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ABSTRACT

Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented
Dialog Systems (TODs) to generalize to new domains without costly data anno-
tation. A central challenge lies in the semantic misalignment between dynamic
dialog contexts and static prompts, leading to inflexible cross-layer coordination,
domain interference, and catastrophic forgetting. To tackle this, we propose Hi-
erarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that
enhances zero-shot slot inference through robust prompt alignment. It features a
hierarchical LoRA architecture for dynamic layer-specific processing (combining
lower-layer heuristic grouping and higher-layer full interaction), integrates Spec-
tral Joint Domain-Slot Clustering to identify transferable associations (feeding
an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD
Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on
multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms
baselines, achieving SOTA in zs-DST. Code is available at Anonymous Github.

1 INTRODUCTION

Task-Oriented Dialog Systems (TODs) help users complete specific tasks, such as restaurant reser-
vations or taxi inquiries, through multi-turn natural language interactions Luo et al. (2024); Wang
et al. (2024d). A core component enabling this functionality is Dialog State Tracking (DST), which
dynamically parses user inputs into structured slot-value pairs to infer intents and resolve ambigui-
ties. However, zero-shot DST (zs-DST) faces a challenge: semantic misalignment between dynamic
dialog contexts and static prompts, hindering adaptation to new domains.

To extend DST modules to unseen domains by leveraging existing knowledge and address data
scarcity, zs-DST has emerged as a promising paradigm. While approaches include data augmenta-
tion He et al. (2025) and prompt engineering Liu et al. (2025b); Wang et al. (2024c); Aksu et al.
(2023), parameter-efficient fine-tuning (PEFT), particularly Low-Rank Adaptation (LoRA) Wang
et al. (2024a); Occhipinti et al. (2024), has gained prominence for zs-DST Yi et al. (2025); Aksu
et al. (2023). LoRA freezes most pre-trained model parameters, updating only low-rank external
matrices to enable efficient cross-domain generalization. Recent multi-LoRA variants, such as Du-
alLoRA Luo et al. (2024), CoLA Zhou et al. (2025), HydraLoRA Tian et al. (2024), MTL-LoRA
Yang et al. (2025), enhance adaptability through specialized adapters or cross-task collaboration.
Despite these advances, structural limitations in context-prompt alignment persist, motivating our
hierarchical approach. Despite these advancements, current LoRA based zs-DST methods face lim-
itations. Data augmentation and prompt engineering approaches manipulate external data or rely on
shallow input adjustments, which may not adequately cover a broad range of slot types or capture
the nuanced complexities of dynamic dialog contexts. Similarly, PEFT methods rely on shallow
input adjustments or local parameter modifications, which limits their adaptability to complex and
dynamic dialog contexts. Specifically, a single LoRA project features different tasks in the same
low-dimensional space. This can lead to intertask interference, hinder knowledge separation, and
limit multitask adaptability. Although Multi-LoRA designs like DualLoRA Luo et al. (2024), CoLA
Zhou et al. (2025), HydraLoRA Tian et al. (2024), and MTL-LoRA Yang et al. (2025) have at-
tempted to mitigate these issues by introducing multipath adapters or exploring adaptive cross-task
collaboration, limitations persist in practical applications. These limitations stem largely from a
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Figure 1: Three critical challenges motivating our work: (1) Architectural rigidity hinders cross-
layer coordination in Transformers, limiting fine-grained semantic alignment; (2) Coupling of
domain-shared and domain-specific semantics causes cross-domain confusion; (3) Random param-
eter initialization distorts pre-trained knowledge, exacerbating catastrophic forgetting.

structural mismatch between dynamic dialog contexts and static prompts (as illustrated in Fig.1),
manifesting itself in three critical research challenges: (RQ1) Rigid hierarchical designs hinder ef-
fective cross-layer weight sharing, limiting fine-grained semantic alignment in deeper layers. (RQ2)
A single adaptation matrix conflates domain-agnostic and domain-specific signals, causing seman-
tic confusion between domains. (RQ3) The use of random initialization for LoRA parameters can
distort pre-trained knowledge and exacerbate catastrophic forgetting.

To address the three limitations, we propose Hierarchical Collaborative Low-Rank Adaptation (Hi-
CoLoRA), a novel framework inspired by DualLoRA’s prompt augmentation Luo et al. (2024) and
CoLA’s multi-LoRA grouping Zhou et al. (2025). Departing from “uniform layer processing”, it
introduces: (1) A Hierarchical Collaborative Architecture with lower-layer heuristic grouping and
higher-layer full interaction, resolving RQ1 via dynamic cross-layer coordination; (2) Spectral Joint
Clustering and Adaptive Fusion disentangling domain-shared and specific semantics addressing
RQ2; (3) Semantic-Enhanced SVD Initialization preserving pre-trained knowledge against RQ3.

Experiments on MultiWOZ and SGD datasets establish new SOTA results, achieving 5.4% and 9.4%
JGA gains over DualLoRA, validating our framework’s success in fundamentally addressing RQ1-3
through hierarchical adaptation, semantic disentanglement and knowledge preservation, especially
in high-overlap domains and sparse slots.

2 RELATED WORK

zs-DST and Goal Accuracy. zs-DST is fundamental to TODs, with Joint Goal Accuracy (JGA) and
Average Goal Accuracy (AGA) as a key metric to evaluate performance. Early methods like TRADE
Wu et al. (2019) and SUMBT Lee et al. (2019) laid the foundations for cross-domain generalization
but relied on task-specific architectures. With pre-trained language models (PLMs), SimpleTOD
Hosseini-Asl et al. (2020) reformulated DST as sequence generation, Yi et al. (2025) enhanced the
few-shot capability through the enhancement of intent-driven dialog information. Recent advances
in zs-DST include Prompter Aksu et al. (2023) with learnable prompts, DualLoRA Luo et al. (2024)
with dual-path adapters and LUAS Wang et al. (2024d) with synthetic data, though these still face
challenges in cross-layer semantic alignment and domain knowledge separation. HiCoLoRA fun-
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damentally optimizes these challenges through its hierarchical cross-layer coordination and spectral
domain-slot disentanglement,

Parameter-Efficient Fine-Tuning with LoRA. LoRA is an effective method for PEFT Zhang et al.
(2025); Liu et al. (2025a); Jabbarvaziri & Lampe (2025); Zhang & Pilanci (2025); Wang et al.
(2024b). For zero-shot scenarios, DualLoRA Luo et al. (2024) mitigates context-prompt misalign-
ment via dual-path designs, while HydraLoRA Tian et al. (2024) uses MoE routers for subtask de-
coupling. Multitask adaptations such as CoLA Zhou et al. (2025) and MTL-LoRA Yang et al. (2025)
enhance cross-task collaboration, and RoSA Nikdan et al. (2024) integrate routing/sparsity for ef-
ficiency. Initialization strategies such as PiSSA Meng et al. (2024), MiLoRA Zhang et al. (2024),
improve knowledge preservation, but few address semantic alignment in dynamic dialog contexts.
HiCoLoRA directly addresses this gap through hierarchical cross-layer semantic coordination and
adaptive domain-slot disentanglement, enabling alignment in dynamic dialog contexts.

Layer-Specific Algorithms in Transformers. Xie et al. (2025); Wang et al. (2025); Liu et al.
(2024); Du et al. (2020) all demonstrate that the lower layers handle basic and detailed information,
such as lexical semantics, grid features, and rapid computations, while the upper layers focus on
abstract and task-oriented processing, such as prediction, abstract planning, and semantic integra-
tion. Algorithm designs targeting this characteristic have improved task performance. Layer-specific
algorithms also include Split Attention (partitioning attention across layers) Lin et al. (2025), Hier-
archical LoRA (applying hierarchical LoRA patterns) Xiao et al. (2024); Guo et al. (2024), Dynamic
Layer Replace (selective layer substitution) Xiong et al. (2024) and attention head pruning within
layers He & Lin (2025); Zayed et al. (2024). These methods leverage the principle of unequal layer
contributions across tasks, achieving computational or parameter reductions while improving met-
rics. Critically, they fail to resolve issues such as dynamic context-prompt misalignment induced
by layer-specific adaptations and the lack of coordinated cross-layer interactions needed for seman-
tic coherence, which challenges complex scenarios in zs-DST. HiCoLoRA thus aims to bridge this
gap by introducing mechanisms for harmonizing hierarchical layer-wise adaptations and ensuring
consistent cross-layer alignment essential for robust zs-DST performance.

3 METHOD

We propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA, Fig. 2), a method that
enhances zero-shot slot inference in unseen domains through improved prompt alignment. HiCoL-
oRA employs a hierarchical architecture that moves beyond uniform layer-wise processing, dynami-
cally integrating domain-agnostic (UniRep-LoRA) and domain-specific (SemAdapt-LoRA) seman-
tics via adaptive fusion. Additionally, spectral clustering and SemSVD-Init optimize domain-slot
representations to strengthen zero-shot generalization.

3.1 UNIVERSAL REPRESENTATION LORA (UNIREP-LORA)

UniRep-LoRA is designed to efficiently capture domain-agnostic semantic information from the
dialog context xur, such as universal slots for time and location. By freezing the parameters of the
pre-trained model W0 and updating only the low-rank matrices Bur and Aur:

hur = W0xur +BurAurxur. (1)

UniRep-LoRA and SemAdapt-LoRA are combined via adaptive linear fusion, balancing general and
domain-specific representations to mitigate context-prompt misalignment for zero-shot scenarios.

3.2 SEMANTIC ADAPTATION LORA (SEMADAPT-LORA)

In contrast to UniRep-LoRA, which focuses on universal features, SemAdapt-LoRA is specifically
tailored to optimize domain-specific prompts by dynamically adjusting their influence across differ-
ent domains (relating to RQ2). To enable this domain-specific optimization, we introduce a Multi-
Head Attention module: high-frequency dialog words from the train dataset serve as Q, while slot
descriptions function as K and V , with the output denoted as xsa. Different attention heads al-
low for the capture of diverse semantic correlations between these two components. By improving
the semantic alignment between high-frequency dialog information and slot descriptions, this setup

3
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Figure 2: Overview of the HiCoLoRA framework, which combines: (1) UniRep-LoRA and
SemAdapt-LoRA with Adaptive Linear Fusion balancing domain-agnostic and domain-specific fea-
tures; (2) Spectral Joint Domain-Slot Clustering disentangling domain semantics to guide fusion;
(3) SemSVD-Init preserving pre-trained knowledge via singular value modulation. These synergis-
tically address context-prompt misalignment, enhancing zero-shot slot inference.

provides SemAdapt-LoRA with more effective local semantic features as input, thus supporting its
hierarchical collaborative mechanism to improve zero-shot slot inference performance. To achieve
such fine-grained adaptive prompt processing, we further introduce two sets of trainable matrices:
Am

sa|Mm=1 for domain common prompt encoding and Bn
sa|Nn=1 for cluster-specific domain-slot recon-

struction. The former compresses high-dimensional prompt semantics into a low-rank space, while
the latter reconstructs low-rank features based on specific domain semantics, transforming general
features into domain-specific representations. In detail, M is the number of clusters of domains in
domain clusters and N is the number of clusters of domains.

