
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-QUESTIONING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Can large language models improve without external data – by generating
their own questions and answers? We hypothesize that a pre-trained language
model can improve its reasoning skills given only a single prompt specifying the
topic (e.g., algebra word problems) and asking the model to generate its own ques-
tions. To do this, we propose Self-Questioning Language Models (SQLM): an
asymmetric self-play framework where a proposer is given the topic and generates
a question for a solver, who tries to answer it. Both the proposer and solver are
trained via reinforcement learning. The proposer receives a reward if the prob-
lem is not too easy or too difficult, and the solver receives a reward based on
majority voting, a proxy for correctness in the absence of ground-truth answers.
For coding, the proposer can instead generate unit tests which are used for ver-
ification. We study this asymmetric self-play framework on three benchmarks:
three-digit multiplication, algebra problems from the OMEGA benchmark, and
programming problems from Codeforces. By continually generating more inter-
esting problems and attempting to solve them, language models can improve on
downstream benchmarks without access to any curated training datasets.

“Generate a
question in [topic]”

Question

621

621

621 Response = Majority Answer?

3 1 < Majority Count < N?

621

619

Majority Count

Majority Answer

Proposer RL Reward

Solver RL RewardSOLVER

PROPOSER

Question

Figure 1: Overview of Self-Questioning Language Models. The only input to the system is a single
prompt, given to the proposer. The proposer generates a question related to the given topic, and the
solver aims to solve the question. The solver’s reward is computed by using the majority vote as a
proxy for the ground-truth answer. The proposer’s reward is computed based on how many of the
answers match the majority answer, to encourage problems not to be too easy or too difficult.

1 INTRODUCTION

The post-training of large language models still relies heavily on hand-curated datasets (Yu et al.,
2025a; Li et al., 2024), demanding substantial engineering effort and human supervision. In an
attempt to alleviate this burden, researchers have developed unsupervised reward functions for rein-
forcement learning, which use proxies such as the model’s internal confidence (Zhao et al., 2025b;
Prabhudesai et al., 2025) or the majority answer (Zuo et al., 2025; Shafayat et al., 2025) in the ab-
sence of ground-truth rewards or answers. However, these methods still presuppose the existence
of well-formed input prompts or questions, and the bottleneck shifts from curating labeled answers
to curating high-quality questions – a task that remains labor-intensive and not easily automated at
scale. This highlights a critical gap in current methodologies: the lack of scalable, self-sustaining
pipelines for generating meaningful questions and answers without human intervention.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Interestingly, pre-trained language models themselves represent a largely untapped resource for ad-
dressing this challenge. Much like humans, these models can be seen not only as passive recipients
of training data but also as active generators of it. As an analogy, scholars in remote or quiet settings
sharpen their thinking through self-directed exploration and questioning. Large language models
pre-trained on trillions of tokens of text may possess similar capabilities. By leveraging their in-
trinsic knowledge and reasoning faculties to simulate both the role of question-asker and responder,
models could drive their own intellectual development in a closed-loop fashion. This paradigm
opens a compelling avenue for self-supervised post-training that could reduce dependence on cu-
rated datasets and unlock a new frontier in autonomous language model refinement.

To explore this paradigm, we propose Self-Questioning Language Models (SQLM): an asymmetric
self-play framework in which a pre-trained language model is prompted with a high-level domain
(e.g., ”algebra word problems”) and learns to improve by generating and solving its own problems.
Asymmetric self-play was first proposed by Sukhbaatar et al. (2017) and applied to goal-conditioned
robotic manipulation in OpenAI et al. (2021); here, we apply it to language model post-training,
where the model plays two roles: a proposer that creates new problems and a solver that attempts
to solve them. Both roles are trained via reinforcement learning. When the generator-verifier gap is
small (such as in arithmetic, where solution generation and verification are similarly difficult), we
use majority voting over multiple solver outputs as a proxy for correctness. When the gap is large
(such as in code generation, where verifying via unit tests is easier than writing a correct solution),
we instead ask the proposer to generate unit tests and use that as the solver’s reward. The proposer is
rewarded for generating non-trivial, solvable problems, while the solver is rewarded for correctness
under these domain-specific criteria.

