )

πfull(yf |xf )
)] (11)

Use Only One Idk(idk single): To verify Feature (4), we adopt the same approach as IdkPO:
randomly selecting a single answer indicating missing information and applying it to Lidk, replacing
the original form of sampling multiple answers and calculating the expectation.
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Table 3: Performance of various forget loss ablation methods of TOFU 1% and TOFU 5% on
Llama3.2-1B.

Method
TOFU 1% TOFU 5% TOFU 10%

FQ MU Priv. Gibb. FQ MU Priv. Gibb. FQ MU Priv. Gibb.
(↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑)

Full 6.76e-03 0.5992 -100.0000 0.8944 1.43e-12 0.5992 -99.9922 0.8584 3.91e-22 0.5991 -99.4574 0.8606
Retain 1.00e+00 0.5986 0.0000 0.8739 1.00e+00 0.5991 0.0000 0.9045 1.00e+00 0.5911 0.0000 0.9043
DR.PO 9.90e-01 0.5954 0.9445 0.9315 8.66e-01 0.5960 -12.0491 0.8995 8.64e-01 0.6020 7.7646 0.8933

DR.PO(no idk) 9.19e-01 0.5979 -60.2125 0.8646 1.78e-01 0.5982 -59.4064 0.8957 3.22e-01 0.5978 -33.6984 0.8840
DR.PO(no alt) 7.66e-01 0.5973 15.2302 0.9239 4.31e-03 0.5968 -17.5306 0.8848 1.78e-04 0.5941 20.2476 0.8799

DR.PO(idk ref full) 9.19e-01 0.5960 -44.9823 0.8748 1.63e-02 0.5992 -73.5492 0.9139 1.55e-01 0.6004 -49.1233 0.8718
DR.PO(idk no split) 9.19e-01 0.5953 -48.4061 0.8982 6.80e-02 0.5981 -69.5067 0.9014 7.83e-02 0.6009 -45.8525 0.8678
DR.PO(idk single) 9.90e-01 0.5944 30.5785 0.9053 8.66e-01 0.5984 -9.1672 0.9007 7.00e-01 0.5955 3.0603 0.8814

Table 3 presents the experimental results of our ablation study on the forgetting set loss:

Two positive preferences collaborate: When either Lidk or Lalt is ablated, there is a significant
decline in both the forgetting quality and the privacy protection performance of the forgetting set.
This fully demonstrates the effectiveness and necessity of simultaneously using factually incorrect
responses and responses indicating information deficiency as positive preferences. Specifically, the
ablation of Lidk is more prominently manifested as a drop in privacy protection performance, while
the ablation of Lalt is more notably reflected in a decrease in forgetting performance. This indicates
that taking factually incorrect responses as positive preferences mainly dominates the quality of for-
getting, whereas using responses indicating information deficiency as positive preferences primarily
helps achieve the privacy protection of the forgetting set.

It is necessary to match the reference model with the preference: When Lidk is modified into
a form where both positive and negative preferences take πfull as the reference model, there is
also a significant decline in both the forgetting quality and the privacy protection performance of
the forgetting set. This indicates that using an inappropriate reference model for the corresponding
preferences can also affect the performance.

When the reference models differ, the dual one-way preference outperforms the original DPO:
When Lidk is modified into the form of DPO loss and only the reference model in the positive pref-
erence part is adjusted, both the forgetting quality and the forgetting set privacy protection perfor-
mance of DR.PO also deteriorate. It can be seen that when the reference models differ, it is not a
good choice to adhere to the original DPO form rigidly; instead, using a dual one-way preference
for simulation can well replace the original DPO form.

The positive preference should adopt the form of multiple expectations: When a single sample
is randomly selected for the calculation of Lidk, the forgetting quality is mostly comparable to that
when multiple samples are randomly selected. Specifically, on TOFU 5% and TOFU 10%, there is
even a slight improvement in the privacy protection performance of the forgetting set. However, on
TOFU 1%, a distinct positive impulse signal emerges in the indicator for the forgetting set’s privacy
protection performance. This indicates that when the data volume of the forgetting set is large,
the number of sampled items has no significant impact on performance, as a sufficient number of
positive preference samples can be learned. In contrast, when the data volume of the forgetting set
is small, over-unlearning is prone to occur due to the limited number of positive preference samples
available for learning.

4.4.3 ABLATION EXPERIMENT ON RETAIN LOSS

Our method also incorporates minor designs for the retention loss. To verify this, we conducted
ablation experiments specifically on the retention loss, primarily to validate the effectiveness of two
modifications: using similarity scores as coefficients and adopting KL divergence to replace the
traditional NLL (Negative Log Likelihood) as the loss function, as well as the equivalence of using
the top-10 most similar retention set samples instead of randomly sampling retention set samples in
each iteration.

no sim indicates that similarity scores are not used as coefficients, meaning the coefficient for the
loss of all retention set samples is 1 when included in the calculation; nll denotes the use of tradi-
tional NLL (Negative Log Likelihood) to compute the loss of retention set samples; random refers
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Table 4: Performance of various retain loss ablation methods of TOFU 1% and TOFU 5% on
Llama3.2-1B.

