

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HICoLoRA: ADDRESSING CONTEXT-PROMPT MIS- ALIGNMENT VIA HIERARCHICAL COLLABORATIVE LORA FOR ZERO-SHOT DST

Anonymous authors

Paper under double-blind review

ABSTRACT

Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at Anonymous Github.

1 INTRODUCTION

Task-Oriented Dialog Systems (TODs) help users complete specific tasks, such as restaurant reservations or taxi inquiries, through multi-turn natural language interactions Luo et al. (2024); Wang et al. (2024d). A core component enabling this functionality is Dialog State Tracking (DST), which dynamically parses user inputs into structured slot-value pairs to infer intents and resolve ambiguities. However, zero-shot DST (zs-DST) faces a challenge: semantic misalignment between dynamic dialog contexts and static prompts, hindering adaptation to new domains.

To extend DST modules to unseen domains by leveraging existing knowledge and address data scarcity, zs-DST has emerged as a promising paradigm. While approaches include data augmentation He et al. (2025) and prompt engineering Liu et al. (2025b); Wang et al. (2024c); Aksu et al. (2023), parameter-efficient fine-tuning (PEFT), particularly Low-Rank Adaptation (LoRA) Wang et al. (2024a); Occhipinti et al. (2024), has gained prominence for zs-DST Yi et al. (2025); Aksu et al. (2023). LoRA freezes most pre-trained model parameters, updating only low-rank external matrices to enable efficient cross-domain generalization. Recent multi-LoRA variants, such as DualLoRA Luo et al. (2024), CoLA Zhou et al. (2025), HydraLoRA Tian et al. (2024), MTL-LoRA Yang et al. (2025), enhance adaptability through specialized adapters or cross-task collaboration. Despite these advances, structural limitations in context-prompt alignment persist, motivating our hierarchical approach. Despite these advancements, current LoRA based zs-DST methods face limitations. Data augmentation and prompt engineering approaches manipulate external data or rely on shallow input adjustments, which may not adequately cover a broad range of slot types or capture the nuanced complexities of dynamic dialog contexts. Similarly, PEFT methods rely on shallow input adjustments or local parameter modifications, which limits their adaptability to complex and dynamic dialog contexts. Specifically, a single LoRA project features different tasks in the same low-dimensional space. This can lead to intertask interference, hinder knowledge separation, and limit multitask adaptability. Although Multi-LoRA designs like DualLoRA Luo et al. (2024), CoLA Zhou et al. (2025), HydraLoRA Tian et al. (2024), and MTL-LoRA Yang et al. (2025) have attempted to mitigate these issues by introducing multipath adapters or exploring adaptive cross-task collaboration, limitations persist in practical applications. These limitations stem largely from a

Figure 1: Three critical challenges motivating our work: (1) Architectural rigidity hinders cross-layer coordination in Transformers, limiting fine-grained semantic alignment; (2) Coupling of domain-shared and domain-specific semantics causes cross-domain confusion; (3) Random parameter initialization distorts pre-trained knowledge, exacerbating catastrophic forgetting.

structural mismatch between dynamic dialog contexts and static prompts (as illustrated in Fig.1), manifesting itself in three critical research challenges: (RQ1) Rigid hierarchical designs hinder effective cross-layer weight sharing, limiting fine-grained semantic alignment in deeper layers. (RQ2) A single adaptation matrix conflates domain-agnostic and domain-specific signals, causing semantic confusion between domains. (RQ3) The use of random initialization for LoRA parameters can distort pre-trained knowledge and exacerbate catastrophic forgetting.

To address the three limitations, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a novel framework inspired by DualLoRA’s prompt augmentation Luo et al. (2024) and CoLA’s multi-LoRA grouping Zhou et al. (2025). Departing from “uniform layer processing”, it introduces: (1) A Hierarchical Collaborative Architecture with lower-layer heuristic grouping and higher-layer full interaction, resolving RQ1 via dynamic cross-layer coordination; (2) Spectral Joint Clustering and Adaptive Fusion disentangling domain-shared and specific semantics addressing RQ2; (3) Semantic-Enhanced SVD Initialization preserving pre-trained knowledge against RQ3.

Experiments on MultiWOZ and SGD datasets establish new SOTA results, achieving 5.4% and 9.4% JGA gains over DualLoRA, validating our framework’s success in fundamentally addressing RQ1-3 through hierarchical adaptation, semantic disentanglement and knowledge preservation, especially in high-overlap domains and sparse slots.

2 RELATED WORK

zs-DST and Goal Accuracy. zs-DST is fundamental to TODs, with Joint Goal Accuracy (JGA) and Average Goal Accuracy (AGA) as a key metric to evaluate performance. Early methods like TRADE Wu et al. (2019) and SUMBT Lee et al. (2019) laid the foundations for cross-domain generalization but relied on task-specific architectures. With pre-trained language models (PLMs), SimpleTOD Hosseini-Asl et al. (2020) reformulated DST as sequence generation, Yi et al. (2025) enhanced the few-shot capability through the enhancement of intent-driven dialog information. Recent advances in zs-DST include Prompter Aksu et al. (2023) with learnable prompts, DualLoRA Luo et al. (2024) with dual-path adapters and LUAS Wang et al. (2024d) with synthetic data, though these still face challenges in cross-layer semantic alignment and domain knowledge separation. HiCoLoRA fun-

108 damentally optimizes these challenges through its hierarchical cross-layer coordination and spectral
 109 domain-slot disentanglement,
 110

111 **Parameter-Efficient Fine-Tuning with LoRA.** LoRA is an effective method for PEFT Zhang et al.
 112 (2025); Liu et al. (2025a); Jabbarvaziri & Lampe (2025); Zhang & Pilanci (2025); Wang et al.
 113 (2024b). For zero-shot scenarios, DualLoRA Luo et al. (2024) mitigates context-prompt misalign-
 114 ment via dual-path designs, while HydraLoRA Tian et al. (2024) uses MoE routers for subtask de-
 115 coupling. Multitask adaptations such as CoLA Zhou et al. (2025) and MTL-LoRA Yang et al. (2025)
 116 enhance cross-task collaboration, and RoSA Nikdan et al. (2024) integrate routing/sparsity for ef-
 117 ficiency. Initialization strategies such as PiSSA Meng et al. (2024), MiLoRA Zhang et al. (2024),
 118 improve knowledge preservation, but few address semantic alignment in dynamic dialog contexts.
 119 HiCoLoRA directly addresses this gap through hierarchical cross-layer semantic coordination and
 120 adaptive domain-slot disentanglement, enabling alignment in dynamic dialog contexts.

121 **Layer-Specific Algorithms in Transformers.** Xie et al. (2025); Wang et al. (2025); Liu et al.
 122 (2024); Du et al. (2020) all demonstrate that the lower layers handle basic and detailed information,
 123 such as lexical semantics, grid features, and rapid computations, while the upper layers focus on
 124 abstract and task-oriented processing, such as prediction, abstract planning, and semantic integra-
 125 tion. Algorithm designs targeting this characteristic have improved task performance. Layer-specific
 126 algorithms also include Split Attention (partitioning attention across layers) Lin et al. (2025), Hier-
 127 archical LoRA (applying hierarchical LoRA patterns) Xiao et al. (2024); Guo et al. (2024), Dynamic
 128 Layer Replace (selective layer substitution) Xiong et al. (2024) and attention head pruning within
 129 layers He & Lin (2025); Zayed et al. (2024). These methods leverage the principle of unequal layer
 130 contributions across tasks, achieving computational or parameter reductions while improving met-
 131 rics. Critically, they fail to resolve issues such as dynamic context-prompt misalignment induced
 132 by layer-specific adaptations and the lack of coordinated cross-layer interactions needed for seman-
 133 tic coherence, which challenges complex scenarios in zs-DST. HiCoLoRA thus aims to bridge this
 134 gap by introducing mechanisms for harmonizing hierarchical layer-wise adaptations and ensuring
 135 consistent cross-layer alignment essential for robust zs-DST performance.

3 METHOD

138 We propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA, Fig. 2), a method that
 139 enhances zero-shot slot inference in unseen domains through improved prompt alignment. HiCoL-
 140 oRA employs a hierarchical architecture that moves beyond uniform layer-wise processing, dynam-
 141 ically integrating domain-agnostic (UniRep-LoRA) and domain-specific (SemAdapt-LoRA) seman-
 142 tics via adaptive fusion. Additionally, spectral clustering and SemSVD-Init optimize domain-slot
 143 representations to strengthen zero-shot generalization.

3.1 UNIVERSAL REPRESENTATION LoRA (UNIREP-LoRA)

144 UniRep-LoRA is designed to efficiently capture domain-agnostic semantic information from the
 145 dialog context \mathbf{x}_{ur} , such as universal slots for time and location. By freezing the parameters of the
 146 pre-trained model \mathbf{W}_0 and updating only the low-rank matrices \mathbf{B}_{ur} and \mathbf{A}_{ur} :

$$\mathbf{h}_{ur} = \mathbf{W}_0 \mathbf{x}_{ur} + \mathbf{B}_{ur} \mathbf{A}_{ur} \mathbf{x}_{ur}. \quad (1)$$

147 UniRep-LoRA and SemAdapt-LoRA are combined via adaptive linear fusion, balancing general and
 148 domain-specific representations to mitigate context-prompt misalignment for zero-shot scenarios.

3.2 SEMANTIC ADAPTATION LoRA (SEMADAPT-LoRA)

149 In contrast to UniRep-LoRA, which focuses on universal features, SemAdapt-LoRA is specifically
 150 tailored to optimize domain-specific prompts by dynamically adjusting their influence across differ-
 151 ent domains (relating to RQ2). To enable this domain-specific optimization, we introduce a Multi-
 152 Head Attention module: high-frequency dialog words from the train dataset serve as \mathbf{Q} , while slot
 153 descriptions function as \mathbf{K} and \mathbf{V} , with the output denoted as \mathbf{x}_{sa} . Different attention heads al-
 154 low for the capture of diverse semantic correlations between these two components. By improving
 155 the semantic alignment between high-frequency dialog information and slot descriptions, this setup

Figure 2: Overview of the HiCoLoRA framework, which combines: (1) UniRep-LoRA and SemAdapt-LoRA with Adaptive Linear Fusion balancing domain-agnostic and domain-specific features; (2) Spectral Joint Domain-Slot Clustering disentangling domain semantics to guide fusion; (3) SemSVD-Init preserving pre-trained knowledge via singular value modulation. These synergistically address context-prompt misalignment, enhancing zero-shot slot inference.

provides SemAdapt-LoRA with more effective local semantic features as input, thus supporting its hierarchical collaborative mechanism to improve zero-shot slot inference performance. To achieve such fine-grained adaptive prompt processing, we further introduce two sets of trainable matrices: $\mathbf{A}_{sa}^m |_{m=1}^M$ for domain common prompt encoding and $\mathbf{B}_{sa}^n |_{n=1}^N$ for cluster-specific domain-slot reconstruction. The former compresses high-dimensional prompt semantics into a low-rank space, while the latter reconstructs low-rank features based on specific domain semantics, transforming general features into domain-specific representations. In detail, M is the number of clusters of domains in domain clusters and N is the number of clusters of domains.

To ensure effective collaboration between $\mathbf{A}_{sa}^m |_{m=1}^M$ and $\mathbf{B}_{sa}^n |_{n=1}^N$, we propose a novel cross-layer collaborative module. Tailored to RQ1, it employs two interaction strategies across Transformer layers, aligned with their semantic roles: Lower layers encode Local Semantic Features serving as semantic atoms for higher layers, while higher layers model Global Semantic Features and guide Lower layer feature extraction via attention suppressing irrelevant associations. This paradigm transcends traditional Transformers' uniform layer processing, forming a hierarchical semantic chain from local associations to global intent modeling.

Heuristic Grouping. For lower Transformer layers, tasked with encoding local semantic atoms, heuristic grouping is favored for its efficiency. It clusters semantically similar parameters to avoid irrelevant interactions, aggregating coherent local features that serve as building blocks for higher layers, laying a precise foundation for global processing.

$$\mathbf{h}_{sa} = \mathbf{W}_0^l \mathbf{x}_{sa} + N \mathbf{B}_{sa}^* M \mathbf{A}_{sa}^* \mathbf{x}_{sa}, \quad (2)$$

where \mathbf{W}_0^l denotes lower-layer weights. The optimal algorithm for selecting matrices \mathbf{A}_{sa}^* and \mathbf{B}_{sa}^* is based on calculating the cosine similarity between the average vector of the slot clusters and the slot prompts. Specifically, \mathbf{A}_{sa}^* refers to the matrix \mathbf{A} corresponding to the category with the highest similarity between the embedding groups \mathbf{x}_{sa} and the domain clusters \mathcal{D}^M , while \mathbf{B}_{sa}^* denotes the matrix \mathbf{B} associated with the category showing the highest similarity between \mathbf{x}_{sa} and the slot prompt clusters \mathcal{X}^N . During training, differentiable selection is achieved via Gumbel-Softmax based on cluster similarity, while softmax is used to accelerate during inference.