To ensure effective collaboration between Am
sa|Mm=1 and Bn

sa|Nn=1, we propose a novel cross-layer
collaborative module. Tailored to RQ1, it employs two interaction strategies across Transformer
layers, aligned with their semantic roles: Lower layers encode Local Semantic Features serving as
semantic atoms for higher layers, while higher layers model Global Semantic Features and guide
Lower layer feature extraction via attention suppressing irrelevant associations. This paradigm tran-
scends traditional Transformers’ uniform layer processing, forming a hierarchical semantic chain
from local associations to global intent modeling.

Heuristic Grouping. For lower Transformer layers, tasked with encoding local semantic atoms,
heuristic grouping is favored for its efficiency. It clusters semantically similar parameters to avoid
irrelevant interactions, aggregating coherent local features that serve as building blocks for higher
layers, laying a precise foundation for global processing.

hsa = W l
0xsa +NB∗

saMA∗
saxsa, (2)

where W l
0 denotes lower-layer weights. The optimal algorithm for selecting matrices A∗

sa and
B∗

sa is based on calculating the cosine similarity between the average vector of the slot clusters
and the slot prompts. Specifically, A∗

sa refers to the matrix A corresponding to the category with
the highest similarity between the embedding groups xsa and the domain clusters DM , while B∗

sa
denotes the matrix B associated with the category showing the highest similarity between xsa and
the slot prompt clusters XN . During training, differentiable selection is achieved via Gumbel-
Softmax based on cluster similarity, while softmax is used to accelerate during inference.
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Full Collaboration. Higher layers model global semantic connections through full collaboration,
enabling comprehensive interactions between all encoded local atoms to capture implicit associa-
tions such as the link between train-arriveby and destination. This process, combined with attention-
guided noise suppression from lower layers, resolves fine-grained alignment and enhances zero-shot
generalization. The equation is shown below:

hsa = W h
0 xsa +

N∑
n=1

Bn
sa

M∑
m=1

Am
saxsa, (3)

where W h
0 denotes high-layer weights.

3.3 INFERENCE EFFICIENCY ANALYSIS

A legitimate concern with multi-branch LoRA designs is potential inference latency. HiCoLoRA
addresses this through a precomputation and merging strategy that ensures inference efficiency com-
parable to standard LoRA.

UniRep-LoRA Simplicity: The UniRep-LoRA module (Eq. 1) maintains a single set of Aur and
Bur matrices throughout.

Heuristic Grouping: For lower layers employing heuristic grouping (Eq. 2), only a single optimal
pair A∗

sa and B∗
sa is selected, requiring just one matrix multiplication per forward pass.

Full Collaboration: During training, SemAdapt-LoRA employs multiple Am
sa and Bn

sa matrices to
enable fine-grained semantic adaptation. During inference, we precompute the collective low-rank
contribution of all matrix pairs, and the SemAdapt-LoRA output in full collaboration layers (Eq. 3)
can be reorganized by computing aggregated matrices:

Atotal =

M∑
m=1

Am
sa, Btotal =

N∑
n=1

Bn
sa (4)

yielding the equivalent computation:

hsa = W h
0 xsa +BtotalAtotalxsa (5)

This transformation reduces the computational overhead from O(M · N) matrix multiplications to
merely two matrix multiplications, identical to standard LoRA.

The matrix additions involved in precomputation O(r · d) are negligible compared to matrix mul-
tiplications O(d2). In practice, we precompute all low-rank update terms during model export and
absorb them into the base model weights, eliminating any additional inference overhead. Conse-
quently, despite its hierarchical architecture, HiCoLoRA maintains inference latency on par with
standard LoRA implementations.

3.4 ADAPTIVE LINEAR FUSION MECHANISM

We introduce an adaptive linear fusion mechanism to merge the two LoRA modules. A learnable gat-
ing coefficient β, trained end-to-end, balances general and semantically adaptive features. This al-
lows flexible integration of multi-level semantics based on dialog contexts and domain-slot prompts,
more effectively resolving dynamic-static prompt mismatches than fixed-coefficient weighting.

hfinal = βhur + (1− β)hsa, β ∈ (0, 1). (6)

3.5 SPECTRAL CLUSTERING OF DOMAINS AND SLOT PROMPTS

The Spectral Joint Domain and Slot Clustering mechanism identifies semantic relatedness by lever-
aging commonalities across domains and slot prompts. Domains often exhibit categorical abstrac-
tion, such as train and taxi belonging to transportation, or hotel and restaurant representing service-
oriented establishments. Slot prompts are formatted as structured {domain-slot: question} pairs, for
instance {train-arriveby: what is the arrival time of the train the user is interested in?}, which helps
to uncover semantic commonalities among slots from different domains. Prompts like train-arriveby
and taxi-arriveby both express temporal attributes despite originating in distinct domains.

5
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The T5 encoder converts these domain names and extended slot prompts into dense vector repre-
sentations, followed by spectral clustering via Laplacian matrix eigendecomposition. The optimal
number of clusters (M for domains, N for slot prompts) is determined by maximizing the silhouette
coefficient, producing clusters DM and XN .

3.6 SEMANTIC-ENHANCED SVD INITIALIZATION

Semantic-Enhanced Singular Value Decomposition Initialization (SemSVD-Init) is an approach to
parameter initialization for both UniRep-LoRA and SemAdapt-LoRA modules. Unlike Kaiming
LoRA initialization, which can disrupt pre-trained semantic structures, or methods like PiSSA Meng
et al. (2024) that lack explicit task-specific alignment (related to RQ3), SemSVD-Init directly ad-
dresses preserving pre-trained knowledge while enhancing domain and slot related semantics, prim-
ing the model for effective zero-shot transfer.

SemSVD-Init aligns singular values with the clustered semantic space, and singular directions as-
sociated with universal semantics are amplified while those that capture domain-specific noise are
suppressed. Taking the UniRep-LoRA module for example, the initialization process begins by
performing SVD on the model weight matrix W0:

W0 = UrΣrV
T
r . (7)

Subsequently, a correlation matrix R is computed by cosine similarity between the right singular
vectors Vr and the cluster embeddings T5en(XN ), where T5en denotes the embeddings of the en-
coder of the T5 model.

R = cos(Vr,T5en(XN )). (8)

Using these correlations, the singular values are enhanced on the basis of maximum category rele-
vance for each vector.

Se = diag
(
σ1 · ReLU(1 + λR1), . . . , σr · ReLU(1 + λRr)

)
, (9)

where Rk is the relevance score for the k-th singular vector, derived from the correlation between
Vr[:, k] and the cluster embeddings, ReLU(x) = max(0, x) to ensure positivity, and λ is a hyper-
parameter. The LoRA matrices are initialized as:

Aur =
√
SeV

T
r ,

Bur = Ur

√
Se.

(10)

Finally, the residual weight matrix Wres is adjusted to preserve key knowledge of the pre-trained
model and avoiding distortion of its semantic structure.

Wres = W0 −BurAur. (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. We conducted experiments on two of the most prominent multi-domain TOD benchmark
datasets (details in Appendix B.1). The MultiWOZ 2.1 dataset is a richly annotated corpus com-
prising more than 10,000 human-human written dialogs spanning multiple domains and topics. The
Schema Guided dialog (SGD) dataset contains more than 20,000 dialogs covering 26 services across
more than 20 domains. The data splitting strategy strictly segregates training and test domains.

Baseline. To evaluate the generalizability of the proposed HiCoLoRA method, we conduct a com-
parison against representative baselines and SOTA approaches (details in Appendix B.2, categorized
into three groups: Traditional Methods including TRADE Wu et al. (2019), SGD-baseline Rastogi
et al. (2019), MA-DST Kumar et al. (2020) and Seq2Seq-DU Feng et al. (2021); Pre-trained Model
Fine-Tuning Approaches such as SUMBT Lee et al. (2019), GPT2-DST Li et al. (2021a), Trans-
ferQA Li et al. (2021b), T5DST Lin et al. (2021) and SlotDM-DST Wang et al. (2022); and Previous
Zero-Shot SOTA Methods comprising Prompter Aksu et al. (2023), DCC Wang et al. (2023) and

6
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Method Year Base Model Attraction Hotel Restaurant Train Taxi Average

TRADE 2019 customized seq2seq 20.1 14.2 12.6 22.4 59.2 25.7
MA-DST 2020 TRADE 22.5 16.3 13.6 22.8 59.3 26.9
SUMBT 2019 BERT-base 22.6 19.1 16.5 22.5 59.5 28.0

GPT2-DST 2021 GPT2-base 23.7 18.5 21.1 24.3 59.1 29.3
T5DST 2021 T5-small 31.9 20.7 20.1 28.8 64.1 33.1

SlotDM-DST 2022 T5-small 33.9 18.9 20.8 37.0 66.3 35.4
T5DST* 2021 PPTOD-small 35.5 20.0 25.3 35.3 65.6 36.4
Prompter 2023 PPTOD-small 35.8 19.2 26.0 39.0 66.3 37.2

DCC 2023 T5-small 35.8 24.8 22.9 40.2 65.9 37.9
DualLoRA (Prev. SOTA) 2024 PPTOD-small 37.1 18.9 27.9 42.4 67.2 38.7

HiCoLoRA (Ours) 2025 PPTOD-small 38.9 20.4 31.0 44.9 68.6 40.8

% Gain vs DualLoRA +4.9 +7.9 +11.1 +5.9 +2.1 +5.4

Table 1: Zero - shot JGA (%) on the MultiWOZ dataset with relative improvement over previous
SOTA. All results of baselines were reported from original papers. T5DST* was excerpted from
Prompter Aksu et al. (2023).