We evaluate this framework on three benchmarks: three-digit multiplication 1, algebra problems
from the OMEGA (Sun et al., 2025) benchmark, and coding problems from Codeforces2. In every
case, training begins with a single prompt describing the task, without any example problems or
labeled data. As training progresses, both the proposer and solver improve iteratively, guided by re-
inforcement signals based solely on internal agreement. Our evaluations show that models trained in
this self-supervised manner can demonstrate meaningful gains in reasoning ability without access to
any curated training datasets. These results point to the promise of self-play as a general mechanism
for self-improvement in language models.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR LANGUAGE MODELS

Reinforcement learning (RL) has played a pivotal role in the alignment and reasoning capabilities
of contemporary large language models. Early efforts primarily focused on aligning model out-
puts with human preferences via Reinforcement Learning from Human Feedback (RLHF), using
algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023). In structured domains such as mathematics
and code generation, RL has expanded beyond preference modeling to leverage the availability of
ground-truth solutions. This enables the use of binary reward signals, allowing for more objective
fine-tuning. Approaches like STaR (Zelikman et al., 2022) and ReSTEM (Singh et al., 2023) exploit
this structure by sampling rationales from the model and selectively fine-tuning on those that yield
correct final answers. This selection-based training paradigm encourages more reliable intermediate
reasoning steps. A parallel line of work has explored self-refinement capabilities in LLMs, training
models to identify and correct their own mistakes through recursive or feedback-driven mechanisms
(Kumar et al., 2024; Qu et al., 2024). These methods aim to internalize self-correction as a policy,
rather than relying solely on external signals. On the algorithmic front, recent work has introduced
RL algorithms specifically tailored for chain-of-thought (CoT) (Wei et al., 2022) reasoning. GRPO
(Shao et al., 2024), Dr. GRPO (Liu et al., 2025c), and DAPO (Yu et al., 2025a) have been instru-
mental in achieving state-of-the-art performance on complex reasoning benchmarks. Most notably,
models such as DeepSeek-R1 (Guo et al., 2025; Hu et al., 2025) have demonstrated that targeted RL
techniques can substantially enhance general reasoning capabilities.

1https://github.com/Jiayi-Pan/TinyZero
2https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 UNSUPERVISED REWARDS FOR REASONING

Ground-truth answers and external verifiers are often costly or impractical to obtain. This has moti-
vated recent work exploring how far one can go without any form of external supervision. Notably,
several studies have demonstrated that pre-trained language models are sufficiently well-calibrated
to use their own confidence as a training signal. This has been operationalized through entropy
minimization (i.e., reverse KL divergence to a uniform distribution) (Prabhudesai et al., 2025), and
forward KL divergence (Zhao et al., 2025b). Another unsupervised reward strategy treats the major-
ity prediction among sampled completions as the ”correct” answer (Zuo et al., 2025; Shafayat et al.,
2025). These approaches rely solely on the model’s internal uncertainty, eliminating the need for la-
beled data or external evaluators. Building on this line of work, our approach goes a step further: not
only does it not require ground-truth answers, it does not even require human-authored questions.
Instead, the model itself is used to generate questions, making the pipeline fully self-supervised.

2.3 EXPLORATION

Exploration is a foundational challenge in reinforcement learning. To address this, many meth-
ods encourage agents to discover novel states through intrinsic rewards. One prominent class is
based on prediction error, where novelty is measured by the agent’s surprise at its own predic-
tions, such as inverse dynamics models (ICM) (Pathak et al., 2017) or randomly initialized networks
(RND) (Burda et al., 2018). Other techniques optimize state entropy to promote diverse state visita-
tion (Liu & Abbeel, 2021). Go-Explore (Ecoffet et al., 2019) separates exploration and robustifica-
tion, enabling agents to return to promising states and expand from there, while Plan2Explore (Sekar
et al., 2020) uses a world model to target states with high epistemic uncertainty. Asymmetric self-
play (Sukhbaatar et al., 2017; OpenAI et al., 2021) frames exploration as a game between agents.
More recently, exploration concepts have been applied to LLMs for personalization (Wan et al.,
2025) and safety alignment (Liu et al., 2025a). Furthermore, recent work (Zweiger et al., 2025) in-
troduces a reinforcement learning loop where models generate their own finetuning data and weight
update directives, enabling persistent self-directed adaptation to new tasks and knowledge.