216 **Full Collaboration.** Higher layers model global semantic connections through full collaboration,
 217 enabling comprehensive interactions between all encoded local atoms to capture implicit associa-
 218 tions such as the link between *train-arriveby* and *destination*. This process, combined with attention-
 219 guided noise suppression from lower layers, resolves fine-grained alignment and enhances zero-shot
 220 generalization. The equation is shown below:

$$221 \quad \mathbf{h}_{sa} = \mathbf{W}_0^h \mathbf{x}_{sa} + \sum_{n=1}^N \mathbf{B}_{sa}^n \sum_{m=1}^M \mathbf{A}_{sa}^m \mathbf{x}_{sa}, \quad (3)$$

224 where \mathbf{W}_0^h denotes high-layer weights.

226 3.3 INFERENCE EFFICIENCY ANALYSIS

228 A legitimate concern with multi-branch LoRA designs is potential inference latency. HiCoLoRA
 229 addresses this through a precomputation and merging strategy that ensures inference efficiency com-
 230 parable to standard LoRA.

231 **UniRep-LoRA Simplicity:** The UniRep-LoRA module (Eq. 1) maintains a single set of \mathbf{A}_{ur} and
 232 \mathbf{B}_{ur} matrices throughout.

234 **Heuristic Grouping:** For lower layers employing heuristic grouping (Eq. 2), only a single optimal
 235 pair \mathbf{A}_{sa}^* and \mathbf{B}_{sa}^* is selected, requiring just one matrix multiplication per forward pass.

236 **Full Collaboration:** During training, SemAdapt-LoRA employs multiple \mathbf{A}_{sa}^m and \mathbf{B}_{sa}^n matrices to
 237 enable fine-grained semantic adaptation. During inference, we precompute the collective low-rank
 238 contribution of all matrix pairs, and the SemAdapt-LoRA output in full collaboration layers (Eq. 3)
 239 can be reorganized by computing aggregated matrices:

$$241 \quad \mathbf{A}_{\text{total}} = \sum_{m=1}^M \mathbf{A}_{sa}^m, \quad \mathbf{B}_{\text{total}} = \sum_{n=1}^N \mathbf{B}_{sa}^n \quad (4)$$

243 yielding the equivalent computation:

$$245 \quad \mathbf{h}_{sa} = \mathbf{W}_0^h \mathbf{x}_{sa} + \mathbf{B}_{\text{total}} \mathbf{A}_{\text{total}} \mathbf{x}_{sa} \quad (5)$$

246 This transformation reduces the computational overhead from $O(M \cdot N)$ matrix multiplications to
 247 merely two matrix multiplications, identical to standard LoRA.

249 The matrix additions involved in precomputation $O(r \cdot d)$ are negligible compared to matrix mul-
 250 tiplications $O(d^2)$. In practice, we precompute all low-rank update terms during model export and
 251 absorb them into the base model weights, eliminating any additional inference overhead. Conse-
 252 quently, despite its hierarchical architecture, HiCoLoRA maintains inference latency on par with
 253 standard LoRA implementations.

254 3.4 ADAPTIVE LINEAR FUSION MECHANISM

256 We introduce an adaptive linear fusion mechanism to merge the two LoRA modules. A learnable gat-
 257 ing coefficient β , trained end-to-end, balances general and semantically adaptive features. This al-
 258 lows flexible integration of multi-level semantics based on dialog contexts and domain-slot prompts,
 259 more effectively resolving dynamic-static prompt mismatches than fixed-coefficient weighting.

$$260 \quad \mathbf{h}_{final} = \beta \mathbf{h}_{ur} + (1 - \beta) \mathbf{h}_{sa}, \quad \beta \in (0, 1). \quad (6)$$

262 3.5 SPECTRAL CLUSTERING OF DOMAINS AND SLOT PROMPTS

264 The Spectral Joint Domain and Slot Clustering mechanism identifies semantic relatedness by lever-
 265 aging commonalities across domains and slot prompts. Domains often exhibit categorical abstrac-
 266 tion, such as *train* and *taxi* belonging to transportation, or *hotel* and *restaurant* representing service-
 267 oriented establishments. Slot prompts are formatted as structured $\{\text{domain-slot: question}\}$ pairs, for
 268 instance $\{\text{train-arriveby: what is the arrival time of the train the user is interested in?}\}$, which helps
 269 to uncover semantic commonalities among slots from different domains. Prompts like *train-arriveby*
 and *taxi-arriveby* both express temporal attributes despite originating in distinct domains.

270 The T5 encoder converts these domain names and extended slot prompts into dense vector representations, followed by spectral clustering via Laplacian matrix eigendecomposition. The optimal
 271 number of clusters (M for domains, N for slot prompts) is determined by maximizing the silhouette
 272 coefficient, producing clusters \mathcal{D}^M and \mathcal{X}^N .
 273

274

275 3.6 SEMANTIC-ENHANCED SVD INITIALIZATION

276

277 Semantic-Enhanced Singular Value Decomposition Initialization (SemSVD-Init) is an approach to
 278 parameter initialization for both UniRep-LoRA and SemAdapt-LoRA modules. Unlike Kaiming
 279 LoRA initialization, which can disrupt pre-trained semantic structures, or methods like PiSSA Meng
 280 et al. (2024) that lack explicit task-specific alignment (related to RQ3), SemSVD-Init directly ad-
 281 dresses preserving pre-trained knowledge while enhancing domain and slot related semantics, prim-
 282 ing the model for effective zero-shot transfer.

283 SemSVD-Init aligns singular values with the clustered semantic space, and singular directions as-
 284 sociated with universal semantics are amplified while those that capture domain-specific noise are
 285 suppressed. Taking the UniRep-LoRA module for example, the initialization process begins by
 286 performing SVD on the model weight matrix \mathbf{W}_0 :

$$287 \mathbf{W}_0 = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^T. \quad (7)$$

288

289 Subsequently, a correlation matrix \mathbf{R} is computed by cosine similarity between the right singular
 290 vectors \mathbf{V}_r and the cluster embeddings $\text{T5}_{\text{en}}(\mathcal{X}^N)$, where T5_{en} denotes the embeddings of the en-
 291 coder of the T5 model.

$$292 \mathbf{R} = \cos(\mathbf{V}_r, \text{T5}_{\text{en}}(\mathcal{X}^N)). \quad (8)$$

293

294 Using these correlations, the singular values are enhanced on the basis of maximum category rele-
 295 vance for each vector.

$$296 \mathbf{S}_e = \text{diag}(\sigma_1 \cdot \text{ReLU}(1 + \lambda \mathbf{R}_1), \dots, \sigma_r \cdot \text{ReLU}(1 + \lambda \mathbf{R}_r)), \quad (9)$$

297

298 where \mathbf{R}_k is the relevance score for the k -th singular vector, derived from the correlation between
 299 $\mathbf{V}_r[:, k]$ and the cluster embeddings, $\text{ReLU}(x) = \max(0, x)$ to ensure positivity, and λ is a hyper-
 300 parameter. The LoRA matrices are initialized as:

$$301 \mathbf{A}_{ur} = \sqrt{\mathbf{S}_e} \mathbf{V}_r^T, \quad (10)$$

302
$$303 \mathbf{B}_{ur} = \mathbf{U}_r \sqrt{\mathbf{S}_e}.$$

304

305 Finally, the residual weight matrix \mathbf{W}_{res} is adjusted to preserve key knowledge of the pre-trained
 306 model and avoiding distortion of its semantic structure.

$$307 \mathbf{W}_{\text{res}} = \mathbf{W}_0 - \mathbf{B}_{ur} \mathbf{A}_{ur}. \quad (11)$$

308

309

4 EXPERIMENTS

310

311

4.1 EXPERIMENTAL SETTING

312

313 **Dataset.** We conducted experiments on two of the most prominent multi-domain TOD benchmark
 314 datasets (details in Appendix B.1). The MultiWOZ 2.1 dataset is a richly annotated corpus com-
 315 prising more than 10,000 human-human written dialogs spanning multiple domains and topics. The
 316 Schema Guided dialog (SGD) dataset contains more than 20,000 dialogs covering 26 services across
 317 more than 20 domains. The data splitting strategy strictly segregates training and test domains.

318 **Baseline.** To evaluate the generalizability of the proposed HiCoLoRA method, we conduct a com-
 319 parison against representative baselines and SOTA approaches (details in Appendix B.2, categorized
 320 into three groups: **Traditional Methods** including TRADE Wu et al. (2019), SGD-baseline Rastogi
 321 et al. (2019), MA-DST Kumar et al. (2020) and Seq2Seq-DU Feng et al. (2021); **Pre-trained Model**
 322 **Fine-Tuning Approaches** such as SUMBT Lee et al. (2019), GPT2-DST Li et al. (2021a), TransferQA Li et al. (2021b), T5DST Lin et al. (2021) and SlotDM-DST Wang et al. (2022); and **Previous**
 323 **Zero-Shot SOTA Methods** comprising Prompt Aksu et al. (2023), DCC Wang et al. (2023) and

	Method	Year	Base Model	Attraction	Hotel	Restaurant	Train	Taxi	Average
324	TRADE	2019	customized seq2seq	20.1	14.2	12.6	22.4	59.2	25.7
325	MA-DST	2020	TRADE	22.5	16.3	13.6	22.8	59.3	26.9
326	SUMBT	2019	BERT-base	22.6	19.1	16.5	22.5	59.5	28.0
327	GPT2-DST	2021	GPT2-base	23.7	18.5	21.1	24.3	59.1	29.3
328	T5DST	2021	T5-small	31.9	20.7	20.1	28.8	64.1	33.1
329	SlotDM-DST	2022	T5-small	33.9	18.9	20.8	37.0	66.3	35.4
330	T5DST*	2021	PPTOD-small	35.5	20.0	25.3	35.3	65.6	36.4
331	Prompter	2023	PPTOD-small	35.8	19.2	26.0	39.0	66.3	37.2
332	DCC	2023	T5-small	35.8	24.8	22.9	40.2	65.9	37.9
333	DualLoRA (Prev. SOTA)	2024	PPTOD-small	37.1	18.9	27.9	42.4	67.2	38.7
334	HiCoLoRA (Ours)	2025	PPTOD-small	38.9	20.4	31.0	44.9	68.6	40.8
335	% Gain vs DualLoRA			+4.9	+7.9	+11.1	+5.9	+2.1	+5.4

336
337 Table 1: Zero - shot JGA (%) on the MultiWOZ dataset with relative improvement over previous
338 SOTA. All results of baselines were reported from original papers. T5DST* was excerpted from
339 Prompter Aksu et al. (2023).

340
341 DualLoRA Luo et al. (2024). Additionally, comparisons with recent advanced LoRA variants and
342 larger-scale LLMs are included to thoroughly assess scalability and generalization.

343
344 **Metrics.** We evaluate all models using Joint Goal Accuracy (JGA) and Average Goal Accuracy
345 (AGA). JGA measures the rate of turns with all slots exactly matched, indicating system-level reli-
346 ability. AGA calculates the ratio of correctly predicted to total slots, accounting for missed true slots
347 and errors, reflecting fine-grained slot recall and local semantic alignment. The metrics’ formulas
348 and additional experimental details are provided in Appendices B.3 and B.4.

349 4.2 MAIN REULTS

350
351 Performance comparisons on MultiWOZ and SGD benchmarks are presented in Table 1 and 2 (Ta-
352 ble 2 in Appendix A.1). We have the following observations:

353
354 **Overall Performance Superiority.** HiCoLoRA achieves new state-of-the-art results on both Multi-
355 WOZ and SGD benchmarks, with an average JGA of 40.8 on MultiWOZ and significant gains across
356 all SGD domains. This consistent improvement is attributed to architectural advances that address
357 key limitations of previous approaches: (1) traditional methods rely on rigid feature engineering; (2)
358 full fine-tuning suffers from catastrophic forgetting; (3) prior SOTA models are limited by shallow
359 prompting or uniform layer adaptation. HiCoLoRA overcomes these issues via integrated hierarchi-
360 cal adaptation. Furthermore, the model achieves an AGA of 93.8% on SGD Trains, underscoring
361 its ability to preserve rare-slot knowledge through SemSVD-Init and maintain semantic specificity
362 across layers.