DualLoRA Luo et al. (2024). Additionally, comparisons with recent advanced LoRA variants and
larger-scale LLMs are included to thoroughly assess scalability and generalization.

Metrics. We evaluate all models using Joint Goal Accuracy (JGA) and Average Goal Accuracy
(AGA). JGA measures the rate of turns with all slots exactly matched, indicating system-level relia-
bility. AGA calculates the ratio of correctly predicted to total slots, accounting for missed true slots
and errors, reflecting fine-grained slot recall and local semantic alignment. The metrics’ formulas
and additional experimental details are provided in Appendices B.3 and B.4.

4.2 MAIN REULTS

Performance comparisons on MultiWOZ and SGD benchmarks are presented in Table 1 and 2 (Ta-
ble 2 in Appendix A.1). We have the following observations:

Overall Performance Superiority. HiCoLoRA achieves new state-of-the-art results on both Multi-
WOZ and SGD benchmarks, with an average JGA of 40.8 on MultiWOZ and significant gains across
all SGD domains. This consistent improvement is attributed to architectural advances that address
key limitations of previous approaches: (1) traditional methods rely on rigid feature engineering; (2)
full fine-tuning suffers from catastrophic forgetting; (3) prior SOTA models are limited by shallow
prompting or uniform layer adaptation. HiCoLoRA overcomes these issues via integrated hierarchi-
cal adaptation. Furthermore, the model achieves an AGA of 93.8% on SGD Trains, underscoring
its ability to preserve rare-slot knowledge through SemSVD-Init and maintain semantic specificity
across layers.

Component-Wise Efficacy Validation. HiCoLoRA demonstrates strong performance across di-
verse domain types, attributed to its custom architectural components. In transfer-rich domains
such as Media, the model achieves a JGA of 75.9%, representing a 9.4% improvement over Du-
alLoRA. This gain is facilitated by spectral clustering, which effectively identifies cross-domain
semantic commonalities, exemplified by shared attributes such as genre, thereby disentangling
domain-shared semantics and mitigating signal conflation. In domain-specific regimes such as Ho-
tel, HiCoLoRA attains JGA 20.4%, corresponding to a 7.9% relative improvement. This enhance-
ment stems from the semantic-enhanced singular value modulation within SemSVD-Init, which
preserves sparse slot semantics that are otherwise distorted under random initialization. For context-
sensitive domains like Messaging, where performance is inherently limited by slot boundary ambi-
guities, the adaptive fusion mechanism dynamically balances static prompts against volatile dialog
contexts, yielding a 4.0% gain over the rigid weighting strategy employed by DualLoRA.

Architectural Validation Against Prev. SOTA. The hierarchical design of HiCoLoRA directly
addresses core limitations of DualLoRA. Cross-Layer Rigidity (RQ1): DualLoRA’s uniform pro-
cessing hinders fine-grained alignment. HiCoLoRA’s heuristic grouping (lower layers) and full col-
laboration (higher layers) enable dynamic coordination, boosting Restaurant JGA to +11.1%. Se-
mantic Conflation (RQ2): Where DualLoRA’s single adaptation matrix confuses domain signals,
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spectral joint clustering separates transport domain semantics (Taxi: 44.9 JGA, +2.1% error reduc-
tion). Knowledge Distortion (RQ3): DualLoRA’s random initialization loses rare slot knowledge.
SemSVD-Init preserves pre-trained semantics, critical for Flights’ technical terms JGA +8.1%.

Discussion. HiCoLoRA fundamentally resolves context prompt misalignment via hierarchical adap-
tation, spectral semantic disentanglement, and knowledge preserving initialization. By overcoming
DualLoRA’s structural limitations, our method establishes a new paradigm for zs-DST. Future work
will address extreme sparse slots through domain aware initialization refinements.

4.3 ABLATION STUDY

We conduct an ablation study (Table 6 in Appendex A.5) to assess the contribution of each key
component of HiCoLoRA.

w/o Swap Hierarchical Strategies swap layer-wise strategies, using heuristic grouping in high
layers and full collaboration in low layers. This variant sees an 8.3% drop in the average JGA.
The decline arises because it disrupts synergy: lower layers are designed to capture local semantic
atoms, while higher layers model global intents. Swapping strategies break this division, validating
the assumption that layer-specific roles are critical for performance.

w/o Adaptive Linear Fusion replaces adaptive gating with DualLoRA’s static β = 0.5, causing
a 12.0% JGA drop, notably in Attraction and Train domains. This exacerbates that static weight-
ing cannot dynamically balance UniRep-LoRA (domain-agnostic) and SemAdapt-LoRA (domain-
specific) features across layers. Unlike the adaptive mechanism that mitigates cross-layer semantic
mismatches, static β locks in misalignment, leading to performance drops.

w/o Spectral Joint Cluster discards spectral clustering, retaining the same number of M and N
but without identifying transferable domain-slot associations. Its average JGA drops 7.4%, notably
in Train and Taxi domains. The decline occurs because spectral clustering captures cross-domain
semantic commonalities, such as “arriveby” in trains and taxis sharing temporal attributes, to guide
effective feature fusion. Without it, the model fails to leverage transferable associations, weakening
the alignment between domain-slot prompts and dynamic contexts, thus hindering zero-shot gener-
alization.

w/ Kaiming Init use Kaiming initialization for matrix A and zero initialization for matrix B re-
sults 6.6% decreased the average JGA. SemSVD-Init preserves pre-trained semantics by modulating
singular values, thereby suppressing catastrophic forgetting. Without this mechanism, random ini-
tialization induces knowledge distortion and forgetting, preventing the model from retaining critical
semantics and impairing its zero-shot transfer capability.

w/ PiSSA Init use PiSSA initialization, trailing HiCoLoRA by 4.7% but outperforming random
init. PiSSA partially addresses RQ3 but not as effectively: it retains pre-trained knowledge but lacks
alignment of singular values to domain-slot semantics, limiting performance.

w/ MiLoRA Init use MiLoRA initialization, resulting in a significant performance drop. This degra-
dation occurs because the MiLoRA strategy, which is designed to update minor singular compo-
nents, is misaligned with the limited parameter capacity and the flat singular value spectrum of the
T5-small model. Consequently, it fails to preserve crucial pre-trained semantics and severely impairs
the model’s zero-shot transfer capability.

Ablation studies demonstrate that the hierarchical collaborative architecture, adaptive fusion, spec-
tral clustering, and SemSVD-Init components of HiCoLoRA are all indispensable. These compo-
nents synergistically address the three core research questions, outperform baselines in zs-DST, and
thus validate the efficacy of the proposed design.

5 ANALYSIS

This section evaluates HiCoLoRA design choices to validate its mechanisms, including rank sen-
sitivity, high layer ratio, and attention alignment (Figs. 3–5), examining expressiveness balance,
semantic flow optimization, and sustained attention for zero-shot performance.
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Figure 5: Example Attention Maps of the First and Last Transformer Layers in HiCoLoRA.

5.1 MODEL MECHANISM ANALYSIS

Rank Sensitivity: Balance of expressiveness. Fig. 3 shows that the superiority of rank = 8
reflects LoRA principles: the rank must match the semantic complexity. Too low (4) fails to encode
nuanced domain slot distinctions. Too high (16/32) introduces redundancy and dilutes transferable
signals. This aligns with low-rank matrix theory, where rank determines perturbation precision to
pre-trained weights, optimizing zero-shot transfer by balancing parsimony and expressiveness.

High-Layer Ratio: Optimizing Semantic Flow. Fig. 4 indicates that the 50% high-layer ratio
validates cognitive theories of dialog comprehension, requiring balanced local-global integration.
The 0% ratio ignores global intent; 100% dilutes slot-specific cues. HiCoLoRA’s hierarchical design
mirrors bottom-up (local atoms) to top-down (global intent) processing, ensuring coherent semantic
chains, critical to resolving dynamic context-prompt misalignment in zs-DST.

Attention Alignment: Maintaining Semantic Focus. Fig. 5 reveals hierarchical attention evo-
lution: first-layer “local dots” encode discrete context-prompt associations, while last-layer “con-
nected lines” form global semantic chains. This mirrors the layered semantic progression of Trans-
former: lower layers anchor atomic prompt-semantic links, and higher layers integrate into coherent
intent pathways through cross layer optimization. By preserving prompt focus across depths, Hi-
CoLoRA avoids deep-layer attention dilution, maintaining critical alignment for zero-shot transfer.

The experimental results here validate our claims: optimal rank 8 confirms balanced expressiveness,
the 50% high-layer ratio verifies the optimization of semantic flow, and attention evolution demon-
strates effective hierarchical collaboration. These align with the HiCoLoRA design, proving that its
components jointly resolve misalignment.
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5.2 CASE STUDY SUMMARY

Our case study analysis in Appendix C reveals HiCoLoRA’s strengths in handling complex multi-
domain dialogues through hierarchical collaboration and semantic disentanglement. Successful
cases demonstrate robust slot inference in both transfer rich and context sensitive domains. However,
failure patterns highlight areas for future refinement, particularly in highly idiosyncratic domains.

5.3 EXTENDED EXPERIMENTAL ANALYSIS

Scalability Analysis. HiCoLoRA exhibits enhanced scalability in larger datasets: 9.4% average
JGA gain in SGD vs 5.4% in MultiWOZ. This stems from: 1) Semantic regular domains like Me-
dia benefit from spectral clustering’s cross- ervice pattern recognition; 2) Terminology intensive
domains such as Flights leverage SemSVD-Init’s knowledge preservation; 3) Sparsely distributed
slots like hotel-star benefit from hierarchical refinement and singular value modulation.

Extended Comparative Analysis. We conduct extensive comparisons against both recent LoRA
methods and largeer LLMs based approaches. As detailed in Appendix A.2 to A.4, HiCoLoRA
consistently outperforms recent LoRA variants in nearly all domains, achieving the highest aver-
age JGA. This superiority underscores the effectiveness of our hierarchical adaptation and semantic
aware initialization in mitigating cross layer misalignment and knowledge distortion. Furthermore,
when scaled to larger backbone models, HiCoLoRA remains highly competitive with other LLM-
based zs-DST methods, even surpassing the previous SOTA FnCTOD, demonstrating its generaliz-
ability across model scales. These results confirm HiCoLoRA offers a robust and scalable solution
for zero-shot dialog state tracking, effectively balancing performance and parameter efficiency.