2.4 SYNTHETIC DATA GENERATION

As models grow larger and more data-hungry, generating high-quality training data has become
increasingly important. Synthetic data generation (Nadas et al., 2025; Wang et al., 2024; Long et al.,
2024) has emerged as a powerful strategy for scaling up LLM training. A strong ”teacher” model
is used to produce high-quality examples, which are then used to train a target model. Notably,
synthetic data has played a central role in the development of large-scale models such as K2 (Liu
et al., 2025b). In these cases, synthetic data is generated prior to training and treated as a static
offline dataset. Fang et al. (2025) proposed an online iterative self-play approach to bootstrap from
limited initial data, but in our work, we aim to use no initial data at all. The closest approach to
ours is Zhao et al. (2025a), which also focuses on a setting with no initial data; our method is more
general and extends beyond verifiable domains such as coding, via the use of majority voting.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING FOR LANGUAGE MODELS

The language modeling task of generating answers for a given question can be treated as a one-step
reinforcement learning problem. For a question x sampled from the dataset D = {(x, y)}, the policy
π(ypred|x) generates a response ypred, for which it receives some reward r = R(x, ypred, y). The
reward is traditionally computed via a measure of similarity of ypred and y, e.g., using hard-coded
parsers, model-based verifiers (Ma et al., 2025), or probability-based rewards (Zhou et al., 2025; Yu
et al., 2025b). In these settings, RL is used to train the policy to maximize the expected reward

E[r] = Eypred∼π(ypred|x)[R(x, ypred, y)].

Recently, several unsupervised reward functions R(x, ypred) have been proposed. These rewards do
not rely on having access to the ground truth y, instead using majority voting (Zuo et al., 2025;
Shafayat et al., 2025), entropy (reverse KL divergence) (Prabhudesai et al., 2025), forward KL
divergence (Zhao et al., 2025b), or even random rewards (Shao et al., 2025).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 ASYMMETRIC SELF-PLAY

Asymmetric self-play (OpenAI et al., 2021), first proposed for goal-conditioned robotic manipula-
tion, is a method for self-supervised exploration which naturally produces a curriculum of interesting
tasks for agents to use for learning. It trains two RL agents: a proposer P who aims to propose chal-
lenging tasks, and a solver S who aims to solve those tasks. The proposer receives a reward if the
solver fails to solve the task, and the solver receives a reward for solving its assigned task. We
refer the reader to OpenAI et al. (2021) for more details on the original application of asymmetric
self-play to robotics.

In our language modeling setting, we consider a proposer policy πPt
(x) and solver policy πS(ypred |

x), where Pt is simply a proposer constrained to a specific topic t (e.g., arithmetic), x is a generated
question, and ypred is an attempt at solving the question. Here, both P and S are language models
and trained via reinforcement learning as described in the next section.

4 METHOD

4.1 MINIMAX OBJECTIVE

The proposer policy πPt
(x) and the solver policy πS(ypred | x) are both trained via reinforcement

learning to maximize their expected rewards:

Solver: Ex∼πPt , ypred∼πS(·|x) [RS(x, ypred)] ,

Proposer: Ex∼πPt , ypred∼πS(·|x) [RP (x, ypred)] ,

This setup involves self-play as the proposer’s output is used to condition the solver, and the solver’s
output is used to compute a reward, which is then used to train the proposer. Figure 1 shows an
overview of our method. In the next subsection, we discuss how to design reward functions for the
proposer and solver, given that this setting is fully self-supervised in the absence of ground-truth
answers and perfect verifiers.

4.2 REWARD FUNCTIONS

In the context of self-play without access to ground-truth answers, a central challenge is how to
perform verification. One straightforward approach is to have the proposer not only generate a prob-
lem but also provide a corresponding solution. The solver’s output can then be compared against the
proposer’s solution to assess correctness. However, there is no inherent reason to trust the proposer’s
solution over the solver’s. In most self-play setups, both models are initialized from the same pre-
trained language model (and in our experiments, also share weights). As a result, both are equally
susceptible to error, making verification by mutual agreement unreliable.

This issue relates closely to the concept of the generator-verifier gap (Song et al., 2024), which refers
to the difference in difficulty between generating a correct solution and verifying the correctness of
a given solution. In arithmetic, computing the sum of two numbers and verifying that sum are nearly
equivalent in difficulty. However, writing a correct implementation for a programming problem may
be difficult, whereas verifying its behavior (e.g., through unit tests) is often easier. Depending on
the type of problem, we propose different approaches to designing the proposer and solver.