363
364 **Component-Wise Efficacy Validation.** HiCoLoRA demonstrates strong performance across di-
365 verse domain types, attributed to its custom architectural components. In **transfer-rich domains**
366 such as *Media*, the model achieves a JGA of 75.9%, representing a 9.4% improvement over Du-
367 alLoRA. This gain is facilitated by spectral clustering, which effectively identifies cross-domain
368 semantic commonalities, exemplified by shared attributes such as genre, thereby disentangling
369 domain-shared semantics and mitigating signal conflation. In **domain-specific regimes** such as *Ho-*
370 *tel*, HiCoLoRA attains JGA 20.4%, corresponding to a 7.9% relative improvement. This enhance-
371 ment stems from the semantic-enhanced singular value modulation within SemSVD-Init, which
372 preserves sparse slot semantics that are otherwise distorted under random initialization. For **context-**
373 **sensitive domains** like *Messaging*, where performance is inherently limited by slot boundary ambi-
374 guities, the adaptive fusion mechanism dynamically balances static prompts against volatile dialog
375 contexts, yielding a 4.0% gain over the rigid weighting strategy employed by DualLoRA.

376
377 **Architectural Validation Against Prev. SOTA.** The hierarchical design of HiCoLoRA directly
378 addresses core limitations of DualLoRA. **Cross-Layer Rigidity (RQ1):** DualLoRA’s uniform pro-
379 cessing hinders fine-grained alignment. HiCoLoRA’s heuristic grouping (lower layers) and full col-
380 laboration (higher layers) enable dynamic coordination, boosting *Restaurant* JGA to +11.1%. **Se-**
381 **mantic Conflation (RQ2):** Where DualLoRA’s single adaptation matrix confuses domain signals,

378 spectral joint clustering separates transport domain semantics (*Taxi*: 44.9 JGA, +2.1% error reduction). **Knowledge Distortion (RQ3):** DualLoRA’s random initialization loses rare slot knowledge. 379 SemSVD-Init preserves pre-trained semantics, critical for *Flights*’ technical terms JGA +8.1%. 380

381 **Discussion.** HiCoLoRA fundamentally resolves context prompt misalignment via hierarchical adap- 382 tation, spectral semantic disentanglement, and knowledge preserving initialization. By overcoming 383 DualLoRA’s structural limitations, our method establishes a new paradigm for zs-DST. Future work 384 will address extreme sparse slots through domain aware initialization refinements. 385

386 4.3 ABLATION STUDY

387 We conduct an ablation study (Table 6 in Appendix A.5) to assess the contribution of each key 388 component of HiCoLoRA.

389 **w/o Swap Hierarchical Strategies** swap layer-wise strategies, using heuristic grouping in high 390 layers and full collaboration in low layers. This variant sees an 8.3% drop in the average JGA. 391 The decline arises because it disrupts synergy: lower layers are designed to capture local semantic 392 atoms, while higher layers model global intents. Swapping strategies break this division, validating 393 the assumption that layer-specific roles are critical for performance. 394

395 **w/o Adaptive Linear Fusion** replaces adaptive gating with DualLoRA’s static $\beta = 0.5$, causing 396 a 12.0% JGA drop, notably in Attraction and Train domains. This exacerbates that static weight- 397 ing cannot dynamically balance UniRep-LoRA (domain-agnostic) and SemAdapt-LoRA (domain- 398 specific) features across layers. Unlike the adaptive mechanism that mitigates cross-layer semantic 399 mismatches, static β locks in misalignment, leading to performance drops. 400

401 **w/o Spectral Joint Cluster** discards spectral clustering, retaining the same number of M and N 402 but without identifying transferable domain-slot associations. Its average JGA drops 7.4%, notably 403 in Train and Taxi domains. The decline occurs because spectral clustering captures cross-domain 404 semantic commonalities, such as “arriveby” in trains and taxis sharing temporal attributes, to guide 405 effective feature fusion. Without it, the model fails to leverage transferable associations, weakening 406 the alignment between domain-slot prompts and dynamic contexts, thus hindering zero-shot gener- 407 alization.

408 **w/ Kaiming Init** use Kaiming initialization for matrix A and zero initialization for matrix B re- 409 sults 6.6% decreased the average JGA. SemSVD-Init preserves pre-trained semantics by modulating 410 singular values, thereby suppressing catastrophic forgetting. Without this mechanism, random initia- 411 lization induces knowledge distortion and forgetting, preventing the model from retaining critical 412 semantics and impairing its zero-shot transfer capability.

413 **w/ PiSSA Init** use PiSSA initialization, trailing HiCoLoRA by 4.7% but outperforming random 414 init. PiSSA partially addresses RQ3 but not as effectively: it retains pre-trained knowledge but lacks 415 alignment of singular values to domain-slot semantics, limiting performance.

416 **w/ MiLoRA Init** use MiLoRA initialization, resulting in a significant performance drop. This degra- 417 dation occurs because the MiLoRA strategy, which is designed to update minor singular compo- 418 nents, is misaligned with the limited parameter capacity and the flat singular value spectrum of the 419 T5-small model. Consequently, it fails to preserve crucial pre-trained semantics and severely impairs 420 the model’s zero-shot transfer capability.

421 Ablation studies demonstrate that the hierarchical collaborative architecture, adaptive fusion, spec- 422 tral clustering, and SemSVD-Init components of HiCoLoRA are all indispensable. These compo- 423 nents synergistically address the three core research questions, outperform baselines in zs-DST, and 424 thus validate the efficacy of the proposed design.

425 5 ANALYSIS

426 This section evaluates HiCoLoRA design choices to validate its mechanisms, including rank sen- 427 sitivity, high layer ratio, and attention alignment (Figs. 3–5), examining expressiveness balance, 428 semantic flow optimization, and sustained attention for zero-shot performance.

Figure 3: Accuracy of HiCoLoRA with different rank on the MultiWOZ dataset.

Figure 4: Accuracy of different high layer ratio (full collaboration) in HiCoLoRA.

(a) First Layer Attention Map

(b) Last Layer Attention Map

Figure 5: Example Attention Maps of the First and Last Transformer Layers in HiCoLoRA.

5.1 MODEL MECHANISM ANALYSIS

Rank Sensitivity: Balance of expressiveness. Fig. 3 shows that the superiority of $rank = 8$ reflects LoRA principles: the rank must match the semantic complexity. Too low (4) fails to encode nuanced domain slot distinctions. Too high (16/32) introduces redundancy and dilutes transferable signals. This aligns with low-rank matrix theory, where rank determines perturbation precision to pre-trained weights, optimizing zero-shot transfer by balancing parsimony and expressiveness.

High-Layer Ratio: Optimizing Semantic Flow. Fig. 4 indicates that the 50% high-layer ratio validates cognitive theories of dialog comprehension, requiring balanced local-global integration. The 0% ratio ignores global intent; 100% dilutes slot-specific cues. HiCoLoRA’s hierarchical design mirrors bottom-up (local atoms) to top-down (global intent) processing, ensuring coherent semantic chains, critical to resolving dynamic context-prompt misalignment in zs-DST.

Attention Alignment: Maintaining Semantic Focus. Fig. 5 reveals hierarchical attention evolution: first-layer “local dots” encode discrete context-prompt associations, while last-layer “connected lines” form global semantic chains. This mirrors the layered semantic progression of Transformer: lower layers anchor atomic prompt-semantic links, and higher layers integrate into coherent intent pathways through cross layer optimization. By preserving prompt focus across depths, HiCoLoRA avoids deep-layer attention dilution, maintaining critical alignment for zero-shot transfer.

The experimental results here validate our claims: optimal rank 8 confirms balanced expressiveness, the 50% high-layer ratio verifies the optimization of semantic flow, and attention evolution demonstrates effective hierarchical collaboration. These align with the HiCoLoRA design, proving that its components jointly resolve misalignment.

486 5.2 CASE STUDY SUMMARY
487488 Our case study analysis in Appendix C reveals HiCoLoRA’s strengths in handling complex multi-
489 domain dialogues through hierarchical collaboration and semantic disentanglement. Successful
490 cases demonstrate robust slot inference in both transfer rich and context sensitive domains. However,
491 failure patterns highlight areas for future refinement, particularly in highly idiosyncratic domains.
492493 5.3 EXTENDED EXPERIMENTAL ANALYSIS
494495 **Scalability Analysis.** HiCoLoRA exhibits enhanced scalability in larger datasets: 9.4% average
496 JGA gain in SGD vs 5.4% in MultiWOZ. This stems from: 1) Semantic regular domains like *Me-
497 dia* benefit from spectral clustering’s cross- service pattern recognition; 2) Terminology intensive
498 domains such as *Flights* leverage SemSVD-Init’s knowledge preservation; 3) Sparsely distributed
499 slots like *hotel-star* benefit from hierarchical refinement and singular value modulation.
500501 **Extended Comparative Analysis.** We conduct extensive comparisons against both recent LoRA
502 methods and largeer LLMs based approaches. As detailed in Appendix A.2 to A.4, HiCoLoRA
503 consistently outperforms recent LoRA variants in nearly all domains, achieving the highest aver-
504 age JGA. This superiority underscores the effectiveness of our hierarchical adaptation and semantic
505 aware initialization in mitigating cross layer misalignment and knowledge distortion. Furthermore,
506 when scaled to larger backbone models, HiCoLoRA remains highly competitive with other LLM-
507 based zs-DST methods, even surpassing the previous SOTA FnCTOD, demonstrating its generaliz-
508 ability across model scales. These results confirm HiCoLoRA offers a robust and scalable solution
509 for zero-shot dialog state tracking, effectively balancing performance and parameter efficiency.
510511 **Architectural Implications beyond Homogeneous Baselines** The comparative analysis with het-
512 erogeneous methods reveals distinctive advantages of HiCoLoRA’s design philosophy. While LDST
513 relies on full fine-tuning of LLMs and CAPID introduces additional complexity through separate
514 prompt generation, our approach demonstrates that a unified hierarchical architecture with collab-
515 orative adapters suffices to achieve competitive performance. This underscores the significance of
516 structural alignment with task hierarchies over merely scaling model capacity or pipeline complex-
517 ity, positioning HiCoLoRA as a resource efficient yet powerful paradigm for dialog state tracking.
518519 **Generalization Analysis.** As analysis in Appendix A.7, our model demonstrates generalization ca-
520 pabilities in cross domain adaptation and long tailed recognition scenarios. It achieves performance
521 improvements on multiple datasets, underscoring its ability to transfer knowledge across diverse
522 domains. In addition, it exhibits remarkable robustness in tail classes, effectively mitigating the per-
523 formance disparity between head and tail categories. This is attributed to our framework’s ability
524 to learn a more balanced and generalizable feature representation, which prevents overfitting to the
525 dominant head classes and fosters a more robust decision boundary for underrepresented tail classes,
526 thereby enhancing overall model generalization in real world and long tailed environments.
527528 The extended analyses collectively affirm that HiCoLoRA’s hierarchical adaptation transcends mere
529 parameter efficiency by fundamentally restructuring semantic flow dynamics across transformer lay-
530 ers. Its spectral disentanglement mechanism effectively decouples domain agnostic and domai -
531 specific semantics, enabling robust knowledge transfer even under significant distribution shifts.
532 This architectural paradigm demonstrates that task aligned inductive biases, rather than sheer model
533 scale or pipeline complexity, constitute the pivotal factor for achieving scalable zero-shot general-
534 ization in dynamic dialogue environments.
535536 6 CONCLUSION
537538 zs-DST is crucial for scalable TODs but remains challenged by insufficient cross-layer coordina-
539 tion, semantic conflation across domains, and corruption of pre-trained knowledge. HiCoLoRA
540 overcomes these issues via a hierarchical LoRA design for dynamic context-prompt alignment,
541 spectral clustering for domain-slot disentanglement, and SemSVD-Init for knowledge-preserving
542 fine-tuning. Evaluations in MultiWOZ and SGD show that HiCoLoRA significantly outperforms
543 previous SOTA approaches, improving average JGA by 5.4% and 9.4%, respectively. Limitations
544 remain in highly idiosyncratic slot domains, and future work will focus on slot aware refinement to
545 further strengthen HiCoLoRA’s applicability in zs-DST.
546

540 ETHICS STATEMENT
541

542 Our research involves only publicly available, anonymized dialog datasets (MultiWOZ and SGD)
 543 and does not collect new human subject data. All data usage complies with the original licenses, and
 544 no personally identifiable information is processed or stored. The proposed method, HiCoLoRA,
 545 is designed to improve zero-shot generalization in task-oriented dialog systems and does not have
 546 known harmful applications. We acknowledge that there are no conflicts of interest and that the
 547 research was conducted with full integrity, transparency, and respect for privacy, fairness, and inclu-
 548 sivity. No institutional review board (IRB) approval was required as the study involves no human
 549 participants beyond the use of existing, de-identified benchmark data.