Architectural Implications beyond Homogeneous Baselines The comparative analysis with het-
erogeneous methods reveals distinctive advantages of HiCoLoRA’s design philosophy. While LDST
relies on full fine-tuning of LLMs and CAPID introduces additional complexity through separate
prompt generation, our approach demonstrates that a unified hierarchical architecture with collab-
orative adapters suffices to achieve competitive performance. This underscores the significance of
structural alignment with task hierarchies over merely scaling model capacity or pipeline complex-
ity, positioning HiCoLoRA as a resource efficient yet powerful paradigm for dialog state tracking.

Generalization Analysis. As analysis in Appendix A.7, our model demonstrates generalization ca-
pabilities in cross domain adaptation and long tailed recognition scenarios. It achieves performance
improvements on multiple datasets, underscoring its ability to transfer knowledge across diverse
domains. In addition, it exhibits remarkable robustness in tail classes, effectively mitigating the per-
formance disparity between head and tail categories. This is attributed to our framework’s ability
to learn a more balanced and generalizable feature representation, which prevents overfitting to the
dominant head classes and fosters a more robust decision boundary for underrepresented tail classes,
thereby enhancing overall model generalization in real world and long tailed environments.

The extended analyses collectively affirm that HiCoLoRA’s hierarchical adaptation transcends mere
parameter efficiency by fundamentally restructuring semantic flow dynamics across transformer lay-
ers. Its spectral disentanglement mechanism effectively decouples domain agnostic and domai -
specific semantics, enabling robust knowledge transfer even under significant distribution shifts.
This architectural paradigm demonstrates that task aligned inductive biases, rather than sheer model
scale or pipeline complexity, constitute the pivotal factor for achieving scalable zero-shot general-
ization in dynamic dialogue environments.

6 CONCLUSION

zs-DST is crucial for scalable TODs but remains challenged by insufficient cross-layer coordina-
tion, semantic conflation across domains, and corruption of pre-trained knowledge. HiCoLoRA
overcomes these issues via a hierarchical LoRA design for dynamic context-prompt alignment,
spectral clustering for domain-slot disentanglement, and SemSVD-Init for knowledge-preserving
fine-tuning. Evaluations in MultiWOZ and SGD show that HiCoLoRA significantly outperforms
previous SOTA approaches, improving average JGA by 5.4% and 9.4%, respectively. Limitations
remain in highly idiosyncratic slot domains, and future work will focus on slot aware refinement to
further strengthen HiCoLoRA’s applicability in zs-DST.
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of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5478–5483, Flo-
rence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1546.
URL https://aclanthology.org/P19-1546/.

Shuyang Li, Jin Cao, Mukund Sridhar, Henghui Zhu, Shang-Wen Li, Wael Hamza, and Julian
McAuley. Zero-shot generalization in dialog state tracking through generative question answer-
ing. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the 16th Confer-
ence of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 1063–1074, Online, April 2021a. Association for Computational Linguistics. doi: 10.18653/
v1/2021.eacl-main.91. URL https://aclanthology.org/2021.eacl-main.91/.

Shuyang Li, Jin Cao, Mukund Sridhar, Henghui Zhu, Shang-Wen Li, Wael Hamza, and Julian
McAuley. Zero-shot Generalization in Dialog State Tracking through Generative Question An-
swering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 1063–1074, Online, April 2021b. Association for Computational Linguistics. doi: 10.18653/
v1/2021.eacl-main.91. URL https://aclanthology.org/2021.eacl-main.91.

12

https://aclanthology.org/2023.emnlp-main.48/
https://openreview.net/forum?id=hhhcwCgyM1
https://openreview.net/forum?id=hhhcwCgyM1
https://aclanthology.org/P19-1546/
https://aclanthology.org/2021.eacl-main.91/
https://aclanthology.org/2021.eacl-main.91


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zekun Li, Zhiyu Chen, Mike Ross, Patrick Huber, Seungwhan Moon, Zhaojiang Lin, Xin Dong,
Adithya Sagar, Xifeng Yan, and Paul Crook. Large language models as zero-shot dialogue
state tracker through function calling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 8688–8704, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.471. URL https:
//aclanthology.org/2024.acl-long.471/.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou
Yu, Andrea Madotto, Eunjoon Cho, and Rajen Subba. Leveraging Slot Descriptions for Zero-
Shot Cross-Domain Dialogue StateTracking. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 5640–5648, 2021.

Zheng Lin, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Praneeth Vepakomma, Wei Ni, Jun
Luo, and Yue Gao. Hsplitlora: A heterogeneous split parameter-efficient fine-tuning framework
for large language models, 2025. URL https://arxiv.org/abs/2505.02795.

Jun Liu, Yunming Liao, Hongli Xu, Yang Xu, Jianchun Liu, and Chen Qian. Adaptive parameter-
efficient federated fine-tuning on heterogeneous devices. IEEE Transactions on Mobile Comput-
ing, 2025a.

Zeming Liu, Haifeng Wang, Zeyang Lei, Zheng-Yu Niu, Hua Wu, and Wanxiang Che. Towards
few-shot mixed-type dialogue generation. Science China Information Sciences, 68(2):122105,
2025b.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fantastic semantics and where to find them:
Investigating which layers of generative LLMs reflect lexical semantics. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 14551–14558, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.866. URL https://aclanthology.org/
2024.findings-acl.866/.

Xiang Luo, Zhiwen Tang, Jin Wang, and Xuejie Zhang. Zero-shot cross-domain dialogue state
tracking via dual low-rank adaptation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 5746–5765, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.acl-long.312.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 PERFORMANCE ON SGD DATASET

Table 2 presents the zero-shot performance of HiCoLoRA on the SGD Dataset. Compared to base-
line methods and previous state-of-the-art approaches, HiCoLoRA achieves significant improve-
ments across multiple domains.
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Method Year Buses Events Flights Media Messaging Music Payment Trains

SGD-baseline 2019 9.7/50.9 23.5/57.9 23.9/65.9 18.0/30.8 10.2/20.0 15.5/39.9 11.5/34.8 13.6/63.5
Seq2seq-DU 2021 16.8/N 31.9/N 15.9/N 23.1/N 4.9/N 12.3/N 7.2/N 16.8/N
Transfer-QA 2021 15.9/63.6 15.6/56.8 3.59/42.9 30.2/67.5 13.3/37.9 8.9/62.4 24.7/60.7 17.4/64.9
SlotDM-DST 2022 43.9/86.3 – – – 36.6/61.4 – 16.5/62.0 46.7/86.9
T5DST 2021 46.8/N 48.8/N – 55.5/N 59.2/N – 23.3/N 53.0/N
Prompter 2023 48.4/N 51.5/N – 65.3/N 59.2/N – 21.9/N 50.8/N
DCC 2023 – – – – 28.8/N – 19.4/N 42.3/N
DualLoRA (Prev. SOTA) 2024 50.9/88.8 46.5/82.8 28.4/76.9 69.7/88.7 65.1/85.5 32.5/72.4 21.2/70.2 52.9/89.3
HiCoLoRA (Ours) 2025 54.0/93.2 55.1/87.8 30.7/82.3 75.9/95.8 67.7/88.1 35.8/78.9 26.7/65.0 55.8/93.8

% Gain vs DualLoRA - +6.1/+5.0 +18.5/+6.0 +8.1/+7.0 +8.9/+8.0 +4.0/+3.0 +10.2/+9.0 +25.9/-7.4 +5.5/+5.0

Table 2: Zero-shot JGA (%) & AGA (%) on the SGD dataset with relative improvements over
previous SOTA. “N” indicates unreported results.

Method Year Attr. Hotel Rest. Train Taxi AVG.

HydraLoRA 2024 35.1 18.9 26.3 41.5 65.2 37.4
LoRA-GA 2024 33.8 19.2 24.7 42.8 64.1 36.9
RoSA 2024 36.5 19.6 27.9 43.2 66.8 38.8
Spectral Adapter 2025 37.2 20.1 28.5 43.6 67.3 39.3
HiCoLoRA (Ours) 2025 38.9 20.4 31.0 44.9 68.6 40.8

Table 3: Comparison of HiCoLoRA with recent LoRA-based methods on MultiWOZ (JGA %).

A.2 COMPARISON WITH CONTEMPORARY LORA METHODS

To situate HiCoLoRA within the evolving landscape of PEFT methods, we compare it against four
contemporary LoRA variants: HydraLoRA Tian et al. (2024), LoRA-GA Wang et al. (2024b), RoSA
Nikdan et al. (2024), and Spectral Adapter Zhang & Pilanci (2025). As shown in Table 3, HiCoL-
oRA achieves the highest average JGA, outperforming all baselines in nearly all domains. This
superiority is not merely incremental; it stems from fundamental architectural and semantic distinc-
tions that address the core challenges of zs-DST.

Structural Design Philosophy: While HydraLoRA introduces an asymmetric LoRA structure to
enhance expressiveness, and RoSA combines low-rank and sparse adaptations for robustness, both
methods retain a layer-agnostic approach to adapter deployment. In contrast, HiCoLoRA’s hier-
archical layer-specific processing explicitly models the divergent roles of lower and higher Trans-
former layers, local feature encoding versus global intent integration, enabling dynamic cross-layer
coordination that is critical for resolving context-prompt misalignment.

Semantic Alignment Mechanism: Spectral Adapter leverages spectral initialization to better pre-
serve pre-trained knowledge, similar to our SemSVD-Init. However, it lacks HiCoLoRA’s spec-
tral joint clustering of domains and slots, which actively disentangles domain-shared and domain-
specific semantics. This clustering guides the adaptive fusion of general and domain-aware features,
a mechanism absent in other methods, leading to more precise slot inference in transfer-rich domains
like Media.

Knowledge Preservation and Transfer: LoRA-GA improves the alignment of the gradient during
initialization to accelerate convergence but does not explicitly modulate the singular values to align
with the specific semantics of the task. HiCoLoRA’s SemSVD-Init not only preserves pre-trained
knowledge, but also amplifies singular components relevant to domain-slot structures, effectively
mitigating catastrophic forgetting and enhancing zero-shot generalization, particularly for rare slots
such as hotel-stars.