When the generator-verifier gap is small. In domains such as arithmetic, there is no easy way
to verify solutions without performing reasoning that is similarly complex to what is required to
generate the solution itself. For these cases, we do not ask the proposer to generate a solution, and
instead use majority voting (Zuo et al., 2025; Shafayat et al., 2025) as a self-supervised reward for
the solver. Specifically, for each problem, we sample N generations from the model and use the
majority answer as a proxy for the correct answer. All generations that match the majority answer
are given a reward of 1 and all other generations are given a reward of 0.

Let x ∼ πPt
be a problem sampled from the proposer, and y1, . . . , yN ∼ πS(· | x) be N independent

solver generations. Let ymaj be the majority answer among the N generations. The solver reward is:

RS(x, yi) =

{
1 if yi = ymaj,

0 otherwise.
(1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The proposer reward is based on how ”reasonable” the problem is: it receives a reward of 0 if all N
generations match (too easy) or if none match (too hard), and a reward of 1 otherwise:

RP (x) =

{
1 if 0 < |{yi : yi = ymaj}| < N,

0 otherwise.
(2)

When the generator-verifier gap is large. In domains such as coding where verification is easier
than generation, we can do better by leveraging the proposer’s ability to generate a solution or
information useful for verification such as test cases. In this section, we focus on the use-case of
coding for concreteness, but one could design variants of this approach for other domains.

Let x ∼ πPt
be a problem and associated test cases generated by the proposer. Let ypred ∼ πS(· |

x) be the solver’s solution, and let Tests(x) denote the set of unit tests provided with x. Define
Pass(ypred,Tests(x)) ∈ [0, 1] as the fraction of unit tests passed by the solver’s output. Then:

RS(x, ypred) = Pass(ypred,Tests(x)) (3)

The proposer is again rewarded for generating problems that are non-trivial but solvable. It receives
a reward of 1 if the solver passes some, but not all, test cases:

RP (x, ypred) =

{
1 if 0 < Pass(ypred,Tests(x)) < 1,

0 otherwise.
(4)

5 EXPERIMENTS

5.1 SETUPS

Arithmetic. We prompt the proposer to generate a three-digit arithmetic problem and use the pro-
posed problem as the input to the solver. The solver is trained via majority voting reward (Zuo
et al., 2025; Shafayat et al., 2025) to reinforce the majority answer. The proposer reward is 1 if the
problem is not too difficult (the majority answer only appears once, which means all the samples are
different) and not too easy (the majority answer is equal to the number of samples N , which means
all the samples were the same), and 0 otherwise. To evaluate the arithmetic ability of the model, we
procedurally generate a test set of 4096 three-digit multiplication problems following the setup from
TinyZero 3. We run our experiments with Qwen2.5-3B-Instruct.

Algebra. We prompt the proposer to generate algebra word problems that involve linear equations
with up to two variables. The solver and proposer rewards are the same as in the Arithmetic setup.
For evaluation, we use the 100-question linear equation test set from the OMEGA benchmark (Sun
et al., 2025). We run our experiments with Qwen2.5-3B-Instruct.

Coding. We prompt the proposer to generate programming problems similar in style and difficulty
to LeetCode easy problems that take in a list of integers and output either a single integer or another
list. Unlike in the Arithmetic and Algebra setups, the proposer is also asked to generate five unit
tests, and the solver reward is the fraction of unit tests that it passes (0, 0.2, 0.4, 0.6, 0.8, or 1). The
proposer reward is 1 if the solver reward is not either 0 or 1, which would indicate that the problem
is either too easy or too difficult. To evaluate the coding ability of the model, we evaluate on a subset
of the Codeforces4 test set. containing 123 examples (specifically, the ones from the Eurus-2 (Cui
et al., 2025) dataset). We run our experiments with Qwen2.5-Coder-3B-Instruct.