550
551 REPRODUCIBILITY STATEMENT
552

553 To ensure reproducibility, we provide a complete description of HiCoLoRA’s architecture and hy-
 554 perparameters in Sections 3 and Appendix B.4. The anonymized source codes and datasets are
 555 publicly available at <https://anonymous.4open.science/r/HiCoLoRA-96EB>. Ran-
 556 dom seeds, optimizer settings, and model checkpoints are fully specified to enable exact replication
 557 of our results.

558
559 LLM USE STATEMENT
560

561 We acknowledge the use of Writeful integrated with Overleaf for refining the textual expression of
 562 this manuscript, and DeepSeek V3.1 for error correction of the experimental code. The role of these
 563 LLMs was limited to technical assistance and did not involve research ideation or the creation of
 564 core content, thus not meeting the defined criteria of a “contributor” . All LLM outputs have been
 565 rigorously verified by the authors, who bear full responsibility for the final accuracy, integrity, and
 566 originality of the content including the avoidance of plagiarism or scientific misconduct.

567
568 REFERENCES
569

570 Taha Aksu, Min-Yen Kan, and Nancy Chen. Prompter: Zero-shot adaptive prefixes for dialogue state
 571 tracking domain adaptation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
*572 Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
 573 1: Long Papers)*, pp. 4588–4603, Toronto, Canada, July 2023. Association for Computational
 574 Linguistics. doi: 10.18653/v1/2023.acl-long.252. URL <https://aclanthology.org/2023.acl-long.252/>.

576 Xiaoyu Dong, Yujie Feng, Zexin Lu, Guangyuan Shi, and Xiao-Ming Wu. Zero-shot cross-
 577 domain dialogue state tracking via context-aware auto-prompting and instruction-following con-
 578 trastive decoding. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-
 579 ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 580 8527–8540, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 581 tics. doi: 10.18653/v1/2024.emnlp-main.485. URL <https://aclanthology.org/2024.emnlp-main.485/>.

583 Chen Du, Yanna Wang, Chunheng Wang, Cunzhao Shi, and Baihua Xiao. Selective feature
 584 connection mechanism: Concatenating multi-layer cnn features with a feature selector. *Pat-
 585 tern Recognition Letters*, 129:108–114, 2020. ISSN 0167-8655. doi: <https://doi.org/10.1016/j.patrec.2019.11.015>. URL <https://www.sciencedirect.com/science/article/pii/S0167865519303290>.

589 Yue Feng, Yang Wang, and Hang Li. A Sequence-to-Sequence Approach to Dialogue State Track-
 590 ing. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
 591 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
 592 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1714–1725, Online,
 593 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.135.
 URL <https://aclanthology.org/2021.acl-long.135>.

594 Yujie Feng, Zexin Lu, Bo Liu, Liming Zhan, and Xiao-Ming Wu. Towards LLM-driven dialogue
 595 state tracking. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023*
 596 *Conference on Empirical Methods in Natural Language Processing*, pp. 739–755, Singapore,
 597 December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
 598 48. URL <https://aclanthology.org/2023.emnlp-main.48/>.

599 James D. Finch and Jinho D. Choi. Diverse and effective synthetic data generation for adaptable
 600 zero-shot dialogue state tracking. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 601 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 12527–12544,
 602 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.
 603 18653/v1/2024.findings-emnlp.731.

604 Zhihan Guo, Yifei Zhang, Zhuo Zhang, Zenglin Xu, and Irwin King. Fedhlt: Efficient federated
 605 low-rank adaption with hierarchical language tree for multilingual modeling. In *Companion Pro-
 606 ceedings of the ACM Web Conference 2024*, pp. 1558–1567, 2024.

607 Juijun He and Huazhen Lin. Olica: Efficient structured pruning of large language models without
 608 retraining. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=hhhcwCgyM1>.

609 Tao He, Lizi Liao, Yixin Cao, Yuanxing Liu, Yiheng Sun, Zerui Chen, Ming Liu, and Bing Qin.
 610 Simulation-free hierarchical latent policy planning for proactive dialogues. In *Proceedings of the*
 611 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 24032–24040, 2025.

612 Michael Heck, Nurul Lubis, Benjamin Ruppiik, Renato Vukovic, Shutong Feng, Christian
 613 Geishauser, Hsien-chin Lin, Carel van Niekerk, and Milica Gasic. ChatGPT for zero-shot di-
 614 alogue state tracking: A solution or an opportunity? In Anna Rogers, Jordan Boyd-Graber, and
 615 Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Compu-
 616 tational Linguistics (Volume 2: Short Papers)*, pp. 936–950, Toronto, Canada, July 2023. Asso-
 617 ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.81.

618 Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. A simple
 619 language model for task-oriented dialogue. *Advances in Neural Information Processing Systems*,
 620 33:20179–20191, 2020.

621 Faramarz Jabbarvaziri and Lutz Lampe. Parameter-efficient online fine-tuning of ml-based hybrid
 622 beamforming with lora. *IEEE Wireless Communications Letters*, 2025.

623 Adarsh Kumar, Peter Ku, Anuj Goyal, Angeliki Metallinou, and Dilek Hakkani-Tur. Ma-dst: Multi-
 624 attention-based scalable dialog state tracking. *Proceedings of the AAAI Conference on Artificial*
 625 *Intelligence*, 34:8107–8114, 04 2020. doi: 10.1609/aaai.v34i05.6322.

626 Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. SUMBT: Slot-utterance matching for universal and
 627 scalable belief tracking. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings*
 628 *of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 5478–5483, Flo-
 629 rence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1546.
 630 URL <https://aclanthology.org/P19-1546/>.

631 Shuyang Li, Jin Cao, Mukund Sridhar, Henghui Zhu, Shang-Wen Li, Wael Hamza, and Julian
 632 McAuley. Zero-shot generalization in dialog state tracking through generative question answer-
 633 ing. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Confer-
 634 ence of the European Chapter of the Association for Computational Linguistics: Main Volume*,
 635 pp. 1063–1074, Online, April 2021a. Association for Computational Linguistics. doi: 10.18653/
 636 v1/2021.eacl-main.91. URL <https://aclanthology.org/2021.eacl-main.91/>.

637 Shuyang Li, Jin Cao, Mukund Sridhar, Henghui Zhu, Shang-Wen Li, Wael Hamza, and Julian
 638 McAuley. Zero-shot Generalization in Dialog State Tracking through Generative Question An-
 639 swering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Confer-
 640 ence of the European Chapter of the Association for Computational Linguistics: Main Volume*,
 641 pp. 1063–1074, Online, April 2021b. Association for Computational Linguistics. doi: 10.18653/
 642 v1/2021.eacl-main.91. URL <https://aclanthology.org/2021.eacl-main.91/>.

648 Zekun Li, Zhiyu Chen, Mike Ross, Patrick Huber, Seungwhan Moon, Zhaojiang Lin, Xin Dong,
 649 Adithya Sagar, Xifeng Yan, and Paul Crook. Large language models as zero-shot dialogue
 650 state tracker through function calling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 651 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
 652 guistics (Volume 1: Long Papers)*, pp. 8688–8704, Bangkok, Thailand, August 2024. Asso-
 653 ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.471. URL <https://aclanthology.org/2024.acl-long.471/>.

654 Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou
 655 Yu, Andrea Madotto, Eunjoon Cho, and Rajen Subba. Leveraging Slot Descriptions for Zero-
 656 Shot Cross-Domain Dialogue StateTracking. In *Proceedings of the 2021 Conference of the North
 657 American Chapter of the Association for Computational Linguistics: Human Language Technolo-
 658 gies*, pp. 5640–5648, 2021.

659 Zheng Lin, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Praneeth Vepakomma, Wei Ni, Jun
 660 Luo, and Yue Gao. Hsplitlora: A heterogeneous split parameter-efficient fine-tuning framework
 661 for large language models, 2025. URL <https://arxiv.org/abs/2505.02795>.

662 Jun Liu, Yunming Liao, Hongli Xu, Yang Xu, Jianchun Liu, and Chen Qian. Adaptive parameter-
 663 efficient federated fine-tuning on heterogeneous devices. *IEEE Transactions on Mobile Comput-
 664 ing*, 2025a.

665 Zeming Liu, Haifeng Wang, Zeyang Lei, Zheng-Yu Niu, Hua Wu, and Wanxiang Che. Towards
 666 few-shot mixed-type dialogue generation. *Science China Information Sciences*, 68(2):122105,
 667 2025b.

668 Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fantastic semantics and where to find them:
 669 Investigating which layers of generative LLMs reflect lexical semantics. In Lun-Wei Ku, Andre
 670 Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:
 671 ACL 2024*, pp. 14551–14558, Bangkok, Thailand, August 2024. Association for Computational
 672 Linguistics. doi: 10.18653/v1/2024.findings-acl.866. URL <https://aclanthology.org/2024.findings-acl.866/>.

673 Xiang Luo, Zhiwen Tang, Jin Wang, and Xuejie Zhang. Zero-shot cross-domain dialogue state
 674 tracking via dual low-rank adaptation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 675 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
 676 guistics (Volume 1: Long Papers)*, pp. 5746–5765, Bangkok, Thailand, August 2024. Association for
 677 Computational Linguistics. doi: 10.18653/v1/2024.acl-long.312.

678 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
 679 vectors adaptation of large language models. *Advances in Neural Information Processing Systems*,
 680 37:121038–121072, 2024.

681 Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. RoSA: Accurate parameter-
 682 efficient fine-tuning via robust adaptation. In Ruslan Salakhutdinov, Zico Kolter, Katherine
 683 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceed-
 684 ings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings
 685 of Machine Learning Research*, pp. 38187–38206. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/nikdan24a.html>.

686 Daniela Occhipinti, Michele Marchi, Irene Mondella, Huiyuan Lai, Felice Dell’Orletta, Malvina
 687 Nissim, and Marco Guerini. Fine-tuning with HED-IT: The impact of human post-editing for di-
 688 alogical language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of
 689 the Association for Computational Linguistics: ACL 2024*, pp. 11892–11907, Bangkok, Thailand,
 690 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
 691 707. URL <https://aclanthology.org/2024.findings-acl.707/>.

692 Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and Mathias Lambert. Scaling Multi-Domain
 693 Dialogue State Tracking via Query Reformulation. In *Proceedings of the 2019 Conference of
 694 the North American Chapter of the Association for Computational Linguistics: Human Language
 695 Technologies, Volume 2 (Industry Papers)*, pp. 97–105, 2019.

702 Sangmin Song, Juhwan Choi, JungMin Yun, and YoungBin Kim. Beyond single-user dialogue:
 703 Assessing multi-user dialogue state tracking capabilities of large language models, 2025.
 704

705 Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. Multi-
 706 Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System. In Smaranda Muresan,
 707 Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the
 708 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4661–4676, Dublin,
 709 Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
 710 319. URL <https://aclanthology.org/2022.acl-long.319>.

711 Tianwen Tang, Tong Zhu, Haodong Liu, Yin Bai, Jia Cheng, and Wenliang Chen. MoPE: Mix-
 712 ture of prefix experts for zero-shot dialogue state tracking. In Nicoletta Calzolari, Min-Yen
 713 Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings
 714 of the 2024 Joint International Conference on Computational Linguistics, Language Resources
 715 and Evaluation (LREC-COLING 2024)*, pp. 11582–11592, Torino, Italia, May 2024. ELRA and
 716 ICCL.

717 Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
 718 lora architecture for efficient fine-tuning. *Advances in Neural Information Processing Systems*,
 719 37:9565–9584, 2024.

720 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
 721 Yasin Abbasi Yadkori. Hierarchical reasoning model, 2025. URL <https://arxiv.org/abs/2506.21734>.

722 Jian Wang, Chak Tou Leong, Jiashuo Wang, Dongding Lin, Wenjie Li, and Xiaoyong Wei. In-
 723 struct once, chat consistently in multiple rounds: An efficient tuning framework for dialogue.
 724 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual
 725 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3993–
 726 4010, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi:
 727 10.18653/v1/2024.acl-long.219.

728 Qingyue Wang, Yanan Cao, Piji Li, Yanhe Fu, Zheng Lin, and Li Guo. Slot dependency modeling for
 729 zero-shot cross-domain dialogue state tracking. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem
 730 Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Do-
 731 natelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun
 732 Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.),
 733 *Proceedings of the 29th International Conference on Computational Linguistics*, pp. 510–520,
 734 Gyeongju, Republic of Korea, October 2022. International Committee on Computational Lin-
 735 guistics. URL <https://aclanthology.org/2022.coling-1.42/>.