Adaptability to Dynamic Contexts: Unlike RoSA and HydraLoRA, which are designed for general
NLP tasks, HiCoLoRA is tailored for the dynamic and multi-turn nature of dialog systems. Its
adaptive gating mechanism dynamically balances domain-agnostic and domain-specific features per
turn, enabling robust handling of evolving dialog contexts, a capability that static LoRA variants
lack.
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Method Year Base Model Attr. Hotel Rest. Train Taxi AVG.

ChatGPT-zsTOD 2023 ChatGPT (GPT-3.5) 52.7 42.0 60.8 70.9 55.8 56.4
ChatGPT-zsTOD 2023 ChatGPT (GPT-3.5) 67.2 37.6 67.3 74.4 60.1 61.3
D0T 2024 LLAMA2-13B 63.1 43.8 60.8 48.8 64.7 56.2
MoPE 2024 ChatGLM-6B 60.4 34.1 64.0 71.3 55.9 57.1
FnCTOD 2024 ChatGPT (GPT-4) 58.8 45.2 69.5 76.4 63.2 62.6
FnCTOD 2024 LLAMA2-13B 62.2 46.8 60.9 67.5 60.3 59.5
Multi-User 2025 GPT-4o 56.8 46.0 61.9 69.3 55.1 57.8

HiCoLoRA 2025 LLAMA2-13B 62.0 42.0 61.0 65.0 69.0 60.0
HiCoLoRA 2025 Qwen2.5-14B-Instruct 64.0 44.0 63.0 68.0 71.0 62.0

Table 4: Zero-shot JGA (%) on MultiWOZ using large language models. HiCoLoRA demonstrates
strong scalability and generalization across model scales. All results of baselines were reported from
original papers.

HiCoLoRA addresses the unique challenges of zs-DST: cross-layer misalignment, semantic confla-
tion, and knowledge distortion. While other LoRA variants offer general-purpose efficiency, Hi-
CoLoRA provides a domain-aware and layer-conscious design that is essential for robust zero-shot
transfer in TODs.

A.3 SCALABILITY ANALYSIS: GENERALIZATION ACROSS MODEL SCALES

To rigorously assess the scalability and architectural generality of HiCoLoRA, we extend our evalu-
ation to LLM, comparing against contemporary LLM-based zs-DST methods, including ChatGPT-
zsTOD Heck et al. (2023), D0T Finch & Choi (2024), MoPE Tang et al. (2024), FnCTOD Li et al.
(2024) and Multi-User Song et al. (2025). As shown in Table 4, HiCoLoRA achieves competitive
performance when deployed in LLAMA2-13B and Qwen2.5-14B-Instruct, with an average JGA of
62.0% in the latter, only marginally below FnCTOD with GPT-4 (62.6%) and significantly outper-
forms other baselines based on LLM.

Architectural Generalization Beyond Scale. The consistent performance of HiCoLoRA in both
both small (T5-small, 60M) and large (13B–14B) models underscores a key insight: its hierarchi-
cal adaptation mechanism is scale-agnostic. The efficacy of HiCoLoRA stems from its structured
semantic alignment decomposition, which addresses cross-layer coordination (RQ1), domain-slot
disentanglement (RQ2), and knowledge preservation (RQ3) through explicit inductive biases. This
allows it to be generalized effectively even when applied to larger models without architecture-
specific modifications.

Efficiency-Performance Trade-off. While FnCTOD benefit from extreme scale and extensive pre-
training as GPT-4-based methods, HiCoLoRA offers a more efficient alternative, achieving compa-
rable performance with only partial parameter updates. This highlights its suitability for scenarios
where full fine-tuning or inference with very large models is prohibitive. The fact that HiCoLoRA
outperforms other PEFT-based LLM methods further validates its superior design in leveraging lim-
ited tunable parameters for maximal semantic alignment.

Limitations and Future Directions. The remaining gap between the HiCoLoRA and GPT-4-based
methods suggests that scale still matters to capture extremely nuanced or idiosyncratic slot seman-
tics. However, HiCoLoRA’s strong performance in structured domains such as Restaurant indicates
that its hierarchical and spectral mechanisms effectively compensate for scale limitations through
better semantic organization. Future work may explore hybrid approaches that integrate HiCoL-
oRA’s alignment mechanisms with larger foundation models for even stronger zero-shot generaliza-
tion.

A.4 EXTENDED COMPARISON WITH FNCTOD

Since FnCTOD (Li et al., 2024) achieves comparable performance to HiCoLoRA under the same
LLaMA2-13B backbone, we conduct a detailed comparison to highlight their differences in exper-
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Method Attr. Hotel Rest. Train Taxi AVG. Relative Change
FnCTOD (Fine-tuned LLaMA2-13B) 62.2 46.8 60.3 60.9 67.5 59.5 -0.8
FnCTOD (No FT LLaMA2-13B) 49.8 29.5 48.9 53.6 64.7 49.3 -21.1
FnCTOD (GPT-4 SOTA) 58.8 45.2 63.2 69.5 76.4 62.6 +4.2
HiCoLoRA (LLaMA2-13B) 62.0 42.0 61.0 65.0 69.0 60.0 –
HiCoLoRA (FnCTOD Dataset) 62.8 49.2 63.9 70.3 69.4 63.1 +5.2

Table 5: Performance comparison between HiCoLoRA and FnCTOD under different settings on
MultiWOZ (JGA %).

Method Attr. Hotel Rest. Train Taxi AVG.

HiCoLoRA (Full) 38.9 20.4 31.0 44.9 68.6 40.8
w/ Swap Hier Strategies 37.2 19.7 22.9 40.2 67.5 37.4
w/o Adaptive Fusion 28.9 19.3 20.3 43.0 68.0 35.9
w/o Spec Joint Cluster 36.2 19.8 27.5 42.1 63.6 37.8
w/ Kiming Init 34.3 20.4 27.8 40.4 67.5 38.1
w/ PiSSA Init 36.5 20.3 29.0 42.5 67.8 38.9
w/ MiLoRA Init 34.1 19.9 26.2 38.5 62.9 36.3

Table 6: Ablation study on hierarchical architecture, adaptive fusion, spectral clustering, initializa-
tion of HiCoLoRA on MultiWOZ. Attr. and Rest. are abbreviations for Attraction and Restaurant,
respectively.

imental setup and efficiency. A thorough examination of FnCTOD’s experimental configuration
reveals several deviations from a strict zero-shot setting.

FnCTOD uses a carefully curated dataset of 7,200 dialogues across 36 domains (including SGD,
CamRest676, MSR-E2E, TaskMaster, and WOZ), which include domains overlapping with Mul-
tiWOZ test domains. This violates the strict zero-shot learning premise. In contrast, HiCoLoRA
uses only 4,625–7,684 samples from 4 domains in MultiWOZ, with one domain excluded during
training to ensure a strict zero-shot setting. To ensure a fair comparison, we conducted an additional
experiment by training FnCTOD on the FnCTOD dataset. The results, summarized in Table 5,
demonstrate that FnCTOD achieves superior performance while maintaining significantly higher
efficiency.

Beyond the fundamental discrepancy in training data composition, our comparative analysis reveals
several critical distinctions that underscore HiCoLoRA’s methodological rigor and practical effi-
ciency: (1) When trained on identical data, HiCoLoRA achieves a JGA of 63.1, surpassing FnCTOD
by 6.1% and even exceeding GPT-4-based FnCTOD by 0.5 JGA points; (2) HiCoLoRA maintains
superior inference efficiency, requiring only a single LLM call with 16 token prompts versus FnC-
TOD’s dual invocations and larger than 1200 token inputs; (3) While FnCTOD(without fine-tune)
employs 5 few-shot examples in its zero-shot configuration (achieving only 49.3 JGA), HiCoL-
oRA operates under strict zero-shot conditions to attain 60.0 JGA; (4) FnCTOD’s incorporation of
detailed schema descriptions deviates from minimal prompt principles, whereas HiCoLoRA relies
solely on its hierarchical adaptation mechanism; (5) Architecturally, HiCoLoRA achieves competi-
tive performance through semantic aware initialization and efficient parameter updates, avoiding the
computational overhead of prompt heavy approaches.

This comparative analysis demonstrates that FnCTOD not only achieves state-of-the-art perfor-
mance under strict zero-shot settings but also offers superior efficiency and scalability compared
to prompt heavy LLM-based approaches. The gains are attributable to its principled hierarchical
adaptation, spectral semantic disentanglement, and knowledge preserving initialization mechanisms
that are both empirically effective and practically efficient.

A.5 ABLATION STUDY RESULTS

Table 6 validates the contributions and necessity of each core component of HiCoLoRA to its over-
all performance. This validation is conducted by systematically removing or replacing core com-
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Table 7: Comparison with CAPID on MultiWOZ 2.1

Method Configuration Attr. Hotel Rest. Train Taxi AVG.
CAPID T5-base + T5-base 40.9 43.5 37.1 49.5 87.1 50.1
CAPID T5-base + T5-small 33.3 31.1 31.6 34.3 65.4 40.7

HiCoLoRA (Ours) T5-small 38.9 20.4 31.0 44.9 68.6 40.8

ponents, including the hierarchical strategy, adaptive fusion, spectral clustering, and initialization
method.

A.6 COMPARISON WITH RECENT HETEROGENEOUS METHODS

To further validate the effectiveness of HiCoLoRA against contemporary approaches with different
architectural paradigms, we conducted comparative analyses with two recently proposed state-of-
the-art methods: LDST (Feng et al., 2023) and CAPID (Dong et al., 2024).

Comparison with LDST (EMNLP 2023): LDST proposes an Assembled Domain-Slot Instruc-
tion Generation approach for DST. This method generates diverse instruction samples by randomly
combining different instruction and input templates during fine-tuning, thereby reducing the model’s
sensitivity to prompt variations. For example:

Instruction:
Track the state of the slot <hotel-area> in the input dialogue.

Input:
[USER] I need to book a hotel in the east that has 4 stars.
[SYSTEM] I can help you with that. What is your price range?
[domain] hotel, [slot] area, it indicates area or place of the hotel.
This slot is categorical and you can only choose from the following

available values: center, east, north, south, west.
If the slot is not mentioned in the dialogue, just return NONE.
So the value of slot <hotel-area> is

We performed comparative experiments on MultiWOZ 2.1 using the LLaMA-7B backbone for both
methods. The results demonstrate that HiCoLoRA maintains 1.9% advantage over LDST (57.8 vs.
56.7 Average JGA). This performance gain, coupled with HiCoLoRA’s parameter efficient design,
further validates the effectiveness of our hierarchical collaborative architecture in capturing complex
dialog state dependencies.