5.2 MAIN RESULTS

Table 1 shows results on the respective test sets for Arithmetic, Algebra, and Coding. Without any
external data, we can improve the accuracy of Qwen2.5-3B-Instruct by 14% on Arithmetic and 16%
on Algebra, of Qwen2.5-Coder-3B-Instruct by 7% on Coding. Furthermore, we also compare to a
format reward baseline, which gives a reward of 1 to the solver if the format is correct and 0 other-
wise (i.e., only teaches correct formatting), instead of the majority voting reward. The results show
a significant performance improvement over this baseline, which indicates that these are genuine

3https://github.com/Jiayi-Pan/TinyZero
4https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

gains in reasoning ability and the model is not merely learning to format the answer correctly. The
format reward is pertinent to Arithmetic and Algebra since the model is expected to put its final
numerical answer in a specific format, but is not relevant for coding since the expected solution is
long-form text. We show additional results with Llama models in the Appendix.

Table 1: Test set accuracy for Qwen2.5-3B-Instruct with and without self-play and comparison to
the format reward baseline. The Qwen2.5-Coder-3B-Instruct model is used for coding. The best
results are indicated in bold and the results show standard deviations across three training runs.

Multiplication Lin. Eqns. Codeforces

Qwen2.5-(Coder)-3B-Instruct 0.791 0.440 0.320
+ self-play 0.948± 0.009 0.600± 0.010 0.391± 0.019
+ self-play (format reward) 0.826± 0.079 0.553± 0.015 N/A

5.3 QUALITATIVE SAMPLES

In this subsection, we study the qualitative behavior of the model. Table 2 shows samples from the
Arithmetic task. At step 0, the model outputs a simple arithmetic problem 563+247− 189, but due
to the proposer update, it learns to gradually increase the difficulty of its problems. At step 10, it
generates 673 − 145 + 98 × 2 ÷ 7, and at step 20, it generates 384 ÷ (52 × 2) + 73 − 111. These
arithmetic problems have more terms and involve more combinations of arithmetic expressions, so
the model must improve its reasoning abilities in order to solve them. Although the test set consists
only of three-digit multiplication problems, training on a wide diversity of self-generated problems
is indeed beneficial. See Table 3 for samples from the Coding task. As training progresses, the
model learns to generate more interesting and complex problems. In the beginning, it generates very
easy problems which can be solved in one line, such as squaring each element of a list. At step 20,
it learns to generate an interesting problem of finding the longest contiguous subarray with unique
elements. Although we instructed the model to generate problems where the input is a list, one could
imagine that this approach could generalize to a wider range of data structures and algorithms.

5.4 PROPOSER UPDATE FREQUENCY

A key hyperparameter in our approach is how often to update the proposer. If it is never updated
or updated infrequently, then the model might not learn to generate interesting enough problems.
If it is updated too often, the solver might not have enough of a chance to improve on each set of
problems and training might be unstable. We study this in Table 4, which shows the performance
as we varied the update frequency of the proposer. Overall, we found that updating it every 5 steps
worked well across all of our evaluation setups – a good balance between encouraging the proposer
to generate more interesting problems and still allowing the solver to make progress. Furthermore,
updating the proposer every 5 or 10 steps results in lower variance across runs.

5.5 ENCOURAGING DATA DIVERSITY

A key consideration when asking the model to generate its own data is how to encourage diversity.
In our approach, we generate a single problem at each step using the proposer, and we find that this
incremental strategy is sufficient to maintain diversity throughout training. As an alternative, we
also explored generating all problems prior to training. Specifically, we generated 16 problems per
inference call (since it may be difficult to fit all problems within a reasonable context length) and
repeated this procedure 400 times, yielding a dataset of 6,400 questions. We explicitly instructed
the model via prompting to ensure that the generated problems spanned a wide range of difficulty,
from easy to hard. However, as shown in Figure 2, this pre-generated dataset leads to a noticeable
reduction in diversity, ultimately impairing learning on the Arithmetic task. To better understand
this phenomenon, we analyzed the generated questions using PCA, which revealed that problems
generated online with proposer updates exhibit greater diversity compared to those produced via pre-
generation. We hypothesize that models may struggle to operationalize abstract instructions such as
to generate “diverse” or “difficult” purely from prompting. Instead, they appear to benefit from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Samples from the model over the course of training for the Arithmetic task. The model
gradually generates more challenging problems, without making them excessively difficult.