736 Qingyue Wang, Liang Ding, Yanan Cao, Yibing Zhan, Zheng Lin, Shi Wang, Dacheng Tao, and
 737 Li Guo. Divide, Conquer, and Combine: Mixture of Semantic-Independent Experts for Zero-
 738 Shot Dialogue State Tracking. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
 739 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
 740 1: Long Papers)*, pp. 2048–2061, Toronto, Canada, July 2023. Association for Computational
 741 Linguistics. doi: 10.18653/v1/2023.acl-long.114. URL <https://aclanthology.org/2023.acl-long.114>.

742 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
 743 *Advances in Neural Information Processing Systems*, 37:54905–54931, 2024b.

744 Siyin Wang, Chao-Han Yang, Ji Wu, and Chao Zhang. Can whisper perform speech-based in-context
 745 learning? In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
 746 Processing (ICASSP)*, pp. 13421–13425. IEEE, 2024c.

747 Xinguang Wang, Xuxin Cheng, Juntong Song, Tong Zhang, and Cheng Niu. Enhancing dialogue
 748 state tracking models through LLM-backed user-agents simulation. In Lun-Wei Ku, Andre
 749 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 750 Computational Linguistics (Volume 1: Long Papers)*, pp. 8724–8741, Bangkok, Thailand, August
 751 2024d. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.473.

756 Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher, and
 757 Pascale Fung. Transferable multi-domain state generator for task-oriented dialogue systems.
 758 In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual*
 759 *Meeting of the Association for Computational Linguistics*, pp. 808–819, Florence, Italy, July
 760 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1078. URL <https://aclanthology.org/P19-1078/>.

762 Linhui Xiao, Xiaoshan Yang, Fang Peng, Yaowei Wang, and Changsheng Xu. Hivg: Hierarchi-
 763 cal multimodal fine-grained modulation for visual grounding. In *Proceedings of the 32nd ACM*
 764 *International Conference on Multimedia*, pp. 5460–5469, 2024.

766 Zhuli Xie, Gang Wan, Yunxia Yin, Guangde Sun, and Dongdong Bu. Sddgrnets: Level-level se-
 767 mantically decomposed dynamic graph reasoning network for remote sensing semantic change
 768 detection. *Remote Sensing*, 17(15), 2025. ISSN 2072-4292. doi: 10.3390/rs17152641.

770 Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou Zhu, Jiapeng Luo, Wenhui Wang, Tong
 771 Lu, Hongsheng Li, Yu Qiao, et al. Efficient deformable convnets: Rethinking dynamic and sparse
 772 operator for vision applications. In *Proceedings of the IEEE/CVF conference on computer vision*
 773 *and pattern recognition*, pp. 5652–5661, 2024.

774 Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
 775 Weiwei Deng, Feng Sun, Qi Zhang, Weizhu Chen, and Yunhai Tong. Mtl-lora: Low-rank adap-
 776 tation for multi-task learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39:
 777 22010–22018, Apr. 2025. doi: 10.1609/aaai.v39i20.35509.

779 Zihao Yi, Zhe Xu, and Ying Shen. Intent-driven in-context learning for few-shot dialogue state
 780 tracking. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal*
 781 *Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

782 Abdelrahman Zayed, Gonçalo Mordido, Samira Shabani, Ioana Baldini, and Sarath Chandar.
 783 Fairness-aware structured pruning in transformers. In *Proceedings of the AAAI Conference on*
 784 *Artificial Intelligence*, volume 38, pp. 22484–22492, 2024.

786 Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang, Yuxiao Dong, and Jie Tang. Parameter-efficient
 787 fine-tuning for foundation models, 2025. URL <https://arxiv.org/abs/2501.13787>.

789 Fangzhao Zhang and Mert Pilanci. Spectral adapter: fine-tuning in spectral space. In *Proceedings*
 790 *of the 38th International Conference on Neural Information Processing Systems, NIPS '24*, Red
 791 Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

793 Jingfan Zhang, Yi Zhao, Dan Chen, Xing Tian, Huanran Zheng, and Wei Zhu. MiLoRA: Effi-
 794 cient mixture of low-rank adaptation for large language models fine-tuning. In Yaser Al-Onaizan,
 795 Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Lin-
 796 guistics: EMNLP 2024*, pp. 17071–17084, Miami, Florida, USA, November 2024. Association
 797 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.994.

798 Yiyun Zhou, Chang Yao, and Jingyuan Chen. CoLA: Collaborative low-rank adaptation. In Wanx-
 799 iang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of*
 800 *the Association for Computational Linguistics: ACL 2025*, pp. 14115–14130, Vienna, Austria,
 801 July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5.

803

804 **A ADDITIONAL EXPERIMENTAL RESULTS**

805

806 **A.1 PERFORMANCE ON SGD DATASET**

807

808 Table 2 presents the zero-shot performance of HiCoLoRA on the SGD Dataset. Compared to base-
 809 line methods and previous state-of-the-art approaches, HiCoLoRA achieves significant improve-
 810 ments across multiple domains.

Method	Year	Buses	Events	Flights	Media	Messaging	Music	Payment	Trains
SGD-baseline	2019	9.7/50.9	23.5/57.9	23.9/65.9	18.0/30.8	10.2/20.0	15.5/39.9	11.5/34.8	13.6/63.5
Seq2seq-DU	2021	16.8/N	31.9/N	15.9/N	23.1/N	4.9/N	12.3/N	7.2/N	16.8/N
Transfer-QA	2021	15.9/63.6	15.6/56.8	3.59/42.9	30.2/67.5	13.3/37.9	8.9/62.4	24.7/60.7	17.4/64.9
SlotDM-DST	2022	43.9/86.3	—	—	—	36.6/61.4	—	16.5/62.0	46.7/86.9
T5DST	2021	46.8/N	48.8/N	—	55.5/N	59.2/N	—	23.3/N	53.0/N
Prompter	2023	48.4/N	51.5/N	—	65.3/N	59.2/N	—	21.9/N	50.8/N
DCC	2023	—	—	—	—	28.8/N	—	19.4/N	42.3/N
DualLoRA (Prev. SOTA)	2024	50.9/88.8	46.5/82.8	28.4/76.9	69.7/88.7	65.1/85.5	32.5/72.4	21.2/ 70.2	52.9/89.3
HiCoLoRA (Ours)	2025	54.0/93.2	55.1/87.8	30.7/82.3	75.9/95.8	67.7/88.1	35.8/78.9	26.7/65.0	55.8/93.8
% Gain vs DualLoRA	-	+6.1/+5.0	+18.5/+6.0	+8.1/+7.0	+8.9/+8.0	+4.0/+3.0	+10.2/+9.0	+25.9/-7.4	+5.5/+5.0

Table 2: Zero-shot JGA (%) & AGA (%) on the SGD dataset with relative improvements over previous SOTA. “N” indicates unreported results.

Method	Year	Attr.	Hotel	Rest.	Train	Taxi	AVG.
HydraLoRA	2024	35.1	18.9	26.3	41.5	65.2	37.4
LoRA-GA	2024	33.8	19.2	24.7	42.8	64.1	36.9
RoSA	2024	36.5	19.6	27.9	43.2	66.8	38.8
Spectral Adapter	2025	37.2	20.1	28.5	43.6	67.3	39.3
HiCoLoRA (Ours)	2025	38.9	20.4	31.0	44.9	68.6	40.8

Table 3: Comparison of HiCoLoRA with recent LoRA-based methods on MultiWOZ (JGA %).

A.2 COMPARISON WITH CONTEMPORARY LORA METHODS

To situate HiCoLoRA within the evolving landscape of PEFT methods, we compare it against four contemporary LoRA variants: HydraLoRA Tian et al. (2024), LoRA-GA Wang et al. (2024b), RoSA Nikdan et al. (2024), and Spectral Adapter Zhang & Pilanci (2025). As shown in Table 3, HiCoLoRA achieves the highest average JGA, outperforming all baselines in nearly all domains. This superiority is not merely incremental; it stems from fundamental architectural and semantic distinctions that address the core challenges of zs-DST.

Structural Design Philosophy: While HydraLoRA introduces an asymmetric LoRA structure to enhance expressiveness, and RoSA combines low-rank and sparse adaptations for robustness, both methods retain a *layer-agnostic* approach to adapter deployment. In contrast, HiCoLoRA’s *hierarchical layer-specific processing* explicitly models the divergent roles of lower and higher Transformer layers, local feature encoding versus global intent integration, enabling dynamic cross-layer coordination that is critical for resolving context-prompt misalignment.

Semantic Alignment Mechanism: Spectral Adapter leverages spectral initialization to better preserve pre-trained knowledge, similar to our SemSVD-Init. However, it lacks HiCoLoRA’s *spectral joint clustering* of domains and slots, which actively disentangles domain-shared and domain-specific semantics. This clustering guides the adaptive fusion of general and domain-aware features, a mechanism absent in other methods, leading to more precise slot inference in transfer-rich domains like *Media*.

Knowledge Preservation and Transfer: LoRA-GA improves the alignment of the gradient during initialization to accelerate convergence but does not explicitly modulate the singular values to align with the specific semantics of the task. HiCoLoRA’s SemSVD-Init not only preserves pre-trained knowledge, but also amplifies singular components relevant to domain-slot structures, effectively mitigating catastrophic forgetting and enhancing zero-shot generalization, particularly for rare slots such as *hotel-stars*.

Adaptability to Dynamic Contexts: Unlike RoSA and HydraLoRA, which are designed for general NLP tasks, HiCoLoRA is tailored for the dynamic and multi-turn nature of dialog systems. Its *adaptive gating mechanism* dynamically balances domain-agnostic and domain-specific features per turn, enabling robust handling of evolving dialog contexts, a capability that static LoRA variants lack.

864	Method	Year	Base Model	Attr.	Hotel	Rest.	Train	Taxi	AVG.
865	ChatGPT-zsTOD	2023	ChatGPT (GPT-3.5)	52.7	42.0	60.8	70.9	55.8	56.4
866	ChatGPT-zsTOD	2023	ChatGPT (GPT-3.5)	67.2	37.6	67.3	74.4	60.1	61.3
867	DOT	2024	LLAMA2-13B	63.1	43.8	60.8	48.8	64.7	56.2
868	MoPE	2024	ChatGLM-6B	60.4	34.1	64.0	71.3	55.9	57.1
869	FnCTOD	2024	ChatGPT (GPT-4)	58.8	45.2	69.5	76.4	63.2	62.6
870	FnCTOD	2024	LLAMA2-13B	62.2	46.8	60.9	67.5	60.3	59.5
871	Multi-User	2025	GPT-4o	56.8	46.0	61.9	69.3	55.1	57.8
872	HiCoLoRA	2025	LLAMA2-13B	62.0	42.0	61.0	65.0	69.0	60.0
873	HiCoLoRA	2025	Qwen2.5-14B-Instruct	64.0	44.0	63.0	68.0	71.0	62.0

875
876 Table 4: Zero-shot JGA (%) on MultiWOZ using large language models. HiCoLoRA demonstrates
877 strong scalability and generalization across model scales. All results of baselines were reported from
878 original papers.

880 HiCoLoRA addresses the unique challenges of zs-DST: cross-layer misalignment, semantic conflation,
881 and knowledge distortion. While other LoRA variants offer general-purpose efficiency, Hi-
882 CoLoRA provides a *domain-aware* and *layer-conscious* design that is essential for robust zero-shot
883 transfer in TODs.

885 A.3 SCALABILITY ANALYSIS: GENERALIZATION ACROSS MODEL SCALES

887 To rigorously assess the scalability and architectural generality of HiCoLoRA, we extend our evalua-
888 tion to LLM, comparing against contemporary LLM-based zs-DST methods, including ChatGPT-
889 zsTOD Heck et al. (2023), DOT Finch & Choi (2024), MoPE Tang et al. (2024), FnCTOD Li et al.
890 (2024) and Multi-User Song et al. (2025). As shown in Table 4, HiCoLoRA achieves competitive
891 performance when deployed in LLAMA2-13B and Qwen2.5-14B-Instruct, with an average JGA of
892 62.0% in the latter, only marginally below FnCTOD with GPT-4 (62.6%) and significantly outper-
893 forms other baselines based on LLM.

894 **Architectural Generalization Beyond Scale.** The consistent performance of HiCoLoRA in both
895 both small (T5-small, 60M) and large (13B–14B) models underscores a key insight: its hierar-
896 chical adaptation mechanism is *scale-agnostic*. The efficacy of HiCoLoRA stems from its structured
897 semantic alignment decomposition, which addresses cross-layer coordination (RQ1), domain-slot
898 disentanglement (RQ2), and knowledge preservation (RQ3) through explicit inductive biases. This
899 allows it to be generalized effectively even when applied to larger models without architecture-
900 specific modifications.