Method
TOFU 1% TOFU 5% TOFU 10%

FQ MU Priv. Gibb. FQ MU Priv. Gibb. FQ MU Priv. Gibb.
(↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑) (↑) (↑) (→ 0) (↑)

Full 6.76e-03 0.5992 -100.0000 0.8944 1.43e-12 0.5992 -99.9922 0.8584 3.91e-22 0.5991 -99.4574 0.8606
Retain 1.00e+00 0.5986 0.0000 0.8739 1.00e+00 0.5991 0.0000 0.9045 1.00e+00 0.5911 0.0000 0.9043
DR.PO 9.90e-01 0.5954 0.9445 0.9315 8.66e-01 0.5960 -12.0491 0.8995 8.64e-01 0.6020 7.7646 0.8933

DR.PO(no sim) 9.19e-01 0.5946 32.9398 0.8816 7.93e-01 0.5961 -13.2371 0.9000 3.67e-01 0.6005 16.6630 0.8737
DR.PO(nll) 2.66e-01 0.5382 24.6753 0.8729 2.83e-04 0.4934 29.5483 0.8462 4.36e-09 0.4725 28.0162 0.8754

DR.PO(random) 9.90e-01 0.5952 -7.2019 0.9009 5.45e-01 0.5981 -25.6038 0.8772 7.00e-01 0.5999 2.0176 0.8786
DR.PO(retain01) 7.66e-01 0.5763 6.7296 0.9332 2.97e-02 0.5844 -56.6382 0.8933 2.29e-03 0.5863 -52.6837 0.8806
DR.PO(retain05) 9.19e-01 0.5918 0.4723 0.9285 3.94e-01 0.5908 -26.9683 0.8970 3.67e-01 0.5952 3.4035 0.8888
DR.PO(retain15) 9.19e-01 0.5958 4.2503 0.8770 7.93e-01 0.5945 -13.2411 0.8945 1.55e-01 0.5985 20.3003 0.8838

to the practice of sampling samples directly from the complete retention set in each epoch for reten-
tion loss calculation, rather than using the pre-prepared top-10 samples with the highest similarity
scores to the forgetting set samples as the samples for retention loss calculation. Regarding the
number of samples selected from the retain set, in addition to the default of 10 samples, we also
attempted scenarios with 1, 5, and 15 samples, denoted as retain01, retain05, and retain15.

Table 4 presents our ablation results on Lretain. When replacing the KL divergence loss with the
conventional NLL loss, we observed a significant decline in Model Utility. This indicates that when
using a small amount of retain data highly correlated with the forget data for training, directly
applying KL divergence constraints yields better results in learning the corresponding probability
distribution compared to using NLL. When removing the similarity coefficient, Forgetting Quality
deteriorated. This phenomenon can be attributed to the fact that without the correlation coefficient,
all highly correlated retain data participated in training with equal intensity, thereby weakening the
forgetting effect. When replacing direct sampling of the top-most similar samples with random
sampling, our method maintained nearly consistent model performance. This demonstrates that
directly using highly correlated retain data can effectively replace the cumbersome and unstable
random sampling approach.

Table 4 also presents the results on different numbers of samples chosen from the retain set, re-
tain01 and retain05, which use fewer samples, exhibited significantly poor performance in terms of
unlearning quality. Additionally, retain01 performed poorly in the privacy protection performance
of the forget set data. This indicates that selecting fewer samples from the retain set can also affect
unlearning quality, and that the use of retain data during the unlearning process can influence the
model’s knowledge related to the forget data. retain15, which uses more samples, also showed a
decline in unlearning quality and generally exhibited over-unlearning in the privacy protection per-
formance of the forget set data. This suggests that selecting a larger number of samples from the
retain set can also affect the degree to which the unlearning process utilizes the forget set data.

5 CONCLUSION

Due to the large amount of data used by LLMs during training, potential issues related to privacy,
copyright, and data compliance have raised widespread concerns, sparking researchers’ interest in
LLM Unlearning. Among existing LLM unlearning methods, PO-type methods have demonstrated
superior performance in terms of unlearning quality. However, due to the lack of positive preference
or the single type of positive preference in existing methods, problems still exist in the forgotten
quality and privacy protection of forget data. Output distributions that differ from the retain model
may lead to privacy leakage of forget data. Based on this, we propose DR.PO, a method that employs
dual positive preference answers and pairs each with an appropriate reference model. A series of
experiments have demonstrated that our method exhibits superior performance in both unlearning
quality and privacy protection of forget data, and its output distribution is more consistent with that
of the retain model. Additionally, we noticed that the random sampling of retain data in each epoch
during training may cause waste of computational resources and instability. Therefore, we propose
a retain data sampling and loss calculation method based on vector similarity, and verify that it has
essentially equivalent performance to the original method while being more stable.
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