Comparison with CAPID (EMNLP 2024): CAPID proposes Context-aware Auto-prompting and
Instruction-following Contrastive Decoding. This approach employs a two stage framework where a
context-aware slot query generation method via auto-prompting which initially using GPT-4, aligns
the gap between source and target domains. The generated prompts are used to train a T5-base
student model to independently produce context-aware slot queries. During inference, the fine-
tuned T5-base student model first generates the prompt, which is then used by the trained DST
model (T5-base or T5-small) to predict slot values.

We compared HiCoLoRA with CAPID under different model configurations on MultiWOZ 2.1 (Ta-
ble 7). HiCoLoRA shows a marginal advantage of 0.1% in Average JGA over the CAPID config-
uration (T5-base + T5-small). This indicates that HiCoLoRA’s clever architectural design achieves
performance comparable to CAPID but with significantly higher efficiency and lower computational
cost. Specifically, HiCoLoRA relies solely on a single T5-small model (60M parameters) without
requiring a separate, potentially larger, prompt generation model as in CAPID’s two-stage approach
(T5-base + T5-small, 280M parameters). Moreover, CAPID’s training process initially depends on
GPT-4 for auto-prompting, which introduces additional computational overhead and API depen-
dency, whereas HiCoLoRA is entirely self contained throughout its training and inference pipeline.

Discussion: HiCoLoRA demonstrates distinct advantages over contemporary approaches. It sur-
passes the architectural efficiency of full fine-tuning methods like LDST through parameter effective
LoRA adaptation, streamlines the multi-stage inference pipeline characteristic of CAPID via a uni-
fied hierarchical model, and offers enhanced scalability by natively accommodating multi-domain
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Experiment Buses Events Flights Media Messaging Music Payment Trains AVG.

HiCoLoRA (Original) 54.0 55.1 30.7 75.9 67.7 35.8 26.7 55.8 50.2
HiCoLoRA (MultiWOZ→SGD) 52.4 51.8 29.2 70.6 63.6 33.7 24.8 54.7 47.6

Table 8: Cross dataset generalization performance (JGA %) from MultiWOZ to SGD

Experiment Attr. Hotel Rest. Train Taxi AVG.

HiCoLoRA (Original) 38.9 20.4 31.0 44.9 68.6 40.8
HiCoLoRA (SGD→MultiWOZ) 37.0 19.0 30.4 43.1 64.5 38.8

Table 9: Cross dataset generalization performance (JGA %) from SGD to MultiWOZ

dialogues without external dependencies. This positions HiCoLoRA as an optimally balanced so-
lution, delivering robust performance with markedly greater practical efficiency for dialogue state
tracking.

A.7 GENERALIZATION ANALYSIS

To rigorously evaluate HiCoLoRA’s robustness and generalization capability in challenging scenar-
ios, we conducted comprehensive cross dataset and cross domain experiments that simulate real
world distribution shifts and semantic sparsity conditions. These experiments specifically address
concerns about model performance in long tail domains and under significant data distribution shifts.

A.7.1 CROSS DATASET EVALUATION

We performed extensive cross dataset evaluations to test HiCoLoRA’s ability to generalize across
different data distributions and domain structures.

MultiWOZ to SGD Transfer: Trained exclusively on all MultiWOZ domains and evaluated on the
complete SGD test set, requiring adaptation to SGD’s broader and unfamiliar service domains. As
shown in Table 8, under this challenging setup, HiCoLoRA maintained an average JGA of 47.6%,
representing only a 5.2% performance decrease compared to the original setting, and the Trains
domain showed minimal 2.0% decline. This demonstrates HiCoLoRA’s ability to capture universal
semantic patterns across datasets and effectively handle distribution shifts.

SGD to MultiWOZ Transfer: Trained on SGD domains and evaluated on MultiWOZ, testing
transfer from diverse but shallower domains to more complex dialogue structures. As shown in
Table 9, when transferring from diverse but shallower SGD domains to the more complex Multi-
WOZ, HiCoLoRA maintained an average JGA of 38.8%, a decrease of only 4.9% from the original
performance. This highlights the effectiveness of our adaptive fusion mechanism in dynamically
balancing general and domain specific features across different dataset distributions.

A.7.2 LOW SEMANTIC OVERLAP TRANSFER

To validate the model’s performance in data sparse and semantically unique long tail domains, we
conducted a specialized Low Semantic Overlap Transfer experiment. We explicitly excluded all
transportation related domains during training (Taxi and Train from MultiWOZ; Buses and Trains
from SGD), then evaluated the model purely on transportation domains during testing. This setup
simulates real world long tail scenarios where transferable semantic commonalities across domains
are minimal.

Under this extreme setting with zero transportation domains in training, HiCoLoRA achieved an
average JGA of 50.7% in transportation domains, a decrease of 9.1% from the original performance
while maintaining usable functionality. This demonstrates tree key advantages: (1) Spectral cluster-
ing possesses the capability to identify transferable patterns from underlying semantic associations
beyond explicit domain similarities, enabling generalization even in low-overlap scenarios. (2) The
hierarchical architecture exhibits strong robustness, with low-level universal semantic atoms provid-
ing a valuable foundation for generalization when explicit domain patterns are unavailable. (3) The
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Experiment Taxi (MultiWOZ) Train (MultiWOZ) Buses (SGD) Trains (SGD) AVG.

HiCoLoRA (Original) 68.6 44.9 54.0 55.8 55.8
HiCoLoRA (Cross-Dataset/Domain) 62.8 38.8 49.7 51.3 50.7

Table 10: Low semantic overlap transfer performance (JGA %) in transportation domains

Domain Train Dev Test

Attraction 2717 401 416
Hotel 3381 416 394

Restaurant 3813 438 207
Taxi 1654 207 195
Train 3103 484 494

Total 8438 1000 1000

Table 11: The dataset statistic of MultiWOZ.

Domain Train Dev Test

Buses 2,280 329 526
Events 3,509 418 592
Flights 2,747 391 506
Media 1,113 179 364

Messaging NA NA 298
Music 1,290 196 347

Payment NA NA 222
Trains NA NA 350

Total 10,939 1,513 3,205

Table 12: The dataset statistic of SGD.

adaptive fusion mechanism offers dynamic flexibility, adjusting feature weights based on domain
characteristics to avoid over reliance on specific domain patterns and maintain performance under
distribution shifts.

These comprehensive generalization analyses confirm HiCoLoRA’s robustness in challenging real
world scenarios, particularly addressing concerns about performance in long tail domains and under
significant data distribution shifts. The results validate that our hierarchical collaborative architec-
ture, spectral joint clustering, and adaptive fusion mechanisms collectively enable effective zero-shot
transfer even when semantic commonalities are sparse or distribution shifts are substantial.

B EXPERIMENTS SETTING DETAILS

B.1 DATASET STATISTIC

Based on the experimental design for zero-shot dialog state tracking, domain selection was strate-
gically constrained to ensure robust evaluation. For MultiWOZ (Table 11), the Police (46 dialogs)
and Hospital (38 dialogs) domains were excluded due to insufficient dialog volume and slot di-
versity, which would compromise statistical reliability in zero-shot generalization tests. Similarly,
in SGD (Table 12), services with limited samples or atypical slot structures, such as RideSharing
(Test: 112), Calendar (Test: 98), etc., are omitted to avoid skew results. This curation focuses on
evaluation on domains with adequate data density and representative slot semantics, ensuring that
performance metrics reflect true zero-shot transferability rather than data-sparsity artifacts. Conse-
quently, while coverage is reduced, the core challenge of cross-domain adaptation is preserved, with
results generalizable to mainstream service-oriented interactions.

B.2 BASELINE MODELS

In this section, we provide a detailed overview of each baseline, as outlined below.

B.2.1 MAIN BASELINE

• TRADE Wu et al. (2019) enhances dialog state generation by incorporating a copy mecha-
nism and enabling knowledge transfer between tasks, allowing the model to handle unseen
dialog states during training.

• MA-DST Kumar et al. (2020) leverages cross-attention to align context and slot represen-
tations across multiple semantic levels, while using self-attention on RNN hidden states to
resolve cross-domain coreference.
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• SUMBT Lee et al. (2019), built on the BERT-base, employs contextual semantic atten-
tion to learn the domain-slot-type and slot value relations, predicting slot values in a non-
parametric manner.

• SGD-baseline Rastogi et al. (2019) encodes dialog history and schema elements using
BERT and applies conditional prediction with schema embeddings to accommodate dy-
namic schema sets.

• Seq2Seq-DU Feng et al. (2021) formulates DST as a sequence-to-sequence task, using
two BERT-based encoders to separately process dialog utterances and schema descriptions,
followed by a pointer-based decoder to generate the dialog state.

• GPT2-DST Li et al. (2021a) utilizes a GPT2-base generative question answering model,
enabling natural language queries to infer unseen constraints and slots for zero-shot gener-
alization in multi-domain task-oriented dialogs.

• TransferQA Li et al. (2021b) integrates extractive and multiple-choice question answering
within a unified text-to-text transformer framework, effectively tracking both categorical
and non-categorical slots, and introducing unanswerable questions to improve robustness.

• T5DST Lin et al. (2021), based on T5-small and PPTOD-small, encodes dialog context
and slot descriptions and generates slot values in an autoregressive manner. Slot-type de-
scriptions facilitate cross-slot information sharing and cross-domain knowledge transfer.

• SlotDM-DST Wang et al. (2022), leveraging T5-small, models slot–slot, slot–value, and
slot–context dependencies via slot prompts, value demonstrations, and constraint objects.
Shared prompts capture transferable knowledge across domains.

• Prompter Aksu et al. (2023), based on PPTOD-small, generates dynamic prefixes from
slot descriptions and injects them into the key and value states of each Transformer layer’s
self-attention mechanism, enabling zero-shot prefix tuning.

• DCC Wang et al. (2023) Divide, Conquer and Combine, built on T5-small, adopts a
mixture-of-experts strategy by partitioning semantically independent data subsets, training
corresponding experts, and applying ensemble inference for unseen samples.

• DualLoRA Luo et al. (2024) builds on PPTOD-small with a T5-small backbone, em-
ploying two low-rank adaptation matrices, one refining dialog context and the other slot
prompts. Once trained, these matrices are fused into the frozen pre-trained weights, yield-
ing zero-shot cross-domain dialog state tracking without any extra inference latency.