901 **Efficiency-Performance Trade-off.** While FnCTOD benefit from extreme scale and extensive pre-
902 training as GPT-4-based methods, HiCoLoRA offers a more efficient alternative, achieving compa-
903 rable performance with only partial parameter updates. This highlights its suitability for scenarios
904 where full fine-tuning or inference with very large models is prohibitive. The fact that HiCoLoRA
905 outperforms other PEFT-based LLM methods further validates its superior design in leveraging lim-
906 ited tunable parameters for maximal semantic alignment.

907 **Limitations and Future Directions.** The remaining gap between the HiCoLoRA and GPT-4-based
908 methods suggests that scale still matters to capture extremely nuanced or idiosyncratic slot seman-
909 tics. However, HiCoLoRA’s strong performance in structured domains such as *Restaurant* indicates
910 that its hierarchical and spectral mechanisms effectively compensate for scale limitations through
911 better semantic organization. Future work may explore hybrid approaches that integrate HiCoLo-
912 RA’s alignment mechanisms with larger foundation models for even stronger zero-shot generaliza-
913 tion.

914 A.4 EXTENDED COMPARISON WITH FNCTOD

915 Since FnCTOD (Li et al., 2024) achieves comparable performance to HiCoLoRA under the same
916 LLaMA2-13B backbone, we conduct a detailed comparison to highlight their differences in exper-

Method	Attr.	Hotel	Rest.	Train	Taxi	AVG.	Relative Change
FnCTOD (Fine-tuned LLaMA2-13B)	62.2	46.8	60.3	60.9	67.5	59.5	-0.8
FnCTOD (No FT LLaMA2-13B)	49.8	29.5	48.9	53.6	64.7	49.3	-21.1
FnCTOD (GPT-4 SOTA)	58.8	45.2	63.2	69.5	76.4	62.6	+4.2
HiCoLoRA (LLaMA2-13B)	62.0	42.0	61.0	65.0	69.0	60.0	—
HiCoLoRA (FnCTOD Dataset)	62.8	49.2	63.9	70.3	69.4	63.1	+5.2

Table 5: Performance comparison between HiCoLoRA and FnCTOD under different settings on MultiWOZ (JGA %).

Method	Attr.	Hotel	Rest.	Train	Taxi	AVG.
HiCoLoRA (Full)	38.9	20.4	31.0	44.9	68.6	40.8
w/ Swap Hier Strategies	37.2	19.7	22.9	40.2	67.5	37.4
w/o Adaptive Fusion	28.9	19.3	20.3	43.0	68.0	35.9
w/o Spec Joint Cluster	36.2	19.8	27.5	42.1	63.6	37.8
w/ Kiming Init	34.3	20.4	27.8	40.4	67.5	38.1
w/ PiSSA Init	36.5	20.3	29.0	42.5	67.8	38.9
w/ MiLoRA Init	34.1	19.9	26.2	38.5	62.9	36.3

Table 6: Ablation study on hierarchical architecture, adaptive fusion, spectral clustering, initialization of HiCoLoRA on MultiWOZ. Attr. and Rest. are abbreviations for Attraction and Restaurant, respectively.

imental setup and efficiency. A thorough examination of FnCTOD’s experimental configuration reveals several deviations from a strict zero-shot setting.

FnCTOD uses a carefully curated dataset of 7,200 dialogues across 36 domains (including SGD, CamRest676, MSR-E2E, TaskMaster, and WOZ), which include domains overlapping with MultiWOZ test domains. This violates the strict zero-shot learning premise. In contrast, HiCoLoRA uses only 4,625–7,684 samples from 4 domains in MultiWOZ, with one domain excluded during training to ensure a strict zero-shot setting. To ensure a fair comparison, we conducted an additional experiment by training FnCTOD on the **FnCTOD dataset**. The results, summarized in Table 5, demonstrate that FnCTOD achieves superior performance while maintaining significantly higher efficiency.

Beyond the fundamental discrepancy in training data composition, our comparative analysis reveals several critical distinctions that underscore HiCoLoRA’s methodological rigor and practical efficiency: (1) When trained on identical data, HiCoLoRA achieves a JGA of 63.1, surpassing FnCTOD by 6.1% and even exceeding GPT-4-based FnCTOD by 0.5 JGA points; (2) HiCoLoRA maintains superior inference efficiency, requiring only a single LLM call with 16 token prompts versus FnCTOD’s dual invocations and larger than 1200 token inputs; (3) While FnCTOD (without fine-tune) employs 5 few-shot examples in its zero-shot configuration (achieving only 49.3 JGA), HiCoLoRA operates under strict zero-shot conditions to attain 60.0 JGA; (4) FnCTOD’s incorporation of detailed schema descriptions deviates from minimal prompt principles, whereas HiCoLoRA relies solely on its hierarchical adaptation mechanism; (5) Architecturally, HiCoLoRA achieves competitive performance through semantic aware initialization and efficient parameter updates, avoiding the computational overhead of prompt heavy approaches.

This comparative analysis demonstrates that FnCTOD not only achieves state-of-the-art performance under strict zero-shot settings but also offers superior efficiency and scalability compared to prompt heavy LLM-based approaches. The gains are attributable to its principled hierarchical adaptation, spectral semantic disentanglement, and knowledge preserving initialization mechanisms that are both empirically effective and practically efficient.

A.5 ABLATION STUDY RESULTS

Table 6 validates the contributions and necessity of each core component of HiCoLoRA to its overall performance. This validation is conducted by systematically removing or replacing core com-

972
973
974 Table 7: Comparison with CAPID on MultiWOZ 2.1
975
976
977
978

Method	Configuration	Attr.	Hotel	Rest.	Train	Taxi	AVG.
CAPID	T5-base + T5-base	40.9	43.5	37.1	49.5	87.1	50.1
CAPID	T5-base + T5-small	33.3	31.1	31.6	34.3	65.4	40.7
HiCoLoRA (Ours)	T5-small	38.9	20.4	31.0	44.9	68.6	40.8

979
980
981 ponents, including the hierarchical strategy, adaptive fusion, spectral clustering, and initialization
982 method.
983

984 A.6 COMPARISON WITH RECENT HETEROGENEOUS METHODS

985 To further validate the effectiveness of HiCoLoRA against contemporary approaches with different
986 architectural paradigms, we conducted comparative analyses with two recently proposed state-of-
987 the-art methods: LDST (Feng et al., 2023) and CAPID (Dong et al., 2024).
988

989 **Comparison with LDST (EMNLP 2023):** LDST proposes an Assembled Domain-Slot Instruc-
990 tion Generation approach for DST. This method generates diverse instruction samples by randomly
991 combining different instruction and input templates during fine-tuning, thereby reducing the model’s
992 sensitivity to prompt variations. For example:
993

994 Instruction:
995 Track the state of the slot <hotel-area> in the input dialogue.
996 Input:
997 [USER] I need to book a hotel in the east that has 4 stars.
998 [SYSTEM] I can help you with that. What is your price range?
999 [domain] hotel, [slot] area, it indicates area or place of the hotel.
1000 This slot is categorical and you can only choose from the following
1001 available values: center, east, north, south, west.
1002 If the slot is not mentioned in the dialogue, just return NONE.
1003 So the value of slot <hotel-area> is
1004

1005 We performed comparative experiments on MultiWOZ 2.1 using the LLaMA-7B backbone for both
1006 methods. The results demonstrate that HiCoLoRA maintains 1.9% advantage over LDST (57.8 vs.
1007 56.7 Average JGA). This performance gain, coupled with HiCoLoRA’s parameter efficient design,
1008 further validates the effectiveness of our hierarchical collaborative architecture in capturing complex
1009 dialog state dependencies.
1010

1011 **Comparison with CAPID (EMNLP 2024):** CAPID proposes Context-aware Auto-prompting and
1012 Instruction-following Contrastive Decoding. This approach employs a two stage framework where a
1013 context-aware slot query generation method via auto-prompting which initially using GPT-4, aligns
1014 the gap between source and target domains. The generated prompts are used to train a T5-base
1015 student model to independently produce context-aware slot queries. During inference, the fine-
1016 tuned T5-base student model first generates the prompt, which is then used by the trained DST
1017 model (T5-base or T5-small) to predict slot values.
1018

1019 We compared HiCoLoRA with CAPID under different model configurations on MultiWOZ 2.1 (Ta-
1020 ble 7). HiCoLoRA shows a marginal advantage of 0.1% in Average JGA over the CAPID config-
1021 uration (T5-base + T5-small). This indicates that HiCoLoRA’s clever architectural design achieves
1022 performance comparable to CAPID but with significantly higher efficiency and lower computational
1023 cost. Specifically, HiCoLoRA relies solely on a single T5-small model (60M parameters) without
1024 requiring a separate, potentially larger, prompt generation model as in CAPID’s two-stage approach
1025 (T5-base + T5-small, 280M parameters). Moreover, CAPID’s training process initially depends on
1026 GPT-4 for auto-prompting, which introduces additional computational overhead and API depen-
1027 dency, whereas HiCoLoRA is entirely self contained throughout its training and inference pipeline.
1028

1029 **Discussion:** HiCoLoRA demonstrates distinct advantages over contemporary approaches. It sur-
1030 passes the architectural efficiency of full fine-tuning methods like LDST through parameter effective
1031 LoRA adaptation, streamlines the multi-stage inference pipeline characteristic of CAPID via a uni-
1032 fied hierarchical model, and offers enhanced scalability by natively accommodating multi-domain
1033

Experiment	Buses	Events	Flights	Media	Messaging	Music	Payment	Trains	AVG.
HiCoLoRA (Original)	54.0	55.1	30.7	75.9	67.7	35.8	26.7	55.8	50.2
HiCoLoRA (MultiWOZ→SGD)	52.4	51.8	29.2	70.6	63.6	33.7	24.8	54.7	47.6

Table 8: Cross dataset generalization performance (JGA %) from MultiWOZ to SGD

Experiment	Attr.	Hotel	Rest.	Train	Taxi	AVG.
HiCoLoRA (Original)		38.9	20.4	31.0	44.9	68.6
HiCoLoRA (SGD→MultiWOZ)		37.0	19.0	30.4	43.1	64.5

Table 9: Cross dataset generalization performance (JGA %) from SGD to MultiWOZ

dialogues without external dependencies. This positions HiCoLoRA as an optimally balanced solution, delivering robust performance with markedly greater practical efficiency for dialogue state tracking.

A.7 GENERALIZATION ANALYSIS

To rigorously evaluate HiCoLoRA’s robustness and generalization capability in challenging scenarios, we conducted comprehensive cross dataset and cross domain experiments that simulate real world distribution shifts and semantic sparsity conditions. These experiments specifically address concerns about model performance in long tail domains and under significant data distribution shifts.

A.7.1 CROSS DATASET EVALUATION

We performed extensive cross dataset evaluations to test HiCoLoRA’s ability to generalize across different data distributions and domain structures.

MultiWOZ to SGD Transfer: Trained exclusively on all MultiWOZ domains and evaluated on the complete SGD test set, requiring adaptation to SGD’s broader and unfamiliar service domains. As shown in Table 8, under this challenging setup, HiCoLoRA maintained an average JGA of 47.6%, representing only a 5.2% performance decrease compared to the original setting, and the Trains domain showed minimal 2.0% decline. This demonstrates HiCoLoRA’s ability to capture universal semantic patterns across datasets and effectively handle distribution shifts.

SGD to MultiWOZ Transfer: Trained on SGD domains and evaluated on MultiWOZ, testing transfer from diverse but shallower domains to more complex dialogue structures. As shown in Table 9, when transferring from diverse but shallower SGD domains to the more complex MultiWOZ, HiCoLoRA maintained an average JGA of 38.8%, a decrease of only 4.9% from the original performance. This highlights the effectiveness of our adaptive fusion mechanism in dynamically balancing general and domain specific features across different dataset distributions.

A.7.2 LOW SEMANTIC OVERLAP TRANSFER

To validate the model’s performance in data sparse and semantically unique long tail domains, we conducted a specialized Low Semantic Overlap Transfer experiment. We explicitly excluded all transportation related domains during training (Taxi and Train from MultiWOZ; Buses and Trains from SGD), then evaluated the model purely on transportation domains during testing. This setup simulates real world long tail scenarios where transferable semantic commonalities across domains are minimal.