(Step 0) Proposer 563 + 247− 189

(Step 0) Solver <think> Let’s break down the problem step by step:
First, add 563 and 247: - 563 + 247 = 810
Next, subtract 189 from the result: - 810− 189
To perform 810− 189, I will subtract the numbers step by step:
- Subtract the units place: 0 − 9, so we need to borrow 1 from the tens
place.
- After borrowing, this becomes 10− 9 = 1.
- Now, the tens place value reduces by 1 (from 1 to 0), and we bring
down the next digit (8). Since 0 − 8 is not possible, we borrow 1 from
the hundreds place.
- After borrowing, this becomes 10− 8 = 2.
- Now the hundreds place reduces by 1 (from 8 to 7), and we subtract:
7− 1 = 6.
Putting it together, we get 810− 189 = 621. </think>
<answer> 621 </answer>

(Step 10) Proposer 673− 145 + 98× 2÷ 7

(Step 10) Solver Let’s solve the arithmetic problem step by step.
<think> First, we need to follow the order of operations (PEM-
DAS/BODMAS rules), which stands for Parentheses/Brackets, Expo-
nents/Orders, Multiplication and Division from left to right, Addition
and Subtraction from left to right.
The expression is 673− 145 + 98× 2÷ 7.
1. Calculating the Multiplication and Division:
- First, perform 98× 2 = 196
- Then, 196÷ 7 = 28
Now the expression simplifies to: 673− 145 + 28
2. Perform Addition and Subtraction (left to right):
- 673− 145 = 528
- 528 + 28 = 556 </think>
<answer> 556 </answer>

(Step 20) Proposer 384÷ (52× 2) + 73 − 111

(Step 20) Solver <think> Let’s solve the expression step by step:
1. Evaluate the parentheses: 52× 2 = 104
2. Now the expression becomes: 384÷ 104 + 73 − 111
3. Perform the division: 384÷ 104 ≈ 3.69; taking integer part gives 3
4. Now we have: 3 + 343− 111 since 73 = 343
5. Perform the addition and subtraction: 3 + 343 = 346, 346 − 111 =
235 </think>
<answer> 235 </answer>

a quantitative, adaptive notion of difficulty provided by the asymmetric self-play process, which
continuously updates the proposer’s problem distribution in response to the solver’s capabilities.

6 LIMITATIONS AND FUTURE WORK

While our method requires less manual intervention compared to traditional systems, it does not
eliminate prompt tuning entirely. In practice, we found that prompt iteration was necessary to con-
strain the generation space appropriately and to ensure that outputs adhered to our expected for-
matting. Although we avoided extensive tuning to preserve generality as much as possible, even
minimal manual iteration introduces a bottleneck and potential source of bias. In the future, one

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Samples from the model over the course of training for the Coding task. The model
gradually generates more challenging problems, without making them excessively difficult.

(Step 0) Proposer You are given a list of integers. Write a program that reads the list and
returns a new list containing the square of each integer in the original
list.

(Step 0) Solver

Read input from the user
input_string = input()
Split the input string into a list of strings
input_list = input_string.split()
Convert each string to an integer and store in a list
int_list = list(map(int, input_list))
Calculate the square of each integer
squared_list = [x**2 for x in int_list]
Print the squared list as a space-separated string
print(’ ’.join(map(str, squared_list)))

(Step 10) Proposer You are given a list of integers. Write a program that reads the list and
returns the sum of all the even numbers in the list.

(Step 10) Solver

Read the input line of integers
input_line = input().split()
Initialize the sum of even numbers
sum_even = 0
Iterate over each integer in the input list
for number in input_line:

Convert the string number to an integer
num = int(number)
Check if the number is even
if num % 2 == 0:

Add the even number to the sum
sum_even += num

Print the sum of even numbers
print(sum_even)

(Step 20) Proposer You are given a list of integers. Write a program that reads the list and
returns the length of the longest contiguous subarray with all unique
elements.

(Step 20) Solver

def longest_unique_subarray(nums):
Initialize variables to track the maximum length and the

current start index
max_length = 0
current_start = 0
Dictionary to store the last seen index of each element
last_seen = {}
Iterate through the list with the current index as end
for current_end, num in enumerate(nums):

If the element is seen and the last seen index is
greater than or equal to the current start

if num in last_seen and last_seen[num] >= current_start:
Move the start index to one position ahead of the

last seen index of the current element
current_start = last_seen[num] + 1

Update the last seen index of the current element
last_seen[num] = current_end
Update the maximum length if the current subarray is

longer
max_length = max(max_length, current_end - current_start +

1)
Return the length of the longest subarray with unique

elements
return max_length

Read the input and convert it to a list of integers
input_list = list(map(int, input().split()))
Call the function and print the result
print(longest_unique_subarray(input_list))

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Test set accuracy for self-play with various proposer update frequencies. The best results
are indicated in bold and the results show standard deviations across three training runs.