B.2.2 LORA BASELINE

• HydraLoRA Tian et al. (2024) is a parameter-efficient fine-tuning (PEFT) framework de-
signed to address the performance gap between standard LoRA and full fine-tuning, es-
pecially on complex datasets. Introduce an asymmetric LoRA structure that does not
require domain expertise. Experiments demonstrate that HydraLoRA surpasses existing
PEFT methods in performance.

• LoRA-GA Wang et al. (2024b) improves LoRA by proposing a novel gradient-aware ini-
tialization strategy that aligns the gradients of the low-rank matrices with those of full fine-
tuning at the first training step. This method significantly accelerates convergence (2–4×
faster than vanilla LoRA) and improves performance in tasks such as GLUE, GSM8K, and
code generation, even for large models such as Llama 2-7B.

• RoSA Nikdan et al. (2024), Robust Adaptation combines low-rank and sparse adaptations
inspired by robust PCA to approximate full fine-tuning performance under constrained
computational budgets. It is particularly effective in generative tasks like math problem
solving and SQL generation, and supports efficient training via custom sparse GPU kernels
and compatibility with quantized base models.

• Spectral Adapter Zhang & Pilanci (2025) incorporates spectral information from pre-
trained weights via SVD to enhance PEFT methods. Performs additive tuning or orthogonal
rotation on the top singular vectors, improving rank capacity and parameter efficiency. The
adapter also benefits multi-adapter fusion and demonstrates stronger performance across
various tasks.
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B.2.3 LLM BASELINE

• ChatGPT-zsTOD Heck et al. (2023) achieves state-of-the-art performance in zero-shot di-
alog state tracking without task-specific training, leveraging its general-purpose language
model capabilities. However, inherent limitations prevent it from fully replacing special-
ized systems, though its in-context learning abilities may support the development of dy-
namic dialog state trackers.

• D0T Finch & Choi (2024) enhances zero-shot DST by generating synthetic data across over
1,000 domains, creating a diverse training dataset with silver-standard annotations. This
approach addresses data scarcity and enables adaptation to new domains without costly
collection efforts.

• MoPE Tang et al. (2024) proposes a Mixture of Prefix Experts to connect similar slots
across different domains, improving transfer performance in unseen domains. It addresses
domain transferring and partial prediction problems in zero-shot DST.

• FnCTOD Li et al. (2024) improves zero-shot DST by calling functions with LLMs, allow-
ing adaptation to diverse domains without extensive data or tuning. It achieves state-of-
the-art performance with both open-source and proprietary LLMs, significantly boosting
ChatGPT and GPT-4 results.

• Multi-User Song et al. (2025) evaluates LLMs in multi-user DST by extending datasets
with second-user utterances generated via speech act theory. For a fair comparison, the
experimental setup was configured using single-user data to evaluate the performance of
LLMs in single-user dialog state tracking.

B.3 EVALUATION METRIC FORMULAS

B.3.1 JGA FORMULA

JGA =

∑T
i=1 I(S

pre
i = Sgt

i )

T
(12)

In this formula, T denotes the total number of dialog turns in the evaluation dataset. For each
turn i, Spre

i and Sgt
i represent the predicted and ground truth sets of slot-value pairs, respectively.

The indicator function I returns 1 if the inside condition is satisfied and 0 otherwise. Specifically,
I(Spre

i = Sgt
i ) checks whether the predicted set of slot-value pairs for turn i exactly matches the set

of ground truth slot-value pairs. A value of 1 indicates a perfect match for that turn, that is, all slot
value pairs were correctly predicted, while any discrepancy results in a value of 0. The summation∑T

i=1 I(S
pre
i = Sgt

i ) thus counts the number of turns for which the entire set of slot-value pairs was
correctly predicted.

B.3.2 AGA FORMULA

AGA =

∑T
i=1

|Sgt
i ∩Spre

i |−|Spre
i −Sgt

i |unique
|Sigt|

T
(13)

In this formula, T denotes the total number of dialog turns in the evaluation dataset. For each turn
i, Spre

i and Sgt
i represent the predicted and ground truth sets of slot-value pairs, respectively. The

formula calculates the slot-level accuracy for each turn by:

• Computing the intersection |Sgt
i ∩ Spre

i |, which counts correctly predicted slot-value pairs

• Computing |Spre
i − Sgt

i |unique, which counts incorrectly predicted slots (by extracting
unique slot names from the difference set)

• Subtracting incorrect predictions from correct predictions

• Normalization by the total number of ground truth slot-value pairs |Sigt|

The outer summation averages these per-turn accuracies across all dialog turns. Note that this is a
more complex metric than simple slot matching, as it accounts for both missed slots and incorrect
slot predictions while considering slot name uniqueness.
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B.4 EXPERIMENTS IMPLEMENTATION DETAILS

Our experimental setup, designed for a precise comparison with previous work, follows that of
DualLoRA Luo et al. (2024). We use the T5-small architecture (6 encoder/decoder layers, 512
hidden dimension, 8 attention heads) as the backbone for HiCoLoRA, with a LoRA rank of 8 for
low-rank adaptation, initialized from PPTOD-small checkpoints, consistent with observations in
DualLoRA that PPTOD Su et al. (2022) is particularly suitable for prompt-tuning due to its pre-
training objectives.

For spectral clustering, the number of domain clusters (M ) and slot clusters (N ) are set as 2 and 3
for MultiWOZ, with 2 and 4 specified for SGD. These configurations are determined by maximizing
the silhouette coefficient.

Training configurations include a batch size of 8 with gradient accumulation every 8 steps, the
AdamW optimizer (weight decay 0.01, learning rate 1e-4, no scheduler), a fixed random seed of
3407, and 5 training epochs (early stopping after 5 consecutive validation loss plateaus).

For hierarchical processing, we use a α = 50% full collaboration ratio with higher layers and a
semantic enhancement coefficient λ = 0.5 to modulate singular values in semantically enhanced
SVD initialization.

The training and validation sets exclude target domain data, while the test set retains only target
domain instances. All experiments were conducted on NVIDIA GeForce RTX 5080 GPUs.

C CASE STUDY

In this section, we present a comprehensive case study to analyze the performance of HiCoLoRA on
both successful and failure cases. We examine the model’s behavior on representative dialogs from
MultiWOZ and SGD datasets, providing insights into how HiCoLoRA addresses the context-prompt
misalignment challenges discussed in our work.

C.1 SUCCESSFUL CASES

C.1.1 SUCCESS CASE 1

HiCoLoRA:

"attraction-name-nusha"
"restaurant-food-indian"
"restaurant-area-centre"
"restaurant-pricerange-expensive"
"restaurant-name-saffron  brasserie"

Ground Truth:

"attraction-name-nusha"
"restaurant-food-indian"
"restaurant-area-centre"
"restaurant-pricerange-expensive"
"restaurant-name-saffron  brasserie"

Dialogue State Tracking

Please find a restaurant called nusha.

I do not seem to be finding anything called nusha. What type of food does the 
restaurant serve?

I am not sure of the type of food but could you please check again and see if 
you can find it? Thank you.

Could you double check that you've spelled the name correctly? The closest I 
can find is nandos.

It's not a restaurant, it's an attraction. nusha.

Oh its okay. That is an entertainment type located in the south at unit g6, 
cambridge leisure park, clifton road. Do you need their phone number?

No, but please confirm their address again and their postcode.

Their address is unit g6, cambridge leisure park, clifton road. The postcode is 
cb17dy. is their anything else I can do for you?

I want Indian food in the center area.

There are 9 indian restaurant-s in centre what price range do you want?

I am looking for expensive Indian food.

Saffron brasserie is an expensive restaurant that serves italian food.

Can I get the address for saffron brasserie?

The address is hills road city centre.

Can I clarify that it was indian food and not 
Italian food please?

Yes, saffron brasserie is indian food.

Thank you that is all the information I need 
at the moment.

I hope I have been of help.

You have. Thank you. Goodbye.

Dialogue Content

Figure 6: Success Case 1

Dialog Context. We analyze dialog PMUL4648.json (Fig. 6) from the MultiWOZ dataset where a
user is seeking information about a restaurant named “saffron brasserie”. The dialog involves mul-
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tiple turns with complex slot-value interactions, including the restaurant name, food type (indian),
price range (expensive), area (center).

HiCoLoRA Performance. HiCoLoRA successfully tracks all relevant slots throughout the dialog.
The model correctly identifies the user’s intent to find an expensive Indian restaurant in the center
area.

Analysis. The success of HiCoLoRA in this case can be attributed to several factors:

1. Hierarchical Collaboration: The lower layers effectively capture local semantic features
such as entity names and basic slot information, while the higher layers integrate these
features to form a coherent understanding of the user’s intent.

2. Spectral Joint Clustering: The model successfully identifies transferable domain-slot as-
sociations, enabling effective knowledge transfer between the attraction and restaurant do-
mains.

3. Adaptive Fusion: The adaptive linear fusion mechanism dynamically balances the contri-
butions of UniRep-LoRA and SemAdapt-LoRA, allowing the model to adjust to the spe-
cific requirements of each dialog turn.

C.1.2 SUCCESS CASE 2

HiCoLoRA(Ours):

“train-date_of_journey-7th of March”
“train-from-Anaheim-CA”
“train-to-Phoenix-AZ”
“train-journey_start_time-6:30 am”
“train-total-$123”
“train-from_station-Anaheim Intermodal 
Center”
“train-to_station-Phoenix Union Station”

Ground Truth:

“train-date_of_journey-7th of March”
“train-from-Anaheim-CA”
“train-to-Phoenix-AZ”
“train-journey_start_time-6:30 am”
“train-total-$123”
“train-from_station-Anaheim Intermodal 
Center”
“train-to_station-Phoenix Union Station”

Dialogue State Tracking

I like to travel to attend a conference. Will you find me a train?

At what date do you wish to travel? From which city would you like to depart 
and to which city are you planning to go?

I'm looking for tickets from Anaheim, CA to Phoenix, AZ, and the tickets are 
for the 7th of March.

There are four trains that suit your needs. One departs at 6:30 a.m. and costs 
$123 in total.

At which station does the train leave from, and at which station does it arrive?

The train leaves from Anaheim Intermodal Center and arrives at Phoenix 
Union Station.

OK, that sounds good.

Would you like me to book tickets on that train?