Under this extreme setting with zero transportation domains in training, HiCoLoRA achieved an average JGA of 50.7% in transportation domains, a decrease of 9.1% from the original performance while maintaining usable functionality. This demonstrates three key advantages: (1) Spectral clustering possesses the capability to identify transferable patterns from underlying semantic associations beyond explicit domain similarities, enabling generalization even in low-overlap scenarios. (2) The hierarchical architecture exhibits strong robustness, with low-level universal semantic atoms providing a valuable foundation for generalization when explicit domain patterns are unavailable. (3) The

Experiment	Taxi (MultiWOZ)	Train (MultiWOZ)	Buses (SGD)	Trains (SGD)	AVG.
HiCoLoRA (Original)	68.6	44.9	54.0	55.8	55.8
HiCoLoRA (Cross-Dataset/Domain)	62.8	38.8	49.7	51.3	50.7

Table 10: Low semantic overlap transfer performance (JGA %) in transportation domains

Domain	Train	Dev	Test	Domain	Train	Dev	Test
Attraction	2717	401	416	Buses	2,280	329	526
Hotel	3381	416	394	Events	3,509	418	592
Restaurant	3813	438	207	Flights	2,747	391	506
Taxi	1654	207	195	Media	1,113	179	364
Train	3103	484	494	Messaging	NA	NA	298
Total	8438	1000	1000	Music	1,290	196	347
				Payment	NA	NA	222
				Trains	NA	NA	350
				Total	10,939	1,513	3,205

Table 11: The dataset statistic of MultiWOZ.

Table 12: The dataset statistic of SGD.

adaptive fusion mechanism offers dynamic flexibility, adjusting feature weights based on domain characteristics to avoid over reliance on specific domain patterns and maintain performance under distribution shifts.

These comprehensive generalization analyses confirm HiCoLoRA’s robustness in challenging real world scenarios, particularly addressing concerns about performance in long tail domains and under significant data distribution shifts. The results validate that our hierarchical collaborative architecture, spectral joint clustering, and adaptive fusion mechanisms collectively enable effective zero-shot transfer even when semantic commonalities are sparse or distribution shifts are substantial.

B EXPERIMENTS SETTING DETAILS

B.1 DATASET STATISTIC

Based on the experimental design for zero-shot dialog state tracking, domain selection was strategically constrained to ensure robust evaluation. For MultiWOZ (Table 11), the Police (46 dialogs) and Hospital (38 dialogs) domains were excluded due to insufficient dialog volume and slot diversity, which would compromise statistical reliability in zero-shot generalization tests. Similarly, in SGD (Table 12), services with limited samples or atypical slot structures, such as RideSharing (Test: 112), Calendar (Test: 98), etc., are omitted to avoid skew results. This curation focuses on evaluation on domains with adequate data density and representative slot semantics, ensuring that performance metrics reflect true zero-shot transferability rather than data-sparsity artifacts. Consequently, while coverage is reduced, the core challenge of cross-domain adaptation is preserved, with results generalizable to mainstream service-oriented interactions.

B.2 BASELINE MODELS

In this section, we provide a detailed overview of each baseline, as outlined below.

B.2.1 MAIN BASELINE

- **TRADE** Wu et al. (2019) enhances dialog state generation by incorporating a copy mechanism and enabling knowledge transfer between tasks, allowing the model to handle unseen dialog states during training.
- **MA-DST** Kumar et al. (2020) leverages cross-attention to align context and slot representations across multiple semantic levels, while using self-attention on RNN hidden states to resolve cross-domain coreference.

- **SUMBT** Lee et al. (2019), built on the BERT-base, employs contextual semantic attention to learn the domain-slot-type and slot value relations, predicting slot values in a non-parametric manner.
- **SGD-baseline** Rastogi et al. (2019) encodes dialog history and schema elements using BERT and applies conditional prediction with schema embeddings to accommodate dynamic schema sets.
- **Seq2Seq-DU** Feng et al. (2021) formulates DST as a sequence-to-sequence task, using two BERT-based encoders to separately process dialog utterances and schema descriptions, followed by a pointer-based decoder to generate the dialog state.
- **GPT2-DST** Li et al. (2021a) utilizes a GPT2-base generative question answering model, enabling natural language queries to infer unseen constraints and slots for zero-shot generalization in multi-domain task-oriented dialogs.
- **TransferQA** Li et al. (2021b) integrates extractive and multiple-choice question answering within a unified text-to-text transformer framework, effectively tracking both categorical and non-categorical slots, and introducing unanswerable questions to improve robustness.
- **T5DST** Lin et al. (2021), based on T5-small and PPTOD-small, encodes dialog context and slot descriptions and generates slot values in an autoregressive manner. Slot-type descriptions facilitate cross-slot information sharing and cross-domain knowledge transfer.
- **SlotDM-DST** Wang et al. (2022), leveraging T5-small, models slot-slot, slot-value, and slot-context dependencies via slot prompts, value demonstrations, and constraint objects. Shared prompts capture transferable knowledge across domains.
- **Prompter** Aksu et al. (2023), based on PPTOD-small, generates dynamic prefixes from slot descriptions and injects them into the key and value states of each Transformer layer’s self-attention mechanism, enabling zero-shot prefix tuning.
- **DCC** Wang et al. (2023) Divide, Conquer and Combine, built on T5-small, adopts a mixture-of-experts strategy by partitioning semantically independent data subsets, training corresponding experts, and applying ensemble inference for unseen samples.
- **DualLoRA** Luo et al. (2024) builds on PPTOD-small with a T5-small backbone, employing two low-rank adaptation matrices, one refining dialog context and the other slot prompts. Once trained, these matrices are fused into the frozen pre-trained weights, yielding zero-shot cross-domain dialog state tracking without any extra inference latency.

B.2.2 LORA BASELINE

- **HydraLoRA** Tian et al. (2024) is a parameter-efficient fine-tuning (PEFT) framework designed to address the performance gap between standard LoRA and full fine-tuning, especially on complex datasets. Introduce an asymmetric LoRA structure that does not require domain expertise. Experiments demonstrate that HydraLoRA surpasses existing PEFT methods in performance.
- **LoRA-GA** Wang et al. (2024b) improves LoRA by proposing a novel gradient-aware initialization strategy that aligns the gradients of the low-rank matrices with those of full fine-tuning at the first training step. This method significantly accelerates convergence (2–4× faster than vanilla LoRA) and improves performance in tasks such as GLUE, GSM8K, and code generation, even for large models such as Llama 2-7B.
- **RoSA** Nikdan et al. (2024), Robust Adaptation combines low-rank and sparse adaptations inspired by robust PCA to approximate full fine-tuning performance under constrained computational budgets. It is particularly effective in generative tasks like math problem solving and SQL generation, and supports efficient training via custom sparse GPU kernels and compatibility with quantized base models.
- **Spectral Adapter** Zhang & Pilanci (2025) incorporates spectral information from pre-trained weights via SVD to enhance PEFT methods. Performs additive tuning or orthogonal rotation on the top singular vectors, improving rank capacity and parameter efficiency. The adapter also benefits multi-adapter fusion and demonstrates stronger performance across various tasks.

1188 B.2.3 LLM BASELINE
1189

- 1190 • **ChatGPT-zsTOD** Heck et al. (2023) achieves state-of-the-art performance in zero-shot di-
1191 alog state tracking without task-specific training, leveraging its general-purpose language
1192 model capabilities. However, inherent limitations prevent it from fully replacing special-
1193 ized systems, though its in-context learning abilities may support the development of dy-
1194 namic dialog state trackers.
- 1195 • **DOT** Finch & Choi (2024) enhances zero-shot DST by generating synthetic data across over
1196 1,000 domains, creating a diverse training dataset with silver-standard annotations. This
1197 approach addresses data scarcity and enables adaptation to new domains without costly
1198 collection efforts.
- 1199 • **MoPE** Tang et al. (2024) proposes a Mixture of Prefix Experts to connect similar slots
1200 across different domains, improving transfer performance in unseen domains. It addresses
1201 domain transferring and partial prediction problems in zero-shot DST.
- 1202 • **FnCTOD** Li et al. (2024) improves zero-shot DST by calling functions with LLMs, allow-
1203 ing adaptation to diverse domains without extensive data or tuning. It achieves state-of-
1204 the-art performance with both open-source and proprietary LLMs, significantly boosting
1205 ChatGPT and GPT-4 results.
- 1206 • **Multi-User** Song et al. (2025) evaluates LLMs in multi-user DST by extending datasets
1207 with second-user utterances generated via speech act theory. For a fair comparison, the
1208 experimental setup was configured using single-user data to evaluate the performance of
1209 LLMs in single-user dialog state tracking.

1210 B.3 EVALUATION METRIC FORMULAS
12111212 B.3.1 JGA FORMULA
1213

$$1214 JGA = \frac{\sum_{i=1}^T I(S_i^{pre} = S_i^{gt})}{T} \quad (12)$$

1215 In this formula, T denotes the total number of dialog turns in the evaluation dataset. For each
1216 turn i , S_i^{pre} and S_i^{gt} represent the predicted and ground truth sets of slot-value pairs, respectively.
1217 The indicator function I returns 1 if the inside condition is satisfied and 0 otherwise. Specifically,
1218 $I(S_i^{pre} = S_i^{gt})$ checks whether the predicted set of slot-value pairs for turn i exactly matches the set
1219 of ground truth slot-value pairs. A value of 1 indicates a perfect match for that turn, that is, all slot
1220 value pairs were correctly predicted, while any discrepancy results in a value of 0. The summation
1221 $\sum_{i=1}^T I(S_i^{pre} = S_i^{gt})$ thus counts the number of turns for which the entire set of slot-value pairs was
1222 correctly predicted.

1223 B.3.2 AGA FORMULA
1224

$$1225 AGA = \frac{\sum_{i=1}^T \frac{|S_i^{gt} \cap S_i^{pre}| - |S_i^{pre} - S_i^{gt}|_{unique}}{|S_i^{gt}|}}{T} \quad (13)$$

1226 In this formula, T denotes the total number of dialog turns in the evaluation dataset. For each turn
1227 i , S_i^{pre} and S_i^{gt} represent the predicted and ground truth sets of slot-value pairs, respectively. The
1228 formula calculates the slot-level accuracy for each turn by:

- 1229 • Computing the intersection $|S_i^{gt} \cap S_i^{pre}|$, which counts correctly predicted slot-value pairs
- 1230 • Computing $|S_i^{pre} - S_i^{gt}|_{unique}$, which counts incorrectly predicted slots (by extracting
1231 unique slot names from the difference set)
- 1232 • Subtracting incorrect predictions from correct predictions
- 1233 • Normalization by the total number of ground truth slot-value pairs $|S_i^{gt}|$

1234 The outer summation averages these per-turn accuracies across all dialog turns. Note that this is a
1235 more complex metric than simple slot matching, as it accounts for both missed slots and incorrect
1236 slot predictions while considering slot name uniqueness.

1242 B.4 EXPERIMENTS IMPLEMENTATION DETAILS
1243

1244 Our experimental setup, designed for a precise comparison with previous work, follows that of
1245 DualLoRA Luo et al. (2024). We use the T5-small architecture (6 encoder/decoder layers, 512
1246 hidden dimension, 8 attention heads) as the backbone for HiCoLoRA, with a LoRA rank of 8 for
1247 low-rank adaptation, initialized from PPTOD-small checkpoints, consistent with observations in
1248 DualLoRA that PPTOD Su et al. (2022) is particularly suitable for prompt-tuning due to its pre-
1249 training objectives.

1250 For spectral clustering, the number of domain clusters (M) and slot clusters (N) are set as 2 and 3
1251 for MultiWOZ, with 2 and 4 specified for SGD. These configurations are determined by maximizing
1252 the silhouette coefficient.

1253 Training configurations include a batch size of 8 with gradient accumulation every 8 steps, the
1254 AdamW optimizer (weight decay 0.01, learning rate 1e-4, no scheduler), a fixed random seed of
1255 3407, and 5 training epochs (early stopping after 5 consecutive validation loss plateaus).

1256 For hierarchical processing, we use a $\alpha = 50\%$ full collaboration ratio with higher layers and a
1257 semantic enhancement coefficient $\lambda = 0.5$ to modulate singular values in semantically enhanced
1258 SVD initialization.

1259 The training and validation sets exclude target domain data, while the test set retains only target
1260 domain instances. All experiments were conducted on NVIDIA GeForce RTX 5080 GPUs.

1262 C CASE STUDY
1263

1265 In this section, we present a comprehensive case study to analyze the performance of HiCoLoRA on
1266 both successful and failure cases. We examine the model's behavior on representative dialogs from
1267 MultiWOZ and SGD datasets, providing insights into how HiCoLoRA addresses the context-prompt
1268 misalignment challenges discussed in our work.

1269 C.1 SUCCESSFUL CASES
12701271 C.1.1 SUCCESS CASE 1
12721293 Figure 6: Success Case 1
1294

1295 **Dialog Context.** We analyze dialog PMUL4648.json (Fig. 6) from the MultiWOZ dataset where a
user is seeking information about a restaurant named “saffron brasserie”. The dialog involves mul-

tiple turns with complex slot-value interactions, including the restaurant name, food type (indian), price range (expensive), area (center).