Multiplication Lin. Eqns. Codeforces

Qwen2.5-(Coder)-3B-Instruct 0.791 0.440 0.320
frequency = 1 0.937± 0.019 0.556± 0.051 0.375± 0.050
frequency = 5 0.948± 0.009 0.600± 0.010 0.391± 0.019
frequency = 10 0.951± 0.012 0.546± 0.005 0.324± 0.014
frequency = ∞ (never) 0.934± 0.025 0.563± 0.023 0.343± 0.022

could automate this process via a system that can autonomously evolve its own prompting strategy.
Furthermore, currently there is no safeguard on the model-generated questions to ensure that they
are reasonable, safe, relevant, or interesting. A promising avenue of future might work might be to
prompt the LLM to filter or score responses by these characteristics. In addition, our method, like
all unsupervised approaches, is fundamentally constrained by the absence of ground-truth rewards
or perfect verifiers. In the absence of labeled data, the model must rely solely on internal heuris-
tics, such as self-consistency or majority voting, to assess correctness. This introduces a risk of
reinforcement of systematic errors: if the model repeatedly converges on an incorrect solution that
is internally self-consistent, there is no mechanism for correction without external guidance. One
possible direction to address this is to incorporate labeled datasets in a semi-supervised setting.

Problem Diversity Test Accuracy (Multiplication)

Figure 2: Comparison of generating all problems at once vs one at a time using the proposer.

7 CONCLUSION

This paper presents a step toward autonomous language model improvement by introducing Self-
Questioning Language Models, a self-improving framework that requires no curated training data.
We leverage the intrinsic capabilities of large language models by casting them in dual roles of pro-
poser and solver within an asymmetric self-play setup. By rewarding the generation of problems that
are neither too easy nor too difficult, and by reinforcing answers via internal agreement, we demon-
strate that models can meaningfully improve their reasoning skills via self-generated content alone.
Our experiments across arithmetic, algebra, and code generation tasks show that language models
can bootstrap stronger problem-solving capabilities without access to external data. This framework
opens a path for fully self-supervised model learning. Our method is not without limitations: prompt
design remains a source of hand-engineering, and without external grounding, models can reinforce
their own errors. Addressing these issues offers promising directions for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We described the experimental setup in Section 5.1 and provided a list of hyperparameters in the
Appendix. Furthermore, we have submitted the source code as supplementary material.

REFERENCES

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli
Song, and Dacheng Tao. Serl: Self-play reinforcement learning for large language models with
limited data. arXiv preprint arXiv:2505.20347, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Mickel Liu, Liwei Jiang, Yancheng Liang, Simon Shaolei Du, Yejin Choi, Tim Althoff, and Natasha
Jaques. Chasing moving targets with online self-play reinforcement learning for safer language
models. arXiv preprint arXiv:2506.07468, 2025a.

Zhengzhong Liu, Bowen Tan, Hongyi Wang, Willie Neiswanger, Tianhua Tao, Haonan Li, Fajri
Koto, Yuqi Wang, Suqi Sun, Omkar Pangarkar, et al. Llm360 k2: Building a 65b 360-open-
source large language model from scratch. arXiv preprint arXiv:2501.07124, 2025b.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025c.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

Mihai Nadas, Laura Diosan, and Andreea Tomescu. Synthetic data generation using large language
models: Advances in text and code. arXiv preprint arXiv:2503.14023, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique P d O Pinto, et al. Asymmetric self-play for
automatic goal discovery in robotic manipulation. arXiv preprint arXiv:2101.04882, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. Advances in Neural Information Processing Systems,
37:55249–55285, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? arXiv preprint arXiv:2505.21444, 2025.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. arXiv preprint
arXiv:2412.02674, 2024.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Yanming Wan, Jiaxing Wu, Marwa Abdulhai, Lior Shani, and Natasha Jaques. Enhancing person-
alized multi-turn dialogue with curiosity reward. arXiv preprint arXiv:2504.03206, 2025.