No, not for now.

Is there anything else I can help you search for?

No, thanks a lot. That's all I need.

Bye! Have a great day.

Dialogue Content

Figure 7: Success Case 2

Dialog Context. We examine the dialog “8 00066” (Fig. 7) from the SGD dataset, specifically the
Trains domain. The user requests information about train schedules, including departure and arrival
locations, travel date, and preferred travel time. The dialog involves complex slot-value interactions,
such as specifying train routes and time constraints.

HiCoLoRA Performance. HiCoLoRA accurately predicts all relevant slot values including depar-
ture location, arrival location, travel date, and time preferences. The model successfully tracks the
user’s intent throughout the dialog, maintaining consistency in understanding the train booking re-
quirements. It correctly handles natural language expressions for time and date, mapping them to
canonical formats.

Analysis. The success in this SGD case demonstrates:

1. Cross-Domain Generalization: HiCoLoRA effectively generalizes to unseen domains in
the SGD dataset, achieving high accuracy (55.8 JGA, 93.8 AGA) even in domains not
encountered during training.
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2. Temporal Expression Handling: The model successfully processes natural language tem-
poral expressions and maps them to canonical time formats, which is crucial for train sched-
ule queries.

3. Semantic-Enhanced Initialization: The SemSVD-Init mechanism preserves pre-trained
knowledge, enabling the model to maintain performance on specialized domains with tech-
nical terminology, as evidenced by the high AGA.

C.2 FAILURE ANALYSIS

To better understand the limitations of HiCoLoRA, we categorize failure cases into three distinct
patterns and analyze representative examples for each.

C.2.1 PATTERN 1: AMBIGUOUS SLOT BOUNDARY CASES

HiCoLoRA(Ours):

"restaurant-book day-friday"
"restaurant-book people-3"
"restaurant-book time-16:00"
"restaurant-food-pizza hut"
"restaurant-name-fen ditton"
"hotel-book day-friday"
"hotel-book people-3"
"hotel-book stay-3"
"hotel-area-north"
"hotel-pricerange-moderate"
"hotel-stars-4"
"hotel-name-pizza hut fen ditton"

Ground Truth:

"restaurant-book day-friday"
"restaurant-book people-3"
"restaurant-book time-16:00"
"restaurant-name-pizza hut fen ditton"
"hotel-book day-friday"
"hotel-book people-3"
"hotel-book stay-3"
"hotel-area-north"
"hotel-pricerange-moderate"
"hotel-stars-4"
"hotel-name-a and b guest house"

Dialogue State Tracking

I'm looking for this restaurant called Pizza Hut Fen Ditton.

It is a moderately priced restaurant in the east that serves Italian food. Can 
I give you the address?

No, but could you book a table for me? 3 people on Friday at 16:00, please.

Booking was successful. The table will be reserved for 15 minutes. Reference 
number is: F78J1SK2. Is there anything else I can help you with?

I am not sure. Let me ask my wife.

Can I help you with anything else?

I also need a place to stay.

Can you please tell me what type of place and if you have any preferences?

I want a guesthouse in the north with a moderate price range and 4 stars.

Acorn Guest House fits your criteria. Can I book this?

Yes, sounds good. Can I get the reference with that too, please?

I have booked your room. Here is your information: Booking was successful. 
Reference number is: WMSF8TU5.

Thank you very much.

Is there anything else I can do for you?

Nope, that's all! Thanks!

Dialogue Content

Figure 8: Failure Pattern 1: Ambiguous Slot Boundary Cases

Description. These failures occur when the slot boundaries are ambiguous or overlapping, making
it difficult for the model to distinguish between different slot values or identify the correct slot value
pairs.

Example. In MultiWOZ dialog PMUL4440.json (Fig. 8) involving both restaurant and hotel book-
ing, HiCoLoRA exhibits significant prediction errors. At turn 1, when the user provides the name
of a restaurant as “pizza hut fen ditton”, the model incorrectly predicts multiple slots: “restaurant-
food-pizza hut”, “restaurant-name-fen ditton”. Later at turn 6, despite the ground truth showing
“hotel-name-a and b guest house”, the model incorrectly predicts “hotel-name-pizza hut fen ditton”.

Analysis. This type of failure highlights challenges in:

1. Entity Recognition: Distinguishing between different types of entities (area vs. parking)
when they appear in close proximity in the user utterance.

2. Implicit Slot Detection: Recognizing implicitly mentioned slots that are not explicitly
requested but are relevant to the user’s intent.

C.2.2 PATTERN 2: CROSS-DOMAIN CONFUSION

Description. These failures occur when the model confuses slot values between different domains,
particularly when domains share similar slot names or values.
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HiCoLoRA(Ours):

"hotel-pricerange-moderate"
"hotel-stars-0"
"hotel-name-cityroomz"
"hotel-book day-cityroomz"
"hotel-book people-cityroomz"
"hotel-book stay-2"
"train-leaveat-18:00"
"train-departure-cambridge"
"train-destination-ely"
"train-day-friday"
"train-book people-5"

Ground Truth:

"hotel-pricerange-moderate"
"hotel-stars-0"
"hotel-name-cityroomz"
"hotel-book day-wednesday"
"hotel-book people-5"
"hotel-book stay-2"
"train-leaveat-18:00"
"train-departure-cambridge"
"train-destination-ely"
"train-day-friday"
"train-book people-5"

Dialogue State Tracking

I am looking for information in Cambridge.

I need more specifics to help you. What type of information do you need?

I would like a moderately priced place to stay. But only if it is a 0 star. I love 
a little adventure!

Cityroomz meets your specifications. Want to book?

Yes please. 5 people for 2 nights, starting Wednesday.

I was able to make your reservation. Your confirmation is 8s83g1yc. Can I help 
with anything else?

I also need a train after 18:00 out of Cambridge.

Can you tell me your destination please?

I would like to go to Ely and would like to leave on Friday.

The next train leaves Cambridge at 19:50. Would you like more information or 
can I book it for you?

That will work for me. Can you book 5 tickets for me?

I have booked 5 tickets on the 19:50 train leaving Cambridge to Ely. Your 
total fare is 22GBP, payable at the station, your reference number is hrblrjcu.

That is all, thank you for your help.

Is there anything else I can do for you?

Nope, that's all! Thanks!

Dialogue Content

Figure 9: Failure Pattern 2: Cross-Domain Confusion

Example. In MultiWOZ dialog PMUL3514.json (Fig. 9), HiCoLoRA shows confusion in domain-
specific slot value prediction. At turns 3-6, despite the ground truth consistently showing “hotel-
name-cityroomz”, the model incorrectly predicts “hotel-book day-cityroomz” and “hotel-book
people-cityroomz”, incorrectly associating the hotel name with booking slots. challenges in se-
mantic entanglement even with disentanglement mechanisms.

Analysis. This failure pattern reveals limitations in:

1. Domain Disambiguation: Properly associating slot values with their respective domains
in multi-domain dialogs.

2. Contextual Understanding: Maintaining clear separation between domain-specific con-
texts when processing complex multi-domain interactions.

3. Semantic Overlap Handling: Dealing with high-overlap domains where lexical similari-
ties between slots from different domains cause confusion. This is particularly challenging
when domain-agnostic features are overweighted by the adaptive fusion mechanism.

C.2.3 PATTERN 3: RARE SLOT VALUE CASES

Description. These failures occur when the model encounters rare or unseen slot values that were
not adequately represented in the training data. Analysis of the MultiWOZ and SGD datasets reveals
that such slots are common: in Attraction, slots like “entrance fee” and “phone” appear in <10% of
dialogs; in Hotel, “stars” and “internet” have fill rates <20%; in Train, “trainID” appears in <5% of
dialogs. In a zero-shot setting, HiCoLoRA must generalize to both unseen domains and these rare
slot values without any domain specific training examples, presenting a significant challenge.

Example. In MultiWOZ dialogs, HiCoLoRA struggles with predicting rare slot values for specific
domains. For instance, in attraction domain dialogs, when users request detailed information about
“entrance fee” or “address”, the model often fails to correctly predict these values. Similarly, in
hotel domain dialogs, when users inquire about specific details like “stars” or “internet”, the model
shows poor performance. In SGD dialogs, similar patterns emerge. For train domain dialogs, Hi-
CoLoRA often fails to predict “trainID” or “price” information, particularly when these values are
not explicitly mentioned in the user utterance but are expected as part of the system response.

Analysis. This failure pattern indicates challenges in:
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1. Rare Value Generalization: Extending knowledge to handle infrequent slot values that
may not have been adequately learned during pre-training. In a zero-shot setting, the model
cannot benefit from domain-specific fine-tuning to improve performance on these rare slots.

2. Contextual Inference: Properly inferring rare slot values from contextual clues when they
are not explicitly mentioned. This is particularly challenging for slots like “trainID” or
“reference number” that require the model to generate specific identifiers.

3. Domain-Aware Initialization: Current initialization methods (SemSVD-Init) preserve
pre-trained knowledge but may not adequately address domain-specific rare slot challenges.
Future work could explore domain-aware initialization strategies that better account for rare
slot distributions.

4. Idiosyncratic Semantics Handling: Dealing with slots that have domain-exclusive terms
or idiosyncratic semantics that resist transfer. Spectral clustering may fail for slots with
low-frequency terms, and semantic dilution in higher layers can occur when full collabora-
tion fuses these slots with irrelevant ones.

C.3 DISCUSSION

The case study analysis reveals both the strengths and limitations of HiCoLoRA. The successful
cases demonstrate the effectiveness of our hierarchical collaborative architecture, spectral joint clus-
tering, and semantic-enhanced initialization in addressing the core challenges of context-prompt
misalignment. However, failure cases highlight areas for future improvement, particularly in han-
dling ambiguous slot boundaries, cross-domain confusion, and rare slot values.

These findings suggest that, while HiCoLoRA represents a significant advance in zs-DST, more
research is needed to address the identified failure patterns. Potential directions include:

1. Enhanced Slot Boundary Detection: Develop more sophisticated mechanisms to identify
and separate slot boundaries in complex utterances.

2. Improved Domain Disambiguation: Exploring techniques for better domain separation
in multi-domain dialogs.

3. Rare Value Enhancement: Investigating data enhancement strategies to improve coverage
of rare slot values during training.

In general, the case study provides valuable insight into the practical performance of HiCoLoRA
and informs future research directions on zs-DST.
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