HiCoLoRA Performance. HiCoLoRA successfully tracks all relevant slots throughout the dialog. The model correctly identifies the user’s intent to find an expensive Indian restaurant in the center area.

Analysis. The success of HiCoLoRA in this case can be attributed to several factors:

1. **Hierarchical Collaboration:** The lower layers effectively capture local semantic features such as entity names and basic slot information, while the higher layers integrate these features to form a coherent understanding of the user's intent.
2. **Spectral Joint Clustering:** The model successfully identifies transferable domain-slot associations, enabling effective knowledge transfer between the attraction and restaurant domains.
3. **Adaptive Fusion:** The adaptive linear fusion mechanism dynamically balances the contributions of UniRep-LoRA and SemAdapt-LoRA, allowing the model to adjust to the specific requirements of each dialog turn.

C.1.2 SUCCESS CASE 2

Dialogue Content	Dialogue State Tracking
<p> I like to travel to attend a conference. Will you find me a train?</p> <p> At what date do you wish to travel? From which city would you like to depart and to which city are you planning to go?</p> <p> I'm looking for tickets from Anaheim, CA to Phoenix, AZ, and the tickets are for the 7th of March.</p> <p> There are four trains that suit your needs. One departs at 6:30 a.m. and costs \$123 in total.</p> <p> At which station does the train leave from, and at which station does it arrive?</p> <p> The train leaves from Anaheim Intermodal Center and arrives at Phoenix Union Station.</p> <p> OK, that sounds good.</p> <p> Would you like me to book tickets on that train?</p> <p> No, not for now.</p> <p> Is there anything else I can help you search for?</p> <p> No, thanks a lot. That's all I need.</p> <p> Bye! Have a great day.</p>	<p>Ground Truth:</p> <p>"train-date_of_journey-7th of March" "train-from-Anaheim-CA" "train-to-Phoenix-AZ" "train-journey_start_time-6:30 am" "train-total-\$123" "train-from_station-Anaheim Intermodal Center" "train-to_station-Phoenix Union Station"</p> <p>HiCoRAl(Ours):</p> <p>"train-date_of_journey-7th of March" "train-from-Anaheim-CA" "train-to-Phoenix-AZ" "train-journey_start_time-6:30 am" "train-total-\$123" "train-from_station-Anaheim Intermodal Center" "train-to_station-Phoenix Union Station"</p>

Figure 7: Success Case 2

Dialog Context. We examine the dialog “8_00066” (Fig. 7) from the SGD dataset, specifically the Trains domain. The user requests information about train schedules, including departure and arrival locations, travel date, and preferred travel time. The dialog involves complex slot-value interactions, such as specifying train routes and time constraints.

HiCoLoRA Performance. HiCoLoRA accurately predicts all relevant slot values including departure location, arrival location, travel date, and time preferences. The model successfully tracks the user’s intent throughout the dialog, maintaining consistency in understanding the train booking requirements. It correctly handles natural language expressions for time and date, mapping them to canonical formats.

Analysis. The success in this SGD case demonstrates:

1. **Cross-Domain Generalization:** HiCoLoRA effectively generalizes to unseen domains in the SGD dataset, achieving high accuracy (55.8 JGA, 93.8 AGA) even in domains not encountered during training.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

2. **Temporal Expression Handling:** The model successfully processes natural language temporal expressions and maps them to canonical time formats, which is crucial for train schedule queries.
3. **Semantic-Enhanced Initialization:** The SemSVD-Init mechanism preserves pre-trained knowledge, enabling the model to maintain performance on specialized domains with technical terminology, as evidenced by the high AGA.

C.2 FAILURE ANALYSIS

To better understand the limitations of HiCoLoRA, we categorize failure cases into three distinct patterns and analyze representative examples for each.

C.2.1 PATTERN 1: AMBIGUOUS SLOT BOUNDARY CASES

Dialogue Content	Dialogue State Tracking
<p>>User: I'm looking for this restaurant called Pizza Hut Fen Ditton.</p> <p>Bot: It is a moderately priced restaurant in the east that serves Italian food. Can I give you the address?</p> <p>User: No, but could you book a table for me? 3 people on Friday at 16:00, please.</p> <p>Bot: Booking was successful. The table will be reserved for 15 minutes. Reference number is: F78J1SK2. Is there anything else I can help you with?</p> <p>User: I am not sure. Let me ask my wife.</p> <p>Bot: Can I help you with anything else?</p> <p>User: I also need a place to stay.</p> <p>Bot: Can you please tell me what type of place and if you have any preferences?</p> <p>User: I want a guesthouse in the north with a moderate price range and 4 stars.</p> <p>Bot: Acorn Guest House fits your criteria. Can I book this?</p> <p>User: Yes, sounds good. Can I get the reference with that too, please?</p> <p>Bot: I have booked your room. Here is your information: Booking was successful. Reference number is: WMSF8TU5.</p> <p>User: Thank you very much.</p> <p>Bot: Is there anything else I can do for you?</p> <p>User: Nope, that's all! Thanks!</p>	<p>Ground Truth:</p> <ul style="list-style-type: none"> "restaurant-book day-friday" "restaurant-book people-3" "restaurant-book time-16:00" "restaurant-name-pizza hut fen ditton" "hotel-book day-friday" "hotel-book people-3" "hotel-book stay-3" "hotel-area-north" "hotel-pricerange-moderate" "hotel-stars-4" "hotel-name-a and b guest house" <p>HiCoLoRA(Ours):</p> <ul style="list-style-type: none"> "restaurant-book day-friday" "restaurant-book people-3" "restaurant-book time-16:00" "restaurant-food-pizza hut" "restaurant-name-fen ditton" "hotel-book day-friday" "hotel-book people-3" "hotel-book stay-3" "hotel-area-north" "hotel-pricerange-moderate" "hotel-stars-4" "hotel-name-pizza hut fen ditton"

Figure 8: Failure Pattern 1: Ambiguous Slot Boundary Cases

Description. These failures occur when the slot boundaries are ambiguous or overlapping, making it difficult for the model to distinguish between different slot values or identify the correct slot value pairs.

Example. In MultiWOZ dialog PMUL4440.json (Fig. 8) involving both restaurant and hotel booking, HiCoLoRA exhibits significant prediction errors. At turn 1, when the user provides the name of a restaurant as “pizza hut fen ditton”, the model incorrectly predicts multiple slots: “restaurant-food-pizza hut”, “restaurant-name-fen ditton”. Later at turn 6, despite the ground truth showing “hotel-name-a and b guest house”, the model incorrectly predicts “hotel-name-pizza hut fen ditton”.

Analysis. This type of failure highlights challenges in:

1. **Entity Recognition:** Distinguishing between different types of entities (area vs. parking) when they appear in close proximity in the user utterance.
2. **Implicit Slot Detection:** Recognizing implicitly mentioned slots that are not explicitly requested but are relevant to the user’s intent.

C.2.2 PATTERN 2: CROSS-DOMAIN CONFUSION

Description. These failures occur when the model confuses slot values between different domains, particularly when domains share similar slot names or values.

1404	Dialogue Content	Dialogue State Tracking
1405	I am looking for information in Cambridge.	
1406	I need more specifics to help you. What type of information do you need?	
1407	I would like a moderately priced place to stay. But only if it is a 0 star. I love	
1408	a little adventure!	
1409	Cityroomz meets your specifications. Want to book?	
1410	Yes please. 5 people for 2 nights, starting Wednesday.	
1411	I was able to make your reservation. Your confirmation is 8s83g1yc. Can I help with anything else?	
1412	I also need a train after 18:00 out of Cambridge.	
1413	Can you tell me your destination please?	
1414	I would like to go to Ely and would like to leave on Friday.	
1415	The next train leaves Cambridge at 19:50. Would you like more information or can I book it for you?	
1416	That will work for me. Can you book 5 tickets for me?	
1417	I have booked 5 tickets on the 19:50 train leaving Cambridge to Ely. Your total fare is 22GBP, payable at the station, your reference number is hrblrjcu.	
1418	That is all, thank you for your help.	
1419	Is there anything else I can do for you?	
1420	Nope, that's all! Thanks!	
1421		
1422		
1423		
1424		
1425		
1426		
1427	Example. In MultiWOZ dialog PMUL3514.json (Fig. 9), HiCoLoRA shows confusion in domain-specific slot value prediction. At turns 3-6, despite the ground truth consistently showing “hotel-name-cityroomz”, the model incorrectly predicts “hotel-book day-cityroomz” and “hotel-book people-cityroomz”, incorrectly associating the hotel name with booking slots. challenges in semantic entanglement even with disentanglement mechanisms.	
1428		
1429		
1430		
1431		
1432	Analysis. This failure pattern reveals limitations in:	
1433		
1434	1. Domain Disambiguation: Properly associating slot values with their respective domains in multi-domain dialogs.	
1435		
1436	2. Contextual Understanding: Maintaining clear separation between domain-specific contexts when processing complex multi-domain interactions.	
1437		
1438	3. Semantic Overlap Handling: Dealing with high-overlap domains where lexical similarities between slots from different domains cause confusion. This is particularly challenging when domain-agnostic features are overweighted by the adaptive fusion mechanism.	
1439		
1440		
1441		
1442		
1443	C.2.3 PATTERN 3: RARE SLOT VALUE CASES	
1444		
1445	Description. These failures occur when the model encounters rare or unseen slot values that were not adequately represented in the training data. Analysis of the MultiWOZ and SGD datasets reveals that such slots are common: in <i>Attraction</i> , slots like “entrance fee” and “phone” appear in <10% of dialogs; in <i>Hotel</i> , “stars” and “internet” have fill rates <20%; in <i>Train</i> , “trainID” appears in <5% of dialogs. In a zero-shot setting, HiCoLoRA must generalize to both unseen domains and these rare slot values without any domain specific training examples, presenting a significant challenge.	
1446		
1447		
1448		
1449		
1450		
1451	Example. In MultiWOZ dialogs, HiCoLoRA struggles with predicting rare slot values for specific domains. For instance, in attraction domain dialogs, when users request detailed information about “entrance fee” or “address”, the model often fails to correctly predict these values. Similarly, in hotel domain dialogs, when users inquire about specific details like “stars” or “internet”, the model shows poor performance. In SGD dialogs, similar patterns emerge. For train domain dialogs, HiCoLoRA often fails to predict “trainID” or “price” information, particularly when these values are not explicitly mentioned in the user utterance but are expected as part of the system response.	
1452		
1453		
1454		
1455		
1456		
1457	Analysis. This failure pattern indicates challenges in:	

Figure 9: Failure Pattern 2: Cross-Domain Confusion

1. **Rare Value Generalization:** Extending knowledge to handle infrequent slot values that
1459 may not have been adequately learned during pre-training. In a zero-shot setting, the model
1460 cannot benefit from domain-specific fine-tuning to improve performance on these rare slots.
2. **Contextual Inference:** Properly inferring rare slot values from contextual clues when they
1461 are not explicitly mentioned. This is particularly challenging for slots like “trainID” or
1462 “reference number” that require the model to generate specific identifiers.
3. **Domain-Aware Initialization:** Current initialization methods (SemSVD-Init) preserve
1463 pre-trained knowledge but may not adequately address domain-specific rare slot challenges.
1464 Future work could explore domain-aware initialization strategies that better account for rare
1465 slot distributions.
4. **Idiosyncratic Semantics Handling:** Dealing with slots that have domain-exclusive terms
1466 or idiosyncratic semantics that resist transfer. Spectral clustering may fail for slots with
1467 low-frequency terms, and semantic dilution in higher layers can occur when full collabora-
1468 tion fuses these slots with irrelevant ones.

1473 C.3 DISCUSSION

1475 The case study analysis reveals both the strengths and limitations of HiCoLoRA. The successful
1476 cases demonstrate the effectiveness of our hierarchical collaborative architecture, spectral joint clus-
1477 tering, and semantic-enhanced initialization in addressing the core challenges of context-prompt
1478 misalignment. However, failure cases highlight areas for future improvement, particularly in han-
1479 dling ambiguous slot boundaries, cross-domain confusion, and rare slot values.

1480 These findings suggest that, while HiCoLoRA represents a significant advance in zs-DST, more
1481 research is needed to address the identified failure patterns. Potential directions include:

1. **Enhanced Slot Boundary Detection:** Develop more sophisticated mechanisms to identify
1483 and separate slot boundaries in complex utterances.
2. **Improved Domain Disambiguation:** Exploring techniques for better domain separation
1485 in multi-domain dialogs.
3. **Rare Value Enhancement:** Investigating data enhancement strategies to improve coverage
1487 of rare slot values during training.

1489 In general, the case study provides valuable insight into the practical performance of HiCoLoRA
1490 and informs future research directions on zs-DST.

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511