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei Li, Zongye Zhang, Chenkai Zhang, Xiaoyu
Wu, Qiqi Zhan, Qingjie Liu, et al. A survey on data synthesis and augmentation for large language
models. arXiv preprint arXiv:2410.12896, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
Yao, Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. arXiv
preprint arXiv:2506.18254, 2025b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025a.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025b.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. arXiv preprint arXiv:2506.10943, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We build our implementation on top of verl (Sheng et al., 2024). A list of hyperparameters can be
found in Table 5. For all experiments, we report the best test accuracy achieved over 100 training
steps, averaged over three training runs.

Table 5: Hyperparameters of SQLM.

Hyperparameter Value

Max prompt length 512
Max response length 1024 (Arithmetic)

3072 (Algebra)
512 (Coding)

Batch size 64
Policy mini batch size 32
Policy micro batch size per GPU 8
Learning rate 1× 10−6

Weight decay 0.01
Learning rate warmup Constant
Optimizer Adam
Temperature 1.0
Top k -1
Top p 1
Number of samples per example n 4
Remove padding True
Use KL loss True
KL loss coefficient 0.001
Clip ratio 0.2
Grad clip 1.0
Proposer update frequency 5

A.2 MORE RESULTS

We use Qwen2.5-3B-Instruct for our experiments as it is a small model which still has strong math
and coding capabilities, as well as good instruction-following capabilities (to enable the proposer to
generate reasonable questions). To show the generality of our asymmetric self-play framework, we
also show results with Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct on Codeforces in Table 6.

Table 6: Test set accuracy for Qwen2.5-Coder-3B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-
8B-Instruct, with and without self-play. The best results are indicated in bold and the results show
standard deviations across three training runs.

Codeforces

Qwen2.5-Coder-3B-Instruct 0.320
+ self-play 0.391± 0.019

Llama-3.2-3B-Instruct 0.211
+ self-play 0.243± 0.026

Llama-3.1-8B-Instruct 0.231
+ self-play 0.382± 0.023

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 PROMPTS

The prompts used for each task are shown in Table 7. For the Algebra task, we additionally en-
couraged diversity by asking the model to generate three problems and selecting the last one. For
the Coding task, we generated random numbers to show the model the expected format for the test
cases. This was done only to make processing of the inputs and outputs easier in the loop, and we
intentionally did not give an example problem in order to not bias the proposer.

Table 7: Prompts used for each task.

Arithmetic

"""Generate a three-digit arithmetic problem (up to three digits). Make sure
the numbers are not similar and appear unpredictable. Do not solve the
problem."""

Algebra

"""Create three diverse, challenging algebra word problems that involve linear
equations with up to two variables. Use only integers for all coefficients
. The problem should be solvable with a unique solution where each
variable has a rational (integer or fractional) value. Do not solve the
problems. Then select the last one and put it in the format: Selected
Question: <question>"""

Coding

"""Generate an original programming problem similar in style and difficulty to
LeetCode easy problems.

Requirements:
- The problem must take a single line of space-separated integers as input and

produce either a single integer or a space-separated list of integers as
output.

- Provide 5 test cases in the exact format: INPUT_STRING ||| OUTPUT_STRING (
no explanations, no extra text, OUTPUT_STRING must include the trailing
’\\n’ if needed).

Example Output Format:
Problem Description:
You are given a list of integers. Write a program that reads the list and

returns <expected output>.

Input:
A single line contains space-separated integers a_1, a_2, ..., a_n (-1000 <=

a_i <= 1000).

Output:
Print a single integer <expected output>.
Test Cases:
8 -3 7 0 2 ||| 14
-2 5 -4 3 ||| 2
10 -10 ||| 0
4 ||| 4
-5 -1 -4 ||| -10"""

14

	Introduction
	Related Work
	Reinforcement Learning for Language Models
	Unsupervised Rewards for Reasoning
	Exploration
	Synthetic Data Generation

	Preliminaries
	Reinforcement Learning for Language Models
	Asymmetric Self-Play

	Method
	Minimax Objective
	Reward Functions

	Experiments
	Setups
	Main Results
	Qualitative Samples
	Proposer Update Frequency
	Encouraging Data Diversity

	Limitations and Future Work
	Conclusion
	Reproducibility Statement
	Appendix
	Implementation Details
	More Results
	Prompts

